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Abstract—We consider a Gaussian multiple-access channel
where each user’s message is identified with a vector of elements
from a finite field, and the receiver’s goal is to decode a linear
combination of these finite field vectors. It is further assumed
that each transmitter can causally observe the channel’s output
through a clean feedback link. We propose a novel coding scheme
for this setup, which can be seen as an extension of the Cover-
Leung scheme for the computation problem. This scheme is
shown to achieve computation rates higher than the best known
computation rates for the same scenario without feedback. In
particular, for the symmetric two-user Gaussian multiple-access
channel, the proposed scheme attains a symmetric computation
rate greater than 1/2 log(3/4 + SNR).

I. I NTRODUCTION

In the compute-and-forward framework [1], a receiver is
interested in decoding a linear function of messages, rather
than the individual messages themselves, from the output of
a Gaussian multiple-access channel (MAC). This setup was
originally motivated by considering a network where only
a small subset of the nodes is interested in decoding the
messages while the other nodes act as relays. In this scenario,
a possible strategy for the relays is to decode functions of the
messages and forward them down the network [1]. See the
chapter [2] in the recent textbook of Zamir [3] for an overview
of compute-and-forward and its applications.

Sometimes, the transmitters may have access to (a noisy
version of) the signal seen by the receiver, through a feedback
link. It is therefore natural to ask if and how the feedback link
can be used to obtain improved performance. In this paper
we propose a novel coding scheme for the noiseless feedback
setup. This scheme can be seen as a variant of the Cover-
Leung scheme [4], which was developed for communication
over a MAC with feedback, under the standard setting where
the receiver is interested in decoding the individual messages.
Our scheme is based on the use of lattice codes and operates
in two phases. In the first phase the receiver decodes a list
of candidates for the desired linear function that containsthe
true value with high probability. This is enabled by invoking
the lattice list decoder proposed by Song and Devroye [5].
Further, each transmitter uses its feedback link for decoding
the message transmitted by the other user, which together with
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its own message allows it to compute the desired function. In
the second phase, both users coherently transmit to the receiver
information about the value of the function, that allows it to
resolve the ambiguity from the first phase. The two phases are
superimposed in block Markov fashion. It is shown that the
computation rate achieved by the scheme above is higher than
the best known computation rate without feedback.

For simplicity of exposition we consider a two-user MAC
with clean feedback. However, our results can be easily
extended to handle noisy feedback as well as more than two
users, as briefly described in Section VI.

II. PROBLEM STATEMENT

We consider a discrete-time, real-valued, Gaussian multiple-
access channel with two users

Y [t] = h1X1[t] + h2X2[t] + Z[t], (1)

whereh1, h2 ∈ R andZ[t] ∼ N (0, 1) is additive white Gaus-
sian noise (AWGN). We assume that clean causal feedback is
available for both users, i.e., before transmittingXi[t], each
user has access to{Y [ℓ]}t−1

ℓ=1.

Each user has a message vectorwi ∈ F
k
p, i = 1, 2, from

a finite field of prime cardinalityp. The message vectors are
statistically independent and uniformly distributed overF

k
p.

The receiver is interested in decoding the linear combination

u = w1 ⊕w2 (2)

of the message vectors, where⊕ denotes componentwise
addition overFp. To that end, the channel (1) is usedn times.
The input of theith user to the channel at timet is produced
by an encoding functionEt

i : F
k
p × R

t−1 7→ R, such that
Xi[t] = Et

i

(

wi, {Y [ℓ]}t−1
ℓ=1

)

. The encoders are required to
satisfy the power constraint

∑n
t=1 E(X

2
i [t]) ≤ nSNR. The

receiver has a decoding functionD : Rn 7→ F
k
p that maps the

channel outputs to an estimatêu = D ({Y [t]}nt=1). The error
probability is defined asPe , Pr(û 6= u). A computation rate
R is achievable if for anyǫ > 0 andn large enough there exists
an integerk, a prime numberp, encoders{Et

1}nt=1, {Et
2}nt=1

and decoderD such thatPe < ǫ andR = k
n
log p.

Remark 1: In general, the receiver may be interested in a
linear combinationu = q1w1 ⊕ q2w2 for someq1, q2 ∈ Fp.
We claim, however, that there is no loss of generality in our
assumption thatq1 = q2 = 1, as the transmitters can simply
encodew̃i = qiwi instead ofwi.



III. PRELIMINARIES

In this section, we recall several results that will be used in
the derivation of our main result.

A. Compute-and-Forward

When feedback is not available, the problem defined in Sec-
tion II reduces to the standard compute-and-forward problem
introduced in [1], where a lattice-based transmission scheme
was developed for this setup. LetΛ ⊆ Λc ⊂ R

n be a pair of
n-dimensional nested lattices and denote the Voronoi region
of Λ by V (see [3] for a comprehensive overview of lattice
definitions). The codebookC is constructed asC = Λc ∩ V
and its rate isR = log |Λc ∩ V| = log

(

Vol(Λ)
Vol(Λc)

)

.

In [1] it was shown that for anyR > 0 andp large enough
one can construct a sequence of nested lattice pairs whereΛ
is Rogers good with second momentσ2(Λ) = SNR, while Λc

is Poltyrev good and Rogers good, and in addition there exists
a one-to-one mapping functionφ : Fk

p 7→ C with the property
that for anya1, a2 ∈ Z

φ−1 ([a1φ(w1) + a2φ(w2)] mod Λ) = q1w1 ⊕ q2w2, (3)

whereqi = [ai] mod p.

It follows that in order to decode a finite field linear
combinationu = q1w1⊕q2w2, it suffices to decode an integer-
linear combination[a1φ(w1) + a2φ(w2)] mod Λ of the lattice
points φ(w1) and φ(w2). In the sequel, we will therefore
consider the problem of decoding integer-linear combinations
of the lattice points transmitted by the two users, and bear
in mind that this corresponds to decoding a finite field linear
combination.

In the compute-and-forward scheme, each user maps its
messagewi to a lattice pointti = φ(wi) ∈ C and transmits
xi = [ti − di] mod Λ over n consecutive channel uses,
where d1,d2 are dither vectors uniformly distributed over
V , statistically independent of one another and of(w1,w2).
By the Crypto Lemma [3], [6],xi is uniformly distributed
on V and statistically independent ofti. In order to decode
the integer-linear combinationv = [a1t1 + a2t2] mod Λ, the
receiver computes

s = [αy + a1d1 + a2d2] mod Λ = [v + zeff] mod Λ

where

zeff = (αh1 − a1)x1 + (αh2 − a2)x2 + αz

is a mixture of dither vectors and Gaussian noise which is
statistically independent ofv, whose effective variance is

σ2
eff ,

1

n
E‖zeff‖2 =

(

(αh1 − a1)
2 + (αh2 − a2)

2
)

SNR+ α2.

In [1], [6] it is shown that if

R <
1

2
log

(

SNR

σ2
eff

)

(4)

thenPr(zeff /∈ Vc) → 0 asn increases. Subsequently, if we set
v̂ = QΛc

(s), whereQΛc
(·) is the nearest neighbor quantizer

w.r.t. the latticeΛc, we have thatPr(v̂ 6= v) → 0 as long
as (4) is satisfied. Minimizingσ2

eff w.r.t. α we see thatv =
[a1t1 + a2t2] mod Λ can be reliably decoded if [1], [7]

R < Rcomp(h, a, SNR)

,
1

2
log

(

1 + ‖h‖2SNR
)

− 1

2
log

(

‖a‖2 + SNR(‖a‖2‖h‖2 − (aTh)2)
)

(5)

whereh = [h1 h2] anda = [a1 a2].

B. Lattice List Decoding

We have seen that it is possible to reliably decodev

if R < Rcomp(h, a, SNR). If R > Rcomp(h, a, SNR), the
compute-and-forward scheme does not allow for reliable de-
coding. Instead, in this case we would like to decode a list
of candidates that containsv with high probability and whose
size is as small as possible. This problem was studied by Song
and Devroye in [5] (see also the related work [8], [9]) and the
following theorem was proved.

Theorem 1: [5, Thm. 3 rephrased] LetC = Λc ∩ V be a
lattice codebook with rateR, based on the nested lattice pair
Λ ⊆ Λc ⊂ R

n with σ2(Λ) = SNR. Let v ∈ C, and letzeff be
a linear combination of AWGN and statistically independent
dither vectors uniformly distributed overV whose effective
variance isσ2

eff =
1
n
E‖zeff‖2. Further, letRc = 1

2 log
(

SNR

σ2
eff

)

.
For anyǫ > 0, δ > 0, R > Rc, SNR andn large enough there
exists a nested lattice pairΛ ⊆ Λc ⊂ R

n such that one can
use the observations = [v + zeff] mod Λ to produce a listL
of no more than2n(R−Rc+δ) codewords fromC that contains
v with probability greater than1− ǫ, where

Sketch of proof. The full proof can be found in [5]. For
completeness, we provide a proof sketch. Construct a chain of
nested latticesΛ ⊆ Λs ⊆ Λc such thatΛc,Λs are Rogers and
Poltyrev good andΛ is Rogers good and in addition

1

n
log

(

Vol(Λ)

Vol(Λc)

)

= R,
1

n
log

(

Vol(Λ)

Vol(Λs)

)

= Rc − δ

which implies that1
n
log

(

Vol(Λs)
Vol(Λc)

)

= R−Rc+δ. We construct
the codebookC = Λc ∩ V and the virtual codebookCs =
Λs ∩ V . The listL consists of all points inC that fall inside
[s+ Vs] mod Λ, i.e.,

L = {c ∈ C : c ∈ [s+ Vs] mod Λ} .
Sinces = [v+zeff] mod Λ, we have that a sufficient condition
for v ∈ L is thatzeff ∈ −Vs. Recalling that a Voronoi region is
centro-symmetric, this is equivalent to the conditionzeff ∈ Vs.
Since the virtual codebookCs with rateRc − δ is constructed
from a good nested lattice pair, we have from (4) thatPr(zeff /∈
Vs) → 0. Thus,v ∈ L with high probability. Moreover,[s +
Vs] mod Λ is a fundamental cell ofΛs, and sinceΛs ⊆ Λc,

we have that1
n
|L| = 1

n
log

(

Vol(Λs)
Vol(Λc)

)

= R−Rc + δ.

Remark 2: It can be shown that the nested lattice chainΛ ⊆
Λs ⊆ Λc from the proof can be constructed such that there



will exist a one-to-one mapping functionφ : Fk
p 7→ C with the

property (3). Moreover, the requirements that the latticesin the
chain are Poltyrev and Rogers good is over restrictive. Instead
of Rogers goodness, it suffices to require MSE goodness, and
instead of Poltyrev goodness, it suffices to require goodness
under nearest neighbor coset decoding, see [10].

We will need the following corollary of Theorem 1.

Corollary 1: For anyǫ > 0, δ > 0, R > Rcomp(h, a, SNR)
and n large enough it is possible to use the output of
the channel (1) to decode a list of size no greater than
2n(R−Rcomp(h,a,SNR)+δ) that containsv = [a1t1+a2t2] mod Λ
with probability greater than1− ǫ.

IV. M AIN RESULT

In this section, we propose a coding scheme for compute-
and-forward with feedback. This scheme can be seen as an
extension of the Cover-Leung scheme [4] for the MAC with
feedback. The scheme works in a block Markov fashion, where
at each block each of the transmitters sends a superposition
of a codeword that corresponds to new information, and a
codeword that correspond to the finite field sum of both
users’ messages from the previous block. The latter codeword
is sent coherently by both users, which is enabled through
the available feedback. The following theorem describes the
computation rate achieved by this scheme.

Theorem 2 (Computation rate with feedback): Consider the
MAC (1) with clean feedback and assume w.l.o.g. that0 <
h2 ≤ h1. For any0 < ρ ≤ 1 let

ρ1 = 1− (1− ρ)

(

h2

h1

)2

,

Rc =
1

2
log+

(

1

2
+ (1 − ρ)h2

2SNR

)

,

R′ =
1

2
log

(

1 +
(h1

√
ρ1 + h2

√
ρ)2SNR

1 + 2(1− ρ)h2
2SNR

)

.

Any computation rate satisfying

R < max
0<ρ≤1

min

(

R′ +Rc,
1

2
log

(

1 + (1− ρ)h2
2SNR

)

)

(6)

is achievable.

Proof. Let Λ ⊆ Λc ⊂ R
ñ be a nested lattice pair satisfying

the conditions of Theorem 1, and letC = Λc ∩ V be the
corresponding codebook of rateR = k̃

ñ
log p with a one-

to-one mapping functionφ : Fk̃
p 7→ C that satisfies (3).1 In

addition, we will use another “good” nested lattice codebook
C′ = Λ′

c ∩ V ′ with rate R′ based on the nested lattice pair
Λ′ ⊆ Λ′

c ⊂ R
ñ where σ2(Λ′) = SNR. We further define

a random binning functionB : F
k̃
p 7→ {1, . . . , 2ñR′} for

0 < R′ < R as follows: for eachw ∈ F
k̃
p draw the value

of B(w) from the uniform distribution over{1, . . . , 2ñR′} in

1We use the notatioñn and k̃, rather thann andk, to emphasize the fact
that these integers correspond to the length and rate of one block in our block
Markov scheme, rather than the length and rate of the whole transmission
scheme.

a statistically independent manner. As usual, we will show
that the expected error probability achieved by the scheme
described below w.r.t. the ensemble of binning functions is
small, and then deduce that there exists a fixed binning
function that achieves a small error probability.

Our scheme operates in a block Markov fashion, and the
feedback is also only used in blocks. Each user hasN finite
field messages{w(m)

i }Nm=1, i = 1, 2, each uniform onFk̃
p.

Let 0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1. For the first block, useri
encodes its messagew(1)

i to x̃
(1)
i = [t

(1)
i −d

(1)
i ] mod Λ where

t
(1)
i = φ(w

(1)
i ) and all dither vectors{d(m)

i } are statistically
independent and uniformly distributed overV . It then transmits

x
(1)
i =

√

1− ρix̃
(1)
i . (7)

The receiver observes

y(1) =
√

1− ρ1h1x̃
(1)
1 +

√

1− ρ2h2x̃
(1)
2 + z(1), (8)

from which it decodes a list of candidates forv(1) = [t
(1)
1 +

t
(1)
2 ] mod Λ.2 By Theorem 1, assuming thatR > R̃c =
Rcomp([

√
1− ρ1h1

√
1− ρ2h2], [1 1], SNR) it can decode a

list L(1) of size

|L(1)| = 2ñ(R−R̃c+δ) (9)

codewords, that containsv(1) with high probability. Applying
the inverse mappingφ−1(·) to each codeword in the list, we
get a list of members inFk̃

p of size|L(1)|, that containsu(1) =

w
(1)
1 ⊕w

(1)
2 with high probability.

Let ī = {1, 2} \ {i}. Since useri obtainsy(1) by the
feedback link, it can cancel out its own signal from it and
construct the observation

yi(1) =
√

1− ρīhīx̃
(1)

ī
+ z(1) (10)

from which it can decode the other user’s messagew
(1)

ī
as

long as

R <
1

2
log

(

1 + (1 − ρī)h
2
ī SNR

)

. (11)

It follows that, if (11) holds, before the second block begins
each user should have access to bothw

(1)
1 and w

(1)
2 , and

consequently both users have access tou(1) ∈ F
k̃
p. Each

user then applies the binning function onu(1) to obtain
b(1) = B(u(1)) ∈ {1, . . . , 2ñR′}, maps it to a codeword
t′(1) ∈ C′ and producesx(1)

cohr = [t′(1) − d′(1)] mod Λ,
where the dither vectord′(1) is common to both users and
is uniformly distributed onV ′. In addition, each user encodes
its new messagew(2)

i to x̃
(2)
i in the same manner as in the

first block, and transmits

x
(2)
i =

√
ρix

(1)
cohr+

√

1− ρix̃
(2)
i (12)

2Equivalently, the receiver could have attempted to decode alist for a
different linear combination[a1t

(1)
1 +a2t

(1)
2 ] mod Λ, a1, a2 6= 0. However,

the choicea1 = a2 = 1 allows for using smaller values ofρ1, ρ2 than other
choices, and this leaves more available power for coherent transmission.



The receiver therefore obtains

y(2) = (
√
ρ1h1 +

√
ρ2h2)x

(1)
cohr

+
√

1− ρ1h1x̃
(2)
1 +

√

1− ρ2h2x̃
(2)
2 + z(2). (13)

The term

z̃(2) =
√

1− ρ1h1x̃
(2)
1 +

√

1− ρ2h2x̃
(2)
2 + z(2) (14)

is a mixture of AWGN and independent dither vectors from
Rogers good lattices, with effective variance

1
n
E‖z̃(2)‖2 = 1+

(

(1− ρ1)h
2
1 + (1− ρ2)h

2
2

)

SNR. (15)

Thus, the receiver can decodet′(1) from y(2) provided that

R′ ≤ 1

2
log

(

1 +
(
√
ρ1h1 +

√
ρ2h2)

2SNR

1 + ((1− ρ1)h2
1 + (1− ρ2)h2

2)SNR

)

.

(16)

After decodingt′(1) the receiver has access tob(1), and from
the previous block it also has access to a list of candidates
L(1) for u(1). The receiver now intersects the listL(1) with
the setB−1(b(1)) of all vectors inFk̃

p that are mapped tob(1)

by the binning functionB(·). If it finds a unique vector in the
intersection it outputs it aŝu(1) and otherwise it declares an
error. Assume the following events occurred:

1) the listL(1) containsu(1);
2) each useri decoded the other user’s messagew(1)

ī

correctly fromy
(1)
i ;

3) The receiver decodedt′(1) correctly fromy(2).

In this case, the true linear combinationu(1) is guaranteed
to be in the intersection. The probability that all three events
occur approaches1 with the dimension if (9), (11) and (16)
hold. The probability that someu′ 6= u(1) falls in the
intersection of the two lists can be bounded using the union
bound and the uniform independent assignment of bins to
message vectors as

Pr





⋃

w∈L(1)

{

B(w) = b(1)
}



 ≤ |L(1)|2−ñR′

= 2ñ(δ+R−R̃c−R′)

which vanishes as long as

R < R′ + R̃c − δ. (17)

If u(1) is decoded successfully, the decoder can cancel out the
contribution ofx(1)

cohr from y(2) and produce

ỹ(2) =
√

1− ρ1h1x̃
(2)
1 +

√

1− ρ2h2x̃
(2)
2 + z(2) (18)

from which it can decode a new listL(2) that containsu(2)

with high probability. Similarly, each encoder can use the
feedback link to decodew(2)

ī
such thatu(2) can be produced,

binned, and coherently transmitted by both users in the next
block, superimposed on a new message. This process goes
on until the (N + 1)th block where the users only transmit
coherently the bin ofu(N) without superimposing new infor-
mation. Thus, afterN + 1 blocks the receiver can decodeN
linear combination vectors, meaning that the effective rate is

reduced toRN/(N+1) which can be made as close as desired
to R by increasingN .

Equations (11), (16) and (17) give an achievable computa-
tion rate as a function ofρ1, ρ2. In general, we may optimize
this rate over all0 < ρ1, ρ2 ≤ 1. To simplify the expressions,
we choose a possibly suboptimal assignment ofρ1, ρ2 that
satisfies(1−ρ1)h

2
1 = (1−ρ2)h

2
2. This assignment ensures that

both coefficients in the effective channel (8) are equal, which
results in a high computation rate, and in addition balances
the constraints (11) for correct decoding of the other user’s
message via the feedback link. Settingρ2 = ρ, our achievable
computation rate takes the form of the solution to the single
parameter optimization problem described in the theorem.

V. PERFORMANCECOMPARISON

A. Compute-and-Forward with Full CSI

In order to compare the performance our scheme to
compute-and-forward with no feedback, we will need
to develop a suitable benchmark. The computation rate
Rcomp(h, a, SNR) given in (4) does not require channel state
information (CSI) at the transmitters. However, if CSI is
available at the transmitters, they can scale their signalsprior
to transmission in order to make the channel gains more
favorable. In our setting, it is assumed that clean feedback
from the receiver is available for both users, and in particular
this implies that the transmitters should have the same CSI as
the receiver. Thus, we will use the performance of compute-
and-forward with full CSI at the transmitters as our benchmark
for evaluating the gains obtained by our feedback scheme. We
now derive an expression for the computation rate achieved
by compute-and-forward with optimal scaling of the signals
prior to transmission.

First note that each user can scale its signal by a factor
0 < gi ≤ 1 prior to transmission without violating the power
constraint. Therefore, the transmitters can induce any effective
channel in the rectangle

H̃ ,

{

h̃ = [h̃1 h̃2] : 0 < h̃1 ≤ h1, 0 < h̃2 ≤ h2

}

.

and the computation rate with CSI can be increased to

RCSI
comp(h, a, SNR) , max

h̃∈H̃

Rcomp(h̃, a, SNR). (19)

We can rewrite (5) as

Rcomp(h, a, SNR) =
1

2
log

(

1 + ‖h‖2SNR
‖a‖2(1 + ‖h‖2SNR sin2(θ))

)

,

whereθ ∈ [−π, π) is the angle between the vectorsa andh,
i.e., cos(θ) = (aTh)/(‖a‖ · ‖h‖). Note that for a fixedθ the
computation rate above is monotonically increasing in‖h‖2.
This implies that the maximum in the RHS of (19) is obtained
on the boundary of̃H defined as

H̄ = {[h1 y] : 0 < y ≤ h2}
⋃

{[x h2] : 0 < x ≤ h1} .



To summarize, we obtained3

RCSI
comp(h, a, SNR) = max

h̄∈H̄
Rcomp(h̄, a, SNR). (20)

B. Numerical Evaluation of the Obtained Rate

Figure 1 shows the achievable computation rate with feed-
back given in Theorem 2. For reference we also plot three
additional curves: The computation rate with full CSI, given
by (20), optimized over all integer vectorsa ∈ Z

2 where both
a1 anda2 are different than zero; The symmetric capacity of
the MAC (1) with clean feedback [11]

C feed
sym = max

0≤ρ≤1
min

(

1

2
log

(

1 + SNR(1− ρ2)min{h2
1, h

2
2}
)

,

1

4
log

(

1 + SNR(h2
1 + h2

2 + 2ρ|h1h2|)
)

)

.

Clearly, the linear combinationu can be decoded by first
decoding both messages and then computing their sum, which
we refer to asseparation; An upper bound on the computation
rate with feedback, given by12 log(1+SNRmin{h2

1, h
2
2}). To

see why this is an upper bound on the computation rate with
feedback observe that if the receiver can decodeu, then due
to the feedback link so can each of the users. But since each
user sees the other user’s signal through an AWGN channel,
the computation rate with feedback cannot exceed the capacity
of the corresponding AWGN channel (which is not increased
when feedback is available).

We note that in the special case whereh1 = h2 = 1
the computation rate without feedback is12 log

+(12 + SNR).
Taking the suboptimal choiceρ = 1/4SNR in (6) yields
R ≥ 1

2 log
+(34 + SNR).

h
2

0 0.5 1 1.5 2

R
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e
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Computation rate - full CSI
Separartion with feedback
Feedback computation rate
Upper bound

Fig. 1. Numerical evaluation of the computation rate without feedback but
with full CSI, the symmetric capacity for decoding both messages when clean
feedback is available, the computation rate with feedback from Theorem 2,
and an upper bound

3We note that some improvement may be obtained by time-sharing between
different power allocations. This, however, is outside thescope of this paper.

VI. SUMMARY AND EXTENSIONS

We have presented a scheme for decoding a linear com-
bination of finite field messages over a Gaussian two-user
MAC with clean feedback. Our scheme outperforms the best
achievable computation rates without feedback, and for cer-
tain regimes of parameters, it also outperforms a separation
strategy over the MAC with clean feedback.

We now comment on two possible extensions of our results.
First, we have assumed throughout that the feedback is clean.
However, since the feedback link is only exploited in blocks
by each user for decoding the other user’s message, Theorem 2
can be generalized to the case of noisy feedback by modifying
the rate constraint (11) to allow for decoding over a more noisy
channel. Second, we can consider a Gaussian MAC withK-
users,K > 2, where each user has the channel’s output as
feedback, and the receiver is interested in decoding the finite
field sum of all messages. Here, each user can exploit the
feedback link for decoding the finite field sum of the remaining
K − 1 users. In this case, the rate constraint (11) should be
modified to the compound computation rate of the finite field
sum over all differentK possible multiple-access channels
with K−1 users, obtained by removing one of the users from
the originalK-user MAC.

An interesting question for future research is whether it
is possible to develop a low-complexity scalar scheme (à
la [12], [11], [13]) for compute-and-forward with clean feed-
back, that achieves higher rates than a separation based MAC
feedback scheme.
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