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Abstract We study the following geometric hypergraph coloring problem: given a planar
point set and an integerk, we wish to color the points withk colors so that any axis-aligned
strip containing sufficiently many points contains all colors. We show that if the strip con-
tains at least 2k−1 points, such a coloring can always be found. In dimensiond, we show
that the same holds provided the strip contains at leastk(4lnk+ lnd) points. We also con-
sider the dual problem of coloring a given set of axis-aligned strips so that any sufficiently
covered point in the plane is covered byk colors. We show that in dimensiond the required
coverage is at mostd(k−1)+1. This complements recent impossibility results on decom-
position of strip coverings with arbitrary orientations.

From the computational point of view, we show that deciding whether a three-dimensional
point set can be 2-colored so that any strip containing at least three points contains both col-
ors is NP-complete. This shows a big contrast with the planarcase, for which this decision
problem is easy.

Keywords Hypergraph coloring· Covering decomposition· Lovász local lemma·
Computational geometry

1 Introduction

There is a currently renewed interest in coloring problems on geometrichypergraphs, that is,
set systems defined by geometric objects. This interest is motivated by applications to wire-
less and sensor networks [6]; conflict-free colorings [8], chromatic numbers [19], covering
decompositions [17,3], or polychromatic (colorful) colorings of geometric hypergraphs [4]
have been extensively studied in this context.
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Université Libre de Bruxelles, CP212, Bld. du Triomphe, 1050 Brussels, Belgium. E-mail:
{galoupis,jcardin,secollet,slanger,ptaslaki}@ulb.ac.be Supported by the Communauté française de Bel-
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In this paper, we are interested ink-coloring finite point sets inRd so that any region
bounded by two parallel axis-aligned hyperplanes, that contains at least some fixed number
of points, also contains a point of each color.

An axis-aligned strip1 is the area enclosed between two parallel axis-aligned hyper-
planes. Ak-coloring of a finite set assigns one ofk colors to each element in the set. Let
S be ak-colored set of points inRd. A strip is said to bepolychromaticwith respect toS
if it contains at least one element of each color class. We define the functionp(k,d) as the
minimum number for which there always exists ak-coloring of any point set inRd such that
every strip containing at leastp(k,d) points is polychromatic. This is a particular case of the
general framework proposed by Aloupis, Cardinal, Collette, Langerman, and Smorodinsky
in [4].

Note that the problem does not depend on whether the strips are open or closed, since
the problem can be seen in a purely combinatorial fashion: anaxis-aligned strip isolates a
subsequence of the points in sorted order with respect to oneof the axes. Therefore, the
only thing that matters is the order in which the points appear along each axis. We can thus
rephrase our problem, consideringd-dimensional points sets, as finding the minimum value
p(k,d) such that the following holds: Ford permutations of a set of itemsS, it is always
possible to color the items withk colors, so that in alld permutations every sequence of at
leastp(k,d) contiguous items contains one item of each color.

We also studycircular permutations, in which the first and the last elements are con-
tiguous. We consider the problem of finding a minimum valuep′(k,d) such that, for anyd
circular permutations of a set of itemsS, it is possible tok-color the items so that in every
permutation, every sequence ofp′(k,d) contiguous items contains all colors.

A restricted geometric version of this problem inR
2 consists of coloring a point setS

with respect to wedges. For our purposes, a wedge is any area delimited by two half-lines
with common endpoint at one ofd given apices. Each apex induces a circular ordering of the
points inS. This is illustrated in Figure 1. We aim at coloringSso that any wedge containing
at leastp′(k,d) points is polychromatic. InR2, the non-circular case corresponds to wedges
with apices at infinity, hence the circular case can be seen asa generalization.

We then study a dual version of the problem, in which a set of axis-aligned strips is to be
colored so that sufficiently covered points are contained instrips from all color classes. For
instance, in the planar case we study the following functionp(k,d). Let H be ak-colored
set of strips inRd. A point is said to be polychromatic with respect toH if it is contained
in strips of allk color classes. The functionp(k,d) is the minimum number for which there
always exists ak-coloring of any set of strips inRd such that every point ofRd contained in
at leastp(k,d) strips is polychromatic.

Note that the functionsp(k,d), p′(k,d) andp(k,d) are monotone and non-decreasing (in
particular, they all go to infinity when eitherk or d goes to infinity). Since we are interested
in arbitrarily large pointsets, we always consider the set that we color to be “large enough”
(that is, unbounded in terms ofk).

Previous results.A hypergraph(S,R) is defined by a setS(called theground set) and a set
R of subsets ofS. The main problem studied here is the coloring of geometric hypergraphs
where the ground setS is a finite set of points, and the set of rangesR consists of all subsets
of S that can be isolated by a single strip. In the dual case the ground setS is a finite set of
geometric shapes and the ranges are points contained in the common intersection of a subset

1 From here on, unless otherwise specified, astrip is always assumed to be axis-aligned
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Fig. 1 Illustration of the definitions ofp(k,2) and p′(k,2). On the left, points are 2-colored so that any
axis-aligned strip containing at least three points is bichromatic. On the right, two pointsA and B define
two circular permutations of the point set. In this case, we wish to color the points so that there is no long
monochromatic subsequence in either of the two circular orderings.

of S. In some places in the literature, finite geometric hypergraphs are also referred to as
geometricrange spaces.

Several similar problems have been studied in this context [13,21,4], where the range
space is not defined by strips, but rather by halfplanes, triangles, disks, pseudo-disks or
translates of a centrally symmetric convex polygon. The problem was originally stated in
terms of decomposition ofc-covers(or f -fold coverings) in the plane: Ac-cover of the plane
by a convex bodyQ ensures that every point in the plane is covered by at leastc translated
copies ofQ. In 1980, Pach [13] asked if, givenQ, there exists a functionf (Q) such that every
f (Q)-cover of the plane can be decomposed into 2 disjoint 1-covers. A natural extension is
to ask if givenQ, there exists a functionf (k,Q) such that everyf (k,Q)-cover of the plane
can be decomposed intok disjoint 1-covers. This corresponds to ak-coloring of thef (k,Q)-
cover, such that every point of the plane is polychromatic.

Partial answers to this problem are known: Pach [14] referenced an unpublished manuscript
by Mani and Pach [11] showing that any 33-cover of the plane byunit disks can be decom-
posed into two 1-covers. This could imply that the functionf exists for unit disks, but could
still be exponential ink. Recently, Tardos and Tóth [21] proved that any 43-cover bytrans-
lated copies of a triangle can be decomposed into two 1-covers. For the case of centrally
symmetric convex polygons, Pach [15] proved thatf is at most exponential ink. More than
20 years later, Pach and Tóth [17] improved this by showing that f (k,Q) = O(k2), and was
afterwards Aloupis et al. [3] proved thatf (k,Q) = O(k). Recently, Gibson and Varadara-
jan [9] showed that the same property also holds for any arbitrary convex polygonQ.

On the other hand, for the range space induced by arbitrary disks, Mani and Pach [11] (see
also [16]) proved thatf (2,Q) is unbounded: for any constantc, there exists a set of points
that cannot be 2-colored so that all open disks containing atleastc points are polychro-
matic. Pach, Tardos and Tóth [16] obtained a similar resultfor the range spaces induced by
the family of either non-axis-aligned strips, or axis-aligned rectangles. Specifically, for any
integerc there existc-fold coverings with non-aligned strips that cannot be decomposed into
two coverings (i.e., cannot be 2-colored). The previous impossibilities constitute our main
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Table 1 Bounds onp, p′ andp

p(k,d) p′(k,d) p(k,d)

upper bound k(4lnk+ lnd) k(4lnk+ lnd) d(k−1)+1

(2k−1 for d=2) (2k for d=2)

lower bound 2· ⌈ (2d−1)k
2d ⌉−1 ⌊k/2⌋d+1

motivation for introducing the problem ofk-coloring axis-aligned strips, and strips with a
bounded number of orientations.

Paper Organization.In Section 2 we give constructive upper bounds on the functions p and
p′ for d = 2. In Section 3 we consider higher-dimensional cases, as well as the computational
complexity of finding a valid coloring. Section 4 concerns the dual problem of coloring strips
with respect to points. Our lower and upper bounds are summarized in Table 1.

2 Axis-aligned strips and circular permutations for d = 2

We first consider upper bounds for the functionsp(k,2) andp′(k,2).

2.1 Axis-aligned strips: Upper bound onp(k,2)

We refer to a strip containing at leasti points as ani-strip. Our goal is to show that for any
integerk there is a constantp(k,2) such that any finite planar point set can bek-colored so
that all p(k,2)-strips are polychromatic.

For d = 2, there is a reduction to the recently studied problem of 2-coloring graphs so
that monochromatic components are small. Haxell et al. [10]proved that the vertices of any
graph with maximum degree 4 can be 2-colored so that every monochromatic connected
component has size at most 6. For a given finite point setS in the plane, letE be the set
of all pairs of pointsu,v ∈ S such that there is a strip containing onlyu andv. The graph
G = (S,E) has maximum degree 4, as it is the union of two paths. By the results of [10], G
can be 2-colored so that every monochromatic connected component has size at most 6. In
particular every path of size at least 7 contains points fromboth color classes. To finish the
reduction argument one may observe that every strip containing at least 7 points corresponds
to a path (of size at least 7) inG. We improve and generalize this first bound in the following.

Theorem 1 For any finite planar set S and any integer k, S can be k-coloredso that any
(2k−1)-strip is polychromatic. That is,

p(k,2) ≤ 2k−1.

Proof Lets1, . . . ,sn be the points ofSsorted by (increasing)x-coordinates and letsπ1, . . . ,sπn

be the sorting byy-coordinates. We first assume thatk divides n, and later show how to
remove the need for this assumption. LetVx be the set ofn/k disjoint contiguousk-tuples in
s1, . . . ,sn. Namely,Vx = {{s1, . . . ,sk},{sk+1, . . . ,s2k}, . . . ,{sn−k+1, . . . ,sn}}. Similarly, letVy

be thek-tuples defined bysπ1, . . . ,sπn.
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We define a bipartite multigraphG = (Vx,Vy,E) as follows: For every pair ofk-tuples
A∈Vx, B∈Vy, we include an edgees = {A,B} ∈ E if there exists a points in bothA andB.
Note that an edge{A,B} has multiplicity|A∩B| and that the number of edges|E| is n. The
multigraphG is k-regular because everyk-tupleA contains exactlyk points and every point
s∈ A determines exactly one incident edge labeledes. It is well known that the chromatic
index of any bipartitek-regular multigraph isk (and can be efficiently computed, see e.g.,
[1,7]). Namely, the edges of such a multigraph can be partitioned intok perfect matchings.
Let E1, . . . ,Ek be such a partition andSi ⊂ Sbe the set of labels of the edges ofEi . The sets
S1, . . . ,Sk form a partition (i.e., a coloring) ofS. We assign colori to the points ofSi .

We claim that this coloring ensures that any(2k−1)-strip is polychromatic. Leth be
a (2k−1)-strip and assume without loss of generality thath is parallel to they-axis. Then
h contains at least onek-tuple A ∈ Vx. By the properties of the above coloring, the edges
incident toA in G are colored withk distinct colors. Thus, the points that correspond to the
labels of these edges are colored withk distinct colors, andh is polychromatic.

To complete the proof, we must handle the case wherek does not dividen. Let i = n
(mod k). Let Q = {q1, . . . ,qk−i} be an additional set ofk−i points, all located to the right
and above the points ofS. We repeat our previous construction onS∪Q. Now, any(2k−1)-
strip which is, say, parallel to they-axis will also contain ak-tupleA ∈Vx disjoint fromQ.
Thus our arguments follow as before. ⊓⊔

The proof of Theorem 1 is constructive and leads directly to anO(nlogn)-time algorithm
to k-colorn points in the plane so that every(2k−1)-strip is polychromatic. The algorithm is
simple: we sortS, constructG= (Vx,Vy,E), and color the edges ofG with k colors. The time
analysis is as follows: sorting takesO(nlogn) time. ConstructingG takesO(n+ |E|) time.
As G has2n

k vertices and isk-regular, it hasn edges; so this step takesO(n) time. Finding the
edge-coloring ofG takesO(nlogn) time [1]. The total running time is thereforeO(nlogn).

2.2 Circular permutations: Upper bound onp′(k,2)

We now consider the value ofp′(k,d). Givend circular permutations of a setS, we colorS
so that every sufficiently long subsequence in any of the circular permutations is polychro-
matic. The previous proof forp(k,d) ≤ 2k−1 (Theorem 1) does not hold when we consider
circular permutations. However, a slight modification provides the same upper bound, up to
a constant term.

Theorem 2 p′(k,2) ≤ 2k

Proof If k dividesn, we separate each circular permutation inton/k sets of sizek. We define
a multigraph, where the vertices represent the sets ofk items, and there is an edge between
two vertices if two sets share the same item. Trivially, thisgraph isk-regular and bipartite,
and can thus be edge-colored withk colors. Each edge in this graph corresponds to one item
in the permutation, thus each set ofk items contains points of allk colors.

If k does not dividen, leta= ⌊n/k⌋, andb= n (mod k). If a dividesb, we separate each
of the two circular permutations into 2a sets, of alternating sizesk andb/a. Otherwise, the
even sets will also alternate between size⌈b/a⌉ and⌊b/a⌋, instead ofb/a. We extend both
permutations by adding dummy items to each set of size less thank, so that we finally have
only sets of sizek. Dummy items appear in the same order in both permutations. We can
now define the multigraph just as before.
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If we remove the dummy nodes, we deduce a coloring for our original set. As each color
appears in every set of sizek, the length of any subsequence between two items of the same
color is at most 2(k−1)+ ⌈b/a⌉. Therefore,p′(k,2) ≤ 2(k−1)+ ⌈b/a⌉+1.

Finally, if n ≥ k(k−1), thena ≥ k−1, andb ≤ a, we know that⌈b/a⌉ ≤ 1, and thus
p′(k,2) ≤ 2k. ⊓⊔

3 Higher dimensional strips

In this section we study the same problem for strips in higherdimensions. We provide upper
and lower bounds onp(k,d). We then analyze the coloring problem from a computational
viewpoint, and show that deciding whether a given instanceS⊂ R

d can be 2-colored such
that every 3-strip is polychromatic is NP-complete.

3.1 Upper bound on strip size,p(k,d)

Theorem 3 Any finite set of points S⊂R
d can be k-colored so that every axis-aligned strip

containing k(4lnk+ lnd) points is polychromatic, that is,

p(k,d) ≤ k(4lnk+ lnd).

Proof The proof uses the probabilistic method. Let{1, . . . ,k} denote the set ofk colors. We
randomly color every point inS independently so that a pointsgets colori with probability
1
k for i = 1, . . . ,k. For at-strip h, let Bh be the “bad” event whereh is not polychromatic. It
is easily seen that Pr[Bh] ≤ k(1− 1

k )t . Moreover,Bh depends on at most(d−1)t2 +2t −2
other events. Indeed,Bh depends only ont-strips that share points withh. Assume without
loss of generality thath is orthogonal to thex1 axis. ThenBh has a non-empty intersection
with at most 2(t−1) othert-strips which are orthogonal to thex1 axis. For each of the other
d−1 axes,h can intersect at mostt2 t-strips since every point inh can belong to at mostt
othert-strips.

By the Lovász Local Lemma, (see, e.g., [2]) we have that ift satisfies

e·
(

(d−1) · t2 +2t −1
)

·k

(

1−
1
k

)t

< 1

(wheree is the basis of the natural logarithm), then

Pr





∧

|h|=t

Bh



 > 0.

In particular, this means that there exists ak-coloring for which everyt-strip is polychro-
matic. It can be verified thatt = k(4lnk+ lnd) satisfies the condition. ⊓⊔

The proof of Theorem 3 is non-constructive. However, we can use known algorithmic
versions of the Local Lemma (see for instance [12]) to obtaina constructive proof. Also
note that Theorem 3 holds in the more general case where the strips are not necessarily axis-
aligned. In fact, one can have a total ofd arbitrary strip orientations in some fixed arbitrary
dimension and the proof will hold verbatim. Finally, we notethat the same proof also works
for the case of circular permutations, yielding the same upper bound:

Theorem 4 p′(k,d) ≤ k(4lnk+ lnd)
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3.2 Lower bound onp(k,d)

We first introduce a well-known result on the decomposition of complete graphs:

Lemma 1 The edges of K2h can be decomposed into h pairwise edge-disjoint Hamiltonian
paths.

This result follows from a special case of the Oberwolfach problem [5]. An explicit
proof of this lemma can also be found in [20].

Note that if the vertices ofK2h are labeledV = {1, . . . ,2h}, each path can be seen as a
permutation of 2h elements. Using Lemma 1 we obtain:

Theorem 5 For any fixed dimension d and number of colors k, let s=
⌈

(2d−1)k
2d

⌉

−1. Then,

p′(k,d) ≥ p(k,d) ≥ 2s+1.

Proof The first inequality comes from the fact that any polychromatic coloring with re-
spect to circular permutations is also polychromatic with respect to strips. We now focus on
showing the second inequality: letσ1, . . . ,σd be any decomposition ofK2d into d paths: we
construct the setP = {pi |0≤ i ≤ 2d}, wherepi = (σ1(i), . . . ,σd(i)). Note that the ordering
of P, when projected to thei-th axis, gives permutationσi . Since the elementsσ decompose
K2d, in particular for anyi, j ≤ 2d there exists a permutation in whichi and j are adjacent.

We replace each pointpi by a setAi of s points arbitrarily close topi . By construction,
for any i, j ≤ 2d, there exists a 2s-strip containing exactlyAi ∪A j . Consider any possible
coloring of the setsAi : since|Ai |= sand we are usingk colors, there are at leastk−scolors
not present in any setAi .

Since
⌈

(2d−1)k
2d

⌉

− 1 < (2d−1)k
2d , we conclude thatk− s > k− (2d−1)k

2d = k/2d. That is,

each set is missing strictly more thank/2d colors. By the pigeonhole principle, there exist
i and j such that the setAi ∪A j is missing a color (otherwise there would be more thank
colors). In particular, the strip that contains setAi ∪A j is not polychromatic, thus the theorem
is shown.

We gave a set of bounded sizen= 2d reaching the lower bound, but we can easily create
larger sets reaching the same bound: we can add as many dummy points as needed at the
end of every permutation, which does not decrease the value of p(k,d). ⊓⊔

Note that, assymptotitically speaking, the lower bound does not depend ond. However,
by the negative result of [16], we know thatp(k,d) → ∞ whend → ∞.

3.3 Computational complexity

In Section 2, we provided an algorithm that finds ak-coloring such that every planar(2k−1)-
strip is polychromatic. Thus ford=2 andk=2, this yields a 2-coloring such that every 3-strip
is polychromatic.

Note that in this casep(2,2) = 3, but the minimum required size of a strip for a given
instance can be either 2 or 3. Testing if it is equal to 2 is easy: we can simply alternate
the colors in the first permutation, and check if they also alternate in the other. Hence the
problem of minimizing the size of the largest monochromaticstrip on a given instance is
polynomial ford = 2 andk = 2. We now show that it becomes NP-hard ford > 2 andk = 2.
The same problem fork > 2 is left open.
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Theorem 6 The following problem is NP-complete:
Input: 3 permutationsπ1,π2,π3 of an n-element set S.
Question: Is there a 2-coloring of S, such that every 3 elements of S thatare consecutive
according to one of the permutations are not monochromatic?

Proof We show a reduction from NAE 3SAT (not-all-equal 3SAT) whichis the following
NP-complete problem [18]:
Input: A 3-CNF Boolean formulaΦ .
Question: Is there aNAE assignment toΦ? An assignment is calledNAE if every clause
has at least one literal assigned True and at least one literal assigned False.

We first transformΦ into another instanceΦ ′ in which all variables are non-negated
(i.e., we make the instance monotone). We then show how to realize Φ ′ using three permu-
tationsπ1,π2,π3.

To transformΦ into Φ ′, for each variablex, we first replace theith occurrence ofx in
its positive form by a variablexi , and theith occurrence ofx in its negative form byx′i . The
index i varies between 1 and the number of occurrences of each form (the maximum of the
two). We also add the followingconsistency-clauses, for each variablex and for alli:

(

Zx
i ,xi ,x

′
i

)

,
(

xi ,x
′
i ,Z

x
i+1

)

,
(

xi ,Z
′x
i ,x′i

)

,
(

Zx
i ,Z

′x
i ,Zx

i+1

)

(

x′i ,Z
x
i+1,xi+1

)

,
(

Z′x
i ,x′i ,xi+1

)

,
(

x′i ,xi+1,Z
′x
i+1,

)

,
(

Z′x
i ,Zx

i+1,Z
′x
i+1

)

whereZx
i andZ′x

i are new variables. This completes the construction ofΦ ′. Note thatΦ ′ is
monotone, as every negated variable has been replaced.

Moreover,Φ ′ has aNAEassignment if and only ifΦ has aNAEassignment. To see this,
note that aNAE assignment forΦ can be translated to aNAE assignment toΦ ′ as follows:
for every variablex of Φ and everyi, setxi ≡ x, x′i ≡ x, Zx

i ≡ True, Z′x
i ≡ False.

On the other hand, ifΦ ′ has aNAE assignment, then, by the consistency clauses, the
variables inΦ ′ corresponding to any variablex of Φ are assigned a consistent value. Namely,
for every i, j we havexi = x j andxi 6= x′i . This assignment naturally translates to aNAE
assignment forΦ , by settingx≡ x1.

We next show how to realizeΦ ′ by a setS and three permutationsπ1,π2,π3. The ele-
ments of the setS are the variables ofΦ ′, together with some additional elements that are
described below. Permutationπ1 realizes the clauses ofΦ ′ corresponding to the original
clauses ofΦ , while π2 andπ3 realize the consistency clauses ofΦ ′.

The additional elements inSare clause elements (two elementsc2 j−1 andc2 j for every
clausej of Φ) anddummy elements⋆ (the dummy elements are not indexed for the ease of
presentation, but they appear in the same order in all three permutations).

Permutationπ1 encodes the clauses ofΦ ′ corresponding to original clauses ofΦ as
follows (note that all these clauses involve different variables). For each such clause(u,v,w),
permutationπ1 contains the following sequence:

c2 j−1,u,v,w,c2 j ,⋆,⋆

At the end ofπ1, for every variablex of Φ ′ we have the sequence:

Zx
1,Z

′x
1 ,Zx

2,Z
′x
2 Zx

3,Z
′x
3 , . . . ,⋆,⋆

Permutationπ2 contains, for every variablex of Φ , the sequences:

Zx
1,x1,x

′
1,Z

x
2,x2,x

′
2,Z

x
3,x3,x

′
3,Z

x
4, . . . and ⋆,⋆,Z′x

1 ,⋆,⋆,Z′x
2 ,⋆,⋆,Z′x

3 , . . . ,⋆,⋆
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At the end ofπ2 we have the clause-elements and remaining dummy elements:

⋆,⋆,c1,⋆,⋆,c2,⋆,⋆,c3 . . .

Similarly, permutationπ3 contains, for every variablex of Φ , the sequences:

x1,Z
′x
1 ,x′1,x2,Z

′x
2 ,x′2,x3,Z

′x
3 ,x′3, . . . and ⋆,⋆,Zx

1,⋆,⋆,Z
x
2,⋆,⋆,Z

x
3, . . .⋆,⋆

and at the end ofπ3 we have the clause-elements and remaining dummy elements:

⋆,⋆,c1,⋆,⋆,c2,⋆,⋆,c3, . . .

This completes the construction ofS and π1,π2,π3. Note that for every clause ofΦ ′

(whether it is derived fromΦ or is a consistency clause), the elements corresponding to its
three variables appear in sequence in one of the three permutations. Therefore, if there is a
2-coloring ofS, such that every 3 elements ofS that are consecutive according to one of the
permutations are not monochromatic, then there is aNAE assignment toΦ ′: each variable
of Φ ′ is assigned True if its corresponding element is colored ‘1’, and False otherwise.

For the other direction, consider aNAEassignment forΦ ′. Observe that there is always
a solution whereZx

i andZ′x
i are assigned opposite values. Then assign color ‘1’ to elements

corresponding to variables assigned with True, and assign color ‘0’ to elements correspond-
ing to variables assigned with False. For the clause elements c2 j−1 andc2 j appearing in the
subsequencec2 j−1, u, v, w, c2 j , assign toc2 j−1 the color opposite tou, and toc2 j the color
opposite tow. Finally, assign colors ‘0’ and ‘1’ to each pair of consecutive dummy elements,
respectively. It can be verified that there is no monochromatic consecutive triple in any per-
mutation. ⊓⊔

Approximation. Note that the general minimization problem (find ak-coloring that mini-
mizes the number of required points) can be approximated using the constructive version of
the Lovász Local Lemma (as mentioned in Section 3.1). Sincek is a trivial lower bound for
any problem instance, this guarantees an approximation factor of O(logk+ logd). In partic-
ular, there exists a constant factor approximation for the problem introduced in Theorem 6
(since it fixesd = 3 andk = 2).

4 Coloring strips

In this section we prove that any finite set of strips inR
d can bek-colored so that every

“deep” point is polychromatic. For a given set of strips (or intervals, ifd = 1), we say that a
point is i-deepif it is contained in at leasti of the strips. We begin with the following easy
lemma:

Lemma 2 Let I be a finite set of intervals. Then for every k,I can be k-colored so that
every k-deep point is polychromatic, while any point covered by fewer than k intervals will
be covered by distinct colors.

Proof We use induction on|I |. Let I be the interval with the leftmost right endpoint. By in-
duction, the intervals inI \{I} can bek-colored with the desired property. Sort the intervals
intersectingI according to their left endpoints and letI1, . . . , Ik−1 be the firstk−1 intervals
in this order. It is easily seen that coloringI with a color distinct from the colors of those
k−1 intervals produces a coloring with the desired property, and hence a valid coloring.⊓⊔
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Theorem 7 For any d and k, one can k-color any set of axis-aligned stripsin R
d so that

every d(k−1)+1-deep point is polychromatic. That is,

p(k,d) ≤ d(k−1)+1.

Proof We start by coloring the strips parallel to any given axisxi (i = 1, . . . ,d) separately
using the coloring described in Lemma 2. We claim that this procedure produces a valid
polychromatic coloring for alld(k−1)+1-deep points. Indeed assume that a given points
is d(k−1)+1-deep and letH(s) be the set of strips coverings. Since there ared possible
orientations for the strips inH(s), by the pigeonhole principle at leastk of the strips in
H(s) are parallel to the same axis. Then by property of the coloring of Lemma 2,H(s) is
polychromatic. ⊓⊔

The above proof is constructive. By sorting the intervals that correspond to any of the
given directions, one can easily find a coloring inO(nlogn) time.

We now give a lower bound onp(k,d). For that, we define 2d strips as follows: strip
s2i is defined as 0< xi < 2 (wherexi is the coordinate ofi-th dimension). Analogously, we
define strips2i+1 as 1< xi < 3. The main property of these strips is that we can always find
a point covered by any subset of the 2d strips:

Lemma 3 For any I⊆ {1, . . . ,2d}, there exists a point pI such that pI ∈ si ⇔ i ∈ I, ∀i ≤ 2d.

Proof Note that whether or not pointpI is covered by stripss2i or s2i+1 only depends in the
i-th coordinate ofpI . Thus, we define thei-th coordinate of pointpI as follows:

• 1 if 2i ∈ I but 2i +1 6∈ I
• 2 if both 2i,2i +1∈ I
• 3 if both 2i,2i +1 6∈ I

Since the choice is independent on each dimension, the construction of pI is valid and is
only covered by strips inI . ⊓⊔

We use these strips to find a lower bound onp(k,d) as follows:

Theorem 8 For any fixed dimension d and integer k, it holds that

p(k,d) > ⌊k/2⌋d +1.

Proof Consider the 2d strips{si}i∈[2d] defined above. We replace each stripsi with a cluster
of ⌊k/2⌋ overlapping strips{si, j} j∈[⌊k/2⌋], so that a pointpI defined in Lemma 3 is in strip
si, j if and only if it is in si . This can be obtained, say, by perturbing a boundary of the strip
aroundxi = 0 (or aroundxi = 3).

Consider any coloring of the above problem instance with at most ⌊k/2⌋d colors. As
in the proof of Theorem 5, we can use the pigeonhole principleand the handshake lemma
to conclude that there is at a color that is missing in at least⌈k/2⌉2d/k ≥ d clusters. Let
I be the set of at leastd indices whose clusters are missing the same color. By Lemma 3,
point pI is covered only by the strips in clustersCi , for all i ∈ I . In particular,pI is at least
⌊k/2⌋d-deep and not colorful. ⊓⊔
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