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Mutual Information Bounds via Adjacency Events
Yanjun Han, Or Ordentlich, and Ofer Shayevitz, Senior Member, IEEE

Abstract— The mutual information between two jointly
distributed random variables X and Y is a functional of the
joint distribution PXY , which is sometimes difficult to handle
or estimate. A coarser description of the statistical behavior
of (X, Y) is given by the marginal distributions PX , PY and
the adjacency relation induced by the joint distribution, where
x and y are adjacent if P(x, y) > 0. We derive a lower
bound on the mutual information in terms of these entities.
The bound is obtained by viewing the channel from X to Y
as a probability distribution on a set of possible actions, where
an action determines the output for any possible input, and is
independently drawn. We also provide an alternative proof based
on convex optimization that yields a generally tighter bound.
Finally, we derive an upper bound on the mutual information in
terms of adjacency events between the action and the pair (X, Y),
where in this case, an action a and a pair (x, y) are adjacent
if y = a(x). As an example, we apply our bounds to the
binary deletion channel and show that for the special case of
an independent identically distributed input distribution and a
range of deletion probabilities, our lower and upper bounds both
outperform the best known bounds for the mutual information.

Index Terms— Mutual information bounds, functional
representation, alternating minimization, deletion channel.

I. INTRODUCTION

THE mutual information I (X; Y ) between two jointly
distributed random variables X and Y arises as the fun-

damental limit in many information theoretic problems. When
the alphabets X and Y are small, the computation of I (X; Y )
can be performed directly. This is the typical scenario when
considering e.g. the calculation of capacity of memoryless
channels, assuming the optimal input distribution is known.
In many cases however, the alphabet may become large or
even grow unbounded; this is the case e.g. with the capacity
of channels with memory that are information stable [1], where
the capacity is essentially given by the limit of I (Xn; Y n)/n,
for the optimal input Xn . In such cases, it often becomes
prohibitively difficult or even virtually impossible to precisely
compute the mutual information, hence one must resort to
bounding techniques.
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In many problems, the marginal distributions of X and Y are
simple and the computation of the entropies H (X) and H (Y )
is more tractable. In such cases the main obstacle becomes
handling the joint distribution and computing the joint
(or conditional) entropy. One such prominent example is the
binary deletion channel [2] with deletion probability d and an
i.i.d. uniform input process. For this setting, the normalized
output entropy is easy to derive and approaches (1 − d).
However, to evaluate the joint distribution for any given input-
output pair, one needs to find the number of different ways the
output can be obtained from the input by deleting input bits.
This is a difficult combinatorial question, and consequently
computing the joint entropy is very challenging. A simpler
combinatorial question is to determine whether the output
can be obtained from the input by some deletion pattern.
More generally put, instead of fully characterizing the joint
distribution, it is sometimes much easier to characterize its
support. Thus, the goal of this work is to provide bounds on
the mutual information as a function of the marginals and the
joint support. These bounds will be useful when the support
is sparse.

In what follows, we assume the alphabets X ,Y are finite
unless otherwise stated. We say that x and y are adjacent if
PXY (x, y) > 0, and we denote this relation by x ∼ y. We call
the event 1(x ∼ y) an adjacency event. Our first main result
is the following.

Theorem 1: For any jointly distributed discrete r.vs (X, Y ),

I (X, Y ) ≥ −EY log EX1(X ∼ Y )

− EX log EY
1(X ∼ Y )

EX1(X ∼ Y )
(1)

Note that by Jensen’s inequality both summands are non-
negative, and therefore as a corollary we also get that
I (X, Y ) ≥ −EY log EX1(X ∼ Y ). One can find examples
where both bounds are tight, e.g., for the mutual information
between input and output of the binary erasure channel. It is
instructive to note that the weaker bound can be derived
directly by the following argument. Draw an i.i.d. codebook
with block length n according to PX , and use it to communi-
cate over a memoryless channel PY |X . Consider the following
decoding rule: If the output sequence yn is PY -typical and
there is a unique codeword xn such that xk ∼ yk for all k,
output that codeword. Otherwise, declare an error. Clearly,
Pr(Xk ∼ yk) = EX1(X ∼ yk) and thus, assuming that
yn is typical, the probability (averaged over random code-
books) that a specific codeword will satisfy the decoding rule
is ≈ ∏

y∈Y (EX1(X ∼ y))n P(y). Therefore, by the union
bound, any rate below −EY log EX1(X ∼ Y ) can be attained
by this strategy with vanishing error probability, and this in
turn cannot be larger than the mutual information. A bound
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of this type was implicitly used in [3] and [4]. Our main
contribution is therefore the second term in (1). As we shall
see in Section V, this additional term can be significant.

Let us briefly provide the main ideas behind our approach.
A channel is traditionally defined via a conditional probability
distribution PY |X of the output given the input. Alternatively,
a channel can also be (nonuniquely) defined as a random
mapping Y = A(X) from an input alphabet to an output
alphabet, where the actual mapping applied to the input,
namely the channel action A, is drawn according to some
probability distribution PA over the set of all possible actions,
independently of the input (see the functional representation
lemma in [5, Appendix B]). Following this paradigm, the
mutual information for a given input distribution PX can be
written as

I (X; Y ) = H (Y ) − H (Y |X)

= H (Y ) − (H (Y, A|X) − H (A|X, Y ))

= H (Y ) − H (A|X) − H (Y |A, X) + H (A|X, Y )

= H (Y ) − H (A) + H (A|X, Y ) (2)

where (2) follows since the action A is statistically indepen-
dent of the input X , and Y = A(X). This holds for any
eligible choice of action A. A natural quantity to consider
is therefore the intrinsic uncertainty H (A|X, Y ) associated
with A, that captures the amount of information regarding the
channel action revealed by observing its input and output. Note
that for any eligible choice of A, we have that I (A; X, Y ) =
H (A) − H (A|X, Y ) = H (Y |X) is fixed, but the entropy of
the action H (A) and the intrinsic uncertainty associated with
the action can vary.

As an example, consider the binary symmetric
channel (BSC) with crossover probability 0 < p < 1

2 .
A natural choice for the action A is drawing a r.v.
Z ∼ Bern(p) and setting A(X) = X ⊕ Z . In this case, the
entropy of the action is H (A) = h(p), where h(·) is the binary
entropy function, and the intrinsic uncertainty H (A|X, Y ) = 0,
since viewing X and Y completely reveals the action (the
noise Z ). Another possible choice for the action A is drawing
a ternary r.v. U with Pr(U = 0) = Pr(U = 1) = p, and
Pr(U = 2) = 1 − 2 p, and setting

A(X) = U · 1(U �= 2) + X · 1(U = 2)

In this case, the entropy of the action is H (A) = h(2 p) + 2 p,
and the intrinsic uncertainty is H (A|X, Y ) = (1 − p) ·
h
(

p
1−p

)
> 0, since if X = Y there remains some uncertainty

regarding the action. Indeed, it can be directly verified that the
identity h(p) = h(2 p) + 2 p − (1 − p) · h

(
p

1−p

)
holds.

Following the above, in Section II we derive a lower
bound on the intrinsic uncertainty for any given choice of
the action A. This bound is based on an application of the
Donsker-Varadhan variational principle. This will immediately
translate into lower bounds on the mutual information. Our
general statement, given in Theorem 3, is a family of bounds
that depend on the particular choice of the action. While these
bounds may be generally difficult to evaluate, we show in
Section III that for any channel PY |X there always exists

a specific choice of action, such that the associated bound
depends only on the marginals and the joint support. This
yields Theorem 1.

The proof of Theorem 1 as delineated above in based on
information theoretic arguments. Alternatively, the theorem
can also be proved more directly using convex optimization
techniques. In fact, this alternative approach does not only
recover Theorem 1, but can also yield an increasing sequence
of bounds that converges to the best possible lower bound
on the mutual information in terms of the marginals PX , PY

and the support of PXY . Furthermore, while the information
theoretic proof applies only to finite alphabets, the convex opti-
mization approach can also handle countably infinite alpha-
bets. This result appears in Theorem 4, Section IV. We note
that the improved bounds obtained by this procedure seem
quite difficult to evaluate in general.

Interestingly, while actions were introduced in order to
lower bound the mutual information, our results can be triv-
ially leveraged to obtain upper bounds as well.

Theorem 2: Let (X, Y ) ∼ PX × PY |X be jointly distributed
discrete r.vs. Let A be any action consistent with PY |X , i.e.,
such that Y = A(X). Then

I (X; Y ) ≤ H (Y ) + EA log EX,Y1(A ∼ (X, Y ))

+ EX,Y log EA
1(A ∼ (X, Y ))

EX,Y1(A ∼ (X, Y ))
(3)

Proof: By (2) we have that I (X; Y ) = H (Y )−I (A; X, Y ).
The proof follows by applying Theorem 1 to I (A; X, Y ).

Note that 1(A ∼ (X, Y )) is an indicator on the event
where A(X) = Y . In (3), the expectations are taken with
respect to (X, Y ) ∼ PXY and A ∼ PA independent of (X, Y ).
Observe also that both the second and third terms in (3) are
non-positive, hence the bound holds even if one of them is
removed.

Lastly, in Section V we illustrate the applicability of our
bounds in several specific examples. In particular, we provide
simple examples showing that our bounds are sometimes
tight, and demonstrating that the second term in (1) can
be significant. We then consider the binary deletion channel
for which the value of the mutual information is currently
unknown for any nontrivial input process. For an i.i.d. uniform
input, we evaluate our lower and upper bounds, and show that
they both outperform the best known bounds on the mutual
information. Finally, we draw a relation between the upper
bound from Theorem 2 and a recent conjecture of Courtade
and Kumar [6]. As all examples we consider in this paper
involve binary channels, unless stated otherwise, all logarithms
are taken to base 2.

II. A FAMILY OF BOUNDS VIA ACTIONS

In this section we define a channel by its action on its
input, and develop general lower bounds on the mutual infor-
mation between the input and output in terms of the channel
action, by bounding the associated intrinsic uncertainty defined
below.
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A. Channels via Actions

Let X ,Y be discrete alphabets. Any channel PY |X from X
to Y can be (nonuniquely) defined by a probability distribution
PA on a set A of mappings from X 	→ Y , to which we refer
to below as actions. Each action a(·) ∈ A is defined for all
possible inputs, and the channel action is chosen independently
of the input, yielding the output Y = A(X) ∈ Y .

For any eligible choice of action A, the intrinsic uncertainty
of the channel with respect to the input distribution PX

is defined to be H (A|X, Y ). Note that while the intrinsic
uncertainty may depend on the choice of A, the difference
H (A)− H (A|X, Y ), which was shown in Section I to be equal
to H (Y |X), does not; we therefore have the freedom to choose
the action distribution that is most convenient to work with.

Example 1 (Generic Action Set): For any channel PY |X we
can always generate the action according to the follow-
ing procedure. Let A consist of all |Y||X | functions from
X 	→ Y , and for any a ∈ A set PA(a) =∏x∈X PY |X (a(x)|x).
Drawing A according to PA, statistically independent of X ,
and setting Y = A(X), is equivalent to drawing in advance
a sequence of statistically independent r.vs {Yx}x∈X , where
Yx ∼ PY |X (·|x), and then when X is revealed, outputting
only the corresponding YX . Thus, the above A and PA are
consistent with PY |X , i.e., they describe the channel PY |X .

We further note that it is always possible to construct an
action set with less than |X | · |Y| actions, see the functional
representation lemma in [5, Appendix B]. Moreover, in many
cases there exist “natural” choices of an action that describes
the channel. In Section I we described such choices for the
BSC. Below we provide a few more examples.

Example 2 (Z Channel): The (symmetric) Z channel has a
binary input X and binary output Y , such that Pr(Y = 0|
X = 0) = 1 and Pr(Y = 0|X = 1) = Pr(Y = 1|X = 1) = 1

2 .
A natural choice for the action A is taking the action set A
to consist of the two actions a1(x) = x and a2(x) = 0 with
probability assignment p(a1) = p(a2) = 1

2 .
Example 3 (Deletion Channel): In a deletion channel, each

transmitted symbol is either deleted or received uncorrupted.
Assuming the input to the channel is an n-dimensional
vector X, the set A includes 2n actions, each corresponding
to a different subset of the input indices [1 : n] marked for
deletion. In an i.i.d. deletion model symbols are independently
deleted with probability d . Therefore the probability of an
action a that deletes exactly w bits is P(a) = dw(1 − d)n−w.
Different actions applied to the same input may result in the
same output. For example, if x = 01100 we may get the output
y = 110 if either the first and fourth symbols or the first and
fifth symbols were deleted. Therefore, the intrinsic uncertainty
H (A|X, Y) is generally positive.

Example 4 (Trapdoor Channel): The trapdoor channel is a
simple finite-state binary channel, defined as follows. Balls
labeled “0” or “1” are used to communicate through the
channel. The channel starts with a ball already in it, referred
to as the initial state. On each channel use, a ball is inserted
into the channel by the transmitter, and one of the two balls
in the channel is emitted with equal probability. The ball that
is not emitted remains inside for the next channel use. In this

model, the channel’s action consists of choosing the initial
state and deciding for each channel use whether to emit the
ball that was already inside the channel or the ball that has just
entered. Since an input x can be mapped to an output y via
multiple actions, the intrinsic uncertainty is generally positive.

B. Bounds

Our main tool in lower bounding the intrinsic uncer-
tainty is the variational formula of Donsker and Varadhan
(See [7, Ch. 1.4]). We write D(P‖Q) for the relative entropy
between the distributions P, Q, and Q � P if P(x) = 0
implies Q(x) = 0.

Lemma 1 (Donsker-Varadhan): For any distribution P and
any nonnegative function f (x) for which EP log f (X) is finite,

EP log f (X) = min
Q�P

log EQ f (X) + D(P‖Q), (4)

and the minimum is uniquely attained by

Q∗(x) = P(x)/ f (x)

EP(1/ f (X))
, (5)

where by convention we set 1/ f (x) = 0 if f (x) = 0.
For completeness, we bring the proof of this lemma.

Proof: Let Q∗(x) be as above. For any distribution Q we
have

D(P‖Q) + log EQ f (X)

= EP log
P

Q
+ log EQ f (X)

= EP log
Q∗

Q
+ EP log

P

Q∗ + log EQ f (X)

=
∑

x

P(x) log
P(x)

Q(x) f (x)EP(1/ f (X))

+ EP log
P(X) f (X)EP (1/ f (X))

P(X)
+ log EQ f (X)

(a)≥
(
∑

x

P(x)

)

log

∑
x P(x)

∑
x Q(x) f (x)EP(1/ f (X))

+ EP log f (X) + log EP
1

f (X)
+ log EQ f (X)

= EP log f (X)

where (a) follows from the log-sum inequality [8, Ch. 2.7]
which is tight if and only if Q(x) = Q∗(x).

We would like to obtain an alternative expression for

H (A|X, Y ) = E log
1

P(A|X, Y )
, (6)

where the expectation is taken with respect to the joint
distribution

P(x, y, a) = P(x)P(a|x)P(y|x, a)

= P(x)P(a)1(y = a(x)),

and 1(B) is an indicator function for the event B . For brevity,
we sometimes refer to this distribution as P .

Define the distribution

Q(x, y, a) � P(x, y, a)P(a|x, y)

EP P(A|X, Y )
, (7)
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which we sometimes refer to as Q. Using the
Donsker-Varadhan variational principle with f (x, y, a) =
1/P(a|x, y), the expectation from (6) can be written as

E log
1

P(A|X, Y )
= log EQ

1

P(A|X, Y )
+ D(P‖Q)

= log EQ
1

P(A|X, Y )
+ D (PY ‖QY )

+ D
(
PX,A|Y ‖QX,A|Y | PY

)
, (8)

where (8) follows from the chain rule of relative entropy. The
marginal distribution Q(y) is given by

Q(y) =
∑

x,a

Q(x, y, a)

= 1

EP P(A|X, Y )

∑

x,a

P(x)P(a)1(y = a(x))P(a|x, y)

= EX,A P(A|X, y)

EP P(A|X, Y )
, (9)

where in (9) we have used the fact that P(a|x, y) = 0
whenever y �= a(x). Thus,

D (PY ‖QY ) = EY log

(
P(Y )EP P(A|X, Y )

EX,A P(A|X, Y )

)

= −H (Y ) + log EP P(A|X, Y )

− EY log EX,A P(A|X, Y ). (10)

In addition,

log EQ
1

P(A|X, Y )
= log

∑

x,y,a

Q(x, y, a)

P(a|x, y)

= − log EP P(A|X, Y ). (11)

Substituting (10) and (11) into (8) yields

H (A|X, Y ) = −H (Y ) − EY log EX,A P(A|X, Y )

+ D
(
PX,A|Y ‖QX,A|Y | PY

)
. (12)

We are left with the task of evaluating the conditional relative
entropy in (12). The conditional distributions that participate
in this term are given by

P(x, a|y) = P(x)P(a)
1(y = a(x))

EX,A1(y = A(X))
(13)

Q(x, a|y) = P(x)P(a)
P(a|x, y)

EX,A P(A|X, y)
(14)

and therefore

D
(
PX,A|Y ‖QX,A|Y | PY

)

= EP log

(
1(Y = A(X))

EX,A1(Y = A(X))
· EX,A P(A|X, Y )

P(A|X, Y )

)

. (15)

Unfortunately, an exact computation of (15) involves the com-
putation of EP log(1/P(A|X, Y )), which is the exact technical
difficulty we are trying to avoid. Instead, we lower bound (15)
using the convexity of relative entropy, i.e.,

D
(
PX,A|Y ‖QX,A|Y | PY

) ≥ D
(

PX,A‖Q̃X,A

)
, (16)

where

Q̃(x, a) =
∑

y

P(y)Q(x, a|y)

= P(x, a)EY
P(a|x, Y )

EX,A P(A|X, Y )
. (17)

Note that other properties of relative entropy, such as the data-
processing inequality or Pinsker’s inequality, could potentially
be useful for bounding (15). Combining (16) and (17) gives,

D
(
PX,A|Y ‖QX,A|Y | PY

) ≥ −EX,A log EY
P(A|X, Y )

EX,A P(A|X, Y )
.

(18)

Substituting (18) into (12) and using (2) yields the following.
Theorem 3: Let (X, Y ) ∼ PX × PY |X be jointly distributed

discrete r.vs. Let A be any action consistent with PY |X , i.e.,
such that Y = A(X). Then

I (X; Y ) ≥ −H (A) − EY log EX,A P(A|X, Y )

− EX,A log EY
P(A|X, Y )

EX,A P(A|X, Y )
. (19)

III. A BOUND VIA ADJACENCY EVENTS

An action A is called uniform if all actions in its support
A are equiprobable, i.e.,

P(a) =
{

1
|A| a ∈ A
0 a /∈ A.

At this point, we restrict our attention to this class of actions,
for which the bound in Theorem 3 takes a particularly simpler
form that depends only on the marginal distributions of
X and Y and their joint support. We then show that any
channel can be essentially characterized by a uniform action,
which in turn proves Theorem 1.

For any x ∈ X and y ∈ Y let

A(x, y) � {a : a(x) = y} (20)

be the set of all possible actions in A that map the input x to
the output y. Denote the cardinality of this set by N(x, y) �
|A(x, y)|.

Proposition 1: If A is a uniform action, then A conditioned
on X and Y is uniformly distributed over the set A(X, Y ).1

Proof:

P(a|x, y) = P(x, y|a)P(a)

P(x, y)

= P(y|x, a)P(a)

P(y|x)

= 1(y = a(x))P(a)
∑

a∈A(x,y) P(a)

(a)=
1

|A|1 (a ∈ A(x, y))

1
|A| N(x, y)

= 1 (a ∈ A(x, y))

N(x, y)
, (21)

1Note that the converse is not generally true. As a counterexample, consider
the BSC with the action A(X) = X ⊕ Z where Z ∼ Bern(p).
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where (a) follows from 1(y = a(x)) = 1(a ∈ A(x, y)) and
since P(a) = 1

|A| for all a ∈ A.

Lemma 2: Suppose PY |X can be represented by a uniform
action A. Then, for any input distribution PX

−EY log EX,A P(A|X, Y ) = H (A) − EY log EX1(X ∼ Y ).

(22)
Proof: Using Proposition 1,

EX,A P(A|X, y) =
∑

x

P(x)
∑

a

P(a)
1 (a ∈ A(x, y))

N(x, y)

= 1

|A|
∑

x

P(x)
N(x, y)

N(x, y)
1(x ∼ y)

= 1

|A|EX1(X ∼ y). (23)

Thus,

−EY log EX,A P(A|X, Y ) = −EY log
1

|A|
− EY log EX1(X ∼ Y )

= log |A| − EY log EX1(X ∼ Y ).

The lemma follows since H (A) = log |A| by the assumption
that A is a uniform action.

The next lemma lower bounds the last term in (19) for
channels with a uniform action A.

Lemma 3: Suppose PY |X can be represented by a uniform
action A. Then, for any input distribution PX

−EX,A log EY
P(A|X, Y )

EX,A P(A|X, Y )

≥ −EX log EY
1(X ∼ Y )

EX1(X ∼ Y )
≥ 0 (24)

Proof: By virtue of Jensen’s inequality,

−EX,A log EY
P(A|X, Y )

EX,A P(A|X, Y )

≥ −EX log EY
EA P(A|X, Y )

EX,A P(A|X, Y )
.

Using (21) and (23), we have

EA P(A|x, y)

EX,A P(A|X, y)
=
∑

a P(a)1(a∈A(x,y))
N(x,y)

1
|A|EX1(X ∼ y)

= 1(x ∼ y)

EX1(X ∼ y)
,

establishing the first inequality in (24). The second inequal-
ity follows by applying Jensen’s inequality again, this time
w.r.t. EX .

Combining Theorem 3, Lemma 2, and Lemma 3, establishes
the following.

Lemma 4: Suppose PY |X can be represented by a uniform
action A. Then, for any input distribution PX

I (X; Y ) ≥ −EY log EX1(X ∼ Y )

− EX log EY
1(X ∼ Y )

EX1(X ∼ Y )
. (25)

To establish our main result for any channel and input
distribution, we first show the following.

Lemma 5: Let PY |X be a channel with the property that
P(y|x) is rational for all x and y. Then there exists a uniform
action for PY |X .

Proof: For any channel PY |X with rational probabili-
ties there exists some action set A = {a1, · · · , a|A|} and
a corresponding probability distribution PA consistent with
it such that all probabilities PA(ai ), i = 1, . . . , |A|, are
positive rational numbers. For example, the construction from
Example 1 yields rational probabilities PA(ai), i = 1, . . . , |A|.
We construct a new action Ā by duplicating each action
ai to Mi identical actions, and assigning the probability
PA(ai )/Mi to each of them. Clearly, the new action is also
consistent with PY |X for any choice of the natural numbers
M1, . . . , M|A|. By our assumption that all original action
probabilities are positive rational numbers, we can always find
a choice of M1, . . . , M|A| such that all new action probabilities
are equal. For such a choice the action Ā will be uniform.

Using Lemma 4 and Lemma 5, we can now prove our main
result.

Proof of Theorem 1: Any channel PY |X can be approximated
arbitrarily well by a conditional distribution P̃Ỹ |X with the
same support whose entries are all rational, in the sense
that maxx,y |PY |X (y|x) − P̃Y |X (y|x)| can be made arbitrarily
small. This means that both PX × P̃Y |X and the corresponding
marginal P̃Y are arbitrarily close to PXY and PY respectively.
Since the mutual information I (X; Y ) is continuous with
respect to PXY , the mutual information I (X; Ỹ ) between X
and the output of the “rational” channel P̃Y |X can be made
arbitrarily close to I (X; Y ). By Lemma 5, there exists a
uniform action for P̃Ỹ |X , and consequently by Lemma 4 its
mutual information is lower bounded by (25). By continuity,
I (X; Y ) is also lower bounded by (25). �

IV. A CONVEX–OPTIMIZATION BASED BOUND

In the previous section we have proved a lower bound
on I (X; Y ) that depends only on the marginal distributions
PX , PY and the support of the joint distribution, namely, the
function 1(x ∼ y). Our proof relied on information theoretic
arguments. In this section we will take a more direct approach
to the problem, and derive bounds on I (X; Y ) in terms of the
same quantities, using convex optimization. More specifically,
to arrive at a lower bound we minimize I (X; Y ) w.r.t. PXY

subject to the constraints that the marginal distributions are
PX , PY , and that PXY (x, y) = 0 whenever 1(x ∼ y) = 0.
Throughout this section we assume all logarithms are in the
natural basis, while the result of Theorem 4 remains valid as
long as the same logarithmic basis is applied to I (X; Y ).

We consider the following problem:

minimize I (X; Y )

subject to:
∑

x :x∼y

PXY (x, y) = PY (y) ∀y ∈ Y
∑

y:y∼x

PXY (x, y) = PX (x) ∀x ∈ X

PXY (x, y) ≥ 0 if x ∼ y,

PXY (x, y) = 0 if x � y.



HAN et al.: MUTUAL INFORMATION BOUNDS VIA ADJACENCY EVENTS 6073

Note that the constraints above imply
∑

x,y PXY (x, y) = 1.
This is equivalent to

minimize
∑

x∼y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)

subject to:
∑

x :x∼y

PXY (x, y) = PY (y) ∀y ∈ Y
∑

y:y∼x

PXY (x, y) = PX (x) ∀x ∈ X

PX,Y (x, y) ≥ 0 ∀(x, y) ∈ X × Y, x ∼ y

This objective function is convex in PXY (x, y), and the con-
straints are linear, so the optimization solution can be obtained
by the solution to the dual problem given by

L = inf
PXY (x,y)

sup
λx ,μy∈R,τxy≥0

∑

x∼y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)

−
∑

x

λx

(
∑

y:y∼x

PXY (x, y) − PX (x)

)

−
∑

y

μy

(
∑

x :x∼y

PXY (x, y) − PY (y)

)

−
∑

x∼y

τxy PXY (x, y)

= sup
λx ,μy∈R,τxy≥0

inf
PXY (x,y)

∑

x

λx PX (x) +
∑

y

μy PY (y)

+
∑

x∼y

PXY (x, y)

(

log
PXY (x, y)

PX (x)PY (y)
− λx − μy − τxy

)

(26)

= sup
λx ,μy∈R,τxy≥0

inf
PXY (x,y)

∑

x

λx PX (x) +
∑

y

μy PY (y)

+
∑

x∼y

PXY (x, y)
(
log PXY (x, y) − axy

)

where (26) follows from the minimax theorem and

axy � log(PX (x)PY (y)) + λx + μy + τxy .

The function f (x) = x log x − ax is minimized at x∗ = ea−1

and its minimal value is f (x∗) = −ea−1. Using this, we get
that

L = sup
λx ,μy∈R,τxy≥0

∑

x∼y

−elog(PX (x)PY (y))+λx+μy+τxy−1

+
∑

x

λx PX (x) +
∑

y

μy PY (y)

= sup
λx ,μy∈R,τxy≥0

∑

x∼y

−PX (x)PY (y)eλx+μy+τxy−1

+
∑

x

λx PX (x) +
∑

y

μy PY (y)

Clearly, the maximizing τxy is τxy = 0 which gives

L = sup
λx ,μy∈R

∑

x∼y

−PX (x)PY (y)eλx+μy−1

+
∑

x

λx PX (x) +
∑

y

μy PY (y)

= sup
λx ,μy∈R

∑

x∼y

−PX (x)PY (y)eλx+μy

+
∑

x

λx PX (x) +
∑

y

μy PY (y) + 1

where in the last step we replaced μy with μy −1 (with some
abuse of notation). Let λ and μ be the vectors holding {λx }x∈X
and {μy}y∈Y , respectively, and

G(λ,μ) �
∑

x∼y

−PX (x)PY (y)eλx+μy

+
∑

x

λx PX (x) +
∑

y

μy PY (y) + 1,

such that

L = sup
λ∈R|X |,μ∈R|Y|

G(λ,μ).

We will use the alternating minimization approach to mini-
mize −G(λ,μ) (which is equivalent to maximizing G(λ,μ))
over R

|X | × R
|Y |). This approach is described as follows: for

arbitrary initialization of λ(0), we use an iterative algorithm to
successively minimize the target function. In k-th iteration, we
first hold λ(k−1) fixed and minimize the target function over μ

to obtain μ(k−1), and then hold μ(k−1) fixed and minimize
the the target function over λ to obtain λ(k). In mathematical
forms, for k ≥ 0, we have

μ(k) ∈ argmin
μ

−G(λ(k),μ),

λ(k+1) ∈ argmin
λ

−G(λ,μ(k)).

The alternating minimization approach is widely used in opti-
mization where separate optimization over different parameter
subsets is much easier than the joint optimization, e.g., in
the expectation–minimization (EM) algorithm [9] to find the
maximum likelihood estimator, in the Blahut–Arimoto algo-
rithm [10], [11] to maximize the mutual information between
channel input and output, in minimizing the Kullback–Leibler
divergence between two convex sets of finite measures [12],
to name a few. One remarkable property of this approach is
that, by definition we have

G(λ(0),μ(0)) ≤ G(λ(1),μ(0)) ≤ G(λ(1),μ(1))

≤ G(λ(2),μ(1)) ≤ · · · ≤ L (27)

i.e., the value sequence obtained by this approach is non-
decreasing and must have a limit. We remark that since
G(λ,μ) is jointly concave with respect to (λ,μ), the alter-
nating minimization approach converges to the global optima
[13, Proposition 2.7.1], i.e.,

lim
k→∞ G(λ(k),μ(k)) = lim

k→∞ G(λ(k+1),μ(k)) = L .
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Next, we derive the expression of λ(k) and μ(k) obtained
from the alternating minimization procedure. Initially we set
λ

(0)
x = 0, ∀x ∈ X . For k ≥ 0, by the definition of μ(k) in the

alternating minimization we have ∂G
∂μ

(k)
y

= 0, ∀y ∈ Y , which

gives

e−μ
(k)
y =

∑

x :x∼y

PX (x)eλ
(k)
x , ∀y ∈ Y. (28)

Similarly, for λ(k+1) we have

e−λ
(k+1)
x =

∑

y:y∼x

PY (y)eμ
(k)
y , ∀x ∈ X . (29)

Based on (29) and (28), it is straightforward to verify that
the first two iterations of this procedure yield

L ≥ G
(
λ(0),μ(0)

)
= −EY log EX1(X ∼ Y )

L ≥ G
(
λ(1),μ(0)

)
= −EY log EX1(X ∼ Y )

− EX log EY
1(X ∼ Y )

EX1(X ∼ Y )

in agreement with the bound derived in Theorem 1. Contin-
uing with this procedure we can further improve our bound.
To characterize the bound after k iterations, we introduce the
functions T (k)

X (PX (x), PY (y),1(x ∼ y)), T (k)
Y (PX (x), PY (y),

1(x ∼ y)) that are defined recursively as

T (0)
X (PX (x), PY (y),1(x ∼ y)) = 1, (30)

and for k ≥ 0,

T (k)
Y (PX (x), PY (y),1(x ∼ y))

= EX

(
1(X ∼ Y )

T (k)
X (PX (x), PY (y),1(x ∼ y))

)

, (31)

T (k+1)
X (PX (x), PY (y),1(x ∼ y))

= EY

(
1(X ∼ Y )

T (k)
Y (PX (x), PY (y),1(x ∼ y))

)

. (32)

It can be easily verified by induction that

G
(
λ(k),μ(k)

)
= −EX log T (k)

X (PX (x), PY (y),1(x ∼ y))

− EY log T (k)
Y (PX (x), PY (y),1(x ∼ y))

G
(
λ(k+1),μ(k)

)
= −EX log T (k+1)

X (PX (x), PY (y),1(x ∼ y))

− EY log T (k)
Y (PX (x), PY (y),1(x ∼ y)).

Thus, we have arrived at the following theorem.
Theorem 4: For any jointly distributed discrete r.vs (X, Y )

and any k ≥ 0,

I (X; Y ) ≥ −EX log T (k+1)
X (PX (x), PY (y),1(x ∼ y))

− EY log T (k)
Y (PX (x), PY (y),1(x ∼ y))

≥ −EX log T (k)
X (PX (x), PY (y),1(x ∼ y))

− EY log T (k)
Y (PX (x), PY (y),1(x ∼ y)).

V. EXAMPLES

In this section we evaluate the bounds derived in
Theorems 1 and 2, and when possible also those from
Theorem 4, for four examples. The following simple lower
bound on I (X; Y ) will serve as our baseline for demonstrat-
ing the improvement attained by applying the bound from
Theorem 1.

Proposition 2: For any jointly distributed discrete r.vs
(X, Y ),

I (X, Y ) ≥ −EY log EX1(X ∼ Y ). (33)

Similar to the bound from Theorem 1, the bound above
is given in terms of the marginals and the joint support of
(X, Y ). However it is weaker than the former bound as it can
be obtained from it directly by applying Jensen’s inequality on

the second term of (1), which gives −EX log EY
1(X∼Y )

EX1(X∼Y ) ≥
− log EY

EX1(X∼Y )
EX1(X∼Y )

= 0. In Section I we also gave an

operational proof of this bound.

A. Erasure Channel
The binary erasure channel has input X ∈ {0, 1} and output

Y ∈ {0, 1, E} such that Pr(Y = x |X = x) = 1 − ε and
Pr(Y = E |X = x) = ε for any x . For X ∼ Bern(p) we have
Pr(Y = 0) = (1 − ε)(1 − p), Pr(Y = 1) = (1 − ε)p and
Pr(Y = E) = ε and the mutual information between the input
and output is Ip(X; Y ) = (1− ε)h(p). For this channel x ∼ y
if and only if either x = y or y = E , and therefore

−EY log EX1(X ∼ Y ) = −(1 − ε)(1 − p) log(1 − p)

− (1 − ε)p log(p) − ε log(1)

= (1 − ε)h(p).

Thus, for this channel our lower bound from Theorem 1 as
well as the weaker bound from Proposition 2 are tight.

In order to evaluate our upper bound from Theorem 2 we
need to choose an action A consistent with PY |X . We take the
natural action set, that consists of two actions, a1(x) = x and
a2(x) = E with p(a1) = 1 − ε and p(a2) = ε. For this choice
we have

EA log EXY I (A ∼ (X, Y )) = p(a1) log Pr(X = Y )

+ p(a2) log Pr(Y = E)

= (1 − ε) log(1 − ε) + ε log(ε)

= −h(ε).

Since H (Y ) = h(ε) + (1 − ε)h(p), the upper bound from
Theorem 2 is tight and gives

Ip(X; Y ) ≤ (1 − ε)h(p).

B. Z Channel
The (symmetric) Z channel has a binary input X and a

binary output Y such that Pr(Y = 0|X = 0) = 1 and
Pr(Y = 0|X = 1) = Pr(Y = 1|X = 1) = 1

2 . For X ∼ Bern(p)
we have Y ∼ Bern( p

2 ), and the mutual information between
the input and output is Ip(X; Y ) = h( p

2 ) − p. For this
channel x ∼ y if and only if (x, y) �= (0, 1) and therefore
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EX1(X ∼ 0) = 1 and EX1(X ∼ 1) = Pr(X = 1) = p.
We have

−EY log EX1(X ∼ Y ) = − Pr(Y = 0) log EX1(X ∼ 0)

− Pr(Y = 1) log EX1(X ∼ 1)

= − p

2
log(p), (34)

and

−EX log EY
1(X ∼ Y )

EX1(X ∼ Y )

= −(1 − p) log

((
1 − p

2

) 1(0 ∼ 0)

1
+ p

2

1(0 ∼ 1)

p

)

− p log

((
1 − p

2

) 1(1 ∼ 0)

1
+ p

2

1(1 ∼ 1)

p

)

= −(1 − p) log
(

1 − p

2

)
− p log

((
1 − p

2

)
+ 1

2

)

= 1 − (1 − p) log(2 − p) − p log(3 − p). (35)

Thus, Proposition 2 gives

Ip(X; Y ) ≥ − p

2
log(p), (36)

and Theorem 1 gives

Ip(X; Y ) ≥ 1 − p

2
log(p) − (1 − p) log(2 − p)

− p log(3 − p). (37)

For comparison, we also take a look at a further refinement
given by Theorem 4. By the definitions of T (k)

X and T (k)
Y , we

know that

T (0)
Y (PX (x), PY (y),1(x ∼ y))

= EX1(X ∼ Y )

= 1(Y = 0) + p1(Y = 1),

T (1)
X (PX (x), PY (y),1(x ∼ y))

= EY

(
1(X ∼ Y )

T (0)
Y (PX (x), PY (y),1(x ∼ y))

)

= EY

(
1(X ∼ Y )

1(Y = 0) + p1(Y = 1)

)

=
(

1 − p

2
+ p

2
· 0
)
1(X = 0)

+
(

1 − p

2
+ p

2
· 1

p

)

1(X = 1)

=
(

1 − p

2

)
1(X = 0) +

(
3

2
− p

2

)

1(X = 1),

T (1)
Y (PX (x), PY (y),1(x ∼ y))

= EX

(
1(X ∼ Y )

T (1)
X (PX (x), PY (y),1(x ∼ y))

)

= EX

(
1(X ∼ Y )

(
1 − p

2

)
1(X = 0) + ( 3

2 − p
2

)
1(X = 1)

)

=
(

(1 − p) · 1

1 − p
2

+ p · 1
3
2 − p

2

)

1(Y = 0)

+
(

(1 − p) · 0 + p · 1
3
2 − p

2

)

1(Y = 1)

=
(

2 − 2 p

2 − p
+ 2 p

3 − p

)

1(Y = 0) + 2 p

3 − p
1(Y = 1).

Fig. 1. Ip(X; Y ) for the Z channel together with the three lower bounds
from (36), (37) and (38) as a function of p.

As a result, Theorem 4 gives

Ip(X; Y ) ≥ −EX log T (1)
X (PX (x), PY (y),1(x ∼ y))

− EY log T (1)
Y (PX (x), PY (y),1(x ∼ y))

= −(1 − p) log
(

1 − p

2

)
− p log

(
3 − p

2

)

−
(

1 − p

2

)
log

(
2 − 2 p

2 − p
+ 2 p

3 − p

)

− p

2
log

(
2 p

3 − p

)

= p

2
log(2 − p) + (1 − p) log(3 − p)

− p

2
log(p) −

(
1 − p

2

)
log(3 − 2 p). (38)

The bounds from (36), (37) and (38) are plotted in Figure 1
as a function of p along with the exact value of Ip(X; Y ).
It can be seen that the lower bound from Theorem 1 is
significantly tighter than the one form Proposition 2, and it is
quite close to Ip(X; Y ) for all values of p. The lower bound
from Theorem 4 is even tighter.

In order to evaluate the upper bound from Theorem 2 we
use the natural action a1(x) = x and a2(x) = 0 with p(a1) =
p(a2) = 1

2 . For this choice a1 ∼ (x, y) if and only if x = y
and a2 ∼ (x, y) if and only if y = 0, and therefore EXY1(a1 ∼
(X, Y )) = Pr(X = Y ) = 1 − p

2 and EXY1(a2 ∼ (X, Y )) =
Pr(Y = 0) = 1 − p

2 . We have

EA log EXY1(A ∼ (X, Y )) = log
(

1 − p

2

)
, (39)

and

EX,Y log EA
1(A ∼ (X, Y ))

EX,Y1(A ∼ (X, Y ))

= EX,Y log EA1(A ∼ (X, Y )) − log
(

1 − p

2

)

= Pr(X = 0, Y = 0) log(1) + Pr(X = 1, Y = 0) log

(
1

2

)

+ Pr(X = 1, Y = 1) log

(
1

2

)

− log
(

1 − p

2

)

= −p − log
(

1 − p

2

)
. (40)
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Recalling that H (Y ) = h( p
2 ) and applying theorem 2 we get

Ip(X; Y ) ≤ h
( p

2

)
+ log

(
1 − p

2

)
− p − log

(
1 − p

2

)

= h
( p

2

)
− p,

which is tight for any p.

C. Binary Deletion Channel

The binary i.i.d. deletion channel operates by independently
deleting input bits with probability d . In this subsection, we
apply Theorem 1 and Theorem 2 to obtain lower and upper
bounds on the mutual information for an i.i.d. uniform input
process. Both bounds outperform the best known bounds in
some regimes of deletion probabilities. In general, tighter
lower bounds can be obtained by applying Theorem 4 with
higher values of k. However, as will be demonstrated below,
even the task of computing the bound from Theorem 1
(corresponding to Theorem 4 with k = 0) is quite challenging.

1) Lower Bound for an i.i.d Uniform Input: We apply
Theorem 1 to obtain a lower bound for I (X; Y) under a
uniform i.i.d. input distribution X ∼ Unif ({0, 1}n), which
outperforms the best known bounds for i.i.d inputs [14], [15].
Since the deletion channel is information stable, any rate
smaller than the associated limn→∞ I (X; Y)/n is achievable
with uniform i.i.d. codebooks. Note that for a uniform i.i.d.
input, the output Y is also uniform i.i.d. given its length �n,
where the latter is binomial with parameters (n, 1 − d).

For the i.i.d. deletion channel 1(x ∼ y) indicates whether
or not y is a subsequence of x. For 0 ≤ t ≤ 1, define the
operation 〈t〉 � max(t, 1/2). According to [3, Lemma 3.1],
for any y of length θn we have

∑

x∈{0,1}n

1(x ∼ y) =
n∑

j=θn

(
n

j

)
.= 2nh(〈θ〉), (41)

where h(·) is the binary entropy function, and
.= denotes

exponential equality in the usual sense. This implies that for
any y of length θn we have EX1(X ∼ y)

.= 2n(h(〈θ〉)−1). The
function h(〈θ〉) is concave in θ and therefore

− lim
n→∞

1

n
EY log EX1(X ∼ Y) = −E� (h(〈�〉) − 1)

≥ 1 − h(〈E�〉)
= 1 − h(〈1 − d〉). (42)

where � is the normalized (random) length of Y .
The right hand side of (42) is a well known lower bound

for the deletion channel capacity, obtained with a uniform
i.i.d. input [3]. We now evaluate the second term in (1) in
order to improve upon this bound. To this end, we first parse
each x ∈ {0, 1}n into phrases that contain exactly two bit flips
and end immediately after the second flip. For example, the
string 0001111011001110001 is parsed into the three phrases
00011110, 11001, 110001. We identify each phrase with three
parameters: b ∈ {0, 1} is the first bit in the phrase, k1 ≥ 2 is
the index of the first flip in the phrase, and k2 ≥ 1 is such that
k1+k2 is the total number of bits in the phrase. In our example,
the three phrases correspond to {b = 0, k1 = 4, k2 = 4},

{b = 1, k1 = 3, k2 = 2} and {b = 1, k1 = 3, k2 = 3},
respectively. For any pair of integers 2 ≤ k1 < n, 1 ≤ k2 < n
let �k1,k2(x) be the number of {k1, k2}-phrases in the parsing
of x. For ε > 0 we define the typical set

Sε �
{

x ∈ {0, 1}n :
∣
∣
∣
∣
1

n
�k1,k2(x) − 1

5
· 2−(k1+k2−1)

∣
∣
∣
∣ < ε

∀ 2 ≤ k1 < n, 1 ≤ k2 < n
}
.

It holds that for any ε > 0 and n large enough Pr(X ∈ Sε) is
indeed arbitrary close to 1. To see this, define the three i.i.d.
mutually independent processes

Bi ∼ Bern( 1
2 ), i.i.d.

K1i ∼ 1 + Geometric( 1
2 ), i.i.d.

K2i ∼ Geometric( 1
2 ), i.i.d.

and note that an i.i.d. Bern( 1
2 ) random process is equivalent

to the process obtained by stacking the random phrases
{Bi , K1i , K2i } one after the other. Moreover, the probability
of such a random phrase being of type {k1, k2} is 2−(k1+k2−1)

and the expected length is E(K1i + K2i ) = 5. In our setting,
X is an n-dimensional i.i.d. Bern( 1

2 ) random vector. Thus,
X can be generated by stacking exactly n/5 random phrases
{Bi , K1i , K2i } one after the other and either removing the last
bits if the length of the obtained vector is greater than n,
or appending i.i.d. Bern( 1

2 ) bits to the vector if its length is
smaller than n. Since the expected length of a phrase is 5 bits,
for any δ > 0 the number of removed/appended bits is w.h.p.
smaller than δn. Therefore, the contribution of these bits to
the distribution of the phrase lengths in the parsing of X is
negligible, and we get that Pr(X ∈ Sε) → 1 with n, by the
law of large numbers.

For n large enough we can write

−EX log EY
1(X ∼ Y)

EX1(X ∼ Y)

= − Pr(X ∈ Sε)EX|Sε log EY
1(X ∼ Y)

EX1(X ∼ Y)

− Pr(X /∈ Sε)EX|Sε
log EY

1(X ∼ Y)

EX1(X ∼ Y)

≥ − Pr(X ∈ Sε) log EY
EX|Sε1(X ∼ Y)

EX1(X ∼ Y)

− Pr(X /∈ Sε) log EY
EX|Sε

1(X ∼ Y)

EX1(X ∼ Y)

≥ −(1 − ε) log EY
EX|Sε1(X ∼ Y)

EX1(X ∼ Y)
− εn, (43)

where the first inequality follows from Jensen’s inequality and
in the second we have used the fact that EX1(X ∼ y) ≥ 2−n

for any y, and therefore 1(X ∼ Y)/EX1(X ∼ y) ≤ 2n for
any y, along with Pr(X ∈ Sε) > 1 − ε. Recalling that � is
the normalized (random) length of Y, we take the expectation
EY as E�EY|� and use (41) to obtain

EY
EX|Sε1(X ∼ Y)

EX1(X ∼ Y)
.= E�2n(1−h(〈�〉))

EY|�EX|Sε1(X ∼ Y)

= E�2n(1−h(〈�〉)) Pr (X ∼ Y|�, X ∈ Sε) . (44)
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Now, consider a greedy algorithm for determining whether
y is a subsequence of x, defined as follows [2, Sec. 3.1]:
Scanning from left to right, take the first bit in y and match it
with its first appearance in x. Then take the second bit in y and
match it with its subsequent first appearance in x. Continue
until either x or y are exhausted, where the latter case is termed
success. It is easy to see that the greedy algorithm succeeds if
and only if x ∼ y. For statistically independent random vectors
X and Y, we enumerate the phrases in the parsing of X by
i = 1, . . . , M(X) where M(X) is the (random) number of
phrases in X. The vector Y consists of �n i.i.d. uniform bits.
To simplify computations, we construct a vector Y′ of length n
by taking Y and possibly padding it with i.i.d. bits. We define
the random variables Zi as the number of bits in Y′ that are
matched to bits in the i th phrase of X by the greedy algorithm.
Under this construction, the events

{∑
i Zi ≥ �n

}
coincides

with the event {X ∼ Y}, since the additional random suffix
does not affect the event where the first �n bits in Y′ are
matched. Under this assumption the Zi ’s are clearly mutually

independent, given that the phrase types {k1i , k2i }M(X)
i=1 of X

are known (but assuming that their first bit identifiers {bi }M(X)
i=1

remain random). Of course, the distribution of Zi depends on
the parameters k1i , k2i that correspond to the i th phrase in X.
In the appendix, we show that given K1i and K2i , the (base
two) moment generating function of Zi is

λk1,k2
Zi

(t) � E

(
2t Zi |K1i = k1, K2i = k2

)
= 2k1(t−1)

+ 2t−1 1 − 2k1(t−1)

1 − 2t−1

×
(

2t−1 1 − 2k2(t−1)

1 − 2t−1 + 2k2(t−1)−t

)

.

Noting that by definition, for X ∈ Sε the number of phrases
M(X) and their composition �k1,k2 (X) is essentially deter-
ministic, we can use Chernoff’s bound [16] to obtain

Pr(X ∼ Y|� = θ, X ∈ Sε)

= Pr

⎛

⎝
M(X)∑

i=1

Zi ≥ �n|� = θ, X ∈ Sε

⎞

⎠
.≤ 2−n
∗(θ),

where


∗(θ) = max
t>0

⎛

⎝θ t − 1

5

∞∑

k1=2

∞∑

k2=1

2−(k1+k2−1) log λZk1 ,k2
(t)

⎞

⎠.

Substituting into (43) and (44), and applying standard large
deviations arguments, we obtain

− lim
n→∞

1

n
EX log EY

1(X ∼ Y)

EX1(X ∼ Y)
≥ g(d)

where

g(d) � min
0≤θ≤1

D2(θ‖1 − d) − (1 − h(〈θ〉)) + 
∗(θ)

where D2(p‖q) is the binary relative entropy function.
It follows that for a uniform i.i.d. input distribution,

lim
n→∞

1

n
I (X; Y) ≥ 1 − h(min(d, 1/2)) + g(d). (45)

Fig. 2. The multiplicative improvement factor w.r.t. 1 − h(d) attained by
our lower bound on the mutual information for an i.i.d. uniform input. For
comparison, we also plot the improvement the lower bound from [15] attains
w.r.t. 1 − h(d).

Numerical evaluation of the term g(d) reveals that it is
greater than zero for all d < 1/2. Thus, (45) improves
over Gallager’s well know bound 1 − h(d) [14]. Recently,
Rahmati and Duman [15] used a different technique to lower
bound the mutual information for uniform i.i.d. inputs. For
small values of d their bound is better than (45), but for
larger values of d the right hand side of (45) turns out to
be greater than their bound. For example, for d = 0.2 our
bound improves on 1−h(0.2) by ≈ 0.0117 bits (roughly 5%),
whereas the improvement of [15] is negligible. See Figure 2.

2) Upper Bound for i.i.d Inputs: By Theorem 2 we have in
particular that

I (X; Y) ≤ H (Y) + EA log EX,Y1(A ∼ (X, Y)) (46)

Let X be an i.i.d. Bern(q) input vector of length n for some
q ≤ 1

2 . It can be shown that the length of Y is � ∼
Binomial(n, 1 − d), and given its length, Y is i.i.d. Bern(q).
Thus,

1

n
H (Y) = 1

n
(H (Y|�) + H (�))

= (1 − d)h(q) + O

(
log n

n

)

(47)

The challenge is thus to evaluate the second term in (46),
which is given by

EA log EX,Y1(A ∼ (X, Y))

= EA log EA′ EX1(A ∼ (X, A′))
= EA log EA′ EX1(A(X) = A′(X))

= EA log EA′ Pr(A(X) = A′(X)) (48)

where A′ ∼ PA such that (X, A′(X)) ∼ PXY. Note that
here X, A, A′ are mutually independent.

Let us specifically choose A as in Example 3, namely
we identify A with a Bern(1 − d) i.i.d. vector of length n,
and A(X) corresponds to sampling X in the location chosen
by that vector. Asymptotically, we can assume without loss
of generality that both A and A′ are drawn uniformly over
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vectors of weight n(1 − d). This follows since for any given
weight of A, the inner expectation w.r.t. A′ only increases
by replacing the i.i.d. distribution with a uniform distribution
over all vectors with the same weight. Furthermore, the
outer expectation w.r.t. A is asymptotically dominated by the
uniform distribution over vectors of weight n(1 − d).

Let us define S to be the action that chooses only the coordi-
nates selected by A′ but not by A. Let S be the complementary
action (that chooses only the remaining coordinates). Given
any A′ and A, for any assignment of the values of X in the
coordinates chosen by S, there is either a unique assignment
φ(S(X)) of the values of X in the coordinates chosen by S
that satisfies A′(X) = A(X), or there is none. In the latter
case, we set φ(S(X)) to an arbitrary value. Thus we can write

Pr(A(X) = A′(X))

= Pr
(
X ∈ {x ∈ {0, 1}n : 1(A′(x) = A(x)

})

≤ Pr
(
X ∈ {x ∈ {0, 1}n : S(x) = φ(S(x))

})

= Pr
(
S(X) = φ(S(X))

)

= E Pr
(
S(X) = φ(S(X)) | S(X)

)

≤ E max
u∈{0,1}|S|

Pr
(
S(X) = u | S(X)

)

= E max
u∈{0,1}|S|

Pr (S(X) = u)

= max
u∈{0,1}|S|

Pr (S(X) = u)

= (1 − q)|S|

Returning to (48) and using the above, we have

EA log EA′ Pr(A(X) = A′(X)) ≤ EA log EA′ (1 − q)|S|

where the only randomness is in |S|, which is a deterministic
function of A and A′. In particular, |S| is the number of
coordinates chosen by A′ and not by A. Since A and A′
were assumed to be uniformly distributed over constant weight
vectors of weight (1 − d)n, then simple counting arguments
show that for every action a

Pr(|S| = ρ(1 − d)n|A = a) =
( (1−d)n
(1−ρ)(1−d)n

) · ( dn
ρ(1−d)n

)

( n
(1−d)n

)

.= 2
n
(
(1−d)h(ρ)+d ·h

(
ρ 1−d

d

)
−h(d)

)

Thus, maximizing over feasible values of ρ

lim
n→∞

1

n
EA log EA′ Pr(A(X) = A′(X))

≤ max
0≤ρ≤ d

1−d

(1 − d)h(ρ) + d · h

(

ρ
1 − d

d

)

− h(d) + (1 − d)ρ log(1 − q)

Plugging the above in (46) and using (47), we obtain the bound

lim
n→∞

1

n
I (X; Y) ≤ (1 − d)h(q) − h(d) + max

0≤ρ≤ d
1−d


(ρ)

where


(ρ) � (1 − d) (h(ρ) + ρ log(1 − q)) + d · h

(

ρ
1 − d

d

)

.

Fig. 3. Our new upper bound (49) plotted for q = 1/2 along with the upper
bound (50) and the trivial upper bound 1 − d.

We note that the maximization over ρ can be solved directly
by differentiation, and the maximizing value is

ρ∗ = 1 − q

2q(1 − d)

(√

1 + 4d(1 − d)
q

1 − q
− 1

)

,

and we therefore have

lim
n→∞

1

n
I (X; Y) ≤ (1 − d)h(q) − h(d) + 
(ρ∗). (49)

In the limit of d → 1 it is easy to see that ρ∗ → d , and direct
substitution into (49) reveals that for q = 1/2 the upper bound
is smaller than (1 − d)2 for large d . In [17] it was shown that
for an i.i.d. Bern(q) input process

lim
n→∞

1

n
I (X; Y) ≤ (1 − d) (h(q) − 2dq(1 − q)) . (50)

Our new upper bound is plotted in Figure 3 for q = 1/2 along
with the upper bound (50) and the trivial upper bound 1 − d .
It is seen that for this choice of q our new bound is better
than (50) for all deletion probabilities.

We remark that although here we have only applied the
bounds from Theorems 1 and 2 for handling deletion channels,
we expect a similar approach to yield improved results also
for insertion channels.

D. Most Informative Boolean Function Conjecture

Let X be an n-dimensional binary vector uniformly dis-
tributed over {0, 1}n , and Y be the output of passing each
component of X through a binary symmetric channel with
crossover probability α ≤ 1/2. Let f : {0, 1}n → {0, 1} be a
boolean function. Following a recent conjecture by Courtade
and Kumar [6], there has been much interest in developing
useful upper bounds on I ( f (X); Y), where the ultimate goal
is to prove that this quantity is maximized by the dictatorship
function f (X) = Xi for some i ∈ [n]. In this subsection, we
apply Theorem 2 to derive the following novel upper bound.

Theorem 5: Let X, Z, W ∈ {0, 1}n be three statistically
independent random vectors, with the entries of X i.i.d.
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Bern( 1
2 ), and the entries of Z and W i.i.d. Bern(α). Let

Y = X ⊕ Z. For any boolean function f : {0, 1}n → {0, 1},
I (Y; f (X)) ≤ H ( f (X))

+ EW log Pr( f (X ⊕ W ⊕ Z) = f (X)) (51)
Proof: Identify the action that maps Y to f (X) with

drawing an i.i.d. vector W with Bern(α) entries and setting
A(Y) = f (Y ⊕ W). The bound (3) reads (discarding the last
term which is non-positive)

I (Y; f (X))

≤ H ( f (X)) + EA log EY, f (X)1(A(Y) = f (X))

= H ( f (X)) + EW log EY, f (X)1( f (Y ⊕ W) = f (X))

= H ( f (X)) + EW log Pr( f (X ⊕ W ⊕ Z) = f (X)), (52)

as desired.
For a fixed w ∈ {0, 1}n , let us now express Pr( f (X ⊕ w ⊕

Z) = f (X)). To this end, we use the standard isomorphism
0 → 1, 1 → −1, ⊕ → ·. Under this isomorphism we need
to calculate Pr( f (X · w · Z) = f (X)), where the products
between vectors are taken componentwise. Recall [18] that
f : {−1, 1}n → {−1, 1} admits the Fourier-Walsh expansion

f (x) =
∑

S⊆[n]
f̂ (S)

∏

i∈S

xi , (53)

where

f̂ (S) � E

(

f (X)
∏

i∈S

Xi

)

, (54)

and the expectation is taken w.r.t. to i.i.d. uniform distribution
on {−1, 1}. Let fw(X) = f (X·w), and note that it immediately
follows from (53) that f̂w(S) = f̂ (S)

∏
i∈S wi . We have

Pr( f (X · w · Z) = f (X))

= Pr( fw(X · Z) = f (X))

= 1

2
(1 + E ( f (X) fw(X · Z)))

= 1

2

⎛

⎝1 + E

⎛

⎝
∑

S⊆[n]
f̂ (S)

∏

i∈S

Xi

∑

T ⊆[n]
f̂ (T )

∏

j∈T

X j Z jw j

⎞

⎠

⎞

⎠

= 1

2

⎛

⎝1 +
∑

S⊆[n]
f̂ 2(S)(1 − 2α)|S|∏

i∈S

wi

⎞

⎠, (55)

where in (55) we have used the facts that E(Xi X j ) = 1(i = j)
and E(Zi ) = (1−2α) for any i, j ∈ [n]. Now, substituting (55)
into (52) gives the following corollary.

Corollary 1: For any boolean f : {−1, 1}n → {−1, 1},
I (Y; f (X)) ≤ H ( f (X)) − 1

+ EW log

⎛

⎝1 +
∑

S⊆[n]
f̂ 2(S)(1 − 2α)|S|∏

i∈S

Wi

⎞

⎠.

(56)

where Wi are i.i.d. with Pr(Wi = −1) = 1−Pr(Wi = 1) = α.
We note that the upper bound from Theorem 5 and

Corollary 1 are tight for the function f (X) = Xi . Thus, show-
ing that the dictatorship function maximizes (52) or (56), will

settle the most informative boolean function conjecture [6].
Unfortunately, our attempts to prove the former were not
successful.

APPENDIX

Given that K1i = k1 and K2i = k2, we know that the i th
phrase in the parsing of X is of the form

B · · · B B︸ ︷︷ ︸
k1

B · · · B B︸ ︷︷ ︸
k2

, (57)

where B ∼ Bern( 1
2 ) and B � 1 − B . The r.v. Zi counts

the number of bits in Y′ that were matched by the greedy
algorithm to bits in the i th phrase of X. Thus, conditioned on
the event K1i = k1, K2i = k2, the r.v. Zi counts the number
of bits from an i.i.d. uniform sequence (corresponding to the
relevant bits in Y′) that are matched by the greedy algorithm
to bits in the phrase (57).

Let W be the event that the first k1 bits of the i.i.d. sequence
are equal to B . Clearly, Pr(W ) = 2−k1 and if W occurs then
Zi = k1. Let T1 be the location of the first occurrence of
B in the i.i.d. sequence, and let T ′

2 be the location of the
first occurrence of B after T1. Further, let T2 = T ′

2 − T1. For
example, if the sequence of i.i.d. bits is

B B B B B B B B . . . ,

then T1 = 3 and T2 = 5, and if the sequence of i.i.d. bits is

B B B . . . ,

then T1 = 1 and T2 = 2. We further define the r.v.

T̃2 =
{

T2 T2 ≤ k2

k2 − 1 T2 > k2.

Note that given W (the event that W did not occur), we have
Zi = T1 + T̃2. We have

E

(
2t Zi | K1i = k1, K2i = k2

)

= Pr(W )E
(

2t Zi | K1i = k1, K2i = k2, W
)

+ Pr(W )E
(

2t Zi | K1i = k1, K2i = k2, W
)

= 2−k1 2tk1 +
(

1 − 2−k1
)

E

(
2t (T1+T̃2) | W

)

= 2−k1 2tk1 +
(

1 − 2−k1
)

E

(
2tT1 | W

)
E

(
2t T̃2

)
. (58)

The r.v.s T1 and T2 are statistically independent Geometric( 1
2 ),

and therefore

Pr(T1 = m|W ) =
{

2−m

1−2−k1
1 ≤ m ≤ k1 − 1

0 otherwise,

and

Pr(T̃2 = m)

=

⎧
⎪⎨

⎪⎩

2−m 1 ≤ m ≤ k2, m �= k2 − 1

2−k2 + 2−m1(k2 > 1) m = k2 − 1

0 otherwise.
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This gives

E

(
2tT1

)
= 1

1 − 2−k1

k1−1∑

m=1

2−m2tm

= 1

1 − 2−k1

2t−1

1 − 2t−1

(
1 − 2k1(t−1)

)
(59)

and for k2 > 1

E

(
2t T̃2

)
=

k2∑

m=1

2−m2tm + 2−k2 2t (k2−1)

= 2t−1

1 − 2t−1

(
1 − 2k2(t−1)

)
+ 2k2(t−1)−t . (60)

Note that for k2 = 1 we have E

(
2t T̃2

)
= 1

2 + 1
2 2−t , and (60)

continues to hold. Substituting (59) and (60) into (58) yields
the desired expression.
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