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Abstract—The binary adder is a two-user multiple access
channel whose inputs are binary and whose output is the real sum
of the inputs. While the Shannon capacity region of this channel
is well known, little is known regarding its zero-error capacity
region, and a large gap remains between the best inner and
outer bounds. In this paper, we provide an improved outer bound
for this problem. To that end, we introduce a soft variation of
the Saur-Perles-Shelah Lemma, that is then used in conjunction
with an outer bound for the Shannon capacity region with an
additional common message.

I. I NTRODUCTION

The binary adder is a multiple access channel with two
binary inputsX1 andX2 and outputY = X1+X2 ∈ {0, 1, 2}.
The capacity region of this channel is well known and consists
of all rate-pairs(R1, R2) satisfying

R1 ≤ 1,

R2 ≤ 1,

R1 +R2 ≤ 3
2 . (1)

The zero-error capacity region of the binary adder channel is
the closure of the set of all rate-pairs(R1, R2) such that forn
large enough there exist two codebooksC1, C2 ⊆ {0, 1}n with
cardinalities|Ci| = 2nRi , i = 1, 2, such that all elements in
the sumset

C1 + C2 , {a+ b : a ∈ C1,b ∈ C2} with multiplicities
(2)

appear with multiplicity exactly one, where addition is taken
over the reals. We say that the pair(R1, R2) is admissible if
it belongs to the zero-error capacity region, and we call the
codebooks(C1, C2) a zero-error codebook pair if all elements
in their sumsetC1 + C2 appear with multiplicity exactly one.

Despite its apparent simplicity, the problem of character-
izing the zero-error capacity region of this channel is wide
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open. Many inner bounds have been established over the
last four decades, see, e.g., [1]–[10]. However, to date, the
best known lower bound on the zero error sum-capacity is
log(240/6) ≈ 1.3178 [10], where logarithms are taken in base
2. To put this result in perspective, note that a sum-rate of
R1 + R2 = 1

2 log(6) ≈ 1.2924 can be attained by the two-
dimensional constructionC1 = {00, 11}, C2 = {00, 01, 10}. In
terms of outer bounds, the current state of knowledge is even
less satisfying. Clearly, any admissible pair must be inside
the Shannon capacity region and must therefore satisfy (1).
However, to date the only improvement upon the trivial outer
bound (1) was obtained by Urbanke and Li [8] who showed
that near the corner points(1, 1

2 ) and (12 , 1) the zero-error
capacity region is strictly contained in (1). Specifically,for
R1 = 1 it was shown that the maximal admissibleR2 must
satisfyR2 < 0.49216. Our main result is a new outer bound
on the zero-error capacity region that strictly improves upon
the bound from [8], using different techniques.

Write h(p) = −p log p− (1 − p) log (1− p) for the binary
entropy function, andh−1(x) for its inverse restricted to[0, 12 ].
For 0 ≤ p, q ≤ 1, write p ⋆ q , p(1− q) + q(1 − p). Let

L(η) , h(η) + 1− η (3)

and

J(p, η) ,
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(4)

and

RΣ(r0, r1) , max
h−1(r1)≤η≤ 1

2

min{L(η), J(h−1(r1), η) + r0}

(5)

Our main result is the following.

Theorem 1: Any admissible(R1, R2) satisfies

R2 < min
0≤α≤h−1(R1)

(1− α)

(
RΣ

(
α

1− α
, Γ

)
− Γ

)

where

Γ = Γ(R1, α) , h

(
h−1(R1)− α

1− α

)
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Fig. 1. Illustration of the three outer bounds.

For the maximal value ofR1 = 1, this bound yieldsR2 <
0.4794. Figure 1 depicts the three outer bounds for values
of R1 close to1. The question of whetherR1 + R2 = 3

2 is
admissible for some(R1, R2) remains open.

II. PROOF OFTHEOREM 1

We first note that it suffices to prove inadmissibility in the
limit of large n, by the simple fact that if(C1, C2) is a zero-
error codebook pair, so is the concatenation(C1 × C1, C2 ×
C2). To avoid cumbersome notations, we can therefore assume
without loss of generality thatnR1 andnR2 (and all similar
quantities) are integers.

A. Motivation

Let C ⊆ {0, 1}n be a codebook and letS ⊆ [n] be a subset
of coordinates, where[n] , {1, . . . , n}. The projectiona(S)
maps the vectora ∈ {0, 1}n to a vector in{0, 1}|S| by taking
only the values ofa on the coordinates inS. We say thatS
is shattered by C [11], if the projection multiset

P+
S (C) , {c(S) : c ∈ C} with multiplicities

of C on S contains all2|S| binary vectors of length|S|.1 A
codebookC is said to besystematic if it shatters someS ⊆ [n]
of cardinality log |C|. Weldon proved the following.

Theorem 2 (Weldon [4]): If C1 is systematic and (C1, C2)
form a zero-error codebook pair, thenR2 ≤ (1−R1) log 3.

Proof. Let S be a set of cardinalitynR1 that is shattered by
C1. For everyc2 ∈ C2, there exists ac1 ∈ C1 such thatc1 and
c2 are anS-complement pair, i.e.,

c1(S) + c2(S) = 1|S|, (6)

where1m denotes a vector of1s of lengthm. Hence, there
are at least2nR2 suchS-complement pairs. By the assumption
that (C1, C2) form a zero-error codebook pair,c1(S) + c2(S)

1Taking the multiplicities into account in the definition of the projection
multiset is not necessary here, but will become important inthe sequel.

must be distinct for allS-complement pairs. Therefore, the
number of such pairs cannot be larger than3|S| = 3n(1−R1),
and the theorem follows.

For example, ifC1 is systematic andR2 = 1, then the
theorem implies thatR1 ≤ 0.37. This strong bound is
a consequence of the restriction to a systematic codebook.
However, we note that the only property used in the proof
is the existence of a large shattered set. Hence, any lower
bound on the size of a maximal shattered set in a general
codebookC1 would lead to a similar result. The cardinality of
the maximal set shattered by a codeC ⊆ {0, 1}n is referred to
in the machine-learning literature as itsVapnik-Chervonenkis
dimension, or VC-dimension. The Sauer-Perles-Shelah lemma
provides a lower bound on the VC-dimension of a code.

Lemma 1 (Sauer-Perles-Shelah Lemma [11]): If the car-
dinality of the maximal subset shattered by the codebook
C ⊆ {0, 1}n is d, then

|C| ≤
d∑

k=0

(
n

k

)
.

Remark 1: It is easy to see that this bound is attained with
equality if C is a n-Hamming ball of radiusd.

Corollary 1: Let ε > 0. If |C| = 2n(R+ε) then for anyn
large enough,C shatters a setS ⊆ [n] with |S| ≥ nh−1(R).

Plugging the above into Weldon’s argument yields:

Proposition 1: If (C1, C2) form a zero-error codebook pair,
thenR2 ≤ (1− h−1(R1)) log 3.

Unfortunately, this bound is trivial since for anyR1, we have
thatR1+(1−h−1(R1)) log 3 > 3

2 . This stems from two main
weaknesses. First, we have taken the worst case assumption
that each codewordc2 ∈ C2 has only one codewordc1 ∈ C1
such thatc1 andc2 areS-complement, whereS is a shattered
set inC1. Second, bounding the number ofS-complement pairs
by 3|S| may be loose, as it ignores the sumset structure. In the
next two subsections, we provide the technical tools to handle
each of these weaknesses, and apply them to prove the theorem
in the subsection that follows.

B. A Soft Sauer-Perles-Shelah Lemma

Let C ⊆ {0, 1}n be a codebook and letS ⊆ [n] be a
subset of coordinates. We say thatS is k-shattered by C, if
the projection multisetP+

S (C) of C on S contains all binary
vectors in{0, 1}|S| each with multiplicity of at leastk. For
k = 1, this definition reduces to the regular definition of a
shattered set.

The proof of the following lemma is given in Section III.

Lemma 2: If the cardinality of the maximal subset that is
k-shattered by the codebookC ⊆ {0, 1}n is d− 1, then

|C| ≤
t∗∑

t=1

(
n

t

)
+

(
n

t∗

) n∑

t=t∗+1

(
t∗

d

)
(
t
d

)



wheret∗ is the smallest integert satisfying
(
n−d
t−d

)
≥ k if such

an integer exists, andt∗ = n otherwise.

Remark 2: Note that if k =
(
n−d
t∗−d

)
for some t∗, then

our bound is tight for an-Hamming ball of radiust∗, up
to a multiplicative gap ofO(n/d). This coincides with the
Sauer-Perles-Shelah Lemma fork = 1 (and t∗ = d), up to
the aforementioned multiplicative factor. Since we are only
interested in exponential behavior, no attempt has been made
to reduce this gap.

Corollary 2: Let ε > 0. If |C| = 2n(R+ε) then for any
0 ≤ α ≤ h−1(R) and anyn large enough, there exists a set
S ⊆ [n] with |S| ≥ nα that is 2nβ-shattered byC, where

β = (1− α) · h
(
h−1(R)− α

1− α

)
(7)

Proof. Let 0 ≤ α ≤ h−1(R) and assume to the contrary
that no subset of sized = nα is 2nβ-shattered byC. Denote
t∗ = γnn, and write

1

n
log

(
n− d

t∗ − d

)
=

n− d

n

(
h

(
t∗ − d

n− d

)
+ o(1)

)

= (1− α+ o(1))h

(
γn − α

1− α

)

We can setγn to the minimal value guaranteeing that the above
is at leastβ, which is γn = α + (1 − α)h−1

(
β

1−α

)
+ o(1).

Invoking Lemma 2, it must then be that|C| ≤ 2n(h(γn)+o(1)) =
2n(R+o(1)), contradicting the assumption.

C. The Binary Adder Channel with an Additional Common
Message

In the Weldon-type arguments mentioned above, the number
of S-complement pairs was bounded by3|S|, thereby ignoring
the sumset structure. As we shall see in the next subsection,
this structure can be accounted for by partitioning each code-
book according to its projection onS, which naturally gives
rise to a zero-error communication problem with an additional
common message of rate at most|S|/|S|. Upper bounding the
corresponding admissible sum-rate in this new setup can in
turn be translated into an upper bound on the number ofS-
complement pairs in our original setup.

More precisely, assume that there are three messagesWi ∈
[2nri ], i = 0, 1, 2, to be conveyed to the receiver over the
binary adder channel, where the first user has access to the
messages(W0,W1) and the second user has access to the
messages(W0,W2). The Shannon capacity region for this
problem was found by Slepian and Wolf [12] to be the set
of all rate triplets satisfying

r1 ≤ H(X1|U),

r2 ≤ H(X2|U),

r1 + r2 ≤ H(X1 +X2|U),

r0 + r1 + r2 ≤ H(X1 +X2) (8)

for somePU,X1,X2
= PUPX1|UPX2|U , whereX1 andX2 are

binary random variables and the random variableU has a finite
support.

A coding scheme for this problem consists of asystem V ,
which is a set of codebook pairs{C1,i, C2,i}M0

i=1, where each
C1,i (resp.C2,i) is a codebook in{0, 1}n with fixed cardinality
|C1,i| = M1 (resp.|C2,i| = M2). We say thatV is a zero-error
system if each pair(C1,i, C2,i) is a zero-error codebook pair,
and the sumsetsC1,i + C2,i are mutually disjoint. A triplet
(r0, r1, r2) is called admissible if there exists a zero-error
systemV with Mℓ = 2n(rℓ+o(1)) for ℓ ∈ {0, 1, 2}.

Clearly, any admissible triplet must satisfy (8). The bounds
we obtain in this subsection are based on outer bounding this
latter region. More specifically, as will become clear in the
next subsection, our goal is to upper bound the maximal sum
of admissible ratesr0 + r1 + r2 as a function ofr0 and r1.
Although the bounds in (8) are given in a single-letter form,
in order to guarantee the inadmissibility of a rate triplet,one
must go over all valid distributionsPU,X1,X2

. While it is not
difficult to show that for our needs there is no loss of generality
in considering only random variablesU with cardinality no
greater than3, the number of remaining parameters makes
the evaluation of (8) within a satisfactory resolution infeasible
for a brute-force grid search. Instead, the following lemma
provides an analytic upper bound on the sum-capacity as a
function of r0 and r1, in terms of the solution to a single-
parameter optimization problem. The proof is omitted due to
space limitations, but can be found in the full version of this
paper [13].

Lemma 3: Let L(η) andJ(p, η) be as defined in (3) and (4).
If (r0, r1, r2) is admissible, then

r0 + r1 + r2 ≤ max
h−1(r1)≤η≤ 1

2

min{L(η), J(h−1(r1), η) + r0}

Remark 3: Note that it can be shown that the maximization
can be further restricted toh−1(r1) ⋆ h

−1(r2) ≤ η ≤ 1
2 . This

however is not useful for our purposes.

The following lemma is not necessary for the proof of
Theorem 1, but may be of independent interest.

Lemma 4: The maximal sum of achievable rates (for a
vanishing error probability) over the binary adder channelwith
an additional common message, as a function of the rate of
the common message rater0, is

r0 + r1 + r2 = max
0≤η≤ 1

2

min{h(η) + 1− η,

2h
(

1
2

(
1−

√
1− 2η

))
− η + r0} (9)

Proof sketch. The upper bound onr0 + r1 + r2 follows as
a corollary of Lemma 3, by noting that for any0 ≤ r1 ≤ 1
we haveJ(h−1(r1), η) ≤ 2h

(
1
2

(
1−√1− 2η

))
− η. To see

that the right hand side of (9) is achievable, letη∗ be the
maximizer of (9) and evaluate the entropies in (8) with the



following distribution:

X1 = U ⊕ Z1, X2 = U ⊕ Z2

U ∼ Bern

(
1

2

)
, Z1 ∼ Bern(p∗), Z2 ∼ Bern(p∗) (10)

where U,Z1, Z2 are mutually independent, andp∗ ≤ 1
2

satisfiesp∗ ⋆ p∗ = η∗, i.e., p∗ = 1
2 (1−

√
1− 2η∗).

D. Putting it Together

We are now in a position to prove Theorem 1. Let(C1, C2)
be a zero-error codebook pair of cardinalities2nR1 and2nR2

respectively. Given this pair, we use Corollary 2 to construct
a zero-error system with certain cardinalities, and then apply
Lemma 3 to obtain constraints on that system.

By Corollary 2, for anyα < h−1(R1) there exists a subset
of coordinatesS ⊂ [n] of cardinalitynα that is2nβ-shattered
by C1, whereβ is given in (7), all up to ano(1) term. Let
C0 be the family of all binary vectors of length|S|, and for
any g ∈ C0 let C1,g = {c ∈ C1 : c(S) = g}. Define C2,g
similarly, and note that{Cj,g}g∈C0

is a partition ofCj for
eachj ∈ {1, 2}.

By construction,|C1,g| ≥ 2nβ . We can therefore arbitrarily
choose C̃1,g ⊆ C1,g such that |C̃1,g| = 2nβ . For each
g with |C2,g| > 0, arbitrarily chooseC̃2,g ⊆ C2,g such
that log |C̃2,g| = ⌊log |C2,g|⌋. Note that this guarantees that
|C̃2,g| = 2k for some integer0 ≤ k ≤ nR2, and that
|C̃2,g| ≥ |C2,g|/2. Moreover, there must exist an integerk′

with the property that the union of all̃C2,g of cardinality2k
′

contains at least 1
2(nR2+1)2

nR2 vectors. LetG be the set of all
g ∈ C0 that correspond to thisk′, and note that by construction
|G| = 2nα

′

for someα′ ≤ α. Moreover,

|C̃2,g| = 2k
′ ≥ 1

2(nR2+1)2
n(R2−α′)

for all g ∈ G.

Let g = g⊕1|S| be the binary complement ofg, and define
the systemV = {(C̃1,g, C̃2,g)}g∈G . Since the originalC1 and
C2 form a zero-error codebook pair, thenV is trivially a zero-
error system. Moreover, since anyc1 ∈ C̃1,g and c2 ∈ C̃2,g
are anS-complement pair (6), the projection

VS , {(P+

S
(C̃1,g), P+

S
(C̃2,g))}g∈G

of V ontoS is also a zero-error system, over|S| = n(1− α)
coordinates.

We have thus shown that given a zero-error codebook pair
over n coordinates with cardinalities2nR1 and 2nR2 , we
can construct a zero-error systemVS over m = n(1 − α)
coordinates with cardinalitiesM0 = 2mr0, M1 = 2mr1 and
M2 = 2m(r2+o(1)), where

r0 =
α′

1− α
, r1 =

β

1− α
, r2 =

R2 − α′

1− α

Thus for this systemr0 + r1 + r2 = R2+β
1−α

, and by Lemma 3,
recalling thatα′ ≤ α, we have that

R2 + β

1− α
≤ max

h−1( β

1−α )≤η≤ 1

2

min

{
L(η),

J

(
h−1

(
β

1− α

)
, η

)
+

α

1− α

}

The theorem now follows by substitutingβ from Corollary
2, and noting that the above inequality holds for any0 ≤ α ≤
h−1(R1).

III. PROOF OFLEMMA 2

For the purpose of the proof, it will be convenient to
represent any binary vectorc ∈ {0, 1}n by a subset ofF ⊆ [n]
that contains the indices of the coordinates wherec equals1.
Accordingly, any codebookC ⊆ {0, 1}n can be represented
by the corresponding familyF of subsets of[n]. Similarly,
the multiset projectionP+

S (C) of C on S corresponds to

P+
S (F) , {F ∩ S : F ∈ F} with multiplicities

and S is k-shattered byC (equivalently byF ) means that
P+
S (F) contains each subset ofS with multiplicity at leastk.

Let C be a codebook and letF be the corresponding family
of subsets on[n]. We start by applying the shifting argument
introduced in [14] onF , to construct another familyG of the
same cardinality, such that ifS is k-shattered byG then it is
alsok-shattered byF . Furthermore,G will be monotone, i.e.,
will have the property that ifG ∈ G then all subsets ofG are
in G.

Set G = F . If G is already monotone, we are done.
Otherwise there exists somei ∈ [n] such that the set

G̃i , {G ∈ G : i ∈ G, G \ {i} 6∈ G}

is not empty. UpdateG according to the rule:

G ←
(
G \ G̃i

)
∪
(
G̃i − i

)
(11)

where G̃i − i is the family of subsets obtained from̃Gi
by removing the elementi from each subset. The process
continues untilG is monotone, and is clearly guaranteed to
terminate in finite time. By construction,|G| = |F|.

We now show that ifS is k-shattered byG then it is also
k-shattered byF . Let G′ be the family of subsets before the
operation (11) on some elementi, and letG be the family
obtained after that operation. SupposeS is k-shattered byG.
It now suffices to show thatS is also k-shattered byG′. If
i 6∈ S then clearlyP+

S (G) = P+
S (G′), hence this does not

affect thek-shatterdness ofS. Supposei ∈ S, and let

Gi , {G ∈ G : i ∈ G}.

ThenGi ⊆ G′ since the update rule (11) does not add elements
to subsets. SinceG k-shattersS, then every subset ofS that
containsi has multiplicity at leastk in P+

S (Gi) ⊆ P+
S (G′).



Recalling thatGi ⊆ G ∩ G′, we have thatGi − i ⊆ G′ since
otherwise some replacement would have occurred in (11).
SinceG k-shattersS, then every subset ofS that does not
containi has multiplicity at leastk in P+

S (Gi − i) ⊆ P+
S (G′).

The Lemma now follows directly from the next proposition.

Proposition 2: If G is a monotone family of subsets of[n]
with the property that no subset of cardinalityd is k-shattered
by G, then

|G| ≤
t∗∑

t=1

(
n

t

)
+

(
n

t∗

) n∑

t=t∗+1

(
t∗

d

)
(
t
d

)

wheret∗ is the smallest integert satisfying
(
n−d
t−d

)
≥ k if such

an integer exists, andt∗ = n otherwise.

Proof. Let Gt denote the family of all subsets inG with
cardinalityt. For t ≥ d, everyG ∈ Gt has exactly

(
t
d

)
subsets

of cardinalityd. There is a total of
(
n
d

)
subsets of cardinality

d. Hence by a simple counting argument there must exist
at least one subsetS of cardinality d, that is a subset of
no less than|Gt|

(
t
d

)
/
(
n
d

)
subsets inGt. Recalling thatG is

monotone, this implies thatS is |Gt|
(
t
d

)
/
(
n
d

)
-shattered byG.

By our assumption, it must be that
(
t
d

)
|Gt|(
n
d

) < k, t = d, . . . , n

On the other hand,|Gt| ≤
(
n
t

)
, and therefore

|Gt| ≤ min

{(
n

t

)
,

(
n
d

)
k(

t
d

)
}
, t = d, . . . , n

Summing overt we get

|G| =
n∑

t=1

|Gt| ≤
d−1∑

t=1

(
n

t

)
+

n∑

t=d

min

{(
n

t

)
,

(
n
d

)
k(

t
d

)
}

(12)

Let t∗ be the smallest integert such that
(
n
t

)
≥ (nd)k

(td)
if such

an integer exists. If no such integert exists, sett∗ = n. Then

|G| ≤
t∗∑

t=1

(
n

t

)
+

n∑

t=t∗+1

(
n
d

)
k(

t∗

d

) ·
(
t∗

d

)
(
t
d

)

≤
t∗∑

t=1

(
n

t

)
+

(
n

t∗

) n∑

t=t∗+1

(
t∗

d

)
(
t
d

)

To complete the proof, note that for anyd ≤ t ≤ n we
have

(
n
t

)(
t
d

)
=

(
n
d

)(
n−d
t−d

)
, hencet∗ is the smallest integert

satisfying
(
n−d
t−d

)
≥ k if such an integer exists, and otherwise

t∗ = n.

IV. D ISCUSSION

Given a zero-error codebook pairC1, C2 ⊆ {0, 1}n with car-
dinalities2nR1 and2nR2 respectively, our bounding technique
was based on a procedure for constructing a zero-error system
V with dimension(1−α)n. This was achieved by proving the

existence of a subsetS ⊂ [n] of cardinality αn, such that
the sumset of the projection multisets of each codebook onS,
i.e., P+

S (C1) + P+
S (C2) has a memberv ∈ {0, 1, 2}|S| with

a large number of occurrences, say2nρ. This in turn implied
that r0 + r1 + r2 for the system is at leastρ/(1 − α). To
lower boundρ as a function ofα and the cardinalities of
the original codebooks, we introduced the soft Sauer-Perles-
Shelah Lemma, which enabled us to bound the number of
occurrences of the vectorv = 1|S|. This lemma offered
the additional benefit of a lower bound onr1. We note in
passing that the bound obtained onR2 as a function ofR1

outperforms previous results even without incorporating the
constraint onr1. We suspect that better bounds onρ can be
obtained, possibly forv other than1|S|.
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