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Abstract—We consider a Gaussian multiple-access channelits own message allows it to compute the desired function. In
where each user's message is identified with a vector of elemts  the second phase, both users coherently transmit to theeece
from a finite field, and the receiver's goal is to decode a linea jntormation about the value of the function, that allowsat t

combination of these finite field vectors. It is further assuned s .
that each transmitter can causally observe the channel’s dput resolve the ambiguity from the first phase. The two phases are

through a clean feedback link. We propose a novel coding schee ~ superimposed in block Markov fashion. It is shown that the
for this setup, which can be seen as an extension of the Cover-computation rate achieved by the scheme above is higher than

Leung scheme for the computation problem. This scheme is the best known computation rate without feedback.
shown to achieve computation rates higher than the best know . . . .
computation rates for the same scenario without feedback.ni For simplicity of exposition we consider a two-user MAC

particular, for the symmetric two-user Gaussian multiple-access With clean feedback. However, our results can be easily
channel, the proposed scheme attains a symmetric computati  extended to handle noisy feedback as well as more than two
rate greater than 1/2log(3/4 + SNR). users, as briefly described in Section VI.

. INTRODUCTION Il. PROBLEM STATEMENT

In the compute-and-forward framework [1], a receiver is We consider a discrete-time, real-valued, Gaussian nfedtip
interested in decoding a linear function of messages, 'raﬂéeccess channel with two users

than the individual messages themselves, from the output of

a Gaussian multiple-access channel (MAC). This setup was Yt] = hiXi[t] + ho Xo[t] + Z[t], (1)
originally motivated by considering a network where only . . .

a small subset of the nodes is interested in decoding t{B€ré/1, e € R and Z[t] ~ N'(0,1) is additive white Gaus-
messages while the other nodes act as relays. In this seenal2 noise (AWGN). We assume that clean causal feedback is
a possible strategy for the relays is to decode functionaef t2vailable for both users, 1.e., before transmitting(t], each
messages and forward them down the network [1]. See t%€T has access @[(]},_;.

chapter [2] in the recent textbook of Zamir [3] for an ovewvie Each user has a message veotqr € IF’;, i = 1,2, from

of compute-and-forward and its applications. a finite field of prime cardinalityp. The message vectors are

Sometimes, the transmitters may have access to (a n&g@nsncally independent and uniformly distributed O\Ej'.

version of) the signal seen by the receiver, through a fezidba € receiver is interested in decoding the linear comtomati

link. It is therefore natural to ask if and how the feedbacok i
can be used to obtain improved performance. In this paper
we propose a novel coding scheme for the noiseless feedbatkhe message vectors, where denotes componentwise
setup. This scheme can be seen as a variant of the Cowsidition overF,. To that end, the channel (1) is usedimes.
Leung scheme [4], which was developed for communicatidrhe input of theith user to the channel at tinteis produced
over a MAC with feedback, under the standard setting whely an encoding functior£! : Fj x R'~' — R, such that
the receiver is interested in decoding the individual mgssa X;[t] = & (wi, {Y[(]}/_}). The encoders are required to
Our scheme is based on the use of lattice codes and operasdisfy the power constraint.;  E(X?[t]) < nSNR. The
in two phases. In the first phase the receiver decodes a tsteiver has a decoding functidn: R™ — IF’; that maps the
of candidates for the desired linear function that contéies channel outputs to an estimate= D ({Y[t]}}-). The error
true value with high probability. This is enabled by invadin probability is defined a®, = Pr(i # u). A computation rate
the lattice list decoder proposed by Song and Devroye [F}.is achievable if for any > 0 andn large enough there exists
Further, each transmitter uses its feedback link for dewpdian integerk, a prime numbep, encoders{&;}7,, {€4}7
the message transmitted by the other user, which togethier vind decode® such thatP, < e andR = §logp.
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[1l. PRELIMINARIES w.r.t. the latticeA., we have thatPr(v # v) — 0 as long
as (4) is satisfied. Minimizing'%; w.r.t. « we see thavv =
[altl + asto] mod A can be reliably decoded if [1], [7]

R < Rcomp(h, a, SN R)
1
& Liog (1+ ] *SNR)

In this section, we recall several results that will be used
the derivation of our main result.

A. Compute-and-Forward

When feedback is not available, the problem defined in Sec-
_tlon Il reduges to the standaro! compute-and-for_wa}rd prable _ llog (||a||2 + SNR(||a|?|[h]% - (aTh)Q)) (5)
introduced in [1], where a lattice-based transmission sehe 2
was developed for this setup. LA&tC A. C R™ be a pair of whereh = [h1 hs] anda = [a; as].
n-dimensional nested lattices and denote the Voronoi region
of A by V (see [3] for a comprehensive overview of latticd3. Lattice List Decoding

definitions). The codebook is Consmi%?g ag = ANV We have seen that it is possible to reliably decode

and its rate is? = log |A. N V[ = log  wyay )- if R < Reomp(h,a,SNR). If R > Reomp(h,a, SNR), the

In [1] it was shown that for any? > 0 andp large enough compute-and-forward scheme does not allow for reliable de-
one can construct a sequence of nested lattice pairs whereoding. Instead, in this case we would like to decode a list
is Rogers good with second momertt(A) = SNR, while A.  of candidates that containswith high probability and whose
is Poltyrev good and Rogers good, and in addition thereexisize is as small as possible. This problem was studied by Song
a one-to-one mapping functiaf: IF’; — C with the property and Devroye in [5] (see also the related work [8], [9]) and the
that for anya,,as € Z following theorem was proved.

-1 _ Theorem 1: [5, Thm. 3 rephrased] Lef = A. NV be a

¢ ([d(w1) + azé(wa)] mod A) = w1 @ g w3, (3) lattice codebook with raté?, based on the nested lattice pair
whereg; = [a;] mod p. A C A, C R™ with 2(A) = SNR. Letv € C, and letzey be

It follows that in order to decode a finite field lineara linear combination of AWGN and statistically independent
combinatiomu = ¢; w1 $®gawa, it suffices to decode an integer-dither vectors uniformly distributed ovey whose effective
linear combinatioria;¢(w1) + az¢(wz)] mod A of the lattice  variance iso%; = LE||zef||?. Further, letR. = 1 log (SU'\‘_} )
points ¢(w1) and ¢(w2). In the sequel, we will therefore For anye > 0, § > 0, R > R., SNR andn large enough there
consider the problem of decoding integer-linear combamati exists a nested lattice palk C A. ¢ R™ such that one can
of the lattice points transmitted by the two users, and begée the observation — [V + Ze] mod A to produce a listZ
in mind that this corresponds to decoding a finite field linegf no more thar™(B—R-+% codewords fronC that contains
combination. v with probability greater than — ¢, where

In the compute-and-forward scheme, each user maps digetch of proof. The full proof can be found in [5]. For
messagew; to a lattice pointt; = ¢(w;) € C and transmits completeness, we provide a proof sketch. Construct a cliain o
x; = [t; — d;Jmod A over n consecutive channel usespested latticess C A, C A, such thatA., A, are Rogers and
where d;,d, are dither vectors uniformly distributed ovelpoltyrev good and\ is Rogers good and in addition
V, statistically independent of one another and(ef;, ws).

By the Crypto Lemma [3], [6]x; is uniformly distributed llog < Vol(a) > — R, 1 <V01(A) > —R,—§

on V and statistically independent of. In order to decode " Vol(Ac) n Vol(As)

the integer-linear combination = [a1t1 + asts] mod A, the
receiver computes

which implies that! log 2;2}522) = R—R.+4. We construct

the codebookC = A. NV and the virtual codebook, =
s = [ay + a1d; + azdz] mod A = [v + zerr] mod A As N V. The list L consists of all points ir€ that fall inside
[s + V5] mod A, i.e.,

L={ceC:ce[s+ Vs mod A}.

where

Zett = (ah1 — a1)x1 + (he — az)x2 + az

is a mixture of dither vectors and Gaussian noise which RINces = [v+zei] mod A, we have that a sufficient condition

statistically independent of, whose effective variance is ~ [0F v € L is thatze € —V;. Recalling that a Voronoi region is
centro-symmetric, this is equivalent to the conditiqp € V.

o2 & lEHZeﬁH? = ((ahy — a1)® + (ahs — a2)?) SNR+ o?.  Since the virtual codebod&, with rate k. — ¢ is constructed
n from a good nested lattice pair, we have from (4) Patzer ¢

In [1], [6] it is shown that if V,) — 0. Thus,v € L with high probability. Moreover|s +
R< 11 SNR @) V] mod A is a fundamental cell of\;, and sinceA; C A,
— 10,
2 o2 we have that: |L| = L1log (XZ}EQ;) =R—-R.+6. m

thenPr(zer ¢ V.) — 0 asn increases. Subsequently, if we set Remark 2: It can be shown that the nested lattice chaig
¥ = Qa.(s), whereQ, () is the nearest neighbor quantizer\;, C A. from the proof can be constructed such that there



will exist a one-to-one mapping functiof: ]F’; — C with the a statistically independent manner. As usual, we will show

property (3). Moreover, the requirements that the lattinghe that the expected error probability achieved by the scheme

chain are Poltyrev and Rogers good is over restrictiveeltst described below w.r.t. the ensemble of binning functions is

of Rogers goodness, it suffices to require MSE goodness, amdall, and then deduce that there exists a fixed binning

instead of Poltyrev goodness, it suffices to require goagindanction that achieves a small error probability.

under nearest neighbor coset decoding, see [10]. Our scheme operates in a block Markov fashion, and the
We will need the following corollary of Theorem 1. feedback is also only used in blocks. Each user Nafinite
Corollary 1: For anye > 0, § > 0, R > Reomp(h, a,SNR)  field message§w"™}N_,, i = 1,2, each uniform OnIF’;:

and n large enough it is possible to use the output dfet 0 < p1 < 1, 0 < po < 1. For the first block, uset

the channel (1) to decode a list of size no greater th&mcodes its messagel tox{" = [t{") —d{"] mod A where
27(R—Reomp(h,a,SNR)+9) that contaings = [a1t1 + asts] mod A tgl) = ¢(w§1)) and all dither vectors{dl(.m)} are statistically

with probability greater than — . independent and uniformly distributed owérlt then transmits
IV. MAIN RESULT xM = /1= pixl, 7)

In this section, we propose a coding scheme for computBae receiver observes
and-forward with feedback. This scheme can be seen as an
. . _ (1 +(1)
extension of the Cover-Leung scheme [4] for the MAC with ~ ¥ = v/1— prhnxt + /T = pohoxl! +20, (8)
feedback. The scheme works in a block Markov fashion, wheye
) s WIHE PRI ; ; 1) _ (D
at each block each of the transmitters sends a superposn{r which Izt decodes a list of Cand|(J!ates fof!) = [t} +
of a codeword that corresponds to new information, andta '] mod A By Theorem 1, assuming thak > R. =
codeword that correspond to the finite field sum of botﬁcomp(l[\/l — prh1 V1 —p2hol,[1 1],SNR) it can decode a
users’ messages from the previous block. The latter codewdpt L+ of size

is sent coherently by both users, which is enabled through |L(1)| — 9A(R—R.+9) (9)
the available feedback. The following theorem describes th
computation rate achieved by this scheme. codewords, that containg’ with high probability. Applying

Theorem 2 (Computation rate with feedback): Consider the the inverse mapping~'(-) to each codeword in the list, we
MAC (1) with clean feedback and assume w.l.o.g. that ~get a list of members ifi*. of size|L(!)|, that contains(!) =
hs < hy. For any0 < p < 1 let wi" @ wi with high probability.
ho\ 2 Let i = {1,2} \ {i}. Since useri obtainsy® by the
pr=1-(1-p) (h_l) ) feedback link, it can cancel out its own signal from it and
construct the observation

R. = 11og+ (3 +(1 - p)h%SNR) :

2 2 yi(1) = VT= pihixl” + 2 (10)
1 (h1/p1 + hay/p)?SNR
R = B} log (1 + 13{;(1 — p}%SNR ‘ }‘rom which it can decode the other user’s messaéé) as
ong as
Any computation rate satisfying g
1
1 R < =log (1+ (1 - p;)h?SNR). 11
R < Jnax min (R/ + R, 3 log (1+(1— p)h%SNR)) (6) 9% (14 (1= pi)h; ) (11)
_ ) = It follows that, if (11) holds, before the second block beygin
is achievable.

i each user should have access to batfl! and wél), and
Proof. Let A C A. C R" be a nested lattice pair satisfyingconsequently both users have accessutd € FE. Each
the conditions of Theorem 1, and 1€t = A. NV be the ser then applies the binning function ad! to obtain
corresponding codebook of ratg@ = %logp with a one- 1) _ BuW) € {17___72133'}, maps it to a codeword
to-one mapping functiop : Iy — C that satisfies (3).In ¢/ ¢ ¢’ and producesx'!) = [’ — d’] mod A,

o . . h
addition, we will use another “good” nested lattice coddboQyhere the dither vectod’(l)c?srcommon to both users and

C" = A.NV’ with rate R’ based on the nested lattice paifs uniformly distributed on”. In addition, each user encodes
A" C AL C R™ whereo?(A’) = SNR. We further define jts new messagev'” to %x'¥ in the same manner as in the

a random binning functioB : F} — {~1,...,2ﬁR/} for first block, and transmits
0 < R’ < R as follows: for eachw € IF’; draw the value @) W @)
of B(w) from the uniform distribution ovef1,...,2"%} in X; =/ PiXeohe V1 = piX; (12)

lwe use the notatior and &, rather thame and k, to emphasize the fact  2Equivalently, the receiver could have attempted to decodistafor a
that these integers correspond to the length and rate oflook im our block different linear combinatior[ialtgl) +a2tél)] mod A, a1, a2 # 0. However,
Markov scheme, rather than the length and rate of the whalestnission the choicea; = a2 = 1 allows for using smaller values @f;, p2 than other
scheme. choices, and this leaves more available power for coheransnission.



The receiver therefore obtains reduced taR N/ (N +1) which can be made as close as desired

v = (VpTh1 + \/p_th)xg,%r to R by fncreasmgN. _ |
_(2) () @) . Equations (11), (_16) and (17) give an achievable cqmputa-
+ V1= prhxg” 4+ V1= pahoxy” +277. (13)  jon rate as a function oy, po. In general, we may optimize
The term this rate over alb < p1, p2 < 1. To simplify the expressions,
we choose a possibly suboptimal assignmentqfp, that
2® = T= pihx? + T= pohoxi? +22) (14) satisfies(1—p1)h? = (1—p2)h2. This assignment ensures that
is a mixture of AWGN and independent dither vectors frofROth coefficients in the effective channel (8) are equal.cihi
Rogers good lattices, with effective variance results in a high computation rate, an_d in addition balances
the constraints (11) for correct decoding of the other gser’
1Rz = 1+ (1 — p1)hi + (1 — p2)h3) SNR.  (15) message via the feedback link. Setting= p, our achievable
computation rate takes the form of the solution to the single

Thus, the receiver can decodé") from y(® provided that = e -
parameter optimization problem described in the theoram.

1 (v/p1h1 + \/pghg)QSNR )
R <=1 1 )
=2 Og( T T (L= p)hZ + (1 — p2)h3) SNR
(16)

V. PERFORMANCE COMPARISON

) ] A. Compute-and-Forward with Full CS
After decodingt’(?) the receiver has accessbé!), and from

the previous block it also has access to a list of candidatedn order to compare the performance our scheme to
LM for u). The receiver now intersects the list!) with compute-and-forward with no feedback, we will need
the setB~!(b(")) of all vectors inF¥ that are mapped tb") to develop a suitable benchmark. The computation rate
by the binning functionB(-). If it finds a unique vector in the Rcomp(h,a,SNR) given in (4) does not require channel state
intersection it outputs it ag(") and otherwise it declares aninformation (CSI) at the transmitters. However, if CSI is
error. Assume the following events occurred: available at the transmitters, they can scale their signéds
e 7 (1) (1) to transmission in order to make the channel gains more
1) the list L\*) containsu'"/; : o
. , 1) favorable. In our setting, it is assumed that clean feedback
2) each user; decoded the other user’s messa@é S . : .
. 7 from the receiver is available for both users, and in paldicu
correctly fromy;; this implies that the transmitters should have the same €SI a
3) The receiver decoded™ correctly fromy®. the receiver. Thus, we will use the performance of compute-
In this case, the true linear combinatienit’) is guaranteed and-forward with full CSI at the transmitters as our benctima
to be in the intersection. The probability that all threerege for evaluating the gains obtained by our feedback scheme. We
occur approaches with the dimension if (9), (11) and (16) now derive an expression for the computation rate achieved
hold. The probability that somer’ # u() falls in the by compute-and-forward with optimal scaling of the signals
intersection of the two lists can be bounded using the uni@fior to transmission.
bound and the uniform independent assignment of bins toFirst note that each user can scale its signal by a factor
message vectors as 0 < g; <1 prior to transmission without violating the power
constraint. Therefore, the transmitters can induce argctifie
pr( {B(w) — b(l)} < |[LW|2~#F _ 9a(s+R-R.—k) channel in the rectangle
weLt ﬂé{ﬁ:[ﬁlﬁﬂ ZO<iL1Sh1,0<iL2§h2}.
which vanishes as long as

R<R +R, -6 (17) and the computation rate with CSI can be increased to

Rémo(h, a,SNR) £ max Reomp(h, a,SNR).  (19)

If u® is decoded successfully, the decoder can cancel out the hedl

contribution ofx'}) from y(® and produce

¥ = V1= pihax® + T= pohox? +23) (18)

from which it can decode a new ligi(® that containsu(®
with high probability. Similarly, each encoder can use the

feedback link to decode-'? such thata® can be produced, Whered € [—, ) is the angle between the vectersandh,
binned, and coherently transmitted by both users in the nég cos(¢) = (a’h)/(|la] - |[h]|). Note that for a fixed) the
block, superimposed on a new message. This process gé@@putation rate above is monotonically increasing]lj|*.

on until the (N + 1)th block where the users only transmit! his implies that the maximum in the RHS of (19) is obtained
coherently the bin ofa™) without superimposing new infor- ©n the boundary of{ defined as

mation. Thus, aftefN + 1 blocks the receiver can decodé _
linear combination vectors, meaning that the effective iat H=Ally] + 0<y<ha} U {lxha] : O<z<hi}.

We can rewrite (5) as

1 1 + ||h[>SNR >
Reomp(h, a, SNR) = =1 ’
comp(h, 2, SNR) 2Og(||a||2(1+IIhIQSNRst(@))




To summarize, we obtainéd VI. SUMMARY AND EXTENSIONS

Rgosn']p(h,a,SNR) = max Reomp(h, a, SNR). (20) Wwe have pr_eseqted a scheme for decoding a linear com-

heH bination of finite field messages over a Gaussian two-user

) ) ) MAC with clean feedback. Our scheme outperforms the best

B. Numerical Evaluation of the Obtained Rate achievable computation rates without feedback, and for cer

Figure 1 shows the achievable computation rate with feetti-In regimes of parameters, it also outperforms a separatio

b . : Strategy over the MAC with clean feedback.
ack given in Theorem 2. For reference we also plot thrée
additional curves: The computation rate with full CSI, give e now comment on two possible extensions of our results.
by (20), optimized over all integer vectasise Z2 where both First, we have assumed throughout that the feedback is.clean
a1 anda, are different than zero; The symmetric capacity dilowever, since the feedback link is only exploited in blocks
the MAC (1) with clean feedback [11] by each user for decoding the other user’s message, Theorem 2
can be generalized to the case of noisy feedback by modifying
feed . (1 N - (12 12 the rate constraint (11) to allow for decoding over a moreyoi

Coym = ooy (5 log (1 +SNR(1 ~ p*) min{hi, h3}) channel. Second, we can consider a Gaussian MAC With

1 ) ) users,K > 2, where each user has the channel’'s output as

7108 (1+SNR(h] + R + 2p|h1 hal)) ) feedback, and the receiver is interested in decoding the fini

field sum of all messages. Here, each user can exploit the

Clearly, the linear combinatiom can be decoded by firstfeedback link for decoding the finite field sum of the remagnin
decoding both messages and then computing their sum, which- 1 users. In this case, the rate constraint (11) should be
we refer to aseparation; An upper bound on the computationmodified to the compound computation rate of the finite field
rate with feedback, given b%' log(1+SNRmin{h$,h3}). To sum over all differentX possible multiple-access channels
see why this is an upper bound on the computation rate wifith K — 1 users, obtained by removing one of the users from
feedback observe that if the receiver can decadéhen due the original K -user MAC.
to the feedback link so can each of the users. But since eacf\n jnteresting question for future research is whether it
user sees the other user's signal through an ANGN channgl,ossible to develop a low-complexity scalar scheme (&
the computation rate with feedback cannot exceed the dgpagj [12], [11], [13]) for compute-and-forward with clean tbe

of the corresponding AWGN channel (which is not increasgg, that achieves higher rates than a separation based MAC
when feedback is available). feedback scheme.

We note that in the special case whete = hy = 1
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