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Abstract—The binary adder is a two-user multiple access open. Many inner bounds have been established over the
channel whose inputs are binary and whose output is the reaksn  |ast four decades, see, e.g., [1]-[10]. However, to date, th
of the inputs. While the Shannon capacity region of this chanel best known lower bound on the zero error sum-capacity is

is well known, little is known regarding its zero-error capacity - . .
region, and a large gap remains between the best inner and log(240/6) ~ 1.3178 [10], where logarithms are taken in base

outer bounds. In this paper, we provide an improved outer bomd 2. TO put this result in perspective, note that a sum-rate of
for this problem. To that end, we introduce a soft variaton & Ry + Ry = %log(G) ~ 1.2924 can be attained by the two-
the Saur-Perles-Shelah Lemma, that is then used in conjunicn  dimensional constructiofy, = {00, 11}, C2 = {00,01,10}. In
with an outer bound for the Shannon capacity region with an o of outer bounds, the current state of knowledge is even
additional common message. s L . ..
less satisfying. Clearly, any admissible pair must be mmsid
the Shannon capacity region and must therefore satisfy (1).
However, to date the only improvement upon the trivial outer
The binary adder is a multiple access channel with twaound (1) was obtained by Urbanke and Li [8] who showed
binary inputsX; and X, and output’ = X, +X5 € {0,1,2}. that near the corner pointd, ;) and (3,1) the zero-error
The capacity region of this channel is well known and cossistapacity region is strictly contained in (1). Specificallgy

|I. INTRODUCTION

of all rate-pairs(R;, R2) satisfying R, = 1 it was shown that the maximal admissibl& must
satisfy Ry < 0.49216. Our main result is a new outer bound
Ry <1, on the zero-error capacity region that strictly improvesmp
Ry <1, the bound from [8], using different techniques.
Ri+ Ry < 3. (1) Write h(p) = —plogp — (1 — p)log (1 — p) for the binary

entropy function, and~*(z) for its inverse restricted tf, 5].

The zero-error capacity region of the binary adder charmelr_tor 0<pg<1,write pxq 2 p(l —q) +q(1 —p). Let

the closure of the set of all rate-pa{iB;, R2) such that fom

large enough there exist two codebodksC, C {0,1}" with L(n) & h(n) +1—-n 3)
cardinalities|C;| = 2”7, i = 1,2, such that all elements in 4q
the sumset 2h (3 (1 =VI=20)) =0 n>p*p

Ci+C2{a+b:ac(C,beC} with multiplicities

) J(p,n) £ oh [ L1 - Lzn—pxp 4)
. o e 2 1-2(p*p)
appear with multiplicity exactly one, where addition is eak iy (knip*p)z) .
over the reals. We say that the paR;, R.) is admissible if 2 1=2(p*p) MT=pxp

it belongs to the zero-error capacity region, and we call ttznd

codebookgC;, Cy) a zero-error codebook pair if all elements A . 1

. . ’ . L £ L h

in their sumset; + C, appear with multiplicity exactly one. Rs(ro,m) hfl(?}?;g% min{L(n), J(h™"(r1),n) + o}

Despite its apparent simplicity, the problem of character- (5)
izing the zero-error capacity region of this channel is wide Our main result is the following
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must be distinct for allS-complement pairs. Therefore, the
RS number of such pairs cannot be larger tigafl = 37(1-f1),
== = = = Urbanke and Li and the theorem followsm

""""""""""""" New Bound

For example, ifC; is systematic andR; = 1, then the
theorem implies thatkR; < 0.37. This strong bound is
a consequence of the restriction to a systematic codebook.
However, we note that the only property used in the proof
is the existence of a large shattered set. Hence, any lower
bound on the size of a maximal shattered set in a general
codebook’; would lead to a similar result. The cardinality of
the maximal set shattered by a ca@l€ {0,1}" is referred to
in the machine-learning literature as Napnik-Chervonenkis
Cie s ous oios o5 oies oo oiis om dimension, or VC-dimension. The Sauer-Perles-Shelah lemma

R, provides a lower bound on the VC-dimension of a code.

Lemma 1 (Sauer-Perles-Shelah Lemma [11]): If the car-
dinality of the maximal subset shattered by the codebook
For the maximal value of?; = 1, this bound yieldsR, < C C {0,1}" is d, then
0.4794. Figure 1 depicts the three outer bounds for values d
of R; close tol. The question of whetheR, + Ry = % is c| < Z (n)
admissible for soméR;, R2) remains open. - = k
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Fig. 1. lllustration of the three outer bounds.

[I. PROOF OFTHEOREM 1 Remark 1: It is easy to see that this bound is attained with

_ _ _ _ S equality if C is an-Hamming ball of radiusi.
We first note that it suffices to prove inadmissibility in the Corollary 1: Lete > 0. If €] = 9n(R+¢) then for anyn

limit of large n, by .the S|mple fact that ifCy,Cs) is a zero- large enough shatters a se§ C [n] with |S| > nh—(R).
error codebook pair, so is the concatenat{@q x Ci,Ca % ) ] ) )
C). To avoid cumbersome notations, we can therefore assum&1U99ing the above into Weldon's argument yields:

without loss of generality that?; andnR, (and all similar Proposition 1: If (C1,Cs2) form a zero-error codebook pair,

quantities) are integers. then Ry < (1 — h™!(R;))log3.
o Unfortunately, this bound is trivial since for afy;, we have
A. Motivation thatR; +(1—h~'(R1))log3 > 3. This stems from two main
Let C C {0,1}" be a codebook and let C [n] be a subset weaknesses. First, we have taken the worst case assumption
of coordinates, wheré:] 2 {1,...,n}. The projectiona(s) that each codeword, € C, has only one codeword, € C;

maps the vectoa € {0,1}" to a vector in{0, 1}/°! by taking such thaic; andcy are S-complement, wheré is a shattered
only the values of on the coordinates it5. We say thats SetinCi. Second, bounding the number$icomplement pairs

is shattered by C [11], if the projection multiset by 3/S| may be loose, as it ignores the sumset structure. In the
N R _ o next two subsections, we provide the technical tools to land
Pg(C) ={c(S):c€C} with multiplicities each of these weaknesses, and apply them to prove the theorem

of C on S contains all2/S! binary vectors of lengths|.t A " the subsection that follows.

codeboolC is said to besystematic if it shatters someS' C [n]
of cardinalitylog |C|. Weldon proved the following.

Theorem 2 (Weldon [4]): If C; is systematic and({, Co) Let C C {0,1}" be a codebook and lef C [n] be a
form a zero-error codebook pair, théty < (1 — R;)log 3. subset of coordinates. We say th#tis k-shattered by C, if

D L i .
Proof. Let S be a set of cardinality: R, that is shattered by the projection multiset’s (C) of C on S contains all binary

Cy. For everye, € Cs, there exists &, € Cy such thaic, and  Vectors in{0, 11151 each with multiplicity of at leask. For
¢, are anS-complement pair, i.e k = 1, this definition reduces to the regular definition of a

shattered set.
c1(5) +ca(5) = 1), (6) The proof of the following lemma is given in Section IlI.

where1,, denotes a vector ofs of lengthm. Hence, there Lemma 2: If the cardinality of the maximal subset that is
are at lease" 2 suchS-complement pairs. By the assumptiork-shattered by the codebodkC {0,1}" is d — 1, then

that (C1,Cs) form a zero-error codebook pait; (S) + c2(.5)

t* n t*
n n (%)
1Taking the multiplicities into account in the definition dfet projection |C| = Z (t) + (t*) Z (t)
multiset is not necessary here, but will become importarthensequel. t=1 t=t*+1 \d

B. A Soft Sauer-Perles-Shelah Lemma



wheret* is the smallest integetrsatisfying(’t‘:j) > kifsuch for someFPy x, x, = PuPx,|uPx, v, whereX; and X, are

an integer exists, antd = n otherwise. binary random variables and the random varidbleas a finite
Remark 2: Note that if k = (2~%) for somet*, then Support.
our bound is tight for an-Hamming ball of radiust*, up A coding scheme for this problem consists ofyatem V),

to a multiplicative gap ofO(n/d). This coincides with the which is a set of codebook pai&; ;,Ca ;} 1%, where each

Sauer-Perles-Shelah Lemma for= 1 (and¢t* = d), up to Cy, (resp.C2;) is a codebook i{0, 1}" with fixed cardinality
the aforementioned multiplicative factor. Since we areyonlC, ;| = M; (resp.|Cz;| = Mz). We say thal is azero-error
interested in exponential behavior, no attempt has beeremagstem if each pair(C; ;,C2,;) is a zero-error codebook pair,
to reduce this gap. and the sumset§€; ; + C2; are mutually disjoint. A triplet
Corollary 2: Let ¢ > 0. If |C| = 27(E+9) then for any (r0,71,72) is called admissible if there exists a zero-error

0 < o < h-'(R) and anyn large enough, there exists a seystemV with M, = 27(e+e() for £ € {0,1,2}.

S C [n] with |S| > na that is 2"8-shattered by, where Clearly, any admissible triplet must satisfy (8). The basind
h-1(R) - a we obtain in this subsection are based on outer bounding this

B=(0-a)-h (7> (7) latter region. More specifically, as will become clear in the
l1-a next subsection, our goal is to upper bound the maximal sum

Proof. Let 0 < a < h~!(R) and assume to the contraryOf admissible ratesy + r; + r2 as a function ofrg andry.

that no subset of sizé = na is 2"%-shattered byC. Denote Although the bounds in (8.) are g|v§r_1 .|n a smgle-let_ter form,
#* = ~,n, and write in order to guarantee the inadmissibility of a rate triptate

must go over all valid distribution®y x, x,. While it is not

1 log ( - d> _n- d (h <t* - d) 4 0(1)) difficult to show that for our needs there is no loss of gerigral
t* —d n n—d in considering only random variabld$ with cardinality no
e greater than3, the number of remaining parameters makes
=1 -a+o(l))h ( 1—a > the evaluation of (8) within a satisfactory resolution exéole

L ) for a brute-force grid search. Instead, the following lemma
We can sety,, to the minimal value guaranteeing that the abovﬁrovides an analytic upper bound on the sum-capacity as a

is at leasts, which isy, = a+ (1 - a)h™! (%) +0(1).  function of o andry, in terms of the solution to a single-

Invoking Lemma 2, it must then be thigt < 27(*(v»)+e(1)) —  parameter optimization problem. The proof is omitted due to

on(F+o(1))  contradicting the assumptionm space limitations, but can be found in the full version ofthi
paper [13].

C. The Binary Adder Channel with an Additional Common Lemma 3: Let L(n) and.J(p, ) be as defined in (3) and (4).

Message If (ro,r1,72) is admissible, then

In the Weldon-type arguments mentioned above, the number ] 1
of S-complement pairs was bounded 8y, thereby ignoring " T 71+ 72 < Bt (< min{L(n), J(h™"(r1),1) + 7o}
the sumset structure. As we shall see in the next subsection, -
this structure can be accounted for by partitioning eactecod Remark 3: Note that it can be shown that the maximization
book according to its projection ofi, which naturally gives can be further restricted tb=1(r;) x h=1(r2) <7 < % This
rise to a zero-error communication problem with an addélonhowever is not useful for our purposes.
common message of rate at mpSt/|S|. Upper bounding the  the following lemma is not necessary for the proof of
corresponding admissible sum-rate in this new setup canfegrem 1, but may be of independent interest.

turn be translated into an upper bound on the numbe$-of . .
bp Lemma 4: The maximal sum of achievable rates (for a

complement pairs in our original setup. o - : .
P .p g P vanishing error probability) over the binary adder chanwiét
More precisely, assume that there are three mesdages 4, additional common message, as a function of the rate of
[2"7i], i = 0,1,2, to be conveyed to the receiver over thena common message ratg, is

binary adder channel, where the first user has access to the
messagegWWy, W1) and the second user has access to the . 44 1y — max min{h(n) + 1 —n,
1

messageg Wy, Ws). The Shannon capacity region for this 0<n<3
problem was found by Slepian and Wolf [12] to be the set on(i(1—-1=2n)) — 9
of all rate triplets satisfying (2 ( 77)) ntro} (9)
r1 < H(X1|0), Proof sketch. The upper bound omy + r; + ro follows as
ro < H(X,|U), a corollary of Lemma 3, by noting that for aly< r; <1
_ we haveJ(h=!(r1),n) < 2h (1 (1—-/T=2n)) —n. To see
< ) = 5
ritre < HX + X|U), that the right hand side of (9) is achievable, gt be the
ro+ 11+ < H(X) + Xo) (8)  maximizer of (9) and evaluate the entropies in (8) with the



B248 and by Lemma 3,

-«

following distribution: Thus for this systemy +r1 +ry =

recalling thate’ < «, we have that
Xl :U@Zh XQZU@ZQ
- h—l(i)<n§

1 Rat P min { L(n)
U ~ Bern (5) , Z1 ~ Bern(p*), Zy ~ Bern(p*)  (10) 5 Y<p<l ),

l—«
_ 154 e
% (7 (755) )+ 12

The theorem now follows by substitutingyfrom Corollary
2, and noting that the above inequality holds for @y o <
h_l(Rl).

max

where U, 7y, Z; are mutually independent, ang <
satisfiesp* x p* = n*, i.e.,p* = 1(1 - I —27%). =

D. Putting it Together

We are now in a position to prove Theorem 1. [&t,C5)
be a zero-error codebook pair of cardinalit@d? and 272
respectively. Given this pair, we use Corollary 2 to corddtru
a zero-error system with certain cardinalities, and theplyap
Lemma 3 to obtain constraints on that system.

IIl. PROOF OFLEMMA 2

For the purpose of the proof, it will be convenient to
represent any binary vectore {0, 1}" by a subset of’ C [n]
that contains the indices of the coordinates wheegjualsi.

By Corollary 2, for anya < h=1(R;) there exists a SUbsetAccordineg, any codebook C {0,1}" can be represented
of coordinatesS C [n_] of gardinalityna that is2"#-shattered by the corresponding family= of subsets offn]. Similarly,
by C1, where is given in (7), all up to ar(1) term. Let the multiset projectior; (C) of C on S corresponds to

Co be the family of all binary vectors of lengtlf|, and for
anyg € Co let C1,g = {c € C1 : ¢(S) = g}. DefineCy g
similarly, and note thafC;¢}gcc, iS a partition ofC; for
eachj € {1,2}.

By cofrvlstruction,|Cl_,g| > 2"%, We can therefore arbitrarily

chooseCi, C Cig such that|C,z| = 2"°. For each
g with [Co g > 0, arbitrarily choose@yg C Cy¢ such
that log|Cog| = [log|Ca gl
|Cag| = 2F for some integerd < k < nR,, and that
|527g| > |C2¢|/2. Moreover, there must exist an integet
with the property that the union of erﬁgg of cardinality 2%’
contains at Ieasgmwpi2 vectors. LetG be the set of all

PI(F)&£{FNS:FeF}  with multiplicities

and S is k-shattered byC (equivalently by F) means that
PJ (F) contains each subset 6fwith multiplicity at leastk.

Let C be a codebook and |6t be the corresponding family
of subsets onn]. We start by applying the shifting argument
introduced in [14] onF, to construct another familg of the

Note that this guarantees thakame cardinality, such that § is k-shattered byg then it is

also k-shattered byF. Furthermoreg will be monotone, i.e.,
will have the property that it7 € G then all subsets ofr are
in G.

SetG = F. If G is already monotone, we are done.

g € Co that correspond to thig', and note that by constructioninerwise there exists sonie [n] such that the set

|G| = 2"’ for some«’ < a. Moreover,

~ _ ok’ 1 n(Ry—a'
|C2,g| =2 2 2(nR2+1)2 (s :

forallg e g.

Letg = g 1,5 be the binary complement gf, and define
the systemV = {(C1.g,Ca.¢)}geg. Since the original’; and
C, form a zero-error codebook pair, théhis trivially a zero-
error system. Moreover, since ary € C;g andcy € Cao g
are anS-complement pair (6), the projection

Vs 2 {(PF(Ci5), PE(Cag))}eco

of V onto S is also a zero-error system, ovet| = n(1 — )
coordinates.

We have thus shown that given a zero-error codebook pgi

over n coordinates with cardinalitie@”® and 2772, we
can construct a zero-error systevy over m = n(l — «)
coordinates with cardinalitied/, = 2™, M; = 2™" and
M, = 2m(r24o(1) where

RQ—O/
11—«

G:2{GeG:icG, G\ {i} G}

is not empty. Updat& according to the rule:
G« (9\G)u(g-1)

where @ — ¢ is the family of subsets obtained fror@

by removing the element from each subset. The process
continues untilG is monotone, and is clearly guaranteed to
terminate in finite time. By constructiofg| = | F]|.

We now show that ifS is k-shattered byg then it is also
k-shattered byF. Let G’ be the family of subsets before the
operation (11) on some elementand letG be the family
obtained after that operation. Suppdses k-shattered byg.
jow suffices to show thaf is also k-shattered byg'. If
i ¢ S then clearlyPg (G) = P#(G’), hence this does not
affect thek-shatterdness of. Suppose € S, and let

Gi£{GeG:ieG}.

Theng; C G’ since the update rule (11) does not add elements
to subsets. Sincg k-shattersS, then every subset of that
containsi has multiplicity at least: in PJ(G;) € P (G').

(11)



Recalling thatg; € G N G’, we have thag; —i C G’ since

existence of a subse§ C [n] of cardinality an, such that

otherwise some replacement would have occurred in (11)e sumset of the projection multisets of each codebook,on
Since G k-shattersS, then every subset of that does not i.e., PJ(C1) + Pd (C2) has a membew € {0, 1,2}/5! with

containi has multiplicity at least in PJ (G, —i) C P4 (G").

a large number of occurrences, s#¥. This in turn implied

The Lemma now follows directly from the next propositionthat ro + 71 + 72 for the system is at least/(1 — a). To

Proposition 2: If G is a monotone family of subsets pf]
with the property that no subset of cardinalitys k-shattered
by G, then

t* n +*
o= (1) (1) = ¥
t=1 t=t*+1 (d)
wheret* is the smallest integersatisfying(7~¢) > k if such

an integer exists, antd = n otherwise.

Proof. Let G; denote the family of all subsets iG with
cardinalityt. Fort > d, everyG € G, has exactly(’) subsets

lower boundp as a function ofa and the cardinalities of
the original codebooks, we introduced the soft Sauer-Perle
Shelah Lemma, which enabled us to bound the number of
occurrences of the vector = 1j5. This lemma offered
the additional benefit of a lower bound on. We note in
passing that the bound obtained &3 as a function ofR;
outperforms previous results even without incorporating t
constraint onr;. We suspect that better bounds prcan be
obtained, possibly for other thanlg;.
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IV. DISCUSSION

Given a zero-error codebook pdlr, Co C {0, 1}™ with car-

dinalities2"f and2"2 respectively, our bounding technique
was based on a procedure for constructing a zero-erromsyste

V with dimension(1 — a)n. This was achieved by proving the



