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Abstract—A channel can generally be defined by a probability
distribution on a set of possible actions. These actions deter-
mine the output for any possible input, and are independently
drawn. The intrinsic uncertainty of a channel is defined as the
conditional entropy of the action given the input and output
sequences. For many channels, such as the deletion channel,
the insertion channel, and various permutation channels, e.g.,
the trapdoor channel, quantifying the intrinsic uncertainty is
the main challenge in determining the capacity. In this paper,
we derive an alternative expression for the intrinsic uncertainty
via the Laplace variational principle, and utilize it to obtain a
general lower bound for the capacity. As an example, we apply
our bound to the binary deletion channel and show that for the
special case of an i.i.d. input distribution and a range of deletion
probabilities, it outperforms the best known lower bound for the
mutual information.

I. INTRODUCTION

A channel is traditionally defined via a conditional prob-

ability distribution PY|X of the outputs given the inputs.

Alternatively, a channel can also be (nonuniquely) defined as a

random mapping from an input alphabet to an output alphabet,

where the actual mapping applied to the input, namely the

channel action A, is drawn according to some probability

distribution PA over the set of all possible actions, inde-

pendently of the input. Following this paradigm, the mutual

information for a given input distribution PX can be written

as I(X,Y) = H(Y)−H(A)+H(A|X,Y), for any eligible
choice of the action distribution PA. A natural quantity to

consider is therefore the intrinsic uncertainty H(A|X,Y),
that captures the amount of information regarding the channel

action revealed by observing its input and output.

For example, the natural choice of action for the Binary

Symmetric Channel (BSC) is the modulo-addition of a binary

noise sequence U, which is completely revealed given the

input and output sequences, resulting in zero intrinsic uncer-

tainty. This is not the case for many other channels: Consider

a Z-channel, where the action can again be identified with an

i.i.d. binary noise sequence U such that the channel output is

given by Yn = Xn(Xn+Un). In this case, the input and output
sequences reveal the action only in positions where the input

was ‘1’, yielding a generally nonzero intrinsic uncertainty. The

same is true for most Discrete Memoryless Channels (DMCs),

since in order for the action to be input-independent it needs to

separately describe how each possible input would be mapped,

yet only a small part of that description (corresponding to what

“actually happened”) is revealed by observing the input and

output.

Generally speaking, channel capacity is clearly obtained by

an input distribution that maximizes the (normalized) sum

of the output entropy and the intrinsic uncertainty. For a

DMC, this interpretation is not particulary useful, as a single

letter expression for the capacity exists. In many other cases

however, only an infinite-letter expression for the capacity is

known. Since the entropy of the action is readily obtained, and

the entropy of the output is often relatively easy to compute

for many choices of the input process, the main difficulty in

determining the capacity is typically encapsulated in evaluat-

ing the intrinsic uncertainty. This fact provides impetus for

a direct study of the intrinsic uncertainty, which is the main

focus of this paper.

The significance of the intrinsic uncertainty as a segue to

capacity is perhaps most prominently evident in channels with

synchronization errors, originally studied by Gallager [1]. This

class of channels includes in particular the deletion channel

and the insertion channel, but also finite-state permutation

channels such as the trapdoor channel. Loosely speaking,

channels in this class act by corrupting the time axis of the

input rather than its symbol values. Consider for example the

binary deletion channel, where each input bit is independently

deleted with probability d. Despite its prima facie simplicity
and much effort over the years, the capacity of this channel

remains elusive hitherto. The output entropy of the deletion

channel is however easy to compute for most reasonable

input processes (i.i.d., Markov), and its intrinsic uncertainty

is simply the expected logarithm of the number of deletion

patterns that could have transformed the input sequence to

the output sequence, a quantity that has been extensively yet

implicitly tackled in previous work bounding the capacity of

the deletion channel.

In this paper we investigate the intrinsic uncertainty for

general channels. We employ the Laplace variational principle

to derive an exact alternative expression for the intrinsic

uncertainty, and then lower bound this expression using the

convexity of the relative entropy. We further examine a class of

channels whose output sequence, as in the case of the deletion

channel, induces a uniform distribution over the associated set

of feasible actions, and where our bound admits a simpler

more tractable form. Finally, we apply our bound to the

deletion channel and show it improves upon the best known

lower bound on the mutual information for an i.i.d. input.

Applying our techniques to inputs with memory (e.g. Markov),

which are known to outperform i.i.d. inputs, is therefore a

promising avenue of future research.



II. BOUNDS FOR THE INTRINSIC UNCERTAINTY

In this section we define a channel by its action on its input,

and develop general lower bounds on the mutual information

between the input and output in terms of the channel action,

by bounding the associated intrinsic uncertainty defined below.

If the channel is information stable [2], as is the case for

most channels of interest, then its capacity is given by the

normalized mutual information maximized w.r.t. the input

process, in the limit of large block length.

Let X ,Y be discrete alphabets. Any channel from Xn to

Y∗ can be (nonuniquely) defined by a probability distribution

P (a) on a set A(n) of mappings from Xn 7→ Y∗, to which

we refer to below as actions. Each action a(·) ∈ A(n)

is defined for all possible inputs, and the channel action

is chosen independently of the input, yielding the output

Y = A(X) ∈ Y∗. The length ∗ of the channel output may

itself be a random variable, as different actions in A(n) may

return vectors of different lengths. For any eligible choice of

the action distribution P (a), the intrinsic uncertainty of the
channel with respect to the input distribution P (x) is defined
to be H(A|X,Y). Note that while the intrinsic uncertainty

may depend on the choice of the action distribution, the

difference H(A) −H(A|X,Y) does not; we therefore have
the freedom to choose the action distribution that is most

convenient to work with.

For most channels of interest, the set of possible actions

A(n) extends naturally as n grows. We shall therefore omit

the index n and simply denote this set by A.

Example 1 (Deletion Channel): In a deletion channel, each

transmitted symbol is either deleted or received uncorrupted.

The set A includes 2n actions, each corresponding to a

different subset of the input indices [1 : n] marked for deletion.
In an i.i.d. deletion model symbols are independently deleted

with probability d, which induces a binomial distribution over
the action set. The output’s length ∗ equals n minus the

number of symbols that were deleted from the transmitted

block. Different actions applied to the same input may result

in the same output. For example, if x = 01100 we may get the
output y = 110 if either the first and fourth symbols or the

first and fifth symbols were deleted. Therefore, the intrinsic

uncertainty H(A|X,Y) is generally positive.

Example 2 (Trapdoor Channel): The trapdoor channel is a

simple finite-state channel, defined as follows. Balls labeled

“0” or “1” are used to communicate through the channel.

The channel starts with a ball already in it, referred to as

the initial state. On each channel use, a ball is inserted into

the channel by the transmitter, and one of the two balls in

the channel is emitted with equal probability. The ball that is

not emitted remains inside for the next channel use. In this

model, the channel’s action consists of choosing the initial

state and deciding for each channel use whether to emit the

ball that was already inside the channel or the ball that has just

entered. Since an input x can be mapped to an output y via

multiple actions, the intrinsic uncertainty is generally positive.

The mutual information between the input X and output Y

can be expressed as

I(X;Y) = H(Y)−H(Y|X)

= H(Y) − (H(Y,A|X) −H(A|X,Y))

= H(Y) −H(A|X)−H(Y|A,X) +H(A|X,Y)

= H(Y) −H(A) +H(A|X,Y) (1)

where (1) follows since the action A(·) is statistically

independent of the input X, and Y = A(X). For many

channel models, the main challenge in computing (1) for a

specific input distribution P (x), is evaluating the intrinsic

uncertainty H(A|X,Y). The main contribution of this paper

is a general technique for lower bounding this term, developed

next.

A. General Channels

Denote by P(X ) the set of all probability distributions on X
and by D(P ||Q) the relative entropy between the distributions
P,Q ∈ P(X ). The Laplace variational principle [3, Proposi-
tion 1.4.2] states (after a straightforward manipulation) that

for any distribution P ∈ P(X ) and any nonnegative function

f(x) for which EP log f(X) is finite,

EP log f(X) = min
Q∈P(X )

(logEQf(X) +D(P ||Q)) , (2)

and the minimum is uniquely attained by

Q∗(x) =
P (x)/f(x)

EP (1/f(x))
, (3)

where by convention we set 1/f(x) = 0 if f(x) = 0.1

We would like to obtain an alternative expression for

H(A|X,Y) = E log
1

P (A|X,Y)
, (4)

where the expectation is taken with respect to the joint

distribution

P (x,y, a) = P (x)P (a|x)P (y|x, a)

= P (x)P (a) {y=a(x)},

and  {B} is an indicator function for the event B. For brevity,
we sometimes refer to this distribution as P .
Define the distribution

Q(x,y, a) ,
P (x,y, a)P (a|x,y)

EPP (A|X,Y)
, (5)

which we sometimes refer to as Q. Using the Laplace varia-

tional principle, the expectation from (4) can be written as

E log
1

P (A|X,Y)
= logEQ

1

P (A|X,Y)
+D(P ||Q)

= logEQ

1

P (A|X,Y)
+D (P (Y)||Q(Y))

+D (P (X,A|Y)||Q(X,A|Y)) (6)

1In the sequel we only use the readily verified fact that (2) is satisfied with
equality for Q = Q∗. Nevertheless, we note that the general form of (2) can
be also used for obtaining upper bounds on the intrinsic certainty.



where (6) follows from the chain rule of relative entropy. The

marginal distribution Q(y) is given by

Q(y) =
∑

x,a

Q(x,y, a)

=
1

EPP (A|X,Y)

∑

x,a

P (x)P (a) {y=a(x)}P (a|x,y)

=
EX,AP (A|X,y)

EPP (A|X,Y)
, (7)

where in (7) we have used the fact that P (a|x,y) = 0
whenever y 6= a(x). Thus,

D (P (Y)||Q(Y)) = EY log

(

P (Y)EPP (A|X,Y)

EX,AP (A|X,Y)

)

= −H(Y) + logEPP (A|X,Y) − EY logEX,AP (A|X,Y).
(8)

In addition,

logEQ

1

P (A|X,Y)
= log

∑

x,y,a

Q(x,y, a)

P (a|x,y)

= − logEPP (A|X,Y). (9)

Substituting (8) and (9) into (6) yields

H(A|X,Y) = −H(Y)− EY logEX,AP (A|X,Y)

+D (P (X,A|Y)||Q(X,A|Y)) . (10)

We are left with the task of evaluating the conditional relative

entropy in (10). The conditional distributions that participate

in this term are given by

P (x, a|y) = P (x)P (a)
 {y=a(x)}

EX,A {y=A(X)}
(11)

Q(x, a|y) = P (x)P (a)
P (a|x,y)

EX,AP (A|X,y)
(12)

and therefore

D (P (X,A|Y)||Q(X,A|Y))

= E log

(

 {Y=A(X)}

EX,A {Y=A(X)}
·
EX,AP (A|X,Y)

P (A|X,Y)

)

. (13)

Unfortunately, an exact computation of (13) involves the com-

putation of E log(1/P (A|X,Y)), which is the exact technical
difficulty we are trying to avoid. Instead, we lower bound (13)

using the convexity of relative entropy, i.e.,

D (P (X,A|Y)||Q(X,A|Y)) ≥ D
(

P (X,A)||Q̃(X,A)
)

,

(14)

where

Q̃(x, a) =
∑

y

P (y)Q(x, a|y)

= P (x, a)EY

P (a|x,Y)

EX,AP (A|X,Y)
. (15)

Note that other properties of relative entropy, such as the data-

processing inequality or Pinsker’s inequality, could potentially

be useful for bounding (13). Combining (14) and (15) gives,

D
(

P (X,A|Y)||Q(X,A|Y)
)

≥ −EX,A logEY

P (A|X,Y)

EX,AP (A|X,Y)
. (16)

Substituting (16) into (10) and using (1) yields the following.

Theorem 1: For a channel with action A, input X, and

output Y = A(X),

I(X;Y) ≥ −H(A)− EY logEX,AP (A|X,Y)

− EX,A logEY

P (A|X,Y)

EX,AP (A|X,Y)
. (17)

B. Channels with Uniform Intrinsic Uncertainty

At this point, we restrict our attention to a class of channels

we call channels with uniform intrinsic uncertainty. For this

class of channels, the bound in Theorem 1 takes a particularly

simpler form.

For any x ∈ Xn and y ∈ Y∗ let

A(x,y) , {a : a(x) = y} (18)

be the set of all possible actions in A that map the input

x to the output y. Denote the cardinality of this set by

N(x,y) , |A(x,y)|. A channel is said to have uniform

intrinsic uncertainty, if all channel actions that can lead to

an output y are equiprobable, i.e. if for any y ∈ Y∗

P (a) = φ(y), ∀a ∈
⋃

x

A(x,y) (19)

for some function φ : Y∗ 7→ [0, 1]. This class includes,

among many other examples, the trapdoor channel, and the

i.i.d. deletion channel; the latter channel deletes each symbol

independently with probability d, so that P (a) = dn−k(1−d)k

for all channel actions that produce an output y of length k.
Proposition 1: For a channel with uniform intrinsic un-

certainty, the action A is uniformly distributed over the set

A(X,Y), conditioned on X and Y.2

Proof.

P (a|x,y) =
P (x,y|a)P (a)

P (x,y)

=
P (y|x, a)P (a)

P (y|x)
=

 {y=a(x)}P (a)
∑

a∈A(x,y) P (a)

(a)
=

φ(y) {a∈A(x,y)}

φ(y)N(x,y)
=
 {a∈A(x,y)}

N(x,y)
, (20)

where (a) follows from  {y=a(x)} =  {a∈A(x,y)} and since

P (a) = φ(y) for all a ∈ A(x,y).

Lemma 1: For a channel with uniform intrinsic uncertainty

−EY logEX,AP (A|X,Y) = H(A)

− EY logEX {N(X,Y)>0}. (21)

2Note that the converse is not generally true. As a counterexample, consider
the BSC.



Proof. Using Proposition 1,

EX,AP (A|X,y) =
∑

x

P (x)
∑

a

P (a)
 {a∈A(x,y)}

N(x,y)

= φ(y)
∑

x

P (x)
N(x,y)

N(x,y)
 {N(x,y)>0}

= φ(y)EX {N(X,y)>0}. (22)

Thus,

−EY logEX,AP (A|X,Y) =− EY logEX {N(X,Y)>0}

− EY log φ(Y).

The lemma follows since

H(A) = −EA logP (A) = −EYEA|Y logP (A)

= −EY logφ(Y), (23)

where (23) holds since P (a) equals φ(y) for all channel

actions a that can produce the output y for some x.

The next lemma lower bounds the last term in (17) for

channels with uniform intrinsic uncertainty.

Lemma 2: For a channel with uniform intrinsic uncertainty

−EX,A logEY

P (A|X,Y)

EX,AP (A|X,Y)

≥ −EX logEY

 {N(X,Y)>0}

EX {N(X,Y)>0}
≥ 0 (24)

Proof. By virtue of Jensen’s inequality,

−EX,A logEY

P (A|X,Y)

EX,AP (A|X,Y)

≥ −EX logEY

EAP (A|X,Y)

EX,AP (A|X,Y)
.

Using (20) and (22), we have

EAP (A|x,y)

EX,AP (A|X,y)
=

∑

a P (a)
 {a∈A(x,y)}

N(x,y)

φ(y)EX {N(X,y)>0}

=
 {N(x,y)>0}

EX {N(X,y)>0}
,

establishing the first inequality in (24). The second inequality

follows by applying Jensen’s inequality again, this time w.r.t.

EX.

Combining Theorem 1, Lemma 1 and Lemma 2 establishes

the following.

Theorem 2: For a channel with uniform intrinsic uncertainty,

I(X;Y) ≥− EY logEX {N(X,Y)>0}

− EX logEY

 {N(X,Y)>0}

EX {N(X,Y)>0}
. (25)

It is often convenient to consider some typical set T ⊂ Y∗,

such that P (Y ∈ T ) approaches 1 exponentially fast in n.
The exact notion of typicality used can vary with the channel

and the input distribution. Using the shorthand notation EY|T

for EY|Y∈T , we have that

−EY logEX {N(X,Y)>0}

= −EY|T logEX {N(X,Y)>0} + o(n)

≥ − logEXEY|T  {N(X,Y)>0} + o(n), (26)

where the last transition follows from Jensen’s inequality. We

note that it is straightforward to show that the capacity of

channels with uniform intrinsic uncertainty is greater than (26).

To see this consider a codebook whose codewords are drawn

independently according to the distribution P (x), in conjunc-
tion with a decoder that declares an error if y /∈ T , and
otherwise outputs some codeword x for which N(x,y) > 0
(there is always at least one). The probability that Y /∈ T
approaches zero as n increases, and the probability that

N(X,Y) > 0 for some codeword X that is statistically inde-

pendent of Y, given that Y ∈ T , is EXEY|T  {N(X,Y)>0}.

Applying the union bound, we see that any rate smaller

than (26), normalized by n, is achievable. Our analysis

shows that the gap to the normalized mutual information

incurred by using this straightforward bound is the normalized

divergence D(P (X,A|Y)||Q(X,A|Y))/n, which we have

bounded from below by −(1/n)EX logEY
 {N(X,Y)>0}

EX {N(X,Y)>0}
.

III. EXAMPLE: THE BINARY I.I.D. DELETION CHANNEL

The binary i.i.d. deletion channel operates by independently

deleting input bits with probability d. As already discussed,

this channel admits the uniform intrinsic uncertainty property,

and therefore Theorem 2 holds. In this section, we apply

Theorem 2 to obtain a lower bound for I(X;Y) under a

uniform i.i.d. input distribution, which outperforms the best

known bounds for i.i.d inputs [1], [4]. Since the deletion

channel is information stable, any rate smaller than the as-

sociated limn→∞ I(X;Y)/n is achievable with uniform i.i.d.

codebooks. Note that for a uniform i.i.d. input, the output Y

is also uniform i.i.d. given its length ∗, where the latter is

binomial with parameters (n, 1− d).
For the i.i.d. deletion channel the quantity N(x,y) corre-

sponds to the number of appearances of y as a subsequence

of x, and  {N(x,y)>0} indicates whether or not y is a

subsequence of x. Define the operation 〈x〉 , max(x, 1/2).
According to [5, Lemma 3.1], for any y of length αn we have

∑

x∈Z
n
2

 {N(x,y)>0} =

n
∑

j=αn

(

n

j

)

.
= 2nH2(〈α〉), (27)

where H2(·) is the binary entropy function, and
.
= denotes

exponential equality in the usual sense. This implies that for

any y of length αn we have EX {N(X,y)>0}
.
= 2n(H2(〈α〉)−1).

We can now define the typical set T as the set of all y’s whose

normalized length α satisfies |α− (1− d)| < ǫ. For any ǫ > 0
and n large enough P (Y ∈ T ) is arbitrarily close to one, and
we can therefore apply (26), yielding

−EY logEX {N(X,Y)>0} ≥ n (1−H2(〈1 − d− ǫ〉)) . (28)



The right hand side of (28) (normalized by n) is a well

known lower bound for the deletion channel capacity, obtained

with a uniform i.i.d. input [5]. We now evaluate the second

term in (25) in order to improve upon this bound. To this

end, we first parse each x ∈ Z
n
2 into phrases that contain

exactly two bit flips and end immediately after the second

flip. For example, the string 0001111011001110001 is parsed
into the three phrases 00011110, 11001, 110001. We identify

each phrase with three parameters: b ∈ {0, 1} is the first bit in
the phrase, k1 ≥ 2 is the index of the first flip in the phrase,

and k2 ≥ 1 is such that k1 + k2 is the total number of bits

in the phrase. In our example, the three phrases correspond

to {b = 0, k1 = 4, k2 = 4}, {b = 1, k1 = 3, k2 = 2} and

{b = 1, k1 = 3, k2 = 3}, respectively. For any pair of integers
2 ≤ k1 < n, 1 ≤ k2 < n let Ψk1,k2(x) be the number of

{k1, k2}-phrases in the parsing of x. For ǫ > 0 we define the

typical set

S ,
{

x ∈ Z
n
2 : ∀ 2 ≤ k1 < n, 1 ≤ k2 < n

∣

∣

∣

∣

1

n
Ψk1,k2(x) −

1

5
2−(k1+k2−1)

∣

∣

∣

∣

< ǫ
}

.

It can verified that for any ǫ > 0 and n large enough P (X ∈
S) is indeed arbitrary close to 1. Thus, applying the same

reasoning as in (26) we obtain

−EX logEY

 {N(X,Y)>0}

EX {N(X,Y)>0}
≥ − logEY

EX|S {N(X,Y)>0}

EX {N(X,Y)>0}

for n large enough. Recalling that α is the (random) length of

Y, we take the expectation EY as EαEY|α and use (27) to

obtain

EY

EX|S {N(X,Y)>0}

EX {N(X,Y)>0}
.
= Eα2

n(1−H2(〈α〉))EY|αEX|S {N(X,Y)>0}

= Eα2
n(1−H2(〈α〉))P (N(X,Y) > 0|α,X ∈ S) . (29)

Now, consider a greedy algorithm for determining whether

y is a subsequence of x, defined as follows [6, Section 3.1]:

Scanning from left to right, take the first bit in y and match

it with its first appearance in x. Then take the second bit

in y and match it with its subsequent first appearance in

x. Continue until either x or y are exhausted, where the

latter case is termed success. It is easy to see that the greedy

algorithm succeeds if and only ifN(x,y) > 0. For statistically
independent random vectors X and Y, we enumerate the

phrases in the parsing of X by i = 1, . . . ,M(X) where

M(X) is the (random) number of phrases in X. We define

the random variables Zi as the number of bits in Y that were

matched to bits in the ith phrase ofX by the greedy algorithm.

The vector Y consists of αn i.i.d. uniform bits. To simplify

computations, we assume that Y is always padded so that

it consists of n i.i.d. bits, and we calculate the probability

that
∑

i Zi ≥ αn, which is equal to P (N(X,Y) > 0|α)
since the additional random suffix does not affect the event

where the first αn bits in Y are matched. It can be shown

that under this assumption the Zi’s are mutually independent,

given that the phrase types {k
(i)
1 , k

(i)
2 }

M(X)
i=1 of X are known

(but assuming that their first bit identifiers {bi}
M(X)
i=1 remain

random). Of course, the distribution of Zi depends on the

parameters k
(i)
1 , k

(i)
2 that correspond to the ith phrase in X.

Given k1 and k2, the (base two) moment generating function
of Zi is

λk1,k2

Zi
(t) , E

(

2tZi |k1, k2
)

= 2k1(t−1)

+ 2t−1 1− 2k1(t−1)

1− 2t−1

(

2t−1 1− 2k2(t−1)

1− 2t−1
+ 2k2(t−1)−t

)

.

Noting that by definition, for X ∈ S the number and compo-

sition of the {k1, k2}-phrases is essentially deterministic, we

can use Cramer’s theorem [7] to obtain

P (N(X,Y) > 0|α,X ∈ S) = P (

M(X)
∑

i

Zi ≥ αn|α,X ∈ S)

.
= 2−nΛ∗(α),

where

Λ∗(α) = max
t>0

(

αt−
1

5

∑

k1=2

∑

k2=1

2−(k1+k2−1) logλZk1 ,k2
(t)

)

.

Substituting into (29), and applying standard large deviations

arguments, we obtain

−EX logEY

 {N(X,Y)>0}

EX {N(X,Y)>0}
≥ n · g(d) + o(n)

where

g(d) , min
0≤α≤1

D2(α||1 − d)− (1−H2(〈α〉)) + Λ∗(α)

where D2(p||q) is the binary relative entropy function. It

follows that for a uniform i.i.d. distribution,

lim
n→∞

1

n
I(X;Y) ≥ 1−H2(min(d, 1/2)) + g(d). (30)

Numerical evaluation of the term g(d) reveals that it is greater
than zero for all d < 1/2. Thus, (30) improves over Gallager’s
well know bound 1 − H2(d) [1]. Recently, Rahmati and

Duman [4] used a different technique to lower bound the

mutual information for uniform i.i.d. inputs. For small values

of d their bound is better than (30), but for larger values of

d the right hand side of (30) turns out to be greater than

their bound. For example, for d = 0.2 our bound improves

on 1 −H2(0.2) by ≈ 0.0117 bits (roughly 5%), whereas the

improvement of [4] is negligible.
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