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Abstract—Let X and Y be dependent random variables. We
consider the problem of designing a scalar quantizer for Y to
maximize the mutual information between its output and X . We
study fundamental properties and bounds for this form of quanti-
zation, which is connected to the log-loss distortion criterion. Our
main focus is the regime of low I(X;Y ), where we show that for a
binary X , there always exists an M -level quantizer attaining mu-
tual information of Ω(−M ·I(X;Y )/ log(I(X;Y )) and that there
exists pairs of X, Y for which the mutual information attained
by any M -level quantizer is O(−M · I(X;Y )/ log(I(X;Y ))).

I. INTRODUCTION

Quantization plays a central role in many information pro-

cessing systems. For instance, when the data comes from a

continuous alphabet, quantization is a pre-requisite for digital

processing. However, even if the data comes from a discrete

alphabet, reducing its cardinality often leads to more efficient

processing.

Let X and Y be a pair of random variables with a given

distribution PXY . This paper deals with the problem of

quantizing Y into M < |Y| values, under the objective of

maximizing the mutual information between the quantizer’s

output and X . Thus, the optimal quantizer under this setup is

argsup
f :Y→[M ]

I(X ; f(Y )), (1)

where [M ] , {1, 2, . . . ,M}. We will use the following

shorthand1 to denote the value of the mutual information

attained by the optimal M -ary quantizer.

I(X ; [Y ]M ) , sup
Ỹ ∈[Y ]M

I(X ; Ỹ ). (2)

where [Y ]M is the set of all (deterministic) M -ary quantiza-

tions of Y ,

[Y ]M , {f(Y ) : f : Y → [M ]}.

When X and Y are thought of as the input and output of a

channel, respectively, the problem (1) boils down to designing

the M -level quantizer that maximizes the information rate,

whereas (2) is the highest information rate attainable. It is

therefore not surprising that this problem has received con-

siderable attention. For example, it is well known [1, Section

The work was supported in part by the NSF CAREER award CCF-12-
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CCF-1618800.

1This notation is meant to suggest the distance from a point to a set.

2.11] that when X is a BPSK input to an AWGN channel with

output Y it holds that I(X ; [Y ]2) ≥ 2I(X ;Y )/π and this is

achieved by taking f(·) to be the maximum a posteriori (MAP)

estimator of X from Y .2

A characterization of (2) is also required for practically

constructing polar codes, since the large output cardinality

of polarized channels makes it challenging to evaluate their

respective capacities (and identify “frozen” bits). Efficient

techniques for channel output quantization that preserve mu-

tual information were developed to overcome this obstacle,

and played a major role in the process of making polar

codes implementable [3]–[5]. Specifically, it was recently

shown in [5] that, for arbitrary PXY , it holds that I(X ;Y )−
I(X ; [Y ]M ) ≤ O(M−2/(|X |−1)). The works [3]–[5], among

others, also provided polynomial complexity sub-optimal algo-

rithms for designing such quantizers. In addition, for binary

X , an algorithm for determining the optimal quantizer was

proposed in [6] (drawing upon a result from [7]) that runs

in time O(|Y|3). A supervised learning algorithm, for the

scenario where PXY is not known, was proposed in [8].

In this paper, we ignore the algorithmic aspects of finding

the optimal M -level quantizer and instead focus on the fun-

damental properties of the function I(X ; [Y ]M ). In particular,

our main interest is in identifying the joint distributions PXY

that are the most difficult to quantize, and in the value of

I(X ; [Y ]M ) for these cases. Special attention will be given

to the binary case,3 where X ∼ Bernoulli(p) for some p.

In this setting, it may seem at a first glance that the optimal

binary quantizer should always retain a significant fraction of

I(X ;Y ), and that the MAP quantizer should be sufficient to

this end. For large I(X ;Y ), this is indeed the case, as we

show in Proposition 6. This is also the case for the binary

AWGN channel for all values of I(X ;Y ), since the MAP

quantizer always retains at least 2/π ≈ 63.66% of the mutual

information.

We state our main result next, with proof deferred to

Section III-C. Logarithms are generally taken w.r.t. base 2 in

this paper, with the exception of the ln function that is taken

w.r.t. base e.

Theorem 1: If X ∼ Bernoulli(1/2) and I(X ;Y ) = β > 0,

2It was recently demonstrated in [2] that, if instead of BPSK, an asymmetric
signaling scheme is used, the AWGN capacity can be attained at low SNR
with an asymmetric 2-level quantizer.

3Results for general finite input alphabets will be reported in an extended
version.



we have for binary quantization

I(X ; [Y ]2) ≥
1

3e

β

1 + ln
(

1
β

) . (3)

Furthermore, for any η ∈ (0, 1) and any natural M <
12max

{

log
(

1
β

)

,1
}

(1−η)2

I(X ; [Y ]M ) ≥ (M − 1)
β

max{log
(

1
β

)

, 1}
η(1 − η)2

12
. (4)

Finally, for any 0 < β ≤ 1, there exist distributions PXY with

X ∼ Bernoulli(1/2) and I(X ;Y ) = β, for which

I(X ; [Y ]M ) ≤ 2M
β

ln
(

e log(e)
2β

) , (5)

for every natural M .

Note that this is in stark contrast to the intuition from the

binary AWGN channel. While for the former, two quantization

levels suffice for retaining a 2/π fraction of I(X ;Y ), Theo-

rem 1 shows that there exist distributions for which at least

Ω(log(1/I(X ;Y ))) quantization levels are needed in order to

retain a fixed fraction of I(X ;Y ). Furthermore, as illustrated

in Section III, for small I(X ;Y ) and M = 2, the MAP

quantizer can be arbitrary bad w.r.t. the optimal quantizer,

which is in general not “symmetric”.

For a fixed distribution PX on X , we define and study the

“information distillation” function

IDM (PX , β) , inf
PY |X : I(X;Y )≥β

I(X ; [Y ]M ), (6)

where the infimum is taken w.r.t. to all channels with input

alphabet X and arbitrary (possibly continuous) output alphabet

such that the mutual information is at least β. With this

notation, Theorem 1 states that IDM (Bernoulli(1/2), β) =
Θ (Mβ/ log(1/β)), and in fact, as briefly argued in Sec-

tion III-C, the same scaling law continues to hold for

IDM (Bernoulli(p), β), 0 < p < 1.

As discussed above, prior work [3]–[5] has focused on

bounding the additive gap. In our notation, this corresponds

to bounding

∆I∗M , sup
β,PX

β − IDM (PX , β).

In particular, the bound derived in [5] on ∆I∗M is equiv-

alent to the following “constant-gap” result: for every PX ,

IDM (PX , β) ≥ β−ν(|X |)M−2/|(X|−1) for some function ν.4

For small β, however, results of this form are less informative.

Indeed, for binary-input channels and small β, this bound

requires M to scale like β−1/2 in order to preserve a constant

fraction of the mutual information. On the other hand, our

result shows that scaling M like O(log(1/β)) suffices for all

binary-input channels.

4It is also demonstrated in [9] that there exist values of β, for which
this bound is tight. Specifically, [9] found a distribution PXY with X ∼

Bernoulli(1/2) and I(X; Y ) ≈ 0.2787 for which I(X; [Y ]M ) <
I(X; Y ) − cM−2 for some constant c > 0.

A. Connection to Quantization Under Log-Loss

In general, an M -level quantizer q for a random variable Y
consists of a disjoint partition of its alphabet Y =

⋃M
i=1 Si,

and a set of corresponding reproduction values ai ∈ A, such

that qy =
∑M

i=1 ai1{y∈Si}, see, e.g., [10]. The performance

of the quantizer is measured w.r.t. some predefined distortion

function d : Y × A 7→ R+, which quantifies the “important

features” of Y that the quantizer should aim to retain.

Assume the quantizer’s output qY should allow to infer

information about a correlated random variable X with al-

phabet X . In this case, it is natural to take the reconstruction

alphabet A to be the set of all distributions on X , i.e., the

|X | − 1 dimensional simplex P . Ideally, we would like the

reconstructed distribution qy to be as close as possible to the

conditional distribution PX|Y =y , for all y ∈ Y . Various loss

functions can be used to measure the distance between two

distributions, depending on the ultimate performance criterion

for the inference of X . One such loss function is the following:

EXY log
PX|Y (X |Y )

qY (X)
= EY E

[

log
1

qY (X)

∣

∣

∣

∣

Y

]

−H(X |Y ),

which is related to the log-loss criterion. Since the term

H(X |Y ) is independent of the quantizer, our goal is to design

a quantizer qY that minimizes D = EY d(Y, qY ) where

d(y, P ) , E

[

log
1

P (X)

∣

∣

∣

∣

Y = y

]

, ∀(y, P ) ∈ Y × P . (7)

Note that once the sets Si, i = 1, . . . ,M are determined, the

reconstructions that minimize D are given by ai = PX|Y ∈Si
.

To see this, let T ∈ [M ] denote the cell in which Y fell, and

write

D = EY E

[

log
1

qY (X)

∣

∣

∣

∣

Y

]

= ETE

[

log
1

aT (X)

∣

∣

∣

∣

Y ∈ ST

]

= ETE

[

log
1

PX|Y ∈ST
(X)

PX|Y ∈ST
(X)

aT (X)

∣

∣

∣

∣

Y ∈ ST

]

= H(X |T ) +D(PX|T ||aT |PT )

≥ H(X |T ),
with equality if and only if at = PX|Y ∈St

for all t ∈ [M ].

For a given distribution PXY , the design of the optimal

quantizer under the distortion measure (7) reduces to finding

f : Y → [M ] which minimizes H(X |f(Y )), which is in turn

equivalent to solving (1).

A quantity closely related to I(X ; [Y ]M ) is the information

bottleneck tradeoff [11], defined as

IBR(PXY ) , max
PT |Y : I(Y ;T )≤R

I(X ;T ). (8)

which has been extensively studied in the machine learning

literature. There, Y is thought of as an high-dimensional

observation containing information about X , that must be first

“compressed” to a simpler representation before inference can



be performed. The random variable T = f(Y ) represents a

clustering operation, where for the task of inferring X , all

members in the cluster are treated as indistinguishable. A

major difference, however, between the information bottleneck

formulation and that of (2) is that the latter restricts |f(·)|
to M , whereas the former allows for random quantizers and

restricts the compression rate I(T ;Y ). The discussion above

indicates that the problem (2) is a standard quantization/lossy

compression problem (or more precisely, a remote source

coding problem [12]). As such, its fundamental limit admits

a single-letter solution5 and we have that [13], [14]

lim
n→∞

1

n
I(Xn; [Y n]Mn) = IBlogM (PXY ). (9)

where PXnY n = Pn
X,Y and [Y n]Mn refers to the set of all

Mn-quantizations of Y n. In practice, the case n = 1 is of ma-

jor importance as inference is seldom performed in blocks of

independent observations. Thus, our results indicates that when

I(X ;Y ) is small we may need at least Θ(log(1/I(X ;Y ))
clusters to guarantee that we use a significant fraction of the

information in the observations.

II. PROPERTIES OF I(X ; [Y ]M ) AND IDM (PX , β)

Let PXY be a joint distribution on X × Y and consider

the function I(X ; [Y ]M ), as defined in (2). The restriction

to deterministic functions incurs no loss of generality, see

e.g., [6]. Indeed, any random function of y, can be expressed

as f(y, U) where U is some random variable statistically

independent of (X,Y ). Thus,

I(X ; f(Y, U)) ≤ I(X ; f(Y, U), U) = I(X ; f(Y, U)|U)
(10)

and hence there must exist some u for which I(X ; f(Y, u)) ≥
I(X ; f(Y ;U)). Furthermore, for any function f : Y → [M ],
we can associate a disjoint partition of the |X |-dimensional

cube [0, 1]|X | into M regions I1, . . . , IM , such that f(y) = i
iff PX|Y =y ∈ Ii for i = 1, . . . ,M . A remarkable result of

Burshtein et al. [7, Theorem 1] shows that the supremum in (2)

can w.l.o.g. be restricted to functions for which there exists

an associated partition where the regions I1, . . . , IM are all

convex.

Below, we state simple upper and lower bounds on

I(X ; [Y ]M ).

Proposition 1 (Simple bounds): For any distribution PXY

on X × Y with a finite output alphabet, and M < |Y|,
M − 1

|Y| I(X ;Y ) ≤ I(X ; [Y ]M ) ≤ min{I(X ;Y ), log(M)}.

Proof. The upper bound does not require any assumptions

on Y and follows from the data processing inequality (X −
5One subtle point to be noted is that the relevant distortion measure

for I(Xn; [Y ]n
Mn ) is not separable. Nevertheless, it is not difficult to

show that restricting the reconstruction distribution to the form qyn(xn) =∏n
i=1

qiyn(xi) entails no loss asymptotically.

Y − f(Y ) forms a Markov chain in this order), and from

I(X ; f(Y )) ≤ H(f(Y )) ≤ log(M).

For the lower bound, we can identify the elements of Y
with {1, . . . , |Y|} such that

PY (1)D(PX|Y=1||PX) ≥ · · · ≥ PY (|Y|)D(PX|Y =|Y|||PX)

and take the quantization function

f(y) =

{

y if y < M,

M otherwise.

Recalling that I(X ;Y ) =
∑

y PY (y)D(PX|Y =y||PX) we see

that

I(X ; f(Y )) ≥ M − 1

|Y| I(X ;Y ).

For K < M , we can construct a (possibly sub-optimal) K-

level quantizer by first finding the optimal M -level quantizer

and then quantizing its output to K-levels. This together with

the lower bound in Proposition 1, yields the following.

Corollary 1: For natural numbers K < M we have

I(X ; [Y ]K) ≥ K − 1

M
I(X ; [Y ]M ).

Proposition 2 (Data processing inequality): If X − Y − V
form a Markov chain in this order, then

I(X ; [V ]M ) ≤ I(X ; [Y ]M ).

Proof. For any function f : V 7→ [M ] we can generate a

random function f̃ : Y 7→ [M ] which first passes Y through

the channel PV |Y and then applies f on its output. By (10),

we can always replace f̃ by some deterministic function f̄ :
Y 7→ [M ] such that

I(X ; f̄(Y )) ≥ I(X ; f̃(Y )) = I(X ; f(V )).

Proposition 3: For a fixed PX , the function PY |X 7→
I(X ; [Y ]M ) is convex.

Proof. For any f : Y 7→ [M ], let If (PX × PY |X) ,

I(X ; f(Y )), and note that

I(X ; [Y ]M ) = sup
f :Y7→[M ]

If (PX × PY |X).

Since the supremum of convex functions is also convex, it

suffices to show that for a fixed PX the function If (PX ×
PY |X) is convex in PY |X . To this end, consider two channels

P 1
Y |X and P 2

Y |X , and let P 1
f(Y )|X and P 2

f(Y )|X , respectively, be

the induced channels from X to f(Y ). Clearly, for the channel

αP 1
Y |X+(1−α)P 2

Y |X , the induced channel is αP 1
f(Y )|X+(1−

α)P 2
f(Y )|X . Let Z ∈ [M ] be the output of this channel, when



the input is X . From the convexity of the mutual information

w.r.t. the channel we have

If
(

PX ×
(

αP 1
Y |X + (1− α)P 2

Y |X

))

= I(X ;Z)

≤ αIf (PX × P 1
Y |X) + (1− α)If (PX × P 2

Y |X),

as desired.

Remark 1: In contrast to mutual information, the functional

I(X ; [Y ]M ) is in general not concave in PX for a fixed

PY |X . To see this consider the following example: X = Y =
{1, 2, 3}, M = 2, and the channel from X to Y is clean, i.e.,

Y = X . Let PX1 = (12 ,
1
4 ,

1
4 ) and PX2 = (14 ,

1
4 ,

1
2 ). Clearly,

I(X1; [Y ]M ) = I(X2; [Y ]M ) = 1. For any α ∈ (0, 1), let

PX = αPX1 + (1 − α)PX2 . It can be verified that

I(X ; [Y ]M ) < 1.

Remark 2: It is tempting to expect that I(X ; [Y ]M ) will

have “diminishing returns” in M for any PXY , i.e., that it

will satisfy the inequality I(X ; [Y ]M1·M2) ≤ I(X ; [Y ]M1) +
I(X ; [Y ]M2). However, as demonstrated by the following

example, this is not the case. Let X ∼ Uniform({0, 1, 2, 3})
and Y = [X+Z] mod 4, where Z is additive noise statistically

independent of X with Pr(Z = 0) = δ and Pr(Z = 1) =
Pr(Z = 2) = Pr(Z = 3) = (1− δ)/3. Clearly,

I(X ; [Y ]4) = I(X ;Y ) = 2− h(δ)− (1 − δ) log(3), (11)

and it can be verified that

I(X ; [Y ]2) =

{

h
(

1
4

)

− 1
4h(δ)− 3

4h
(

1−δ
3

)

δ ≤ 1/4,

1− h
(

1+2δ
3

)

δ > 1/4.
(12)

Thus, for this example we have that 2I(X ; [Y ]2) < I(X ; [Y ]4)
for all δ /∈ {1/4, 1}.

Remark 3 (Complexity of finding the optimal quantizer):

For the special case where Y = X , the function I(X ; [Y ]M )
reduces to

H([Y ]M ) , sup
Ỹ ∈[Y ]M

H(Ỹ ). (13)

Furthermore, when M = 2 the optimization problem in (13)

is equivalent to

max
A⊆X

∑

x∈A
px subject to:

∑

x∈A
px ≤ 1

2
, (14)

where px , Pr(X = x), x ∈ X . The problem (14) is known

as the subset sum problem and is NP-hard [15]. Nevertheless,

for some special instances optimal low-complexity algorithms

do exist. For example, if X is binary, a dynamic program-

ming algorithm finds the optimal quantizer with complexity

O(|Y|3), see [6].

Proposition 4: The function IDM (PX , β) is convex and

monotonically nondecreasing in β.

Proof. Monotonicity follows from definition. For convexity,

let β1, β2 ≥ 0 and α ∈ [0, 1], and let PYi|X be the channel

that attains6 the infimum in (6) for βi. Consider a channel

with output Y = (YU , U), where U = 1 with probability α
and U = 2 with probability 1−α, statistically independent of

X . We have

I(X ;Y ) = I(X ;YU , U) = I(X ;YU |U) ≥ αβ1 + αβ2.

On the other hand, for any f : Y 7→ [M ],

I(X ; f(Y )) = I(X ; f(YU , U))

≤ I(X ; f(YU , U), U)

= I(X ; f(YU , U)|U)

≤ αI(X ; [Y1]M ) + (1− α)I(X ; [Y2]M )

= αIDM (PX , β1) + (1− α)IDM (PX , β2),

which shows that

IDM (PX , αβ1 + (1− α)β2)

≤ αIDM (PX , β1) + (1− α)IDM (PX , β2), (15)

as desired.

Remark 4 (Relations to quantization for maximizing diver-

gence): For two distributions P,Q on Y , Q≪ P , define

ψM (P,Q) , sup
f :Y7→[M ]

D(P f ||Qf ), (16)

where P f and Qf are the distributions on [M ] induced by

applying the function f on the random variables generated by

P and Q, respectively. A classical characterization of Gelfand-

Yaglom-Perez [16, Section 3.4], shows that ψM (P,Q) ր
D(P‖Q) as M → ∞. We are interested here in understanding

the speed of this convergence. To this end, we prove the

following result.

Proposition 5: For any β, ǫ > 0, there exists two distribu-

tions P,Q on N such that D(P‖Q) = β and ψM (P,Q) ≤Mǫ
for any M ∈ N.

Proof. Consider the following two distributions:

P (m) =











2−m m = 1, . . . , T

2−(T−1) m = T

0 m > T

Q(m) =











P (m) 1 ≤ m ≤ k

g(m) · P (m) k < m ≤ T

1−∑k
m=1 P (m)−∑T

m=k+1 g(m)p(m) m = T + 1

where 0 < g(m) ≤ 1 is some monotonically non-increasing

function. We have that

D(P ||Q) =

T
∑

m=k+1

2−m log(1/g(m)), (17)

whereas for any f : {0, 1, . . .} 7→ [M ] we have that

D(P f ||Qf ) ≤M · max
A⊂{0,1,...}

P (A) log
P (A)

Q(A)
. (18)

6More precisely, this refers to a sequence of channels approaching the
infimum.



Let Ak , A ∩ [k]. Without loss of generality, we can assume

that A \ Ak 6= ∅, as otherwise P (A) log(P (A)/Q(A)) = 0.

Thus, we can define ℓ , min{a : a ∈ A \Ak} and write

P (A) = P (Ak) + P (A \Ak) ≤ P (Ak) + 2 · 2−ℓ

Q(A) = Q(Ak) +Q(A \Ak) ≥ P (Ak) + 2−ℓg(ℓ) (19)

Let t = 2ℓP (Ak) + 2, and τ = 2− g(ℓ) such that the bounds

above read P (A) ≤ 2−ℓt and Q(A) ≥ 2−ℓ(t− τ), and

P (A) log
P (A)

Q(A)
≤ −2−ℓt log

(

1− τ

t

)

. (20)

We note that the function ϕ(t) = −t log(1− τ
t ) is convex and

monotone decreasing in the range t > τ . This implies that (20)

is maximized by choosing A such that P (Ak) = 0, for which

t = 2, and we obtain

D(P f‖Qf ) < M · 2−(ℓ−1) log
2

g(ℓ)
. (21)

Now, take g(m) = 2−
α2m

m for some 0 < α ≤ 1, and note

that it is indeed monotone non-increasing in m = 1, 2, . . .. We

have

D(P‖Q) = α

T
∑

m=k+1

1

m
(22)

D(P f‖Qf ) ≤ 2M
(

2−ℓ +
α

ℓ

)

≤ 2M
(

2−k +
α

k

)

. (23)

The statement follows by noting that we can always choose k
such that the LHS of (23) is smaller than ǫ, and then we can

choose T and α such that the LHS of (22) is equal to β.

Proposition 5 shows that for any fixed M , and any value

od D(P‖Q), the ratio ψM (P,Q)/D(P,Q) can be arbitrarily

small. Note that choosing a different ϕ-divergence in the

definition of ψM (P,Q) instead of the KL-divergence, could

lead to very different results. In particular, under the total

variation criterion, the 1-bit quantizer f(y) = sign(P (y) −
Q(y)) achieves dTV(P

f , Qf ) = dTV(P,Q) for any pair of

distributions P,Q on Y . An interesting question is under

what ϕ-divergences is the ratio ψM (P,Q)/Dϕ(P,Q) always

positive.

III. BOUNDS FOR X ∼ Bernoulli(1/2)

In this section we provide upper and lower bounds on

IDM (PX , β), for the special case where X ∼ Bernoulli(p),
which we denote by IDM (p, β). To simplify derivations, we

shall further restrict attention to p = 1/2, though the results

we obtain below remain valid for any 0 < p < 1 with

some correction terms which are qualitatively insignificant.

Clearly, for any distribution PXY with X = {1, 2} it holds

that I(X ;Y ) ≤ 1. Thus, β is restricted to the interval [0, 1].

A. The Symmetric Quantizer for M = 2

We begin by analyzing the mutual information induced

by the most natural binary quantizer, which is based on the

maximum a posteriori (MAP) estimator

fMAP(y) =











1 if Pr(X = 1|Y = y) > 1/2

2 if Pr(X = 1|Y = y) < 1/2

Bernoulli(1/2) if Pr(X = 1|Y = y) = 1/2

.

Let Pe,MAP(y) , Pr(fMAP(Y ) 6= X |Y = y) and Pe,MAP ,

EY Pe,MAP(Y ). By concavity of the binary entropy function

h(p) , −p log(p) − (1 − p) log(1 − p) we have that h(p) ≥
2p for any 0 ≤ p ≤ 1/2, with equality iff p ∈ {0, 1/2}.

Consequently,

H(X |Y ) = EY h(Pe,MAP(Y )) ≥ 2Pe,MAP. (24)

We therefore have that

I(X ; fMAP(Y )) = H(X)−H(X |fMAP(Y ))

= 1− EY h (Pr(X 6= fMAP(Y )))

≥ 1− h(Pe,MAP)

≥ 1− h

(

H(X |Y )

2

)

= 1− h

(

1− I(X ;Y )

2

)

. (25)

B. The High Mutual Information Regime

As a consequence of (25), we obtained

ID2(1/2, β) ≥ 1− h

(

1− β

2

)

. (26)

Furthermore, note that the bound (25) is achieved with equality

when PY |X is the binary erasure channel (BEC). For the BEC,

however, the MAP quantizer involves randomness. Instead of

flipping a coin whenever y =?, we can always assign a fixed

value, say f(?) = 1, to it. This deterministic asymmetric

quantizer, given by

fZ(y) =

{

1 if y ∈ {1, ?},
2 if y = 0,

induces a Z-channel from X to fZ(Y ) and satisfies

I(X ; fZ(Y )) =
β

2
h

(

1− β

2− β

)

+ 1− h

(

1− β

2− β

)

. (27)

Clearly, fZ(y) is the optimal 1-bit quantizer for the BEC.

We have therefore established the following proposition.

Proposition 6: For all 0 ≤ ǫ ≤ 1 we have

1− h
( ǫ

2

)

≤ ID2(1/2, 1− ǫ) ≤ 1− 1 + ǫ

2
h

(

ǫ

1 + ǫ

)

.

(28)

Thus, for large β, the loss for quantizing the output to one

bit is small and the fraction of the mutual information that can



be retained approaches 1 as the mutual information increases.

In particular, the natural MAP quantizer is never too bad, and

retains a significant fraction of at least 1 − h((1 − β)/2) of

the mutual information β.

C. The Low Mutual Information Regime

In the small β regime, we arrive at qualitatively different

behavior. Consider again the BEC with capacity β for β ≪ 1.

By (25) (which becomes an equality for the BEC) and (27),

we have that

I(X ; fMAP(Y )) = 1− h

(

1− β

2

)

=
log e

2
β2 + o(β2). (29)

I(X ; fZ(Y )) =
β

2
h

(

1− β

2− β

)

+ 1− h

(

1− β

2− β

)

=
β

2
+ o(β).

(30)

Thus, the asymmetric quantizer fZ(y) retains 50% of the mu-

tual information, whereas the fraction of mutual information

retained by the symmetric MAP quantizer vanishes as β goes

to zero.

Remark 5: One can naively attribute this effect to the

randomness required by the MAP quantizer in the BEC setting.

This is not the case however. To see this consider a channel

with binary input and output alphabet Y = {0, 1} × {g, b},

defined by

Pr(Y = y|X = x) =











β if y = (x, g)

(1 − β)
(

1
2 + δ

)

if y = (x, b)

(1 − β)
(

1
2 − δ

)

if y = (1− x, b)

,

for some 0 ≤ β ≤ 1 and 0 ≤ δ ≤ 1/2. Note that for δ = 0,

this channel becomes a BEC with capacity 1 − β. For any

δ > 0, the corresponding MAP quantizer is deterministic, but

as δ → 0, the channel approaches a BEC, and its performance

becomes closer and closer to (29). Similarly, the performance

of a binary quantizer that assigns the same value to both “bad”

outputs, i.e., f(y) = 2 if y = (0, g) and f(y) = 1 otherwise,

approach (30) as δ → 0.

Next, we prove Theorem 1. The proof will require the

following proposition, which can be verified using straight-

forward analysis.

Proposition 7: The function g(t) = −t ln(t) is monotone

increasing in 0 < t < 1/e and its inverse restricted to this

interval satisfies

1

e
· t

− ln(t)
< g−1(t) ≤ t

− ln(t)
(31)

Proof of lower bounds in Theorem 1. Consider the joint

distribution PXY , and for any y ∈ Y define αy , Pr(X =
1|Y = y), ᾱ , E(αY ) =

1
2 and

Dy , D(PX|Y =y‖PX) = d (αy ‖ ᾱ) , (32)

where d(p‖q) , p log(p/q) + (1 − p) log((1 − p)/(1 − q)) is

the binary divergence function. We further define the function

F̄ (γ) , Pr(DY ≥ γ), (33)

and note that it is non-increasing and satisfies

I(X ;Y ) = EDY =

∫ γ∗

0

F̄ (γ)dγ, (34)

where γ∗ = maxy∈Y Dy ≤ 1. Let M = 2L + 1 for some

natural number L, let 0 = γ0 ≤ γ1 ≤ · · · ≤ γL ≤ γL+1 =
γ∗+δ, for some arbitrary small δ > 0, and define the following

M -level quantizer

f(y) =











0 d(αy‖ᾱ) ≤ γ1

−ℓ αy < ᾱ, γℓ ≤ d(αy‖ᾱ) < γℓ+1

ℓ αy > ᾱ, γℓ ≤ d(αy‖ᾱ) < γℓ+1

. (35)

We have that for ℓ = 1, . . . , L

d (E[αY |f(Y ) = −ℓ]‖ᾱ) ≥ γℓ, d (E[αY |f(Y ) = ℓ]‖ᾱ) ≥ γℓ

and by the definition of F̄ (γ) we also have

Pr ({f(Y ) = −ℓ} ∪ {f(Y ) = ℓ}) = F̄ (γℓ)− F̄ (γℓ+1).

Thus,

I(X; f(Y )) =

L
∑

ℓ=−L

Pr(f(Y ) = ℓ)D(PX|f(Y )=ℓ‖PX)

≥
L
∑

ℓ=1

(

F̄ (γℓ)− F̄ (γℓ+1)
)

γℓ

= F̄ (γ1)γ1 +

L
∑

ℓ=2

F̄ (γℓ)(γℓ − γℓ−1)− F̄ (γL+1)γL

=
L
∑

ℓ=1

F̄ (γℓ)(γℓ − γℓ−1), (36)

where in the last equality we used γ0 = 0 and F̄ (γL+1) =
F̄ (γ∗ + δ) = 0. Our goal is therefore to choose the numbers

{γℓ}Lℓ=1 such as to maximize (36).

For the special case of L = 1, this reduces to γ1 =
argmaxγ γF̄ (γ), and with this choice we have I(X ; f(Y )) =
maxγ γF̄ (γ). Thus, F̄ (γ) ≤ min{1, I(X ; f(Y ))/γ}. Using

the identity (34) with γ∗ ≤ 1, this yields

I(X ;Y ) ≤
∫ I(X;f(Y ))

0

dγ +

∫ 1

I(X;f(Y ))

I(X ; f(Y ))

γ
dγ

(37)

= I(X ; f(Y ))

(

1 + ln
1

I(X ; f(Y ))

)

= −eI(X ; f(Y ))

e
ln

(

I(X ; f(Y ))

e

)

. (38)



Recalling that L = 1 corresponds to a quantizer with M =
2L + 1 = 3 levels and applying Proposition 7, we have

therefore obtained

I(X ; [Y ]3) ≥ e · g−1

(

I(X ;Y )

e

)

(39)

≥ 1

e
· I(X ;Y )

1 + ln
(

1
I(X;Y )

) . (40)

Now, applying Corollary 1, yields (3).

For a general L, the problem of finding {γℓ} such as to

maximize (36) is more difficult. We therefore resort to a

possibly suboptimal choice according to the rule

γ1 = ǫI(X ;Y ), θ = γ
− 1

L

1 , γℓ = γ1 · θℓ−1, (41)

for ℓ = 2, . . . , L, L+ 1 and some 0 < ǫ < 1 to be specified.

Note that this choice guarantees that

γℓ+1 − γℓ = θ (γℓ − γℓ−1) , ℓ = 1, . . . , L. (42)

This implies that

I(X ;Y ) =

L
∑

ℓ=0

∫ γℓ+1

γℓ

F̄ (γ)dγ

≤
L
∑

ℓ=0

(γℓ+1 − γℓ)F̄ (γℓ)

= γ1 + θ

L
∑

ℓ=1

(γℓ − γℓ−1)F̄ (γℓ)

≤ γ1 + θI(X ; f(Y )). (43)

Now, setting ǫ = 1/(L+ 1) yields

I(X ; f(Y )) ≥ (I(X ;Y ))
L+1
L

L

(1 + L)
L+1
L

≥ (I(X ;Y ))
L+1
L ·

(

1− 1√
L

)

, (44)

where the last inequality is valid for every L ≥ 1.

Substituting in

L =

⌈

4max
{

log
(

1
I(X;Y )

)

, 1
}

(1− η)2

⌉

, (45)

it follows that

I(X ; f(Y )) ≥ 2−(1−η)2/4

(

1

2
+
η

2

)

I(X ;Y ) ≥ ηI(X ;Y ).

Since M = 2L + 1 and L ≥ 4, it follows that we can

guarantee I(X ; f(Y )) ≥ ηI(X ;Y ) if

M =

⌊

12max
{

log
(

1
I(X;Y )

)

, 1
}

(1− η)2

⌋

(46)

and thus IDM (1/2, β) ≥ ηβ for this choice of M as well. For

smaller values of M , we can apply Corollary 1 to get

IDM (1/2, β) ≥ M − 1
⌊

12max
{

log
(

1
I(X;Y )

)

,1
}

(1−η)2

⌋

ηβ (47)

≥ (M − 1)
β

max
{

log
(

1
β

)

, 1
}

η(1 − η)2

12
. (48)

Remark 6: The proof above only used the assumption that

X ∼ Bernoulli(1/2) (rather than Bernoulli(p) with general p)

in order to bound γ∗ ≤ 1. The proof can be easily modified to

deal with any p, in which case we have γ∗ ≤ − log(min{p, 1−
p}). This will require changing the integration limits in (37),

and replacing the choice of θ in (41) with θ = (γ∗/γ1)1/L.

Proof of upper bound in Theorem 1. It suffices to provide

one distribution PXY with I(X ;Y ) ≥ β for which no M -

level quantizer achieves mutual information exceeding the

RHS of (5). To this end, let X ∼ Bernoulli(1/2) and

Y = (X⊕ZT , T ) be the output of a binary-input memoryless

output-symmetric (BMS) whose input is X , where T is a

mixed random variable in [0, 1/2) whose probability density

function is given by

fT (t) =

{

rδ(t) + 4r
(1−2t)3 0− < t ≤ 1−√

r
2

0 otherwise
(49)

for some 0 < r ≤ 1, ZT is a binary random variable

with Pr(ZT = 1|T = t) = t, and (ZT , T ) is statistically

independent of X . It can be easily verified that Pr(αY =
t|T = t) = Pr(αY = 1− t|T = t) = 1/2.

By [7, Theorem 1], the optimal quantizer partitions the

interval [0, 1] into M subintervals Ii = [γi−1, γi) for i =
1, . . . ,M − 1 and IM = [γM−1, γM ], where 0 = γ0 < γ1 <
· · · < γM = 1, and outputs f(y) = i iff αy ∈ Ii. We therefore

have

I(X ; f(Y )) =

M
∑

i=1

Pr(αY ∈ Ii)d
(

E[αY |αY ∈ Ii] ‖
1

2

)

≤M max
0≤a<b≤1

Pr(a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

.

By the symmetry of the random variable αY around 1/2, we

can restrict the optimization to a < 1/2 and a < b ≤ 1. Let

b = min{b, 1 − b} and b̄ = max{b, 1 − b} and define the

two intervals T0 = [a, b), T1 = [b, b̄]. By the convexity of KL

divergence we have that

d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

≤
1
∑

i=0

Pr(αY ∈ Ti|a ≤ αY ≤ b)d

(

E[αY |αY ∈ Ti] ‖
1

2

)

= Pr(αY ∈ T0|a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

,



where we have again used the symmetry of the random

variable αY in the last equation. We have therefore obtained

I(X ; f(Y ))

≤M max
0≤a≤b≤ 1

2

Pr(a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

=
M

2
max

0≤a≤b≤ 1
2

Pr(a ≤ T ≤ b)d

(

E[T |a ≤ T ≤ b] ‖ 1

2

)

.

=
M

2
max

0≤b≤ 1
2

Pr(0 ≤ T ≤ b)d

(

E[T |0 ≤ T ≤ b] ‖ 1

2

)

(50)

where the last equality follows since both terms are individ-

ually maximized by a = 0. It can be verified that for any

0 ≤ ρ ≤ 1−√
r

2
∫ ρ

0

tfT (t)dt =
2rρ2

(1− 2ρ)2
; Pr(0 ≤ T ≤ ρ) =

r

(1− 2ρ)2
,

and therefore E[T |0 ≤ T ≤ b] = 2b2, and we have that for

any M -level quantizer

I(X ; f(Y )) ≤ M

2
· max
0≤b≤ 1−√

r
2

r · 1− h(2b2)

(1 − 2b)2

≤M · log(e)r, (51)

where the last inequality follows by noting that the function
1−h(2b2)
(1−2b)2 is monotone increasing in 0 < b < 1/2, and taking

the limit as b → 1/2. It remains to relate r and I(X ;Y ).
Recalling that h(12 − p) ≤ 1− 2 log(e)p2, we have

I(X ;Y ) = 1− Eh(T )

≥ 2 log(e)E

(

1

2
− T

)2

= 2 log(e)
r

4
ln
(e

r

)

=
e log(e)

2

r

e
ln
(e

r

)

.

Applying Proposition 7, we have

r ≤ eg−1

(

2I(X ;Y )

e log(e)

)

≤ 2I(X ;Y )

log(e)

1

ln
(

e log(e)
2I(X;Y )

) (52)

which gives

I(X ; f(Y )) ≤ 2M
I(X ;Y )

ln
(

e log(e)
2I(X;Y )

) , (53)

for any M -level function f .

IV. COMPARISON WITH INFORMATION BOTTLENECK

In this section we show that the in the limit of β → 0 the

restriction to using a scalar quantizer results in a significantly

worse performance than the one predicted by the information

bottleneck, which implicitly assumes quantization is done

in asymptotically large blocks. In particular, we prove the

following theorem.

Theorem 2: If X ∼ Bernoulli(1/2) and I(X ;Y ) = β > 0,

then for any η ∈ (0, 1) there exist a quantizer f(Y ) such that

I(X ; f(Y )) ≥ ηβ and

H(f(Y )) ≤ O
(

log log log

(

1

β

)

− log log(1− η)

)

. (54)

Contrasting this with Theorem 1 which shows that there

exist distributions for which no scalar quantizer with less than

Ω(log log(1/β) + log η) bits can attain I(X ; f(Y )) > ηβ, we

see that the restriction to quantization in blocklength n = 1
entails a significant cost w.r.t. quantization in long blocks. In

particular, if for a distribution PXY there exist a quantizer

f(Y ) with entropy H(f(Y )) = R for which I(X ; f(Y )) = Γ,

then certainly IBR(PXY ) ≥ Γ. To see this just take T = f(Y )
in (8).7 It therefore follows from Theorem 1 and (2) that

the information bottleneck tradeoff may be arbitrarily over-

optimistic in predicting the performance of optimal scalar

quantization.

Proof. in the proof of the lower bound of Theorem 1, we

have proposed the M -level quantizer (35) with the parameters

specified by (41). For M = O(log( 1β )/(1 − η)2), we have

shown that this quantizer attains I(X ; f(Y )) ≥ ηβ. We will

now show that for the same quantizer H(f(Y )) ≪ log(M).

Let

Pℓ , Pr ({f(Y ) = −ℓ} ∪ {f(Y ) = ℓ}) , ℓ = 0, . . . , L

and note that H(f(Y )) ≤ 1+H({Pℓ}). Our goal is therefore

to derive universal upper bounds on H({Pℓ}), that hold for

all channels PY |X and X ∼ Bernoulli(1/2).

First note that

I(X ;Y ) = EDY ≥
L
∑

ℓ=0

γℓPℓ = γ1

L
∑

ℓ=0

θℓ−1Pℓ,

where we have used (41) in the last equality. We therefore

have

L
∑

ℓ=1

θℓPℓ ≤
θI(X ;Y )

γ1
= (L + 1)θ, (55)

where we have used γ1 = ǫI(X ;Y ) and ǫ = 1/(L+1) in the

last equality.

For a vector a = {a1, . . . , aL+1} ∈ R
L+1
+ and a scalar

minℓ{aℓ} ≤ b ≤ maxℓ{aℓ}, define the function

f(a, b) ,max
L
∑

ℓ=0

Pℓ log

(

1

Pℓ

)

subject to

L
∑

ℓ=0

aℓPℓ ≤ b,
L
∑

ℓ=1

Pℓ = 1. (56)

7See [17] for an elaborate discussion on the information bottleneck tradeoff
when T is restricted to be a deterministic quantizer of Y .



The problem (56) is a concave maximization problem under

linear constraints, and its solution is [18]

f(a, b) = min
λ≥0

λb+ log

(

L
∑

ℓ=0

2−λaℓ

)

. (57)

Combining (55) and (57) gives

H({Pℓ}) ≤ min
λ≥0

λθ(L + 1) + log

(

1 +

L
∑

ℓ=1

2−λθℓ

)

. (58)

Setting λ = θ−κ logL, for some κ > 0 to be determined later,

and recalling that θ > 1, gives

H({Pℓ}) ≤ (L + 1)θ1−κ logL + log

(

1 +

L
∑

ℓ=1

2−θℓ−κ log L

)

≤ 2Lθ1−κ logL + log



1 + 2κ logL+

L
∑

ℓ=2κ logL

2−θℓ−κ log L





≤ 2Lθ1−κ logL + log
(

1 + 2κ logL+ L2−θκ log L
)

.

Now, setting κ = 1
log θ gives

H({Pℓ}) ≤ 2θ + log

(

1 + 2
logL

log θ
+ L2−L

)

= O
(

θ + log

(

logL

log θ

))

. (59)

To complete the proof, recall that L = (M − 1)/2 =
O(log( 1β )/(1− η)2), and that θ = ( β

L+1 )
−1/L = const.
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