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Abstract We study the following geometric hypergraph coloring pesbi given a planar
point set and an integér we wish to color the points witk colors so that any axis-aligned
strip containing sufficiently many points contains all asloe show that if the strip con-
tains at least -1 points, such a coloring can always be found. In dimensionwe show
that the same holds provided the strip contains at le@hk+Ind) points. We also con-
sider the dual problem of coloring a given set of axis-al@ys&ips so that any sufficiently
covered point in the plane is covered lbgolors. We show that in dimensiahthe required
coverage is at most(k—1) + 1. This complements recent impossibility results on decom-
position of strip coverings with arbitrary orientations.

From the computational point of view, we show that deciditgther a three-dimensional
point set can be 2-colored so that any strip containing at tbaee points contains both col-
ors is NP-complete. This shows a big contrast with the plaaae, for which this decision
problem is easy.

Keywords Hypergraph coloring Covering decomposition Lovasz local lemma
Computational geometry

1 Introduction

There is a currently renewed interest in coloring problemgepmetrichypergraphs, that is,

set systems defined by geometric objects. This interestiisated by applications to wire-

less and sensor networks [6]; conflict-free colorings [8Fotnatic numbers [19], covering
decompositions [17, 3], or polychromaticoforful) colorings of geometric hypergraphs [4]
have been extensively studied in this context.

Chargé de Recherches du FRS-FNRS.

Maitre de Recherches du FRS-FNRS.

Université Libre de Bruxelles, CP212, BId. du Triomphe, 500 Brussels, Belgium. E-mail:
{galoupis,jcardin,secollet,slanger,ptas}®iulb.ac.be Supported by the Communauté francaise de Bel-
gique - ARC.. Graduate School of Engineering, Nagoya University, Nag4§4-8603, Japan E-mail:
imahori@na.cse.nagoya-u.ac:jpepartments of Mathematics, Technische UniversitatiBet0623 Berlin,
Germany. E-mail: odedsc@math.tu-berlin.dBen-Gurion University, Be’er Sheva 84105, Israel. E-mail:
shakhar@math.bgu.ac.il



In this paper, we are interested krcoloring finite point sets ifR? so that any region
bounded by two parallel axis-aligned hyperplanes, thataing at least some fixed number
of points, also contains a point of each color.

An axis-aligned strip is the area enclosed between two parallel axis-alignedrhype
planes. Ak-coloring of a finite set assigns one &fcolors to each element in the set. Let
Shbe ak-colored set of points ifRY. A strip is said to bepolychromaticwith respect tdS
if it contains at least one element of each color class. Waeefie functionp(k,d) as the
minimum number for which there always existk-aoloring of any point set ifR® such that
every strip containing at leaptk,d) points is polychromatic. This is a particular case of the
general framework proposed by Aloupis, Cardinal, Colldtengerman, and Smorodinsky
in [4].

Note that the problem does not depend on whether the strigsEan or closed, since
the problem can be seen in a purely combinatorial fashiomxéstaligned strip isolates a
subsequence of the points in sorted order with respect taobiige axes. Therefore, the
only thing that matters is the order in which the points apéang each axis. We can thus
rephrase our problem, consideridglimensional points sets, as finding the minimum value
p(k,d) such that the following holds: Fat permutations of a set of itent it is always
possible to color the items witkicolors, so that in altl permutations every sequence of at
leastp(k,d) contiguous items contains one item of each color.

We also studycircular permutations, in which the first and the last elements are con
tiguous. We consider the problem of finding a minimum vailigk, d) such that, for anyl
circular permutations of a set of iterfSsit is possible tdk-color the items so that in every
permutation, every sequencefk, d) contiguous items contains all colors.

A restricted geometric version of this problem®3 consists of coloring a point s&
with respect to wedges. For our purposes, a wedge is any atiegitdd by two half-lines
with common endpoint at one dfgiven apices. Each apex induces a circular ordering of the
points inS. This is illustrated in Figure 1. We aim at coloriSgo that any wedge containing
at leastp/(k,d) points is polychromatic. I&R?, the non-circular case corresponds to wedges
with apices at infinity, hence the circular case can be seargaseralization.

We then study a dual version of the problem, in which a set fakgned strips is to be
colored so that sufficiently covered points are containestrips from all color classes. For
instance, in the planar case we study the following funcpékd). Let H be ak-colored
set of strips inRY. A point is said to be polychromatic with respectHoif it is contained
in strips of allk color classes. The functiga(k, d) is the minimum number for which there
always exists &-coloring of any set of strips iR such that every point d&9 contained in
at leastp(k,d) strips is polychromatic.

Note that the functionp(k, d), p'(k,d) andp(k, d) are monotone and non-decreasing (in
particular, they all go to infinity when eith&ror d goes to infinity). Since we are interested
in arbitrarily large pointsets, we always consider the lsat tve color to be “large enough”
(that is, unbounded in terms k.

Previous results A hypergraph(S,R) is defined by a se$ (called theground setand a set
R of subsets ofs. The main problem studied here is the coloring of geomefymegraphs
where the ground s&is a finite set of points, and the set of rangesonsists of all subsets
of Sthat can be isolated by a single strip. In the dual case thengrsetSis a finite set of
geometric shapes and the ranges are points contained iartira@n intersection of a subset

1 From here on, unless otherwise specifiedirip is always assumed to be axis-aligned
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Fig. 1 lllustration of the definitions of(k,2) and p'(k,2). On the left, points are 2-colored so that any
axis-aligned strip containing at least three points is taiokatic. On the right, two pointé and B define
two circular permutations of the point set. In this case, vighvto color the points so that there is no long
monochromatic subsequence in either of the two circulagramgs.

of S In some places in the literature, finite geometric hypgiigsaare also referred to as
geometricrange spaces

Several similar problems have been studied in this contekt1, 4], where the range
space is not defined by strips, but rather by halfplanesidghés, disks, pseudo-disks or
translates of a centrally symmetric convex polygon. Theblenm was originally stated in
terms of decomposition @fcovergor f-fold covering$in the plane: Ac-cover of the plane
by a convex bodyQ ensures that every point in the plane is covered by at teianslated
copies ofQ. In 1980, Pach [13] asked if, givep, there exists a function(Q) such that every
f(Q)-cover of the plane can be decomposed into 2 disjoint 1-sovenatural extension is
to ask if givenQ, there exists a functioi(k, Q) such that everyf (k, Q)-cover of the plane
can be decomposed inkalisjoint 1-covers. This corresponds t&-aoloring of thef (k, Q)-
cover, such that every point of the plane is polychromatic.

Partial answers to this problem are known: Pach [14] refezgian unpublished manuscript
by Mani and Pach [11] showing that any 33-cover of the planarbydisks can be decom-
posed into two 1-covers. This could imply that the functioexists for unit disks, but could
still be exponential irk. Recently, Tardos and Toéth [21] proved that any 43-covetrdnys-
lated copies of a triangle can be decomposed into two 1-so¥r the case of centrally
symmetric convex polygons, Pach [15] proved thag at most exponential ik. More than
20 years later, Pach and Toth [17] improved this by showirag ft(k, Q) = O(k?), and was
afterwards Aloupis et al. [3] proved thétk,Q) = O(k). Recently, Gibson and Varadara-
jan [9] showed that the same property also holds for anyraryitonvex polygorQ.

On the other hand, for the range space induced by arbitrakg dilani and Pach [11] (see
also [16]) proved thaf (2, Q) is unbounded: for any constanitthere exists a set of points
that cannot be 2-colored so that all open disks containirigastc points are polychro-
matic. Pach, Tardos and To6th [16] obtained a similar refsulthe range spaces induced by
the family of either non-axis-aligned strips, or axis-akg rectangles. Specifically, for any
integerc there exist-fold coverings with non-aligned strips that cannot be degosed into
two coverings (i.e., cannot be 2-colored). The previousassgilities constitute our main



Table 1 Bounds onp, p’ andp

p(k.d) P (k.d) p(k.d)

upper bound| k(4Ink+Ind) | k(4Ink+Ind) | d(k-1)+1
(2k—1ford=2) | (2kford=2)
lower bound 2.1k lk/2]d+1

motivation for introducing the problem dfcoloring axis-aligned strips, and strips with a
bounded number of orientations.

Paper Organization.In Section 2 we give constructive upper bounds on the funsfiand
p’ for d = 2. In Section 3 we consider higher-dimensional cases, dawtie computational
complexity of finding a valid coloring. Section 4 concerns ttual problem of coloring strips
with respect to points. Our lower and upper bounds are suimethin Table 1.

2 Axis-aligned strips and circular permutations for d = 2

We first consider upper bounds for the functigrik, 2) andp’(k, 2).

2.1 Axis-aligned strips: Upper bound gk, 2)

We refer to a strip containing at ledagpoints as arnrstrip. Our goal is to show that for any
integerk there is a constarg(k, 2) such that any finite planar point set cankseolored so
that all p(k, 2)-strips are polychromatic.

Ford = 2, there is a reduction to the recently studied problem obl@ring graphs so
that monochromatic components are small. Haxell et al. pt6yed that the vertices of any
graph with maximum degree 4 can be 2-colored so that everyoowamatic connected
component has size at most 6. For a given finite pointSdatthe plane, leE be the set
of all pairs of pointsu,v € Ssuch that there is a strip containing onlyandv. The graph
G = (S E) has maximum degree 4, as it is the union of two paths. By thétsesf [10], G
can be 2-colored so that every monochromatic connected @oemp has size at most 6. In
particular every path of size at least 7 contains points foath color classes. To finish the
reduction argument one may observe that every strip cantgaat least 7 points corresponds
to a path (of size at least 7) (. We improve and generalize this first bound in the following.

Theorem 1 For any finite planar set S and any integer k, S can be k-colsthat any
(2k—1)-strip is polychromatic. That is,

p(k,2) < 2k—1.

Proof Letsy,...,s, be the points oBsorted by (increasing)-coordinates and lesy , . . ., Sy,
be the sorting byy-coordinates. We first assume thatlivides n, and later show how to
remove the need for this assumption. Vgbe the set ofi/k disjoint contiguouk-tuples in
S1,...,%. NamelyVy = {{s1, ..., s}, {Sct1,- -, Sk} -+, {Sn—k1s-- - S} ). Similarly, letVy
be thek-tuples defined bgy, ..., Sy,



We define a bipartite multigrap = (Vy,Vy, E) as follows: For every pair ok-tuples
A€V, B eV, weinclude an edges = {A,B} € E if there exists a poinsin both A andB.
Note that an edgéA, B} has multiplicity| AN B| and that the number of edg#s| is n. The
multigraphG is k-regular because evekytuple A contains exactlk points and every point
s € A determines exactly one incident edge labedgdt is well known that the chromatic
index of any bipartitek-regular multigraph ik (and can be efficiently computed, see e.g.,
[1,7]). Namely, the edges of such a multigraph can be pamtil intok perfect matchings.
LetEy,...,Ex be such a partition anf§ C Sbe the set of labels of the edgeskf The sets
S, ..., S form a partition (i.e., a coloring) db. We assign color to the points of5.

We claim that this coloring ensures that af8k—1)-strip is polychromatic. Leh be
a (2k—1)-strip and assume without loss of generality thas parallel to they-axis. Then
h contains at least onletuple A € V. By the properties of the above coloring, the edges
incident toA in G are colored withk distinct colors. Thus, the points that correspond to the
labels of these edges are colored wkttiistinct colors, andh is polychromatic.

To complete the proof, we must handle the case wkeatees not dividen. Leti =n
(modk). LetQ= {a,...,0«—i} be an additional set d{—i points, all located to the right
and above the points & We repeat our previous construction ®a Q. Now, any(2k—1)-
strip which is, say, parallel to theaxis will also contain &-tuple A € Vy disjoint from Q.
Thus our arguments follow as before. O

The proof of Theorem 1 is constructive and leads directhnt@@logn)-time algorithm
to k-color n points in the plane so that eve8k—1)-strip is polychromatic. The algorithm is
simple: we sor, construciG = (Vy, Vy, E), and color the edges @ with k colors. The time
analysis is as follows: sorting tak€{nlogn) time. Constructings takesO(n+ |E|) time.
AsG hasz—kn vertices and i&-regular, it has edges; so this step takégn) time. Finding the
edge-coloring of5 takesO(nlogn) time [1]. The total running time is therefo@(nlogn).

2.2 Circular permutations: Upper bound pftk, 2)

We now consider the value @f (k,d). Givend circular permutations of a s& we colorS

so that every sufficiently long subsequence in any of theutdargpermutations is polychro-
matic. The previous proof fao(k,d) < 2k—1 (Theorem 1) does not hold when we consider
circular permutations. However, a slight modification pdes the same upper bound, up to
a constant term.

Theorem 2 p'(k 2) <2k

Proof If k dividesn, we separate each circular permutation imtk sets of siz&. We define

a multigraph, where the vertices represent the seksteins, and there is an edge between
two vertices if two sets share the same item. Trivially, tiviaph isk-regular and bipatrtite,
and can thus be edge-colored witholors. Each edge in this graph corresponds to one item
in the permutation, thus each setkafems contains points of al colors.

If k does not dividen, leta= |n/k|, andb=n (modKk). If adividesb, we separate each
of the two circular permutations intaZets, of alternating sizésandb/a. Otherwise, the
even sets will also alternate between sib¢a] and|b/a|, instead ob/a. We extend both
permutations by adding dummy items to each set of size lesskilso that we finally have
only sets of siz&k. Dummy items appear in the same order in both permutatiorescai
now define the multigraph just as before.



If we remove the dummy nodes, we deduce a coloring for ouir@iget. As each color
appears in every set of sikethe length of any subsequence between two items of the same
color is at most & — 1) + [b/a]. Therefore p'(k,2) < 2(k— 1)+ [b/a] + 1.

Finally, if n > k(k— 1), thena > k— 1, andb < a, we know that[b/a] < 1, and thus
P(k2) <2k 0

3 Higher dimensional strips

In this section we study the same problem for strips in higl@ensions. We provide upper
and lower bounds op(k,d). We then analyze the coloring problem from a computational
viewpoint, and show that deciding whether a given inst®iceR? can be 2-colored such
that every 3-strip is polychromatic is NP-complete.

3.1 Upper bound on strip size(k, d)

Theorem 3 Any finite set of points 8 RY can be k-colored so that every axis-aligned strip
containing K4Ink+Ind) points is polychromatic, that is,

p(k,d) < k(4Ink+Ind).

Proof The proof uses the probabilistic method. K&t... k} denote the set df colors. We
randomly color every point i independently so that a poiagets color with probability

% fori=1,... k. For at-striph, let %, be the “bad” event wherkis not polychromatic. It
is easily seen that P8y < k(1— %)‘. Moreover,%, depends on at mogt — 1)t? + 2t — 2
other events. Indeedd,, depends only ofrstrips that share points with Assume without
loss of generality thah is orthogonal to the; axis. Then%, has a non-empty intersection
with at most 2t — 1) othert-strips which are orthogonal to tixg axis. For each of the other
d—1 axes can intersect at most t-strips since every point ih can belong to at most
othert-strips.

By the Lovasz Local Lemma, (see, e.g., [2]) we have thasdtisfies

e-((d—l)~t2+2t—l)-k(l—%)t <1

(whereeis the basis of the natural logarithm), then

Pri A\ %n| >0.
h=t

In particular, this means that there existk-eoloring for which evenyt-strip is polychro-
matic. It can be verified that= k(4 Ink+Ind) satisfies the condition. O

The proof of Theorem 3 is non-constructive. However, we csa known algorithmic
versions of the Local Lemma (see for instance [12]) to ob&atonstructive proof. Also
note that Theorem 3 holds in the more general case whererih &te not necessarily axis-
aligned. In fact, one can have a totald#rbitrary strip orientations in some fixed arbitrary
dimension and the proof will hold verbatim. Finally, we niétat the same proof also works
for the case of circular permutations, yielding the samesuppund:

Theorem 4 p'(k,d) <k(4Ink+Ind)



3.2 Lower bound omp(k,d)

We first introduce a well-known result on the decompositiboamplete graphs:

Lemma 1 The edges of # can be decomposed into h pairwise edge-disjoint Hamiltonia
paths.

This result follows from a special case of the Oberwolfacbbfgm [5]. An explicit
proof of this lemma can also be found in [20].

Note that if the vertices oy, are labeled/ = {1,...,2h}, each path can be seen as a
permutation of & elements. Using Lemma 1 we obtain:

Theorem 5 For any fixed dimension d and number of colors k, let F(Zdz’dnq —1. Then,

p(k,d) > p(k,d) > 25+ 1.

Proof The first inequality comes from the fact that any polychramabloring with re-
spect to circular permutations is also polychromatic wétspect to strips. We now focus on
showing the second inequality: let, ..., o4 be any decomposition ¢f,q into d paths: we
construct the se® = {p;|0 < i < 2d}, wherep; = (01(i),...,04(i)). Note that the ordering
of P, when projected to thieth axis, gives permutatiog;. Since the elemenis decompose
Kog, in particular for anyi, j < 2d there exists a permutation in whicland j are adjacent.

We replace each poing; by a setA; of s points arbitrarily close tg;. By construction,
for anyi, j < 2d, there exists a2strip containing exactlyy U A;j. Consider any possible
coloring of the set#\: since|Aj| = sand we are using colors, there are at ledst- s colors
not present in any sd.

Since [%W -1< %, we conclude thak — s> k — % =k/2d. That is,

each set is missing strictly more thigfi2d colors. By the pigeonhole principle, there exist
i and j such that the sef; UA; is missing a color (otherwise there would be more than
colors). In particular, the strip that contains gt/ A; is not polychromatic, thus the theorem
is shown.

We gave a set of bounded size- 2d reaching the lower bound, but we can easily create
larger sets reaching the same bound: we can add as many duainty @s needed at the
end of every permutation, which does not decrease the vélp&a). O

Note that, assymptotitically speaking, the lower boundsduzt depend od. However,
by the negative result of [16], we know thatk, d) — co whend — co.

3.3 Computational complexity

In Section 2, we provided an algorithm that findseoloring such that every plané2k—1)-
strip is polychromatic. Thus fat=2 andk=2, this yields a 2-coloring such that every 3-strip
is polychromatic.

Note that in this cas@(2,2) = 3, but the minimum required size of a strip for a given
instance can be either 2 or 3. Testing if it is equal to 2 is ea®ycan simply alternate
the colors in the first permutation, and check if they alseratite in the other. Hence the
problem of minimizing the size of the largest monochromati@p on a given instance is
polynomial ford = 2 andk = 2. We now show that it becomes NP-hard dos 2 andk = 2.
The same problem fde> 2 is left open.



Theorem 6 The following problem is NP-complete:

Input: 3 permutationsg, 7, 78 of an n-element set S.

Question: Is there a 2-coloring of S, such that every 3 elements of Satgatonsecutive
according to one of the permutations are not monochromatic?

Proof We show a reduction from NAE 3SAT (not-all-equal 3SAT) whistthe following
NP-complete problem [18]:

Input: A 3-CNF Boolean formulad.

Question: Is there aNAE assignment t@? An assignment is calledAE if every clause
has at least one literal assigned True and at least ond bigsmned False.

We first transform® into another instance’ in which all variables are non-negated
(i.e., we make the instance monotone). We then show how liaee®’ using three permu-
tationsrm, 1, 7.

To transform® into @', for each variable, we first replace théh occurrence ok in
its positive form by a variablg, and theith occurrence ok in its negative form by. The
indexi varies between 1 and the number of occurrences of each faem{aximum of the
two). We also add the followingonsistency-clausgfor each variablex and for alli:

(Zix,Xi,Xf) ’ (Xiv)quix-o—l) ’ (Xivzilxv)q) ’ (Zixvzi/xvzix-H)
(Xilvzi)(+lvxi+l) s (Zi/xvxi/vXH—l) 5 (Xilvxi-%lvzi/ilv) 5 (Zilxv ix+lvzi/§—1)

whereZ* andZ* are new variables. This completes the constructio®ofNote that®’ is
monotone, as every negated variable has been replaced.

Moreover,®’ has aNAE assignment if and only i has aNAE assignment. To see this,
note that &NAE assignment forb can be translated toMAE assignment t@’ as follows:
for every variablex of @ and everyi, setx =x, X =%, Z*=True Z*=False

On the other hand, i’ has aNAE assignment, then, by the consistency clauses, the
variables in®’ corresponding to any varialkeof @ are assigned a consistent value. Namely,
for everyi, j we havex, = x; andx; # X. This assignment naturally translates tNAE
assignment forP, by settingx = x.

We next show how to realize’ by a setS and three permutatiorns, 7&, 6. The ele-
ments of the seB are the variables of’, together with some additional elements that are
described below. Permutatiom realizes the clauses @’ corresponding to the original
clauses of®, while 75 and g realize the consistency clauses®f

The additional elements iBare clause elements (two elemeats ; andcy; for every
clausej of @) anddummy elements(the dummy elements are not indexed for the ease of
presentation, but they appear in the same order in all ttesaytations).

Permutationrg encodes the clauses @f corresponding to original clauses df as
follows (note that all these clauses involve differentabhes). For each such clausev, w),
permutatiornrg contains the following sequence:

C2j—1,U,V, W, Coj, *, %

At the end ofrm, for every variablex of @’ we have the sequence:
ZX 20 28, 25 25, 25 ek

Permutatiorve contains, for every variabbeof @, the sequences:

Z¥ X1, X, 25, X0, X, 23, X3, X3, 2oty .. and ok, x, Z5K ke, 25w, 5, 2K



At the end ofre we have the clause-elements and remaining dummy elements:

*,%,Cq,%,%,C2,x,%,C3...

Similarly, permutatiorvg contains, for every variabbeof @, the sequences:

X X X X X X
X1, 25 X0, X0, Z5 X0, X3, Z5 X, .. and Kk, x, 2y, k%, 2k, K, 25, kK

and at the end ofgs we have the clause-elements and remaining dummy elements:

*, %, Cp, %, %, C, %, %, C3, . . .

This completes the construction 8fand i, 75, 5. Note that for every clause ap’
(whether it is derived fron® or is a consistency clause), the elements correspondirig to i
three variables appear in sequence in one of the three peiiong. Therefore, if there is a
2-coloring of S, such that every 3 elements $that are consecutive according to one of the
permutations are not monochromatic, then thereNsAZE assignment tap’: each variable
of @' is assigned True if its corresponding element is coloregddd False otherwise.

For the other direction, consideNAE assignment fo®’. Observe that there is always
a solution wher&* andZ* are assigned opposite values. Then assign color ‘1’ to eleame
corresponding to variables assigned with True, and assign ‘©’ to elements correspond-
ing to variables assigned with False. For the clause eleswgnt; andcy; appearing in the
subsequenceyj_1, U, V, W, Cpj, assign tacj_1 the color opposite ta, and tocy; the color
opposite tov. Finally, assign colors ‘0’ and ‘1’ to each pair of consegeatiummy elements,
respectively. It can be verified that there is no monochran@@insecutive triple in any per-
mutation. O

Approximation. Note that the general minimization problem (find-@oloring that mini-
mizes the number of required points) can be approximatedyuke constructive version of
the Lovasz Local Lemma (as mentioned in Section 3.1). Sinse trivial lower bound for
any problem instance, this guarantees an approximatidgarfatO(logk+ logd). In partic-
ular, there exists a constant factor approximation for tteblem introduced in Theorem 6
(since it fixesd = 3 andk = 2).

4 Coloring strips

In this section we prove that any finite set of stripskifi can bek-colored so that every
“deep” point is polychromatic. For a given set of strips (aervals, ifd = 1), we say that a
point isi-deepif it is contained in at leastof the strips. We begin with the following easy
lemma:

Lemma 2 Let.# be a finite set of intervals. Then for every.K, can be k-colored so that
every k-deep point is polychromatic, while any point costdrg fewer than k intervals will
be covered by distinct colors.

Proof We use induction oh#|. Let| be the interval with the leftmost right endpoint. By in-
duction, the intervals inZ \ {1 } can bek-colored with the desired property. Sort the intervals
intersecting according to their left endpoints and lgt...,lx_; be the firstkk—1 intervals

in this order. It is easily seen that colorihgvith a color distinct from the colors of those
k—1 intervals produces a coloring with the desired propertyg, lzence a valid coloring. O
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Theorem 7 For any d and k, one can k-color any set of axis-aligned stiip&9 so that
every dk—1)+1-deep point is polychromatic. That is,

Pk, d) <d(k—1)+1.

Proof We start by coloring the strips parallel to any given axi¢i = 1,...,d) separately
using the coloring described in Lemma 2. We claim that thecedure produces a valid
polychromatic coloring for alt(k—1)+1-deep points. Indeed assume that a given pmint
is d(k—1)+1-deep and leH (s) be the set of strips covering Since there aréd possible
orientations for the strips ifl(s), by the pigeonhole principle at leakstof the strips in
H(s) are parallel to the same axis. Then by property of the cajooihLemma 2,H(s) is
polychromatic. a

The above proof is constructive. By sorting the intervaks ttorrespond to any of the
given directions, one can easily find a coloringdtnlogn) time.

We now give a lower bound op(k,d). For that, we define @strips as follows: strip
s is defined as & x; < 2 (wherey; is the coordinate of-th dimension). Analogously, we
define stripspi1 as 1< x; < 3. The main property of these strips is that we can always find
a point covered by any subset of the &rips:

Lemma 3 Forany I C {1,...,2d}, there exists a pointjsuch that pe s < iel, Vi< 2d.

Proof Note that whether or not poin; is covered by stripsy; or Si+1 only depends in the
i-th coordinate ofy;. Thus, we define theth coordinate of poinp, as follows:

o lif2iclbutz+1¢1
o 2ifboth 4,2 +1€l
o 3ifboth 4,2 +1¢1

Since the choice is independent on each dimension, theraotish of p; is valid and is
only covered by strips ih. O

We use these strips to find a lower boundfgk, d) as follows:
Theorem 8 For any fixed dimension d and integer k, it holds that
Pk, d) > |k/2|d+ 1.

Proof Consider the @ strips{s }ic|2q) defined above. We replace each sfipith a cluster
of [k/2] overlapping stripgs j}c( k/2);, SO that a poinp; defined in Lemma 3 is in strip
s.j ifand only if itis in 5. This can be obtained, say, by perturbing a boundary of ti st
aroundx; = O (or aroundx; = 3).

Consider any coloring of the above problem instance with astrfk/2|d colors. As
in the proof of Theorem 5, we can use the pigeonhole prin@ptthe handshake lemma
to conclude that there is at a color that is missing in at Iék&2]2d/k > d clusters. Let
| be the set of at least indices whose clusters are missing the same color. By Lemma 3
point py is covered only by the strips in clusteCg for all i € I. In particular,p, is at least
|k/2]d-deep and not colorful. O
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