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Abstract

Expanders are graphs that are sparse, yet highly connected. In this thesis, we consider an

elementary algorithm for constructing expanders, how to use them for proving hardness of ap-

proximation, how to utilize expanders for obtaining better approximations and their relation to

the parallel-repetition technique.

In Chapter 2 we presents two variants of the Parallel-Repetition. One that preserves unique-

ness but works only for good expanders and union of disjoint expanders, and the other that works

for any instance but does not preserve uniqueness. We show that the two variants of the Parallel-

Repetition technique perform “optimally”, i.e, the success probability decays exponentially fast

with k, regardless of the alphabet size and with no power on ε, albeit only down to some constant

error probability of the generated instance.

Such analysis also has algorithmic consequences: it allows converting an approximation algo-

rithm of expander instances for one set of parameters (error, size of alphabet and approximation

ratio) into another, so that an optimal algorithm for one such set of parameters suffices to obtain

optimal approximations for all the others. This chapter is based on the paper [SS07].

In Chapter 3 we describe a short and easy to analyze construction of constant-degree ex-

panders. Expanders are some of the most widely used objects in theoretical computer science.

Many algorithm were suggested for constructing such graphs (see Chapter 3 for further discussion).

Our construction relies on the replacement product, applied by [RVW02] to give an iterative

construction of bounded-degree expanders. Here we give a simpler construction, which applies the

replacement product, only a constant number of times, to turn the Cayley expanders of [AR94],

whose degree is polylog n, into constant degree expanders. This allows us to prove the required

expansion using a new simple combinatorial analysis of the replacement product (instead of the

spectral analysis used in [RVW02]). This chapter is based on the paper [ASS07].

In Chapter 4 we study the complexity of bounded packing problems, mainly the problem

of k-SetPacking. We prove that k-SetPacking cannot be efficiently approximated to within

a factor of O( k
ln k ) unless P = NP . This improves the previous factor of k

2Ω(
√

ln k)
by Trevisan

[Tre01].

This result extends to the problem of k-DimensionalMatching and the problem of Inde-

pendentSet in (k + 1)-claw-free graphs. To this end we introduce and studey the notion of

hyper-disperser. This chapter is based on the paper [HSS06].
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Chapter 1

Introduction

A Short History

Distinguishing between tractable problems —those computable in polynomially bounded

time— and the intractable ones —those that need more time resources— remains one of

the main goals of computational complexity. Cook, Karp and Levin [Coo71, Kar72, Lev73]

demonstrated in the early 70’s that a large class of natural combinatorial problems, whose

tractability has not been settled, are all equivalent in this respect: either all are tractable

or none of them is. This class is known as NP -Complete.

The tractability of solving those problems is the question whether P = NP . This

question is considered the most fundamental open question of computer science. Therefore,

when approaching an optimization problem that is known to be NP -Complete, one does

not expect to find an optimal solution, as this would resolve the P vs. NP open question.

Much research effort is therefore invested in obtaining polynomial time approximation

algorithms that guarantee a “good-enough” solution for every input.

However, for many problems, an approximate solution is as hard to obtain as an optimal

one. This fact is interpreted as inapproximability for those problems. Many inapproxima-

bility proofs rely on the seminal PCP Theorem [FGL+96, AS92, ALM+98, Din07].

For some problems, this fundamental theorem strengthen the inapproximability factors,

allowing, in some cases, a sharp threshold. That is, there is a factor so that efficiently

approximating the problem to within this factor is tractable, but approximating it even

slightly better is NP -hard.

Nevertheless, the complexity of approximating several problems was not thus resolved,
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and a gap still exists between the known efficient approximation guarantee and the best

NP -hardness factor demonstrated.

1.1 On Parallel-Repetition, Unique-Game and Max-

Cut

Between P and NP -hard. Consider a problem that is neither known to be in P nor

is it known to be NP -hard. An alternative option to consider is that it may be neither

in P nor in NP -hard. Unless P = NP , there are such problems. That is, let NPI =

NP \ (P ∪ NP − hard); then if P 6= NP then NPI 6= ∅ [Lad75].

No natural problem has yet been proven to be in NPI, even assuming NPI exists, i.e,

P 6= NP . There are, however, a few promising, well studied candidates. For example,

approximating ClosestVector and ShortedtVector problems to within factors of

some polynomial range (see [Sch87, Ban93, GG00, AR05]), GraphIsomorphism [BHZ87]

and Factoring (the decision version). These problems are not known to be in P , while

proving any of them to be NP -hard would imply the collapse of the polynomial time

hierarchy.

For any NPI prospective problem A, define the class A-hard to be the class of all

problems having a polynomial time reduction from A, and the equivalence class A-Complete

to be the class of all problems having a polynomial time reduction to and from A. Showing

reductions among NPI candidates would help sort the complexity of these problems.

Such reductions have been shown between approximation problems that are neither

known to be in P , nor known to be in NP -hard. Such recently popular NPI candidate

to reduce from, is the Gap-UniqueGame- [ε, 1 − ε] (for an arbitrarily small ε > 0). Denote

its hardness class by UG-hard∗. Khot [Kho02] conjectured this problem to be NP -hard,

however, no evidence for this problem being either in P or NP -hard has been shown.

When there is a gap between the best NP -hardness of approximation factor and the

known approximation guarantee, a tight threshold may sometimes exist between P and

UG-hard.

Following Feige, Kindler, and O’Donnell (see [FKO07] , section ”Strong Parallel-Repetition

∗Indeed Gap-UniqueGame- [ε, 1 − ε] is a different problem for every ε > 0. Saying that A is UG-hard
denotes the fact that there exists an ε > 0 so that Gap-UniqueGame- [ε, 1 − ε] ≤P A
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Problem”), we would like to consider MaxCut as a possible substitute for UniqueGame.

By the reduction of Khot, Kindler, Mossel and O’Donnell [KKMO04], it is already known

that Gap-MaxCut- [1 − c
√

ε, 1 − ε], (where c is any constant smaller than 2
π
) is UG-hard.

Showing a reduction in the other direction would imply the complexity of UniqueGame

and all problems shown hard for it relies on the hardness of MaxCut.

Assuming such a reduction, showing an efficient algorithm for UniqueGame requires

“only” improving on Goemans-Williamson polynomial time approximation algorithm [GW95]

for MaxCut. On the other hand, proving all these problems NP -hard must imply a

meaningful improvement on the technique of Trevisan et al. [TSSW00] and H̊astad’s NP -

hardness factor for MaxCut [H̊as01]. Both of these tasks seem clearer for the MaxCut

problem than for the UniqueGame problem, and well beyond current techniques.

A possible technique for proving this conjecture is to apply Parallel-Repetition to Gap-

MaxCut and obtain Gap-UniqueGame instance. As is later shown, the current pa-

rameters known for Parallel-Repetition (by [Raz98, Hol07]) are not strong enough to be

applied here. Such an analysis of Parallel-Repetition may in fact exist, which would imply

the previous conjecture, i.e, a MaxCut-hardness for all UG-hard problems.

Parallel-Repetition

The kth Parallel-Repetition of a ConstraintGraph instance U is an instance U⊗k of

ConstraintGraph problem, where the new vertices are k-tuples of the original vertices,

two new vertices are connected if the k corresponding edges exist in U and the constraints

are naturally defined as the disjunction of the k corresponding original constraints. Note

that the uniqueness is preserved, namely, the Parallel-Repetition of a UniqueGame in-

stance is a UniqueGame instance.

If U is 1 − ε satisfiable, then U⊗k is at least (1 − ε)k satisfiable, as one can take an

assignment to U⊗k that is entirely consistent with the optimal assignment to U . This

assignment is not necessarily the best one [FRS90].

There is, however, a qualitatively similar upper-bound on the satisfiability of U⊗k. Raz

[Raz98] and Holenstein [Hol07] showed that U⊗k is at most
(
1 − ε3

6000

) k
2 lg |Σ|

satisfiable,

where |Σ| is the alphabet size of U . However, the cubic power of ε in this upper-bound

prohibits using this analysis for showing MaxCut-hardness for UniqueGame.

Therefore, for this goal (and for other uses, as we later discuss) we are interested in
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improving the parameters of the upper-bound analysis of the Parallel-Repetition (the power

on ε, the dependency on |Σ|), or alternatively, suggesting other uniqueness preserving

amplification techniques which would allow such improvements.

1.1.1 Our Contribution

This chapter is based on the paper [SS07]. It presents two variants of the Parallel-

Repetition: the Noisy-Parallel-Repetition and the Expanding-Parallel-Repetition. In the

first variant we add self-loops (with equality constraints) to the original instance before

performing the original Parallel-Repetition. In the second variant, in addition to the self-

loops, we add a graph with large spectral-gap, with trivial constraints (i.e, constraints that

are always satisfied), before performing the original Parallel-Repetition.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only

for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition

variant works well for any instance, but does not preserve the uniqueness property.

We show that the two variants above perform “optimally” (i.e, the success probability

decays exponentially fast with k, regardless of the alphabet size and with no power on ε)

albeit only down to some constant error probability of the generated instance.†

Both variants are not sufficient for the goal of proving MaxCut-hardness for UniqueGame.

For this goal we need a uniqueness preserving amplification that works for any graph, can

be utilized to obtain any (arbitrarily small) soundness, and has an “optimal” amplification

rate.

Note that, in contrast to [Raz98, Hol07], our proof does not necessarily work for the

2-prover model, but only for the purpose where Parallel-Repetition is most often applied:

amplifying hardness of approximation. We also show some algorithmic application to these

variants.

†Recently Raz [Raz08] has shown that applying the Parallel-Repetition technique to MaxCut in-
stances with arbitrarily large k does not yield ”optimal” parameters, namely it cannot be used for proving
MaxCut-hardness for UniqueGame. See Chapter 2 for details.
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1.2 An Elementary Construction of Constant-Degree

Expanders

Expanders are graphs, that are simultaneously sparse, yet highly connected, in the sense

that every cut contains (relatively) many edges. A d-regular graph G = (V,E) is a δ-

expander if for every set S ⊆ V of size at most 1
2
|V | there are at least δd|S| edges connecting

S and S = V \ S.

Another widely used notion of expansion is based on algebraic properties of a matrix

representation of the graph. Let G = (V,E) be an n-vertex d-regular graph, and let A be

the adjacency matrix of G, that is, the n × n matrix, with Ai,j being the number of edges

between i and j. It is easy to see that 1n (the uniform vector) is an eigenvector of A with

the largest eigenvalue d, and that this is the only eigenvector with this eigenvalue iff G is

connected. We denote by λ2(G) the second largest eigenvalue of A. It is easy to see that

λ2(G) = max06=x⊥1n〈Ax, x〉/〈x, x〉. Let γ = 1 − λ2

d
be the (normalized) spectral-gap of G.

By [Alo86, AM85, Dod84] we know a quantitative relation between the edge expansion and

the spectral-gap:

γ

2
≤ δ ≤

√
2γ

1.2.0.1 Usefulness

Expanders are some of the most widely used objects in theoretical computer science, and

have also found many applications in other areas of computer-science and mathematics. See

the survey of Hoory et. al. [HLW06] for a discussion of several applications and references.

Expanders of Constant Degree. The most useful expanders are those with constant

degree. A priori, it is not clear that constant-degree expanders even exist. Pinsker [Pin73]

established their existence, using a probabilistic argument. In most applications, however,

one needs to be able to efficiently construct constant degree expanders explicitly.

Explicit Expanders. There are two notions of constructibility of d-regular expanders.

The first (weaker) notion requires the n-vertex graph to be constructible in polynomial

time in its size. The second (stronger) notion requires that given a vertex v and i ∈ [d] it
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would be possible to generate the ith neighbor of v in time polynomial in the representation

of v, namely, Poly(|v|) = Poly(log n). Such an expander is said to be fully explicit.

In applications where one needs to use the entire graph, it is often enough to use the

weaker notion. However, in such cases (e.g. in certain reductions) one frequently needs to

be able to construct a graph of a given size n.

In other cases, where one needs only part of the expander (e.g., when performing a

random walk on a large expander) one usually needs the stronger notion of fully explicitness.

However, in these cases it is usually enough to be able to construct an expander of size

Poly(n), as what we are interested in is actually the logarithm of the size of the graph.

Explicit Expanders and Spectral Analysis. Margulis [Mar73] and Gabber and Galil

[GG81] were the first to efficiently construct constant degree expanders. Following was a

sequence of works that culminated in the construction of Lubotzky, Phillips and Sarnak

[LPS88] and Margulis [Mar88] of Ramanujan Graphs. These constructions rely (directly

or indirectly) on estimations of the second largest eigenvalue of the graphs, and some of

them, rely on deep mathematical results.

A simpler, iterative construction was given by Reingold, Vadhan and Wigderson [RVW02].

This construction relies on proving the expansion of the graphs by estimating their eigen-

values, and is the first construction of constant degree expanders with relatively elementary

analysis.

1.2.1 Our Contribution

This chapter is based on the paper [ASS07]. We describe a short and easy to analyze

construction of constant-degree expanders. The construction yields an explicit constant-

degree expander of any desired size. A slight variation of the construction gives a fully-

explicit constant-degree expander of size that is at most polynomially larger than the input

parameter n (which, as mentioned above, suffices for most cases where fully-explicitness is

required).

The construction relies on the replacement product, and on the poly-logarithmic degree

expander construction of [AR94]. As our construction uses the replacement product only

a constant number of times, this enables us to prove the required expansion using a simple

combinatorial analysis of the replacement product (instead of the spectral analysis used in
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[RVW02]).

1.3 k-Set Packing and Related Problems

In Chapter 4 we consider the SetPacking problem. The input to SetPacking is a set

of elements and a family of subsets of the elements. The objective is to find a maximal

number of disjoint subsets. We examine the change in the complexity of this problem

when bounds are applied to it. In particular, we try to illustrate the connection between

the bounded parameters (e.g, sets size, occurrences of elements) and the complexity of the

bounded problem.

It is already known that bounded variants of optimization problems are often easier

to approximate than the general, unbounded problems. The IndependentSet prob-

lem illustrates this well: it cannot be approximated to within O(N1−ε) unless P = NP

[H̊as99, Zuc07]. Nevertheless, once the input graph has a bounded degree d, much better

approximations exist (e.g, a d log log d
log d

approximation by [Vis96]).

The general problem of SetPacking has been extensively studied (for example [Wig83,

BYM84, BH92, H̊as99, Zuc07]). Quite tight approximation algorithms and inapproximabil-

ity factors are known for this problem. H̊astad [H̊as99] proved that SetPacking cannot

be approximated to within O(N1−ε) unless NP ⊆ ZPP (for every ε > 0, where N is the

number of sets). Recently Zuckerman [Zuc07] showed the same inapproximability factor

under P 6= NP assumption. The best approximation algorithm achieves an approximation

ratio of O( N
log2 N

) [BH92]. In contrast, the case of bounded variants of this problem seems

to be of a different nature.

Bounds on SetPacking. k-SetPacking is the problem of SetPacking where the

size of each subset is bounded by k. Another natural bound is the colorability of the

input. That is, the minimal number of colors needed for coloring the elements, so that no

two elements of the same color participate in a joint subset. We denote this problem by

k-DimensionalMatching.

These bounded variants of SetPacking are known to admit approximation algorithms

better than their general versions, the quality of the approximation being a function of the

bounds (see Chapter 4 for details). With some abuse of notations, one can say that hardness

of approximation factor of SetPacking is a monotonous increasing function in each of
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the bounded parameters: the sets size, the number of occurrences of each element and the

colorability. For example, inapproximability factor for instances where each set is of size

at most 3 holds for instances where the bound is 4.

For large k values, we are usually interested in the asymptotic dependence of the ap-

proximation ratio (and inapproximability factor) on k. Currently, the best polynomial time

approximation algorithm for k-SetPacking achieves an approximation ratio of k
2

[HS89].

This is, to date, the best approximation algorithm for k-DimensionalMatching as well.

Alon et al. [AFWZ95] proved that k-SetPacking is NP -hard to approximate to within

kc−ε (for some c > 0 and for suitably large k). This was later improved [Tre01] to a factor

of k

2Ω(
√

ln k)
.

1.3.1 Our Contribution

This chapter is based on the paper [HSS06]. We improve the known inapproximability

factor for the variant k-SetPacking, and show that it is NP -hard to approximate k-

SetPacking to within O
(

k
ln k

)
.

This result is then extended to hold for k-DimensionalMatching (and shown to hold

for IndependentSet in (k + 1)-claw-free graphs).

For proving this inapproximability, we introduce and study the notion of Hyper Dis-

perser which is a the natural generalization of a disperser graph, applied to hyper graphs.

This object is used to enforce consistency. The optimality of the hyper-dispersers obtained,

allows utilizing it in a way that performs better than using many dispersers in parallel.
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1.4 Collaborators

Chapter 2 is based on the paper [SS07] written in collaboration with Muli Safra. Chapter

3 is based on the paper [ASS07] written in collaboration with Noga Alon and Asaf Shapira.

Chapter 4 is based on the paper [HSS06] written in collaboration with Elad Hazan and Muli

Safra. The following papers are not included in this thesis: the paper [BASTS07] written

with Avi Ben-Aroya and Amnon Ta-Shma, the paper [AAS06] written in collaboration with

Adi Avidor and Amitai Armon, and the paper [SS05] written in collaboration with Muli

Safra.
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1.5 General Preliminaries

1.5.1 Expanders

Expanders are graphs that are simultaneously sparse, yet highly connected, in the sense

that every cut contains (relatively) many edges.

The relevance of graph eigenvalues to its expansion is well studied. The relation between

the expansion of the graph and its second largest eigenvalue is often used to bound the

mixing time of random walks. Utilizing the expansion of a graph or its mixing time proves

to be useful in the context of NP -hardness as well (e.g, [PY88, Din07]).

Let G = (V,E) be a d-regular graph with adjacency matrix M . The normalized spectral-

gap γ of G is γ(G) = 1 − λ2(A)
d

where λ2(A) is the second-largest eigenvalue of A. We say

that G as γ-expander.

The relative edge expansion h of G is h(G) = minS⊆V,|S|≤ 1
2
|V |

|E(S,V \S)|
d|S| .

Theorem 1.1 (Expander theorem). [Alo86, AM85, Dod84] Let G = (V,E) be a γ-

expander, with relative edge expansion h. Then,

1

2
γ ≤ h ≤

√
2γ

1.5.2 Approximations

We usually use the convention of approximation ratio larger than 1 for maximization prob-

lems, and smaller than 1 for minimization problems. Formally,

Let O be an optimization problem, let ALG be an approximation algorithm for this

problem, and let I be an instance of O. Denote by OPT (I) the optimal solution for I, and

by ALG(I) the solution found by ALG applied to I. Denote by r the ratio of these two:

r = max{ |ALG(I)|
|OPT (I)| ,

|OPT (I)|
|ALG(I)|}. Then we say that ALG is a c-approximation for O if for every

input I, r ≤ c. For maximization problems, we sometimes refer to the approximation ratio

(and inapproximability factor) as c′ = 1
c

(thus it is smaller than 1).

1.5.3 Gap-Problems

In order to prove inapproximability of an optimization problem, one usually defines a

corresponding gap problem. Recall the definition of gap-problems:
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Definition 1.2 (Gap Problem - Minimization). Let O be a minimization problem.

Gap-O- [α, β] is the following decision problem:

Given an input instance, decide whether

• there exists a solution of size at most α, or

• every solution of the given instance is of size larger than β.

If the size of the solution resides between these values, then any output suffices.

Similarly,

Definition 1.3 (Gap problem - Maximization). Let O be a maximization problem.

Gap-O- [α, β] is the following decision problem:

Given an input instance, decide whether

• there exists a solution of fractional size at least β, or

• every solution of the given instance is of fractional size smaller than α.

If the size of the solution resides between these values, then any output suffices.

Clearly, for any optimization problem, if Gap-O- [α, β] is NP -hard, then it is NP -hard

to approximate O to within any factor smaller than β
α
.
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Chapter 2

On Parallel-Repetition,

Unique-Game and Max-Cut

2.1 Introduction

Proving UG-hardness of approximation where NP -hardness of approximation is not known,

has recently been proven to be a fruitful technique. In some cases, the UG-hard fac-

tors match the known approximation guarantee. For example, the best NP -hardness of

approximating VertexCover is 1.3606 [DS02], where the best UG-hardness is 2 − ε

[KR03], matching the known 2-approximation for this problem. Another example is the

MaxCut problem. The best NP -hardness of approximation factor for this problem is
16
17

[TSSW00, H̊as01], where the UG-hardness of approximation [KKMO04] matches the

Goemans-Williamson approximation constant (≈ 0.87856) [GW95]. For more UG-hard

problems and further discussion of UG-hardness see overview in [Kho05].

Approximability of MaxCut. For a MaxCut instance whose optimal cut contains

almost all edges, one can efficiently find a cut only slightly smaller than the optimal [GW95].

Therefore, the approximation ratio is close to 1 and it may make more sense to measure

the approximability in terms of the unsatisfied fraction, rather than the satisfied fraction.

In other words, to consider the dual problem - MinUnCut.

In most cases, when considering approximation ratios, they are either constant or stated

as a function of the input size. However, for MinUnCut the (in)approximation factor cε
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is a function of ε - the fractional size of the optimal solution.

For MinUnCut there is a sharp threshold between P and UG-hardness around 2
π
· 1√

ε

[GW95, KKMO04], but NP -hardness only for factors smaller than 16
15

(the NP -hardness

is by a simple reduction from MaxCut inapproximability of H̊astad and Trevisan et al.

[H̊as01, TSSW00] , see Appendix 2.6.1)∗.

Figure 2.1: The Complexity of Approximating MinUnCut for various ratios. ε is the
fractional size of the optimum.

MaxCut-hardness vs. UG-hardness

Denote by MaxCut-hard and MaxCut-complete the hardness and completeness classes

of Gap-MaxCut- [1 − c
√

ε, 1 − ε], where c is some constant smaller than 2
π
. By the re-

duction from UniqueGame to MaxCut of Khot et al. [KKMO04], it is known that

any MaxCut-hard problem is UG-hard as well. However, a reduction from MaxCut to

UniqueGame is not known (in fact, UniqueGame is not known to be hard for any other

problem). Note that, technically speaking, MaxCut is a special case of UniqueGame.

However, for UniqueGame, we are interested in soundness arbitrarily close to 0, where

in MaxCut we are intersected in soundness close to 1. This seemingly makes MaxCut

harder than UniqueGame. Therefore, proving MaxCut-hardness for a problem appears

to be a stronger result than showing it is UG-hard.

It would therefore be of great interest to show such a reduction. This would show that

proving UG-hardness is equivalent to proving MaxCut-hardness. Let us consider the

possibility of such a reduction, namely:

∗A few algorithms guarantee an approximation ratio for MinUnCut that depend on the input size

(e.g, O

(
3

√
lg n

ε2

)
of Trevisan [Tre05] and O

(√
lg n

ε

)
of Gupta and Talwar [GT06]). Note however, that

such algorithms are not relevant for constant ε, but only for sub-constant ε.
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Conjecture 2.1 (MaxCut conjecture). There exists a polynomial-time reduction from

MaxCut to UniqueGame such that for every constant ε′ > 0 there exist constants cε′

and ε > 0 so that

Gap-MaxCut- [1 − cε′ · ε, 1 − ε] ≤p Gap-UniqueGame- [ε′, 1 − ε′]

Stated otherwise, assuming this conjecture, one only needs to consider the approx-

imability of MinUnCut in order to understand the complexity of UniqueGame. If it

can be approximated better than Goemans-Williamson approximation [GW95] then the

UniqueGame-conjecture is false. If the NP -hardness of MinUnCut [TSSW00, H̊as01],

can be significantly improved then the UniqueGame-conjecture is right. And if MinUn-

Cut can be shown to be in NPI (which would make it the first natural problem in NPI)

then the UniqueGame-conjecture is false, but still UG-hard problems are not in P , unless

P = NP .

Proving the MaxCut conjecture is the grand objective. Here we only manage to

prove special cases of it. One way of showing a reduction as stated in the MaxCut

conjecture may be to apply Parallel-Repetition [Raz98] assuming optimal parameters. We

next consider the Parallel-Repetition, its parameters and some of its variations.

Hardness Reduction via Parallel-Repetition

The Parallel-Repetition is a generic technique that is used for amplifying two-provers in-

teractive proofs and hardness of approximation problems. It is often used as a first step

of NP -hardness of approximation reductions, in order to reduce the soundness of a given

gap-problem to an arbitrarily small constant (e.g, [H̊as01, DS02, DGKR05]). The param-

eters of this technique are of independent interest and have impact on the its usability for

various applications.

Applying the kth Parallel-Repetition to a MaxCut instance U yields a UniqueGame

instance U⊗k where each vertex is k vertices of U , each edge corresponds to k edges of

U , and the constraints are defined naturally. Assume that the optimal solution for U

satisfies a (1−ε) fraction of the constraints. Then, the optimal solution for U⊗k satisfies at

least (1 − ε)k fraction of the constraints (as one can take an assignment that is anywhere

consistent with the optimal solution of U). This assignment was thought to be optimal for
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some time, but in fact better assignments —that are not product assignments— sometimes

exist [FRS90]. However, qualitatively speaking, the tightest known upper-bound on the

successes probability does decay in an exponential rate (in k), as shown by Raz [Raz98] and

by Holenstein [Hol07]. For the general ConstraintGraph problem it is
(
1 − ε3

6000

) k
2 lg |Σ|

.

Alas, due to the cubic power of ε in the upper-bound, this guarantee is not sufficient

for some applications, in particular for the gap problem Gap-MaxCut- [1 − c
√

ε, 1 − ε]:

the upper bound on the soundness of U⊗k might be larger than the lower bound on its

completeness (regardless of k) †.

2.1.0.1 The Parameters of Parallel-Repetition.

When considering an error-probability amplification technique, such as the Parallel-Repetition,

a few attributes are of interest. We next consider these attributes of Parallel-Repetition

and related techniques.

Amplification Rate. Consider an upper-bound on the amplification rate of the kth

Parallel-Repetition of 1 − ε satisfiable UniqueGame. If it is of the form (1 − εα)ck then,

by the lower bound of (1 − ε)k we have α ≥ 1, c ≤ 1 and we are interested in as small as

possible α and as large as possible c.

The Rate Depends on the Alphabet Size. In the upper-bound on Parallel-Repetition

of Raz [Raz98], c is a constant that depends on |Σ| - the alphabet size of the input instance.

Raz [Raz95] also proves that for the general ConstraintGraph instances, which are

far from being completely satisfiable, the exponent of the upper-bound has to depend on

|Σ| (it is multiplied by a factor of O( lg lg |Σ|
lg |Σ| )). That is, the 1

lg |Σ| factor in the exponent

of the upper-bound of Raz [Raz98] cannot be significantly improved. This bound on the

exponent, however, does not necessarily hold for almost completely satisfiable instances for

UniqueGame instances and for other variants of the Parallel-Repetition.

Indeed, Feige and Kilian [FK00] consider a variant of the Parallel-Repetition, which

they call the “miss-match” form. They show that the amplification rate of their variant

does not depend on |Σ| (though their amplification rate is not tight, i.e, not of the form

(1 − εα)ck).

†In fact, for the special case of MaxCut, the loss can be shown to be only square (see [FL92, FKO07]).
However, this square loss is still too large for allowing the reduction from MaxCut to UniqueGame.
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The Size of the Output Instance and its Alphabet. The kth Parallel-Repetition

increases both the size of the instance and its alphabet by a power of k. For some applica-

tions (see for example Section 2.4) we would like the increase of the instance size and the

alphabet size to be as small as possible for a given error probability amplification.

Error probability: Source and Target. An amplification technique may have limita-

tions on the error probability it can handle in the input instance and the error probability

it can guarantee in the generated instance. The Parallel-Repetition handles any arbitrarily

small constant error probability δ in the input instance, and generates an instance with an

arbitrarily small constant success probability. However, if we are interested in error prob-

ability δ of the input which is polynomially small and success probability of the output

which is polynomially small, then the generated instance U⊗k is of exponential size, and

therefore the procedure is no longer polynomial.

The PCP theorem can be viewed as an amplification technique that handles well input

instances with polynomially small error probability. Note that in Dinur’s proof of the PCP

theorem, the success probability can be reduced to some constant (larger than 1
2
), but not

to an arbitrarily small constant [Din07, Bog05].

Uniqueness Preservation. For the purpose of showing a reduction from MaxCut to

UniqueGame, the amplification applied has to preserve the uniqueness property of the

constraints. The uniqueness is indeed preserved in the original Parallel-Repetition. In the

variant of Feige and Kilian, the output instance is not UniqueGame, even if the input

instance is.

2.1.0.2 “Optimal” Parallel-Repetition.

Ideally we would like an “Optimal” Parallel-Repetition. That is, a uniqueness preserving

amplification technique that guarantees a tight upper-bound, is independent of the alphabet

size and of the spectral-gap and works for an arbitrarily small constant error probability of

the input and an arbitrarily small constant success probability of the output.

After the initial submission of this thesis, Raz [Raz08] has given a counter example for

an ”optimal” performance of Parallel-Repetition. He has demonstrated that the Parallel-

Repetition (and the Noisy-Parallel-Repetition) does not perform ”optimally” for arbitrar-



18 On Parallel-Repetition, Unique-Game and Max-Cut

ily large k. In particular, when applied to the odd-cycles game (already considered in

[FKO07]), a 1− ε satisfiable instance yields a (1− ε2)Θ(k) satisfiable unique-game instance.

This contradicts a conjecture regarding the optimality of Noisy-Parallel-Repetition

which appeared in a previous version of this thesis and in [SS07], and means that nei-

ther Parallel-Repetition nor Noisy-Parallel-Repetition provide an immediate reduction for

proving MaxCut-hardness for UniqueGame. There may still, however, be some hope

that conjecture 2.1 is right; that there is some other uniqueness preserving amplification

technique, so that the upper-bound on the success probability is at most (1−δα)ck for some

constant α < 2, and thus it suffices as a reduction from MaxCut to UniqueGame.

2.1.1 Variants of the Parallel-Repetition

This chapter presents two variants of the Parallel-Repetition: the Noisy-Parallel-Repetition

and the Expanding-Parallel-Repetition.

Noisy-Parallel-Repetition. In the first variant we add self-loops with equality con-

straints to the original graph G, before performing the original Parallel-Repetition. Their

relative weight is Ploop (say, Ploop = 1
2
). Note that adding self-loops changes the success

probability from 1− ε to Ploop + (1− Ploop) · (1− ε). This means that a completeness close

to perfect remains as such, and a soundness close to 0 becomes close to Ploop. Clearly,

Noisy-Parallel-Repetition preserves uniqueness.

One can think of the kth-Noisy-Parallel-Repetition as follows. The vertices are k-

tuples of the original vertices (the same as in Parallel-Repetition). Given a k-vertex x′ =

(x1, ..., xk) its neighbor y′ = (y1, ..., yk) is generated according to the following distribution.

yi is set to be xi with probability Ploop and to be a random neighbor of xi in G with

probability 1 − Ploop. The constraints are naturally defined to be the disjunction of the

constraints of the k corresponding edges.

Expanding-Parallel-Repetition. In the second variant, in addition to the self-loops,

we add to G a graph H with a large spectral-gap, with trivial constraints (always sat-

isfied), and relative weight PH , before performing the original Parallel-Repetition. The

resulting instance is not a UniqueGame instance, even if the original instance is, due to

the constraints of H.
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One can think of the kth-Expanding-Parallel-Repetition as follows. The vertices are

k-tuples of the original vertices (the same as in Parallel-Repetition). Given a k-vertex x′ =

(x1, ..., xk) its neighbor y′ = (y1, ..., yk) is generated according to the following distribution.

yi is set to be xi with probability Ploop, to be a random neighbor of xi in H with probability

PH and to be a random neighbor of xi in G with probability 1−PH −Ploop. The constraints

are naturally defined to be the disjunction of the constraints of the corresponding edges from

G, and self-loops (the trivial constraints of H don’t matter). This means that, unlike the

Parallel-Repetition, a k-edge connects two k-vertices x′ = (x1, ..., xk) and y′ = (y1, ..., yk)

even if only for some of the coordinates i the vertices xi and yi are neighbors in G.

2.1.2 Our Results

We show that the two variants of the Parallel-Repetition technique perform “optimally”,

albeit only down to some constant error probability of the generated instance. That is,

for every k ≤ 1
ε
, the success probability decays exponentially fast with k, regardless of the

alphabet size and with no power on ε.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only

for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition

variant works well for any instance, but does not preserve the uniqueness property. Un-

fortunately both variants are not sufficient for the goal of proving MaxCut-hardness for

UniqueGame. For this goal we need an amplification that works for any graph, preserves

the uniqueness and can be utilized to obtain any (arbitrarily small) soundness.

Theorem 2.2 (Main theorem). Let U be a 1 − ε satisfiable ConstraintGraph in-

stance. Let U be the kth Noisy-Parallel-Repetition of U , with Ploop = 1
2
, where k ≤ 1

ε
.

Then U is at most (1 − ε)cγk satisfiable where γ = γ(U) and cγ = γ

12800·lg 800
γ

.

Moreover, if G is a union of expanders, each with eigenvalue-gap at least γ then the

same theorem holds (with cγ multiplied by some constant).

Note that we do not try to optimize cγ. We later show that the Noisy-Parallel-Repetition

is constructive, namely,

Corollary 2.3 (Constructiveness). Given an assignment to the generated instance of

the kth Noisy-Parallel-Repetition that satisfies 1 − δ fraction of its constraint for δ < cγ,
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one can, in polynomial time, compute an assignment to the input instance that satisfies at

least a 1 − δ
cγ ·k fraction of the constraints.

We then show a similar bound for the Expanding-Parallel-Repetition, with no depen-

dency on γ(U).

Corollary 2.4 (Expanding-Parallel-Repetition). Let U be a 1 − ε satisfiable Con-

straintGraph instance. Let U be the kth Expanding-Parallel-Repetition of U , with

Ploop = 1
2

and PH = 1
4
, where k ≤ 1

ε
.

Then U is at most (1 − ε)ck satisfiable, where c is some universal constant (that does

not depend on the spectral-gap or the alphabet size of the input instance ).

The Expanding-Parallel-Repetition is constructive, namely,

Corollary 2.5 (Constructiveness). Given an assignment A to the generated instance of

Expanding-Parallel-Repetition that satisfies 1 − δ fraction of its constraint for δ < c, one

can, in polynomial time, compute an assignment to the input instance that satisfies at least

a 1 − δ
c·k fraction of the constraints.

Note that, in contrast to [Raz98, Hol07], our proof does not necessarily work for the

2-prover model, but only for the purpose where Parallel-Repetition is most often applied:

amplifying hardness of approximation. We also show some algorithmic application to these

variants.

Algorithmic Applications. We show how one can use the “Optimal” Parallel-Repetition

conjecture (or sometimes the “Optimal” Noisy-Parallel-Repetition theorem for expanders)

for generalizing approximations for UniqueGame and for amplifying approximations for

expanders instances.

Outline

In Section 2.2 we give some preliminaries, including some of the notations we later use. The

main theorem, regarding Noisy-Parallel-Repetition, is proved in Section 2.3. We start with

the case of expanders (Section 2.3.1), then consider the case of union of disjoint expanders

(Section 2.3.2). The Expanding-Parallel-Repetition and a comparison to the “miss-match”

form is then considered ( Section 2.3.3). Section 2.4 presents some algorithmic applications.

Open problems and concluding remarks are discussed in Section 2.5.
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2.2 Preliminaries

2.2.1 Graphs.

All graphs considered here are undirected and regular (with possibly parallel edges). For

any graph G = (V,E) and two subsets A,B ⊆ V the set EG(A,B) is all edges (u, v) ∈ E

connecting a vertex u ∈ A to a vertex v ∈ B. Similarly, EG(A) denotes the set of all edges

(u, v) ∈ E connecting a vertex u ∈ A to any vertex of G. We write E(A,B) and E(A)

when G is obvious from the context.

When considering the adjacency matrix MG of a d-regular graph G, we think of the

normalized matrix. That is, the sum of each row (and column) is 1, and all eigenvalues

are reals in the range [−1, 1]. Stated otherwise, MG is the 0/1 adjacency matrix of G

normalized by a factor of 1
d
.

2.2.2 Problems Definition.

Let us now formally define the ConstraintGraph and UniqueGame problems and the

Parallel-Repetition theorem.

Definition 2.6. The ConstraintGraph Problem (also known as GraphLabelling

Problem) is:

Input: U = 〈G, Σ, C〉 where G = (V,E) is an undirected graph, Σ a finite alphabet and

C = {ce}e∈E a set of constraints (one constraint for each edge) where ce ⊆ Σ × Σ.

Objective: Find an assignment A : V → Σ that maximizes the number of satisfied con-

straints.

We say that a constraint ce of an edge e = (u, v) is satisfied by A if (A(u), A(v)) ∈ ce.

We denote by δ(A(U)) the fractional size of constraints of U that are unsatisfied by A,

that is,

δ(A(U)) =
1

|C| · |{c(u,v) ∈ C | (A(u), A(v)) /∈ c(u,v)}|

We denote by δ(U) (or sometimes by ε(U)) the minimal error of U , i.e, the fraction of

unsatisfied constraints in an optimal assignment to U :

δ(U) = min
A:V →Σ

δ(A(U))
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Let γ(U) be the spectral gap of G, namely, γ(G) = 1− λ(G) where λ(G) is the second-

largest eigenvalue of the adjacency matrix MG of G.

Definition 2.7 (UniqueGame). The UniqueGame problem (UG) is a special case of

the ConstraintGraph problem, where each constraint is a permutation on Σ, i.e, for

every e ∈ E there exists a permutation πe : Σ → Σ such that ce = {(σ, πe(σ))}σ∈Σ

Namely, every assignment to a vertex u uniquely determines the assignment to its neigh-

bor v in order for the constraint c(u,v) to be satisfied.

We denote by UGΣ the UniqueGame problem, over the specific alphabet Σ. For any

integer i ≥ 2, we denote by UGi the problem UGΣ over some Σ such that |Σ| = i.

Definition 2.8 (MaxCut and Max-q-Cut). The MaxCut problem is:

Input: an undirected graph G = (V,E).

Objective: find a partition of V into (S, V \ S) so that |E(S, V \ S)| is maximized.

The MinUnCut problem is:

Input: an undirected graph G = (V,E).

Objective: find a partition of V into (S, V \ S) so that 1 − |E(S, V \ S)| is minimized.

The Max-q-Cut problem is:

Input: an undirected graph G = (V,E).

Objective: find a partition of V into q subsets S1, ..., Sq so that

∑

1≤i<j≤q

|E(Si, Sj)|

is maximized.

2.2.3 Parallel Repetition.

Definition 2.9 (Parallel-Repetition). Let U = 〈G, Σ, C〉 be an instance of Constraint-

Graph problem. The kth Parallel-Repetition of U , denoted by U⊗k is an instance 〈G⊗k, Σk, C∧k〉
of ConstraintGraph where:

G⊗k = (V k, E ′), i.e, a vertex of G⊗k is a k-tuple of vertices of G.

An edge e′ ∈ E ′ connects two vertices 〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉 ∈ V k if and only if

(vi1 , vj1), ..., (vik , vjk
) are all edges of G.
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The constraint ce′ : Σk → Σk of an edge e′ ∈ Ek where e′ = (〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉) is

satisfied by an assignment A : V k → Σk if and only if the constraint of the k corresponding

edges of G are satisfied by A restricted to the vertices of G. Namely, C∧k = {ce′}e′∈E′ where

ce′(A(〈vi1 , ..., vik〉), A(〈vj1 , ..., vjk
〉)) =

∧

l∈[k]

c(vil
,vjl

)(A(〈vi1 , ..., vik〉)|l, A(〈vj1 , ..., vjk
〉)|l)

Note that the adjacency matrix MG⊗k of G⊗k is simply the kth tensor product of the

adjacency matrix MG of G. Observe that if U is a UniqueGame instance then so is U⊗k.

Observe also that γ(MG) = γ(MG⊗k). This is true as the eigenvalues of M1⊗M2 are exactly

{λ1 · λ2 | λ1 is an eigenvalue of M1 and λ2 is an eigenvalue of M2}

and therefore the second-largest eigenvalue of AG⊗k = (MG)⊗k is λ(G) · 1k−1 = λ(G)‡.

Theorem 2.10. [Raz98] (The exact parameters are from [Hol07]). If U is an instance of

ConstraintGraph problem with error probability δ, then for every k, U⊗k has an error

probability at least 1 −
(
1 − δ3

6000

) k
2 lg |Σ|

Sometimes it is convenient to consider the following generalization of Parallel-Repetition

where we have k different games:

Definition 2.11 (Parallel Games). Let Ui = 〈Gi = (Vi, Ei), Σi, Ci〉 be Constraint-

Graph instances for i ∈ [k]. Assume all Gi have the same degree d. The parallel games

of {Ui}i∈[k], denoted by
⊗

i∈k Ui is an instance 〈G′, Σ′, C ′〉 where,

• G′ =
⊗k

i=1 Gi = (E ′, V ′). of

V ′ = V1 × ... × Vk. We denote a vertex of G′ by k-vertex.

An edge e′ ∈ E ′ connects two vertices 〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉 ∈ V ′ if and only if

(vi1 , vj1), ..., (vik , vjk
) are edges of G1, ..., Gk respectively. We denote an edge of G′ by

k-edge.

• Σ′ = Σ1 × ... × Σk

‡Indeed MaxCut instance U for which γ(U) = 1 − λ2(U) reduces to UniqueGame instance U⊗k

of the same spectral gap. However, the other direction is not known: the reduction in [KKMO04] from
UniqueGame to 1 − ε satisfiable MaxCut yields an instance M with spectral gap γ(M) = O(ε), as the
ε noise long-code test has spectral gap of O(ε).
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• The constraint ce′ ⊆ Σk ⊗Σk of an edge e′ ∈ E ′ where e′ = (〈vi1 , ..., vik〉, 〈vj1 , ..., vjk
〉)

is satisfied by an assignment A : V ′ → Σ′ if and only if each constraint of the k

corresponding edges of G1, ..., Gk is satisfied by A restricted to the vertices of the

relevant Gi. Namely, C∧k = {ce′}e′∈E′ where

ce′(A(〈vi1 , ..., vik〉), A(〈vj1 , ..., vjk
〉)) =

∧

l∈[k]

c(vil
,vjl

)(A(〈vi1 , ..., vik〉)|l, A(〈vj1 , ..., vjk
〉)|l)

For a k-vertex v′ = 〈vi1 , ..., vik〉 ∈ V ′ we denote by v′[j] the j’th coordinate of v′, namely

vij . We denote by A(v′)|l the assignment A(v′) projected on v′[l].

For v ∈ V , let V ′
i↓v ⊆ V ′ be the set of all k-vertices in V ′ having v at their ith coordinate,

namely,

V ′
i↓v = {v′ ∈ V ′ | v′[i] = v}

For v ∈ V , σ ∈ Σ and an assignment A′ : V ′ → Σ′ let V ′
i↓v=σ be the subset of V ′

i↓v which

are assigned σ at their ith coordinate, namely,

V ′
i↓v=σ = {v′ ∈ V ′

i↓v | A′(v′)|i=σ}

and for (u, v) ∈ E, let E ′
i↓(u,v) ⊆ E ′ be

E ′
i↓(u,v) = {(x′, y′) ∈ E ′ | x′[i] = u, y′[i] = v}

Let A′ be an assignment to
⊗

i∈k Ui. Then we denote by APlur
i the assignment to Ui

that is the most plural assignment at coordinate i. Namely,

APlur
i (v) = argmax

σ∈Σ
|{v′ ∈ V ′

i↓v | A(v′)|i = σ}|
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2.3 Variants of Parallel Repetition

In this section we prove the main theorem regarding Noisy-Parallel-Repetition:

Theorem 2.2 (Main theorem) Let U be a 1 − ε satisfiable ConstraintGraph

instance. Let U be the kth Noisy-Parallel-Repetition of U , with Ploop = 1
2
, where k ≤ 1

ε
.

Then U is at most (1 − ε)cγk satisfiable where γ = γ(U) and cγ = γ

12800·lg 800
γ

. Moreover, if

G is a union of expanders, each with eigenvalue-gap at least γ then the same theorem holds

(with cγ multiplied by some constant).

2.3.1 Noisy-Parallel-Repetition for Expanders

Proof of the main theorem (Theorem 2.2). We prove the upper-bound for the case of ex-

panders first (Lemma 2.12). The upper-bound for union of disjoint expanders is proved in

Corollary 2.22. From here on, when analyzing Noisy-Parallel-Repetition, we assume the

self-loops and consider only the Parallel-Repetition operator.

Lemma 2.12 (Parallel-Repetition - Constructive upper-bound). Let U = 〈G, Σ, C〉
be a ConstraintGraph instance wih spectral-gap γ = γ(U) and set U = U⊗k.

Let A be an assignment that satisfies 1−δ fraction of U and let APlur
i be the most plural

assignment of A at coordinate i. For every i ∈ [k] denote by δi the unsatisfied fraction of

G by APlur
i .

Then 1− δ ≤ 1− cγ ·min(1,
∑

i∈[k] δi), where cγ = γ

12800·lg 800
γ

. Stated otherwise, if δ < cγ

then there exists i ∈ [k] so that APlur
i satisfies at least 1 − δ

kcγ
fraction of U .

Lemma 2.13 (Parallel-Games - Constructive upper-bound). Let Ui = 〈Gi, Σi, Ci〉
be ConstraintGraph instances for i ∈ [k]. Set U =

⊗
i∈k Ui = 〈G′, Σ′, C ′〉 and let

γ = min{γ(Ui)}i∈[k].

Let A′ be an assignment that satisfies 1−δ fraction of U and let APlur
i be the most plural

assignment of A at coordinate i. For every i ∈ [k] denote by δi the unsatisfied fraction of

Gi by APlur
i .

Then 1 − δ ≤ 1 − cγ · min(1,
∑

i∈[k] δi), where cγ = γ

12800·lg 800
γ

.

Stated otherwise, if δ < cγ then there exists i ∈ [k] so that APlur
i satisfies at least 1− δ

cγk

fraction of Ui.
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Note that Lemma 2.12 is an immediate corollary of Lemma 2.13, by taking Ui = U

for every i ∈ [k]. The constructiveness follows, as one can easily compute APlur
i for every

i ∈ [k] given A, and check the satisfied fraction by each of those assignments. See Section

2.4.2 for further discussion on the efficiency of the constructiveness.

Corollary 2.14 (Parallel-Repetition - upper-bound). If U = 〈G, Σ, C〉 is a Con-

straintGraph instance and U = U⊗k, then the maximal satisfiability of U is at most

1 − cγ · min(1, δ(U) · k), where γ = γ(U).

Corollary 2.15 (Parallel-Games - upper-bound). Let Ui = 〈Gi = (Vi, Ei), Σi, Ci〉
be ConstraintGraph instances for i ∈ [k]. Set U =

⊗
i∈k Ui = 〈G′, Σ′, C ′〉 and let

γ = min{γ(Ui)}i∈[k].

Then U is at most 1 − cγ · min(1,
∑

i∈[k] δ(Ui)) satisfiable.

Proof of Lemma 2.13. Let A be an assignment to U. Recall that APlur
i is the assignment to

Ui that is the most plural assignment at coordinate i. We show that the sum of unsatisfied

fraction of Ui by Ai (over all i ∈ [k]) is, up to sum multiplicative factor, a lower-bound on

the unsatisfied fraction of U by A.

We do this by considering two cases. Either A is very consistent with the plurality

assignments, and the upper-bound comes up naturally, or A is far from being consistent

with the plurality assignments, and the inconsistency incurs many unsatisfied k-edges.

We say that an edge of Gi is red if it is not satisfied by APlur
i . Recall that δi is the

fraction of red edges of Gi.

We say that a vertex v ∈ Vi is red if it has many occurrences that disagree with APlur
i ,

that is, if Prv′∈V ′
i↓v

[
A(v′)|i = APlur

i (v)
]
≤ 99

100
. Denote by αi the fraction of red vertices of

Gi.

Let S ⊆ [k] be the set of coordinates i for which at least δi

4
of the vertices are red.

Clearly
∑

i∈[k] δi =
∑

i∈S δi +
∑

i∈S δi. Therefore, (at least) one of the two sums on the right

hand side is at least half of the left hand side.

We therefore only need to consider two cases. Either

1.
∑

i∈S δi ≥ 1
2

∑
i∈[k] δi, (in which case we show a lot of inconsistency in the projected

assignment to Ui, namely many unsatisfied k-edges due to self-loops of G) or

2.
∑

i∈S δi ≥ 1
2

∑
i∈[k] δi (in which case we show many unsatisfied k-edges due to red

edges).
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We show that indeed in both cases there are many unsatisfied k-edges. We start with

(1):

Claim 2.16. In case (1), A satisfies at most 1− cγ ·min(1,
∑

i∈[k] δi) fraction of U, where

cγ = γ

12800·lg 800
γ

.

Proof. We utilize in this proof the γ expansion of the graph, as well as the self-loops of

weight at least 1
2
.

Let i ∈ S and let v ∈ Vi be a red vertex. A k-edge e′ = (x′, y′) ∈ E ′
i↓(v,v) is unsatisfied

if A(x′)|i 6= A(y′)|i (as x′[i] = y′[i] = v and the constraint on the self-loop of v demands

equality).

Let

Pi,v = Pr
e′=(x′,y′)∈E′

i↓(v,v)

[e′ is not satisfied by A]

We next give a lower-bound on the probability Pi,v. We then find a lower-bound on the

probability P1 that a random k-edge (of G′) is unsatisfied, by considering the number of

red vertices, and taking into account that a k-edge may be unsatisfied due to more than

one red vertex, so we do not over-count.

Claim 2.17.

Pi,v ≥ γ

400

Proof. Let G′
i↓v = (V ′

i↓v, E
′
i↓(v,v)), namely G′

i↓v is a subgraph of G′ where we consider only

k-edges that correspond to the self-loops on v in the ith coordinate. As Gi is d-regular

with (at least) d
2

self-loops on each vertex, we have that G′
i↓v is D-regular for D ≥ dk

2
.

Consider the spectral-gap of G′
i↓v. G′

i↓v is the graph (tensor) product of the following

two graphs: (1) a single vertex v and self-loops on it and (2)
⊗

j∈[k]\{i} Gj. Therefore, we

have that γ(G′
i↓v) = min{γ(Gj)}j∈[k]\{i} ≥ min{γ(Gj)}j∈[k] = γ.

By the Expander theorem (Theorem 1.1) we know that for every M ⊆ V ′
i↓v of fractional

size at most 1
2
,

|EGi↓v
(M,M)|

D · |M | ≥ γ

2

Claim 2.18. There exists a cut (M,M) of V ′
i↓v so that 1

100
≤ |M |

|V ′
i↓v

| ≤ 1
2

and every k-edge

connecting M to M is unsatisfied.
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Proof. Consider the partition of V ′
i↓v according to the values of the assignment A projected

to v: V ′
i↓v=a1

, ..., V ′
i↓v=a|Σ|

. Every k-edge e′ ∈ E(V ′
i↓v=a, V

′
i↓v=b), where a 6= b, is unsatisfied.

Let σ = APlur
i (v). As v is a red vertex,

|V ′
i↓v=σ |
|V ′

i↓v|
≤ 99

100
. If 1

100
≤ |V ′

i↓v=σ |
|V ′

i↓v||
then we are done

- by setting M to be the smaller of the two sets V ′
i↓v=σ and V ′

i↓v \ V ′
i↓v=σ.

Otherwise, as V ′
i↓v=σ is the largest of the |Σ| parts of V ′

i↓v, for every a 6= σ the part

V ′
i↓v=a is of fractional size at most 1

100
. We set M to be a union of a few of these parts so

that its fractional size is at least 1
100

and at most 2
100

.

Therefore, by taking M as guaranteed in the above claim, a random k-edge e′ ∈
EG′(V ′

i↓v) is unsatisfied with probability

Pi,v ≥
|E ′

i↓(v,v)|
|EG′(V ′

i↓v)|
· |M |
|V ′

i↓v|
· γ

2
≥ 1

2
· 1

100
· γ

2
=

γ

400

where
|E′

i↓(v,v)
|

|EG′ (V ′
i↓v

)| ≥
D·|V ′

i↓v |
dk·|V ′

i↓v
| ≥ 1

2
.

This already yields a lower-bound on the total number of pairs of k-edges e′ and vertex

v where e′ is unsatisfied due to the red vertex v (by multiplying γ
400

with number of k-edges

that contain a self-loop of a red vertices). However, this may be an over-counting for the

number of unsatisfied k-edges, as a k-edge may be unsatisfied due to more than one red

vertex. Let us consider a more accurate estimate.

We first give an upper-bound on the probability that a random k-edge (x′, y′) has more

than r red vertices in coordinates S ′ of U (where the parameter r is set later). For this

purpose it is more convenient to consider, from here on, only coordinates that do not have

too many red vertices.

Recall that αi is the fraction of red vertices in coordinate i (recall that ∀i ∈ S, δi

4
≤ αi ≤

1
2
). If

∑
i∈S αi ≤ 1 then let S ′ = S. Otherwise set S ′ ⊆ S to be such that 1

2
≤ ∑

i∈S′ αi ≤ 1.

Let R be a random variable corresponding to the number of red vertices of coordinates

S ′ in a random k-vertex. ER ≤ ∑
i∈S′ αi ≤ 1. Therefore (by Chernoff’s [Che52] bound,

Pr[R > (1 + α)ER] <
(

eα

(1+α)(1+α)

)ER

)

Pr[R > r] <

(
er−1

rr

)
<

(e

r

)r
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Consider a random k-edge e′ = (x′, y′) ∈ E ′. The probability that it is unsatisfied due

to the red vertex v and that the number of red vertices is at most r (by choosing r = lg 800
γ

)

at least

Pi,v −
(e

r

)r

>
γ

400
− γ

800
=

γ

800

Therefore, the probability P1 that a random k-edge e′ ∈ E ′ is unsatisfied is

P1 ≥
1

2r

∑

i∈S′

αi ·
γ

800
(2.1)

where the 2r in the denominator is due to the fact that we count every k-edge at most

2r times in the summation (at most r times for each of its two k-vertices). Therefore,

P1 ≥
γ

1600 · lg 800
γ

·
∑

i∈S′

αi (2.2)

as
∑

i∈S′ αi ≥ min(1
2
,
∑

i∈S
δi

4
) ≥ min(1

2
, 1

8
· ∑i∈[k] δi), we have

P1 ≥
γ

1600 · lg 800
γ

· min(
1

2
,
1

8
·
∑

i∈[k]

δi) ≥ cγ · min(1,
∑

i∈[k]

δi) (2.3)

as Claim 2.16 asserts, and we are done for case (1).

Claim 2.19. In case (2), A satisfies at most 1 − 1
10

min(1,
∑

i∈[k] δi) fraction of U.

Proof. We show that the red edges of coordinates S, together with the high consistency,

yield many unsatisfied k-edges.

Claim 2.20. For any i ∈ S there are at least δind
4

red edges at coordinate i that do not

touch red vertices of coordinate i.

Proof. There are δi
nd
2

edges that are red in coordinate i. There are at most αind ≤ δin
4

d

edges of G touching the red vertices of coordinate i. Therefore, there are at least δind
4

red

edges at coordinate i that do not touch red vertices of coordinate i.

We pick a subset of such edges of size δind
4

and call them orange edges.

Claim 2.21. If an edge (u, v) is orange (at coordinate i) then at least 98
100

of the set Ei↓(u,v)

—the k-edges that contain (u, v) at coordinate i— are not satisfied.
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Proof. At most 1
100

of them disagree with APlur
i on either sides, as both u and v are not

red. Therefore, at least 98
100

of Ei↓(u,v) agree with APlur
i on both sides and therefore are

unsatisfied.

Let us now give an upper-bound on the probability that a random k-edge (x′, y′) has

more than r orange edges in coordinates S of U (where the parameter r is set later).

For this purpose it is more convenient to assume that there are not too many red edges

in coordinates S. If
∑

i∈S δi ≤ 1 then let S ′ = S. Otherwise let S ′ ⊆ S be such that
1
2
≤ ∑

i∈S′ δi ≤ 1.

Consider a random k-edge e′ ∈ Ei↓(u,v). Similarly to the previous claim, the probability

that e′ is both unsatisfied due to (u, v) at coordinate i and that e′ contains at most r orange

edges in coordinates S ′ is at least
98

100
−

(e

r

)r

Therefore, the probability that a random k-edge is unsatisfied is

P2 ≥
∑

i∈S′

δi

4
·
(

98
100

−
(

e
r

)r)

r

where the r in the denominator is from the fact that we count every k-edge at most r times

in the summation.

Taking r so that 98
100

≥ 2 ·
(

e
r

)r
(e.g, r = lg 200

98
) , and as

∑
i∈S′ δi ≥ min(1

2
, 1

2

∑
i∈[k] δi)

we obtain

P2 ≥
98

400
· 1

lg 200
98

min(
1

2
,
∑

i∈[k]

δi) ≥
1

10
· min(1,

∑

i∈[k]

δi)

as the claim asserts.

By Claim 2.16 (case (1)) and Claim 2.19 (case (2)), A satisfies at most 1 − cγ ·
min(1,

∑
i∈[k] δi) fraction of U. Therefore, Lemma 2.13 follows.

2.3.2 Noisy-Parallel-Repetition for Union of Disjoint Expanders.

We now prove the upper-bound of the main theorem for the case of union of disjoint

expanders.
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Corollary 2.22. Let U = 〈G, Σ, C〉 be a ConstraintGraph instance. Assume that G is

a union of t disjoint expanders, each with eigenvalue gap at least γ, namely U =
⋃

i∈[t]{Ui}
where Ui = 〈Gi, Σi, Ci〉.

Set U⊗k = 〈G⊗k, Σk, C∧k〉.
Then U⊗k maximal satisfiability is at most 1 − c′γ · min(1, k · δ(U)), where c′γ = cγ

104 .

If the upper-bound for expanders instances had worked for any (arbitrarily small) con-

stant of success probability of the output instance, then this corollary would have been

immediate, by a weighted averaging of the success probability of the connected compo-

nents of U⊗k.

However, this is not the case. Therefore, the guarantee on the error probability of some

of the connected components of U×k is smaller than what it could have been otherwise.

Proof. Lemma 2.12 cannot be used here, as G may be unconnected, therefore γ(U) may be

zero. Note however, that any connected component G′ of G⊗k, has γ(G′) ≥ γ. This is true

as every connected component G′ of G⊗k is a tensor product of k connected components of

G, each of them having eigenvalue gap γ(G′) ≥ γ(G). Therefore, we can use Lemma 2.13

instead of Lemma 2.12.

Let pi = |Gi|
|G| be the probability that a random vertex (or a random edge) falls inside

the component Gi. We have
∑

i∈[t] piδ(Ui) = δ(U) and
∑

i∈[t] pi = 1.

For s = (s1, ..., sk) ∈ [t]k denote by Gs the connected component Gs1 ⊗ ... ⊗ Gsk
. Let

ps =
∏

i∈s pi be its fractional size, and let δs =
∑

i∈s δi.

The probability P of a random k-edge of G⊗k to be unsatisfied is the probability of

a random k-edge to be in a certain connected component Gs times the probability that

a random k-edge of Gs is unsatisfied, summing over all connected components {Gs}s∈[t]k .

Namely,

P =
∑

s∈[t]k

ps · Pr
e′∈E(Gs)

[e′ is unsatisfied by A]

By Lemma 2.13, as each connected component Gs has γ(Gs) ≥ γ,

P ≥ cγ ·
∑

S∈[t]k

ps · min (1, δs) (2.4)
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As Esδs = kEiδi = k
∑

i∈[t] piδi = kδ(U), by Chernoff’s bound we have that

Pr [δs ∈ R] ≥ 45

100

where R =
[

1
100

· kδ(U), 10 · kδ(U)
]

Therefore,

E [δs | δs ∈ R] ≥ kδ(U)

100
· 45

100

For k ≤ 1
δ(U)

, and for every δs ∈ R, the min(1, δs) expression in equation 2.4 reduces

the contribution of δs to the sum by a factor of at most 10. Therefore,

P ≥ cγ ·
∑

S∈[t]k | δs∈R

ps · min (1, δs)

≥ 1

10
· cγ ·

∑

S∈[t]k | δs∈R

ps · δs

=
1

10
· cγ · E [δs | δs ∈ R]

≥ 10−4 · cγ · kδ(U)

For k > 1
δ(U)

, the satisfiability of U⊗k is at most the satisfiability of U⊗ 1
δ(U) . We therefore

have that for every k, U⊗k maximal satisfiability is at most 1− c′γ ·min(1, k · δ(U)), where

c′γ = cγ

104 .

We therefore have the main theorem for the case of union of disjoint expanders as well.
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2.3.3 Expanding-Parallel-Repetition for Non-Expanders Instances

We next consider the Expanding-Parallel-Repetition variation that yields an ”optimal”

amplification for every instance, up to some constant factor of success probability of the

generated instance, even for instances that may lack good expansion properties. This vari-

ation, however, does not preserve the uniqueness property of the constraint. The proof is

simple, given the analysis for the Noisy-Parallel-Repetition.

Corollary 2.4(Expanding-Parallel-Repetition) Let U be a 1 − ε satisfiable Con-

straintGraph instance. Let U be the kth Expanding-Parallel-Repetition of U , with

Ploop = 1
2

and PH = 1
4
, where k ≤ 1

ε
.

Then U is at most (1 − ε)ck satisfiable, where c is some universal constant (that does

not depend on the spectral-gap or the alphabet size of the input instance ).

We show that by choosing H so that γ(H) is large (say, a complete graph, or a constant

degree expander) and setting PH and Ploop to be constants this variant of Parallel-Repetition

is ”optimal”. Note that by choosing H to be a constant degree expander (rather than a

complete-graph) U is of constant degree (provided that U is).

The idea to use such ”expanderizing” technique already appears as a first step in Dinur’s

new proof of the PCP [Din07], though it is critical there that the added expander is of

constant degree.

Proof. Let U = 〈G = (V,E), Σ, C〉 be an instance of Gap-ConstraintGraph- [1 − δ, 1 − ε].

Let UH = 〈H, Σ, CH〉 where γ(H) = γ and the constraints CH are always satisfied. Let

Uloops = 〈(V,Eloops), Σ, Cloops〉 where Eloops are self-loop for every vertex, and the constraints

Cloops are the equality constraints. Set U ′ to be an instance constructed by combining the

instances UH , Uloops and U , with relative weights PH , Ploop and 1−PH −Ploop respectively.

We thus get an instance U ′ of Gap-ConstraintGraph-
[
1 − δ

4
, 1 − ε

4

]
with γ(U ′) = γ

4
.

Applying now the kth Parallel-Repetition, for k ≤ 4
δ
, yields, by the main theorem, an

instance U = (U ′)⊗k of Gap-ConstraintGraph-
[
1 − cγ

4
· kδ

4
, 1 − kε

4

]
.

The constructiveness (Corollary 2.5) follows, as any good assignment to (U ′)⊗k can be

efficiently converted (by the main theorem) into a good assignment to U ′. This assignment
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is a good assignment to U as well, up to a 1
1−Ploop−PH

multiplicative factor on the error

probability.

As the analysis of the Expanding-Parallel-Repetition is an immediate result of the

analysis of the Noisy-Parallel-Repetition, any improvement of the latter (say, to hold for any

k, not only for k ≤ 1
δ
) immediately translates to the same improvement for the Expanding-

Parallel-Repetition for arbitrary ConstraintGraph instances (again, without preserving

uniqueness property).

2.3.3.1 The Miss-Match Form

Feige and Kilian [FK00] introduce and discuss the miss-match form of the two-prover

one round proof system, and analyze the application of Parallel-Repetition to it. In the

miss-match form of proof-system, the verifier asks the first prover two questions, and either

applies a test only to the two answers of this prover, or asks the second prover two questions

—one of which is identical to one of the two questions already asked— and also tests that

the identical questions are answered with identical answers. The decision whether to test

the answers of the first prover only, or to test the consistency of the two provers as well,

may rely on the answer of the first prover.

Feige and Kilian show that in order to reduce the success probability of miss-match

form from 1 − ε to 1 − δ, one can apply the kth Parallel-Repetition with k = Poly(1
ε
, 1

δ
).

Their analysis works for any constants 0 < ε < δ < 1, and is independent of the alphabet

size.

They also show that any two-prover one round proof system can be reduced to the

miss-match form, such that the success probability changes by a constant factor at most.

Comparing their amplification to our Expanding-Parallel-Repetition in the context of

ConstraintGraph, both can be applied to arbitrary ConstraintGraph and both

amplification rates are independent of the alphabet size. Our amplification exceeds theirs

in the sense that in order to amplify 1 − ε error-probability to 1 − δ, one has to apply

the kth Parallel-Repetition with k linear in ε
δ
, while theirs is polynomial in this factor.

However, our analysis works only for δ that is lower-bounded by some universal constant,

while theirs works for any (arbitrarily small) constant δ.
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2.4 Algorithmic Applications

2.4.1 Approximating Algorithms via Optimal Parallel-Repetition

Let us now consider a simple algorithmic application of ”optimal” analysis for Parallel-

Repetition and the implication of constructiveness in such an analysis. The idea is to

use the Parallel-Repetition to convert an algorithm for 1 − ε0 satisfiable instances of

UniqueGameΣ0
(for some specific ε0 > 0 and Σ0 ) into an algorithm that performs well on

1 − ε satisfiable instances of UniqueGameΣ for any ε ≤ ε0 and corresponding Σ. Let us

consider some applications for this technique.

By [GW95, CMM06]) on the one hand, and by [KKMO04] on the other hand we

have a tight threshold of approximability for almost completely satisfiable instances of

UniqueGame (and MaxCut). That is, for every ε ≤ 1
lg |Σ| , given a 1 − ε satisfiable in-

stance U = 〈G, Σ, C〉 of UniqueGameΣ, finding an assignment that satisfies 1− c
√

ε lg |Σ|
of its constraints is in P for some constant c, but it is UG-hard for any factor slightly

smaller than c .

Consider UniqueGame instances where the underlying graph is an expander. Observe

that this is a special case of UniqueGame, and the optimal tradeoffs between error,

alphabet-size and approximation factor may be better than in the general case. In particular

one may come up with an approximation that does not depend on the alphabet size, but

only on the spectral-gap and the satisfiability of the instance.

Recently, Arora et al.[AKK+08], suggested techniques that may indeed achieve that

goal. Their algorithm seems to find an assignment that satisfies a constant fraction of the

constraints for any 1 − ε satisfiable UniqueGame instance U , as long as ε ≤ γ2.

This exciting result implies that UniqueGame for expander graphs is seemingly easier.

Which in turn implies that a general reduction from UniqueGame to UniqueGame

that is a good expander, would result in UniqueGame being in P, thus refuting the

UniqueGame-conjecture.

We next show how the main theorem (Theorem 2.2) can be utilized to amplify an

algorithm A that finds an assignment satisfying a (large enough) constant fraction of the

constraints into an algorithm A′ that obtains an assignment that satisfies all but aa small

fraction.

Let A be an algorithm that guarantees a solution satisfying at least 1 − cγ for 1 − γ2
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satisfiable instances. Then for every 1 − ε satisfiable instance, we can find a 1 − O( ε
γ2·cγ

)

satisfying solution, as long as ε ≤ γ2 (where cγ = γ

12800·lg 800
γ

).

2.4.2 A Note on the Efficiency of the Constructiveness.

As already mentioned, the constructiveness is obtained here simply by considering the k

plurality assignments. The trivial algorithm for this runs in time Poly(|U⊗k|), similar to

the running time of the (implicit [Raz07]) constructiveness of [Raz98, Hol07].

However, there is a simple Las-Vegas randomized algorithm that runs in expected time

O(k · |Σ| · |U |2), assuming an oracle access to the assignment A for U⊗k (which is probably

not the case for the analysis of Raz and of Holenstein [Raz07]). This is done by sampling A

(rather than reading it entirely) and computing the plural value with high probability for

every coordinate i ∈ [k]. The resulting k assignments can then be checked to see whether

any of them satisfy enough constraints of U .

Therefore, when considering expander instances, it may be preferable to use our con-

structiveness (rather than the one implicit in [Raz98, Hol07]) both because of time consid-

erations and because of the approximation ratio guarantee.
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2.5 Concluding Remarks and Open problems

We showed two variants of the Parallel-Repetition technique that perform ”optimally”, i.e,

the success probability decays exponentially fast with k, regardless of the alphabet size,

albeit only down to some constant.

The Noisy-Parallel-Repetition variant preserves the uniqueness property, but works only

for good expanders (or union of disjoint expanders). The Expanding-Parallel-Repetition

variant works well for any instance, but does not preserve the uniqueness property.

Considering the goal of proving MaxCut-hardness for UniqueGame, these two am-

plification techniques are not sufficient. To achieve this goal, we would like (1) to obtain

both results simultaneously, i.e, to have no dependency on the spectral-gap while maintain-

ing the uniqueness property; and (2) to generalize this so it holds for an arbitrarily small

constant target success probability. As mentioned above, by the recent counterexample of

Raz [Raz08] this is not true for the Parallel-Repetition (and its Noisy-Parallel-Repetition

variant).
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2.6 Appendix

2.6.1 The NP -hardness of Approximating MinUnCut.

We next consider the NP -hardness for ε-solvable MinUnCut. By Trevisan et al. and

H̊astad [TSSW00, H̊as01] we know that for any arbitrarily small ε > 0,

Gap-MaxCut-

[
16

32
+ ε,

17

32
+ ε

]
∈ NP − hard

therefore

Gap-MinUnCut-

[
15

32
− ε,

16

32
− ε

]
∈ NP − hard

For every arbitrarily small ε′ > 0, this can be reduced to

Gap-MinUnCut-

[(
15

32
− ε

)
· ε′,

(
16

32
− ε

)
· ε′

]

Just add sufficient number of edges (on new vertices) that can always be satisfied.

Therefore, for every (arbitrarily small) ε′′ > 0, MinUnCut is NP -hard to approximate

better than 16
15

, even for instances that are ε′′ solvable.

Applying the exact same reduction to the NP -hardness of Gap-E2Lin2-
[

11
16

− ε, 12
16

− ε
]

[TSSW00, H̊as01] gives NP -hardness for

Gap-UniqueGame-

[(
4

16
− ε

)
· ε′,

(
5

16
− ε

)
· ε′

]

Therefore, for every (arbitrarily small) ε′′ > 0, DualUniqueGame2 (and DualUniqueGame

in general) is NP -hard to approximate better than 5
4
, even for instances that are ε′′ solvable.

2.6.2 Larger Spectral-Gap for MaxCut.

We next note that Gap-MaxCut- [1 − δ, 1 − ε] with arbitrary spectral-gap reduces to

Gap-MaxCut- [1 − δ(2 − ε), 1 − 2ε] with spectral-gap γ = Ω(ε).

Let the input to the reduction be U = 〈G, {0, 1}, C〉, a 1 − ε solvable instances of

MaxCut with arbitrary spectral gap γ(U).

Let Uexp = 〈Gexp, {0, 1}, C2〉 be an instance on the same set of vertices, where the
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constrains are ”6=” and Gexp is a constant degree expander, namely, γ(Uexp) ≥ 1
10

.

Let U be the output of the reduction where U is the natural weighted combination of

U and Uexp with weights 1 − ε and ε respectively. Then γ(U) ≥ ε
10

. If U is at least 1 − ε

solvable then U is at least (1 − ε)2 > 1 − 2ε solvable. And if U is at most 1 − δ solvable,

then U is at most (1 − δ)(1 − ε) + ε = 1 − δ(1 − ε) solvable.



40 On Parallel-Repetition, Unique-Game and Max-Cut



Chapter 3

An Elementary Construction of

Constant-Degree Expanders

3.1 Introduction

All graphs considered here are finite, undirected and may contain self-loops and parallel

edges. Expanders are graphs, which are simultaneously sparse, yet highly connected, in

the sense that every cut contains (relatively) many edges. In this chapter we mostly work

with the notion of edge-expansion. A d-regular graph G = (V,E) is a δ-edge-expander

(δ-expander for short) if for every set S ⊆ V of size at most 1
2
|V | there are at least δd|S|

edges connecting S and S = V \ S, that is, e(S, S) ≥ δd|S|. For brevity, we say that a

graph is an [n, d, δ]-expander if it is an n-vertex d-regular δ-expander. Expanders are some

of the most widely used objects in theoretical computer science, and have also found many

applications in other areas of computer-science and mathematics. See the survey of Hoory

et. al. [HLW06] for a discussion of several applications and references. Another widely

used notion of expansion is based on algebraic properties of a matrix representation of the

graph. Let G = (V,E) be an n-vertex d-regular graph, and let A be the adjacency matrix

of G, that is, the n × n matrix, with Ai,j being the number of edges between i and j. It

is easy to see that 1n is an eigenvector of A with eigenvalue d, and that this is the only

eigenvector with this eigenvalue iff G is connected. We denote by λ2(G) the second largest

eigenvalue of A. It is easy to see that λ2(G) = max06=x⊥1n〈Ax, x〉/〈x, x〉. The following is

a well known relation between the expansion of G and λ2(G).
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Theorem 3.1 ([Alo86], [AM85] ,[Dod84]). Let G be a δ-expander with adjacency matrix

A, let λ2 = λ2(G) be the second largest eigenvalue of A, and let its (normalized) spectral

gap be γ = 1 − λ2

d
. Then,

γ

2
≤ δ ≤

√
2γ

Our construction uses only the left-hand simple inequality.

The most useful expanders are those with constant degree. A priori, it is not clear that

constant-degree expanders even exist. Pinsker [Pin73] established their existence.

Theorem 3.2 ([Pin73]). There exists a fixed δ > 0, such that for any d ≥ 3 and even

integer n, there is an [n, d, δ]-expander, which is d-edge-colorable ∗.

One way to prove the above is to take a random d-regular bipartite graph. In most ap-

plications, however, one needs to efficiently construct constant degree expanders explicitly.

There are two notions of constructibility of d-regular expanders. The first (weaker) notion

requires the n-vertex graph to be constructible in polynomial time in its size. The second

(stronger) notion requires that given a vertex v and i ∈ [d] it would be possible to generate

the ith neighbor of v in time Poly(log n). Such an expander is said to be fully explicit. In

applications, where one needs to use the entire graph, it is often enough to use the weaker

notion. However, in such cases (e.g. in certain reductions) one frequently needs to be able

to construct a graph of a given size n. It has been observed by many that to this end it is

enough to be able to construct graphs of size Θ(n) (e.g., one can take a cn-vertex expander

and join groups of c vertices to get an n-vertex expander with positive expansion). In other

cases, where one needs only part of the expander (e.g., when performing a random walk

on a large expander) one usually needs the stronger notion of fully explicitness. However,

in these cases it is usually enough to be able to construct an expander of size Poly(n), as

what we are interested in is actually the logarithm of the size of the graph.

Margulis [Mar73] and Gabber and Galil [GG81] were the first to efficiently construct

constant degree expanders. Following was a sequence of works that culminated in the

construction of Lubotzky, Phillips and Sarnak [LPS88] and Margulis [Mar88] of Ramanu-

jan Graphs. These constructions rely (directly or indirectly) on estimations of the second

largest eigenvalue of the graphs, and some of them, rely on deep mathematical results. A

∗That is, one can assign its edges d colors such that edges incident with the same vertex are assigned
distinct colors.
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simpler, iterative construction was given by Reingold, Vadhan and Wigderson [RVW02].

This construction also relies on proving the expansion of the graphs by estimating their

eigenvalues, and is the first construction of constant degree expanders with relatively el-

ementary analysis. Additional algorithms for constructing bounded-degree expanders ap-

pear in [Ajt94] and [BLar], but these algorithms are not fully explicit in the sense described

above.

Our construction is based on the replacement product of two graphs G and H, which

is one of the most natural ways of combining two graphs. We start by defining this basic

operation.

Definition 3.3. Let G be a D-regular D-edge-colorable graph on n vertices and let H be a d-

regular graph on D vertices. Suppose G is already equipped with a proper D-edge-colorings.

The replacement product G ◦H is the following 2d-regular graph on nD vertices: We first

replace every vertex vi of G with a cluster of D vertices, which we denote Ci = {vi
1, . . . , v

i
D}.

For every 1 ≤ i ≤ n we put a copy of H on Ci by connecting vi
p to vi

q if and only if

(p, q) ∈ E(H). Finally, for every (p, q) ∈ E(G), which is colored t, we put d parallel edges

between vp
t and vq

t .

Note that if H is d-edge-colorable then G ◦ H is 2d-edge colorable: simply color the

copies of H within each set Ci using colors 1, . . . , d. As the edges between the sets Ci

form d parallel copies of a perfect matching on the vertices of G ◦ H, we can color any

set of d parallel edges using the colors d + 1, . . . , 2d. Already in the 80’s, Gromov [Gro83]

has analyzed the effect of (a slight variant of) this operation on the spectral properties

of graphs. Reingold, Vadhan and Wigderson [RVW02] considered the above variant, and

showed, via a reduction to their algebraic analysis of the zig-zag product, that if two graphs

are expanders then so is their product. Their argument is based on analyzing λ(G◦H) as a

function of λ(G) and λ(H). We analyze the replacement product directly via an elementary

combinatorial argument.

Theorem 3.4. Suppose E1 is an [n,D, δ1]-expander and E2 is a [D, d, δ2]-expander. Then,

E1 ◦ E2 is an [nD, 2d, 1
80

δ2
1δ2]-expander.

The proof of Theorem 3.4 is very simple; we show that e(X,X) has either many edges

within the clusters Ci or between them. Our main result is a new construction of constant-

degree expanders. The main idea can be summarized as follows: a simple special case
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of one of the results of [AR94] gives a construction of [n,O(log2 n), 1
4
]-expanders. To get

expanders with constant degree we construct such an [n,O(log2 n), 1
4
]-expander and then

apply the replacement product with another similar expander in order to reduce the degree

to O(
√

log n) (in fact the degree could easily be further reduced, but this suffices to our

purpose). We now find a constant degree expander of size O(
√

log n), using exhaustive

search, and apply a final replacement product to get a constant degree. Note that here we

do not care much about the fact that the replacement product decreases the edge-expansion

as we only apply it twice. A suitable choice of parameters gives the following construction,

whose analysis relies solely on the easy part of Theorem 3.1, a simple special case of the

result of [AR94] and on the elementary analysis of the replacement product (Theorem 3.4).

The following theorem states the explicit constructiveness:

Theorem 3.5 (Main Result). There exists a fixed δ > 0 such that for any integer q = 2t

and for any q4/100 ≤ r ≤ q4/2 there is a polynomial time constructible [q4r+12, 12, δ]-

expander.

For completeness we prove all the necessary ingredients, thus obtaining a short and

self-contained construction of constant-degree expanders. It is easy to see that given n,

Theorem 3.5 can be used to construct an m-vertex expander with n ≤ m = O(n log n).

3.1.1 Outline

The construction and its analysis appear in Section 3.2. In Section 3.3 we observe that

simple variants of Theorem 3.5 give a construction with Θ(n) vertices and a construction

which is fully explicit (albeit of size within some polynomially range). Section 3.3 contains

some remarks regarding the construction (e.g, how to improve the edge expansion).
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3.2 The Construction

Let us start by describing the special case of [AR94] that suffices for our purposes. For any

q = 2t and r ∈ N, we define a graph LD(q, r) as follows. The vertices are all elements of

F
r+1
q , which can be thought of as all strings (a0, . . . , ar) ∈ F

r+1
q . A neighbor of a vertex a is

indexed by an element (x, y) ∈ F
2
q. In this notation neighbor (x, y) of vertex a = (a0, . . . , ar)

is a + y · (1, x, x2, . . . , xr). LD(q, r) is clearly a q2-regular graph on qr+1 vertices. It is also

q2-edge-colorable as we can color the edges indexed (x, y) using the “color” (x, y) (note

that this is well defined as addition and subtraction are identical in F2t). The following

result is a special case of the result of [AR94]:

Theorem 3.6 ([AR94]). For any q = 2t and integer r < q we have λ2(LD(q, r)) ≤ rq.

Note that the above theorem, together with the left inequality of Theorem 3.1, imply

that if r ≤ q/2 then LD(q, r) is a [qr+1, q2, 1
4
]-expander. We first prove our main result

based on Theorems 3.4, 3.6 and the left inequality of Theorem 3.1. We then prove these

three results.

We next show a combinatorial analysis of the replacement product. The analysis here

is not tight and could be improved. Indeed, we do not try to present the strongest possible

bound, but rather to give one with a simple proof. Note that it suffices for our purpose, as

we apply it only a constant number of times.

Proof of Theorem 3.5: Given integers q and q4

100
≤ r ≤ q4

2
, we start by enumerating

all 3-regular graphs on q2 vertices until we find one which is a δ-expander and 3-edge

colorable (one exists by Theorem 3.2). This step can clearly be carried out in time qO(q2).

Denote by E1 the expander we find and define E3 = LD(q4, r), E2 = LD(q, 5) and set

E4 = E3 ◦ (E2 ◦ E1) to be our final graph. As E1, E2 and E3 are [q2, 3, δ], [q6, q2, 1
4
]

and [q4r+4, q8, 1
4
] expanders respectively, E4 is a [q4r+12, 12, δ′]-expander for some absolute

constant δ′ (here we rely on Theorem 3.4). Moreover, given E1 one can easily compute E4

in time polynomial † in the size of E4. As r ≥ q4/100, E4 is of size at least qq4/10, thus the

first step of finding E1 also takes time polynomial in the size of E4, as needed.

†Note that when constructing E2 and E3 we need representations of Fq and Fq4 . These representations
can be found using exhaustive search in time Poly(q4) that is much smaller than the size of E4 and thus
negligible.
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Proof of Theorem 3.4: Let E3 = E1 ◦ E2 and consider any set X of vertices in E3 of

size at most 1
2
nD. Note that we can view the vertex set of E3 as composed of n clusters of

vertices C1, . . . , Cn, each of size D. Our goal is to show that there are at least 1
80

δ2
1δ2 ·2d|X|

edges leaving X. We consider two cases. Either many of the vertices of X are in clusters

Ci which are sparsely populated by X, in which case many edges are leaving X within the

clusters Ci due to the expansion properties of E2. Or there are many of the vertices of X

which reside in densely populated clusters Ci, in which case there are many edges leaving

X between the clusters, due to the expansion properties of E1.

Set Xi = X ∩ Ci, let I ′ ⊆ [n] be the set of indices of the sets Xi, whose size is at

most (1 − 1
4
δ1)D and let I ′′ = {1, . . . , n} \ I ′. We first consider the contribution of the

sets Xi with i ∈ I ′. As E2 is a δ2-expander, there are at least 1
4
δ1δ2d|Xi| edges connecting

Xi and Ci \ Xi. Partition X into two sets X ′ and X ′′ according to I ′ and I ′′ as follows:

X ′ =
⋃

i∈I′ Xi and X ′′ =
⋃

i∈I′′ Xi. By the above, the number of edges connecting X ′ and

X is at least 1
4
δ1δ2d|X ′|. If |X ′| ≥ 1

10
δ1|X| then we are done, as this means that there are

at least 1
80

δ2
1δ2 · 2d|X| edges connecting X and its complement X.

Suppose then that |X ′| ≤ 1
10

δ1|X|, implying that |X ′′| ≥ (1 − 1
10

δ1)|X|. We now

consider the contribution of the edges leaving the sets Ci. As the sets Xi with i ∈ I ′′ have

size at least (1 − 1
4
δ1)D we infer that |X ′′|/D ≤ |I ′′| ≤ |X ′′|/(1 − 1

4
δ1)D. In particular, as

|X ′′| ≤ |X| ≤ 1
2
nD we have |I ′′| ≤ 2

3
n. Therefore, as E1 is an [n,D, δ1]-expander, there is

a set of edges M , where |M | ≥ 1
2
δ1D|I ′′|, connecting the vertices of I ′′ with the vertices

of I ′. Let us now consider the corresponding d|M | ≥ 1
2
δ1dD|I ′′| edges in the graph E3.

These edges connect vertices from
⋃

i∈I′ Ci with vertices from
⋃

i∈I′′ Ci. As each Xi with

i ∈ I ′′ is of size at least (1 − 1
4
δ1)D, we infer that at most 1

4
δ1dD|I ′′| of these d|M | edges

connect a vertex in Ci\Xi with a vertex of
⋃

i∈I′ Ci. Therefore, there are at least 1
4
δ1dD|I ′′|

edges connecting
⋃

i∈I′′ Xi with the vertices of
⋃

i∈I′ Ci. The number of these d|M | edges

that connect vertices from
⋃

i∈I′′ Ci with vertices of X ′ is clearly at most d|X ′|. As we

have |X ′| ≤ 1
10

δ1|X| ≤ 1
6
δ1D|I ′′| we infer that there are at most 1

6
δ1dD|I ′′| such edges. We

conclude that at least 1
12

δ1dD|I ′′| edges connect vertices of
⋃

i∈I′′ Xi (that belong to X)

with vertices of
⋃

i∈I′ Ci \ Xi (that belong to X). As |I ′′| ≥ |X ′′|/D and |X ′′| ≥ 1
2
|X| this

means that there are at least 1
48

δ12d|X| edges connecting X and X, as needed.

Proof of Theorem 3.6: The proof follows by considering a Caley graph and its eigen-

vectors, which are the characters. Set F = F2t , n = 2t(r+1) and let M be the n×n adjacency
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matrix of LD(2t, r). Let L : F → {0, 1} be any surjective linear map ‡. Let us describe the

eigenvectors of M over R. We will use elements of F
r+1 in order to “name” these vectors

as well as to “name” entries of these vectors. For every sequence a = (a0, . . . , ar) ∈ F
r+1,

let va be the vector, whose bth entry (where b ∈ F
r+1) satisfies va(b) = (−1)L(

∑r
i=0 aibi).

It is easy to see that the vectors {va}a∈Fr+1 are orthogonal, therefore these are the only

eigenvectors of M . Clearly, va(b + c) = va(b)va(c) for any b, c ∈ F
r+1. Let us show that va

is indeed an eigenvector and en-route also compute its eigenvalue.

(Mva)(b) =
∑

c∈Fr+1

Mbc ·va(c) =
∑

x,y∈F

va(b+y(1, x, ..., xr)) =

(
∑

x,y∈F

va(y, yx, ..., yxr)

)
·va(b) .

Therefore λa =
∑

x,y∈F
va(y, yx, ..., yxr) is the eigenvalue of va. Set pa(x) =

∑r
i=0 aix

i and

write

λa =
∑

x,y∈F

(−1)L(y·pa(x)) =
∑

{x,y∈F : pa(x)=0}
(−1)L(y·pa(x)) +

∑

{x,y∈F : pa(x) 6=0}
(−1)L(y·pa(x)) .

If pa(x) = 0, then (−1)L(y·pa(x)) = 1 for all y, thus such an x contributes q to λa. If pa(x) 6= 0

then y · pa(x) takes on all values in F as y varies, and hence (−1)L(y·pa(x)) varies uniformly

over {−1, 1} implying that these x’s contribute nothing to λa. Therefore, when a = 0n we

have λa = q2. Otherwise, when a 6= 0n, pa has at most r roots, and therefore λa ≤ rq.

A proof of left inequality of Theorem 3.1: Let A be the adjacency matrix of G and

note that as A is symmetric we have λ2 = max06=x⊥1n〈xA, x〉/〈x, x〉. For a set S ⊆ V (G)

let xS be the vector satisfying xi = 1 when i ∈ S and xi = 0 otherwise, and note that

〈xSA, xS〉 = 2e(S) and 〈xSA, xS〉 = e(S, S). Set x = |S| · xS − |S| · xS and note that x⊥1n.

Therefore,

λ2(|S| + |S|)|S||S| = λ2〈x, x〉 ≥ 〈xA, x〉 = 2|S|2e(S) + 2|S|2e(S) − 2|S||S|e(S, S). (3.1)

As G is d-regular we have e(S) = 1
2
(d|S| − e(S, S)) and e(S) = 1

2
(d|S| − e(S, S)).

Plugging this into (3.1), solving for e(S, S) and using |S| ≤ n/2, we complete the proof by

‡For example, if we view the elements of F as element of {0, 1}t then we can define L(a0, a1, . . . , at−1) =
a0.
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inferring that

e(S, S) ≥ (d − λ2)|S||S|/n ≥ 1

2
(d − λ2)|S| .
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3.3 Concluding Remarks and Open Problems

Expanders on Θ(n) vertices: Let us first show how to apply Theorem 3.5 in order to

construct for every large n, an expander on Θ(n) vertices. Let Nt be the set of integers of

the form q4r+12 where q = 2t and q4/100 ≤ r ≤ q4/2. By Theorem 3.5 we can generate an

expander of size n for every n ∈ ⋃∞
t=1 Nt in time poly(n). Note that for every t ≥ 2 we

have

max{Nt} = q4· q4

2
+12 = 2lg q(2q4+12) > 2(lg q+1)( 64

100
q4+12) = (2q)4· (2q)4

100
+12 = min{Nt+1} .

Therefore for every n ≥ 44· 44

100
+12 there exists a t such that n ∈ [min{Nt}, max{Nt}]. Hence,

for every such n there exists a q = 2t and q4

100
≤ r0 ≤ q4

2
such that n/q4 ≤ q4r0+12 ≤ n.

Now, given n let q = 2t and q4/100 ≤ r0 ≤ q4/2 be such that n/q4 ≤ q4r0+12 ≤ n

(as guaranteed by the previous paragraph). We start by using Theorem 3.5 to construct

a [q4r0+12, 12, δ]-expander E satisfying n/q4 ≤ q4r0+12 ≤ n. If n/32 ≤ q4r0+12 we return

E. Otherwise set t = bn/16q4r0+12c < q4 and use exhaustive search to find a 6-regular

expander E ′ on 12t vertices (which exists by Theorem 3.2). This step takes time qO(q4),

which is polynomial in the size of E because |E| ≥ q
1
25

q4
as r ≥ q4/100. We now replace

every edge of E with t parallel edges to get a [q4r0+12, 12t, δ]-expander E ′′. We then define

E ′′ ◦ E ′ to be the final 12-regular graph on m vertices with n/2 ≤ m ≤ n.

Fully explicit expanders: We now show that for every t we can construct a fully explicit

[2tb2t/tc, d, δ]-expander for some constants d, δ > 0. Thus, for every n we can construct such

an expander of size n ≤ m ≤ n2. The idea is to significantly reduce the degree (say,

to
√

lg lg n), so the innermost graph is fully explicit as it is very small. Then the entire

construction is fully explicit as well.

We use the previous argument to find an expander of size 22t ≤ m ≤ c22t. As noted

in Section 3.1 we can then turn it into a constant degree expander E1 of size precisely 22t.

This step takes time 2O(t). It is useful to “name” the vertices of E1 using pairs of elements

of F2t . Set E2 = LD(2t, b2t/tc − 3) and define E3 = E2 ◦ E1 as the final constant degree

expander on 2tb2t/tc vertices. To see that E3 is fully explicit, note that we can view a vertex

of LD(q, r) as composed of r+1 elements of Fq. Therefore, a vertex of E3 = E2 ◦E1 can be

viewed as r + 1 = b2t/tc − 2 elements (a0, . . . , ar) of F2t (representing a vertex of E2) and
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another pair of elements x, y of F2t (representing a vertex of E1). Suppose the degree of

E1 is d′ in which case the degree of E3 is 2d′. Given r + 3 elements (a0, . . . , ar, x, y) of F2t

and i ∈ [2d′] we do the following. If 1 ≤ i ≤ d′ we return (a0, . . . , ar, x
′, y′), where (x′, y′)

is the ith neighbor of vertex (x, y) in E1. We can do so by generating E1 from scratch in

time 2O(t). If d′ + 1 ≤ i ≤ 2d′, we return the vertex (a′
0, . . . , a

′
r, x, y), where a′

i = ai + yxi.

To do so we use a representation of F2t that we find using exhaustive search in time 2O(t).

We finally note that one can easily adopt our arguments to get space efficient variants of

our constructions. We omit the details.

Edge expansion close to 1
2
: The expanders we constructed have a positive edge expan-

sion. However, by applying Theorem 3.1 it is easy to see that for every ε we can raise the

graphs we construct to an appropriate power to get edge-expansion 1
2
− ε. In fact, to get

edge-expansion 1
2
− ε one needs the degree to be Poly(1/ε).

Vertex expansion: It is clear that if G is an [n, d, δ]-expander, then for any set of vertices

of size at most n/2, there are at least δ|S| vertices outside S that are connected to some

vertex of S. Our construction thus also supplies constructions of vertex-expanders with

expansion close to 1
2
. By adding loops and taking a power one can, in fact, obtain vertex

expansion close to 1.

Eigenvalue gap: As we have mentioned before all the previous constructions of bounded-

degree expanders did so via constructing a graph, whose second eigenvalue is bounded

away from d. Theorem 3.1 implies that if G is an [n, d, δ]-expander then its second largest

eigenvalue is at most d(1− 1
2
δ2). As we can construct expanders with edge expansion close

to 1
2
, these graphs have second largest eigenvalue at most roughly 7

8
d. By adding loops and

raising the resulting graphs to an appropriate power one can get expanders in which all

eigenvalues are, in absolute value, at most some fractional power of the degree of regularity.

Expanders with smaller degree: The expanders we construct have constant degree

larger than 3. In order to get a 3-regular expander one can take any constant degree d-

regular expander and apply a replacement product with a cycle of length d. Definition

3.3 implies that the new degree is 4, but it is easy to see that when d is a constant we

do not have to duplicate each edge of the “large” graph d times, as keeping a single edge
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guarantees a positive expansion. This way we can get a 3-regular expander, which is clearly

the smallest possible degree of regularity.

Simple Combinatorial Proofs. It is interesting whether there exists a simple con-

struction of such constant degree expander, so that its analysis is entirely combinatorial,

but yet simple. In particular, it is interesting to come up with a construction for an

[n, Poly log n, 1
4
]-expander such that its analysis is both simple and combinatorial. Finding

simple combinatorial proofs for other building blocks useful in this context (e.g, graph-

powering) and for (near) Ramanujan graphs is, of course, a worthy goal.
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Chapter 4

On the Complexity of Approximating

k-Set Packing

and Related Problems

4.1 Introduction

Bounded variants of optimization problems are often easier to approximate than the general,

unbounded problems. The IndependentSet problem illustrates this well: it cannot be

approximated to within O(N1−ε) unless P = NP [H̊as99, Zuc07]. Nevertheless, once the

input graph has a bounded degree d, much better approximations exist (e.g, a d log log d
log d

approximation by [Vis96]). Another example is the bounded covering problem (hyper-

graph vertex-cover) which has been studied thoroughly [Hol02, DGKR05].

We next examine some bounded variants of the SetPacking problem and try to

illustrate the connection between the bounded parameters (e.g, sets size, occurrences of

elements) and the complexity of the bounded problem.

In the problem of SP , the input is a family of sets S1, ..., SN , and the objective is to

find a maximum packing, namely a maximum number of pairwise disjoint sets from the

family. This problem is often phrased in terms of Hyper-graphs: we have a vertex vx for

each element x and a hyper-edge eS for each set S of the family (containing all vertices

vx which correspond the elements x in the set S). The objective is to find a maximum

matching. Alternatively one can formulate this problem using the dual-graph: a vertex vS
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for each set S and a hyper-edge ex for each element (vS is contained in all edges ex such

that x ∈ S). The objective is to find a maximum independent set (namely, a maximum

number of vertices, such that no two of them are contained in the same edge).

The general problem of SP has been extensively studied (for example [Wig83, BYM84,

BH92, H̊as99, Zuc07]). Quite tight approximation algorithms and inapproximability factors

are known for this problem. H̊astad [H̊as99] and Zuckerman [Zuc07] proved that Set-

Packing cannot be approximated to within O(N1−ε) unless NP ⊆ ZPP and P 6= NP

respectively (for every ε > 0, where N is the number of sets). The best approximation

algorithm achieves an approximation ratio of O( N
log2 N

) [BH92]. In contrast, the case of

bounded variants of this problem seems to be of a different nature.

4.1.1 Bounded Variants of Set-Packing

For bounded variant it seems natural to think of SP using hyper-graph notions. One may

think of two natural bounds: the size of the edges (size of the sets) and the degree of

the vertices (number of occurrences of each element). For example, k-Set-Packing is this

problem where the size of the hyper-edges is bounded by k. If we also bound the degree of

the vertices by two this becomes the problem of maximum IndependentSet in k bounded

degree graphs denoted by k-IndependentSet(recall the dual-graph defined above).

Another natural bound is the colorability of the input graph. Consider the problem

of 3-DimensionalMatching. It is a variant of 3 − SP where the vertices of the input

hyper-graph are a union of three disjoint sets, V = V1 ∪· V2 ∪· V3, and each hyper-edge

contains exactly one vertex from each set, namely, E ⊆ V1 × V2 × V3. In other words, the

vertices of the hyper-graph can be colored using 3 colors, so that no hyper-edge contains

the same color twice. A graph having this property is called 3-strongly-colorable (in general

- k-strongly-colorable). Thus the color-bounded version of k-SetPacking, namely the

problem of k-DimensionalMatching, is

Definition 4.1 (k-DimensionalMatching ). k-Dimensional Matching

Input: A k-uniform k-strongly colorable hyper-graph H = (V 1, ..., V k, E).

Problem: Find a matching of maximum size in H .

These bounded variants of SP are known to admit approximation algorithms better

than their general versions, the quality of the approximation being a function of the bounds.
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An extensive body of algorithmic work has been devoted to these restricted problems (for

example, [HS89]). Matching inapproximability results have also been studied (e.g, implicit

in [Tre01]).

With some abuse of notations, one can say that hardness of approximation factor of SP

is a monotonous increasing function in each of the bounded parameters: the edges size, the

vertices degree and the colorability (of edges and vertices). For example, inapproximability

factor for graphs of degree bounded by 3 holds for graphs with degree bounded by 4. We

next try to overview what is known regarding the complexity of this problem as a function

of these bounds.

4.1.2 Related Studies

2-DM is known to be solvable in polynomial time, say by a reduction to network flow

problems [Pap94]. Polynomial time algorithms are also known for graphs that are not

bipartite [Edm65]. In contrast, for all k ≥ 3, k-DimensionalMatching is NP -hard

[Kar72, Pap94]. Furthermore, for k = 3, the problem is known to be APX-hard [Kan91].

For large k values, we are usually interested in the asymptotic dependence of the ap-

proximation ratio (and inapproximability factor) on k. Currently, the best polynomial time

approximation algorithm for k-SetPacking achieves an approximation ratio of k
2

[HS89].

This is, to date, the best approximation algorithm for k-DimensionalMatching as well.

Alon et al. [AFWZ95] proved that for suitably large k, k-IS is NP -hard to approximate

to within kc−ε for some c > 0. This was later improved to the currently best asymptotical

inapproximability factor [Tre01] of k

2Ω(
√

ln k)
. All hardness factors for k-IS hold in fact for

(k + 1)-DM as well (by a simple reduction). The best known approximation algorithm for

k-IS achieves an approximation ratio of O(k log log k/ log k) [Vis96].

4.1.3 Our Contribution

We improve the inapproximability factor for the k-SetPacking, and show:

Theorem 4.2. It is NP -hard to approximate k-SetPacking to within O
(

k
ln k

)

These results extend to k-DimensionalMatching and IndependentSet in (k+1)-

claw-free graphs ((k+1)-ISCFG) (see [Hal98] for definition of (k+1)-ISCFG and reduction

from k-SetPacking ). They do not hold, however, for k-IS.
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4.1.4 Outline

Some preliminaries are given in section 4.2. Section 4.2.1 presents the notion of hyper-

graph-dispersers. Section 4.3 contains the proof of the asymptotic hardness of approxima-

tion for k-SetPacking. Section 4.4 extends the proof to hold for k-DimensionalMatching.

The existence of a good hyper-disperser is proved in section 4.5. The optimality of its pa-

rameter is shown in the same section. Section 4.6 contains a discussion on the implications

of our results, the techniques used and some open problems.
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4.2 Preliminaries

Our main result in this chapter is derived by a reduction from the following problem.

Definition 4.3 (Linear Equations). MAX-3-LIN-q is the following optimization prob-

lem:

Input: A set Φ of linear equations modulo an integer q, each depending on 3 variables.

Problem: Find an assignment that satisfies the maximum number of equations.

The following central theorem stems from an extensive line of research, using the PCP

theorem (see [AS92, ALM+98]) and the parallel repetition theorem [Raz98] as a starting

point:

Theorem 4.4 (H̊astad [H̊as01]). Gap-MAX − 3− LIN − q-
[

1
q

+ ε, 1 − ε
]

is NP -hard

for every q ∈ N and ε > 0. Furthermore, the result holds for instances of MAX-3-LIN-q in

which the number of occurrences of each variable is a constant (depending on ε only).

We denote an instance of MAX-3-LIN-q by Φ = {ϕ1, ..., ϕm}. Φ is over the set of variables

X = {x1, ..., xn}. Let Φ(x) be the (multi) set of all equations in Φ depending on x (i.e. it

can be seen as all the occurrences of x). Denote by Sat(Φ, A) the set of all equation in Φ

satisfied by the assignment A. For an assignment A to an equation ϕ ∈ Φ(x), we denote

by A[ϕ]|x the corresponding assignment to x.

We next explain the reduction from Linear equations to our problem. The reduction

gives an inapproximability factor for k-SetPacking. We later amend it to hold for k-

DimensionalMatching too.

4.2.1 Dispersers and Hyper Dispersers

Recall the definition of disperser-graphs (for further definitions and results regarding dis-

persers see [RTS00]):

Definition 4.5 ((n,m, d, k, δ)-Disperser). We call a bipartite graph G = (V1, V2, E) an

(n,m, d, k, δ)-Disperser if it is d left regular and |V1| = n, |V2| = m and every subset of size

at least k of V1 is connected to at least 1 − δ fraction of V2.

In this chapter we are more interested in balanced bipartite dispersers, with k equals

to (1 − δ)n. We therefore use the following definition:
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Definition 4.6 (δ-Disperser). We call a balanced bipartite graph G = (V1, V2, E) a δ-

Disperser if every large independent-set I ⊆ {V1 ∪V2} of G is (almost) concentrated in one

part of the vertices. Formally, there exists i so that

|I \ Vi| ≤ δ|V |

Consider the following generalization of disperser graphs:

Definition 4.7 ((q, δ)-Hyper-Disperser). We call a hyper graph H = (V,E) a (q, δ)-

Hyper-Disperser if there exists a partition of its vertices: V = V1 ∪· ... ∪· Vq , |V1| = ... =

|Vq|, such that every large independent-set I of H is (almost) concentrated in one part of

the vertices. Formally, there exists i so that

|I \ Vi| ≤ δ|V |

And consider the dual definition:

Definition 4.8 ((q, δ)-Hyper-Edge-Disperser). We call a hyper graph H = (V,E)

a (q, δ)-Hyper-Edge-Disperser if there exists a partition of its edges: E = E1 ∪· ... ∪
· Eq , |E1| = ... = |Eq|, such that every large matching M of H is (almost) concen-

trated in one part of the edges. Formally, there exists i so that

|M \ Ei| ≤ δ|E|

Note that this generalizes the notion of dispersers: if we take two (of the q) parts of the

edges Ei, Ej and every vertex that appears in the intersection of an edge from Ei with an

edge of Ej, then the resulting graph is the dual of a δ-disperser graph. See section 4.5.1

for further discussion.

Lemma 4.9. For every q > 1 and t > 1 there exists a hyper-graph H = (V,E) such that

• V = [t] × [d], whereas d = Θ(q ln q).

• H is (q, 1
q2 )-hyper-edge-disperser

• H is d-uniform, d-strongly-colorable.

• H is q-regular, q-strongly-edge-colorable.
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We denote this graph by (t, q) − D and name its edges e[i, j] where j ∈ [q] is the color of

the edge by an arbitrary strong edge coloring (a coloring where no two edges of the same

color share a vertex) and i ∈ [t] is an arbitrary indexing of the t edges of each color. Note

that the t edges of any single color, exactly cover all the vertices of (t, q) −D.

For proof see section 4.5. Note that (t, 2)−D is the dual graph of a standard disperser.

Dispersers and Expanders. When comparing expanders to dispersers it may be more

convenient to consider the bipartite variant of both. In some sense, every such expander

is a disperser (but not the other way round). Both have some expansion properties. For

expanders we claim that every (not too large) set of on part expands on the other part, and

therefore large set on one side hits a large set on the other side. For dispersers a large set

on one side hits a large set on the other side, but for small sets no expansion is guaranteed.

Where in some reductions one needs to utilize the good mixing of expanders (e.g.,

Chapter 2), in other cases hitting properties are sufficient (e.g., Chapter 4). Note, however,

that the dispersers schemed in this chapter are also good expanders.
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4.3 Proof of the Asymptotic Inapproximability Factor

for k-SetPacking

This section provides a deterministic polynomial time reduction from MAX-3-LIN-q to

k-SetPacking. The constructed instance of k-SetPacking is a hyper-graph with a

hyper-edge for each equation and a satisfying assignment to it. In addition, the graph

will have common vertices for edges that correspond to contradicting assignments. Thus,

intuitively, a large matching should translate to a consistent satisfying assignment.

The sparsity and uniformity of the constructed graph ultimately relate to the quality of

the hardness result. In order to obtain a sparse graph with small edge size, but still retain

edge-intersection properties, we utilize a form of expander graphs defined in the previous

section.

4.3.1 The construction

Let Φ = {ϕ1, ..., ϕn} be an instance of MAX-3-LIN-q over the sets of variables X,where each

variable x ∈ X occurs a constant number of times cx (recall Theorem 4.4). We now describe

how to deterministically construct, in polynomial time, an instance of k-SetPacking -

the hyper-graph HΦ = (V,E).

For every variable x ∈ X we have a copy of a hyper-edge disperser (cx, q) − D (which

exist by lemma 4.9), which is denoted by Dx. The vertices of HΦ are the union of the

vertices of all these hyper-disperses (recall that d = Θ(q lg q)):

V = X × [cx] × [d]

as cx = |Φ(x)| we use ϕ ∈ Φ to denote an occurrence of a variable, namely,

V = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x), i ∈ [d]}

The Edges of HΦ. We have an edge for each equation ϕ ∈ Φ and a satisfying assignment

to it. Consider an equation ϕ = x + y + z = a mod q, and a satisfying assignment A to

that equation (note that there are q2 such assignments, as assigning the first two variables,

determines the third). The corresponding edge, eϕ,A, is composed of three edges, one from
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the hyper-graph Dx, one from Dy and the last from Dz. Formally:

eϕ,A = ex,ϕ,A|x ∪· ey,ϕ,A|y ∪· ez,ϕ,A|z

Where A|x is the restrictions of the assignment A to the variable x, and ex,ϕ,A|x is the edge

e[ϕ,A|x] of Dx (and similarly for y and z). In other words, an edge e[i, j] of a hyper-edge-

disperser Dx (the ith edge of color j) is related to assigning j to x in its ith occurrence in

Φ(x); the vertices of e[i, j] are included in every edge that correspond to assigning j to x

in its ith occurrence in Φ(x).

The edges of HΦ are

E = {eϕ,A | ϕ ∈ Φ, A is a satisfying assignment to ϕ}

Clearly, the cardinality of eϕ,A is 3d (and note that each of the three composing edges

participates in creating q edges). This concludes the construction.

Notice that the construction is indeed deterministic, as each variable occurs a constant

number of times (see Theorem 4.4). Hence, the sizes of Dx is constant and its existence

(see lemma 4.9) suffices, as one can enumerate all possible hyper-graphs, and verify their

properties.

Claim 4.10. [Completeness] If there is an assignment to Φ which satisfies 1 − ε of its

equations, then there is a matching in HΦ of size
(

1−ε
q2

)
|E|.

Proof. Let A be an assignment that satisfies 1− ε of the equations. Consider the matching

M ⊆ E comprised of all edges corresponding to A, namely

M = {eϕ,A(ϕ) | ϕ ∈ Sat(Φ, A)}

Trivially, |M | =
(

1−ε
q2

)
|E|, as we took one edge corresponding to each satisfied equation.

To see that these edges are indeed a matching take any two edges of M . If they do not

relate to the same variables then they do not contain vertices from a joint hyper-edge-

disperser. On the other hand, if they do relate to a joint variable, then they relate to

different occurrences i1, i2, but the same assignment j ∈ [q] to it. Hence they contain

vertices of the same hyper-edge-disperser Dx, but from two distinct edges of the same color

(e[i1, j], e[i2, j]), so they do not share a vertex.
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Lemma 4.11. [Soundness] If every assignment to Φ satisfies at most 1
q

+ ε fraction of its

equations, then every matching in HΦ is of size O
(

1
q3 |E|

)
.

Proof. Denote by Ex the edges of HΦ corresponding to equations ϕ containing the variable

x, namely,

Ex = {eϕ,A | ϕ ∈ Φ(x), eϕ,A ∈ E}

Denote by Ex=a the subset of Ex corresponding to an assignment of a to x, that is,

Ex=a = {eϕ,A | eϕ,A ∈ Ex, A|x = a}

Let M be a matching of maximum size in HΦ. Let Amaj be the most popular assignment.

That is, for every x ∈ X choosing the assignment of x to be such that it corresponds to

maximum number of edges. Formally, choose

Amaj(x) ∈ [q] s.t. |Ex=a ∩ M | is maximized

Let Mmaj be the set of edges in M that agree with Amaj, and Mmin be all the other edges

in M , namely

Mmaj = {eϕ,Amaj
}ϕ∈Φ

Mmin = M \ Mmaj

As |Sat(Φ, Amaj)| ≤ 1
q

+ ε, we have |Mmaj| < (1
q

+ ε) E
q2 .

For every x ∈ X, Dx is a (q, 1
q2 )-hyper-edge-disperser. That is, in a subset of edges of Dx

which is a matching, all but at most 1
q2 of the edges are of one color. Clearly, if two edges e1

and e2 of Dx intersect, then so do any two edges containing e1 and e2 respectively. Hence,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q2
E(Dx)

Every edge of Dx is a subset of q hyper edges in Ex. However, no more than one of

these q edges may be taken to M (as M is a matching). Therefore,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q3
|Ex|
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|Mmin| ≤
∑

x∈X,a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q3

∑

x∈X

|Ex| =
3

q3
|E|

and thus

|M | = |Mmin| + |Mmaj| ≤ (
4

q3
+ ε)|E|

By claim 4.10 and lemma 4.11 we showed that Gap-k − SetPacking-
[

4
q3 + ε, 1

q2 − ε
]

is

NP -hard. Since each edge is of size

k = 3d = Θ(q log q) it is NP -hard to approximate k-SetPacking to within O( k
ln k

).
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4.4 Extending the Proof for k-DimensionalMatching

The proof for k-DimensionalMatching follows the steps of the proof for k-SetPacking,

the difference being that we use three dispersers for each variable (instead of one) - a dif-

ferent disperser for each location in the equations. Denote by Φ(x, l) the subset of Φ(x)

where x is the l’th variable in the equation (clearly l ∈ [3]). Note that w.l.o.g. we may

assume that for every x ∈ X, Φ(x, 1) = Φ(x, 2) = Φ(x, 3) (as we can take three copies of

each equation, and shift the location of the variables).

For every variable x ∈ X and position l ∈ [3], we have a hyper disperser ( cx

3
, q)−D (as

stated in lemma 4.9), which is denoted by Dx,l.

V = X × V (Dx) × [3]

namely,

V = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x), i ∈ [d]}

where the index i ∈ [q] is given by a strong-coloring of the edges with q colors (recall that

such a coloring exists as (t, q) −D is q-strongly colorable).

The Edges of HΦ. We have an edge for each equation ϕ ∈ Φ and a satisfying assignment

to it. Consider an equation ϕ = x + y + z = a mod q, and a satisfying assignment A to

that equation. The corresponding edge, eϕ,A, is composed of three edges, one from the

hyper-graph Dx,1, one from Dy,2 and the last from Dz,3. Formally:

eϕ,A = ex,ϕ,A|x ∪· ey,ϕ,A|y ∪· ez,ϕ,A|z

Where ex,ϕ,A|x is the edge e[ϕ,A|x] of Dx,1, ey,ϕ,A|y is the edge e[ϕ,A|y] of Dy,2 and ez,ϕ,A|z

is the edge e[ϕ,A|z] of Dz,3. The edges of HΦ are

E = {eϕ,A | ϕ ∈ Φ, A is a satisfying assignment to ϕ}

This concludes the construction for k-DimensionalMatching. We next show that

the graph constructed is indeed a k-DimensionalMatching instance:

Proposition 4.12. HΦ is 3d-strongly-colorable.
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Proof. We show how to partition V into 3d independent sets of equal size. Let the sets be

Pl,i whereas i ∈ [d] and l ∈ [3]:

Pl,i = {vx,ϕ,i | x ∈ X,ϕ ∈ Φ(x, l)}

Pl,i is clearly a partition of the vertices, as each vertex belongs to a single part.

We now explain why each part is an independent set. Let Pl,i be an arbitrary part, and let

eϕ,A ∈ E be an arbitrary edge, where ϕ ≡ x + y + z = a mod q:

eϕ,A = ex,ϕ,A[ϕ]|x ∪· ey,ϕ,A[ϕ]|y ∪· ez,ϕ,A[ϕ]|z

Pl,i ∩ eϕ,A may contain vertices corresponding only to one of the variables x, y, z, since

it contains variables corresponding to a single location (first, second or third). Let that

variable be, w.l.o.g, x. The edge ex,ϕ,A[ϕ]|x contains exactly one vertex from each of the

d parts, as the graph Dx,1 is d-partite. Therefore, the set Pl,i ∩ eϕ,A contains exactly one

vertex. Since |Pl,i ∩ eϕ,A| = 1 for every edge and every set Pl,i, the graph HΦ is 3d-partite-

balanced.

The completeness claim for k-SetPacking (claim 4.10) holds here too. The soundness

lemma for k-SetPacking holds with minor changes:

Lemma 4.13. [Soundness] If every assignment to Φ satisfies at most 1
q

+ ε fraction of its

equations, then every matching in G is of size O
(

1
q3 E

)
.

Proof. We repeat the soundness proof of k-SetPacking but the definition of the most-

popular assignment is slightly different, and takes into account the three different dispersers

per variable.

Denote by Ex,l the edges of HΦ corresponding to equations ϕ containing the variable x in

location l, namely,

Ex,l = {eϕ,A | ϕ ∈ Φ(x, l), A ∈ [q2]}

Denote by Ex=a,l the subset of Ex,l corresponding to an assignment of a to x, that is,

Ex=a,l = {eϕ,A | ϕ ∈ Φ(x, l), A[ϕ]|x = a}
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Let M be a matching of maximum size. Let Amaj be the most popular of most popular

assignment. That is, for every x ∈ X choose the location (of equations of edges of M) in

which x appears maximum number of times,

l̂(x) ∈ [3] s.t. |Ex,l̂(x) ∩ M | is maximized (4.1)

Then choose an assignment for x such that it corresponds to maximum number of those

edges. Formally, choose

Amaj(x) ∈ [q] s.t. |Ex=a,l̂(x) ∩ M | is maximized

As before, let Mmaj be the set of edges in M that agree with Amaj, and Mmin be all the

other edges in M , namely

Mmaj = {eϕ,Amaj
}ϕ∈Φ

Mmin = M \ Mmaj

For the exact same reasons as in the k-SetPacking proof, we have

|Mmaj| < (
1

q
+ ε)

|E|
q2

(4.2)

and for every x,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)| ≤
1

q3
|Ex,l̂(x)| (4.3)

Therefore,

|M | =
∑

x,l

|M ∩ Ex,l|

≤
∑

x,l

|Mmaj ∩ Ex,l| +
∑

x,l,a 6=Amaj(x)

|Mmin ∩ Ex=a,l|by (4.1) we have

≤ 3 ·
∑

x

|Mmaj ∩ Ex,l̂(x)| + 3 ·
∑

x,a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)|

≤ 3 · |Mmaj| + 3 ·
∑

x,a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)|
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thus by (4.2) and (4.3)

< 3(
1

q
+ ε)

|E|
q2

+
3

q3

∑

x

|Ex,l̂(x)|

= (
12

q3
+ 3ε)|E|

By claim 4.10 and lemma 4.13 we showed that Gap-k − DimensionalMatching-
[

12
q3 + 3ε, 1

q2 − ε
]

is NP -hard, thus it is NP -hard to approximate k-DimensionalMatching to within

O( k
ln k

).
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4.5 Hyper-Edge-Dispersers

In this section, we prove lemma 4.9. As stated before, these are generalizations of disperser

graphs. In section 4.5.1, we prove that these are the best (up to a constant) parameters

for a Hyper-Edge-Disperser one can hope to achieve.

Lemma 4.9 For every q > 1 and t > 1 there exists a hyper-graph H = (V,E) such that

• V = [t] × [d], whereas d = Θ(q ln q).

• H is (q, 1
q2 )-hyper-edge-disperser

• H is d-uniform, d-strongly-colorable.

• H is q-regular, q-strongly-edge-colorable.

We denote this graph by (t, q) −D.

Proof. We follow the probabilistic method to prove that the probability that a randomly

generated graph is not a (t, q)−D graph, is strictly smaller then 1, from which follows the

existence of such graphs. Let

V = [t] × [d]

and denote Vi = [t] × {i}.
We next randomly construct the edges of the hyper-graph, so that it is d-uniform, q-regular.

Let St be all permutation over t elements, and let

Πi1,i2 ∈R St , (i1, i2) ∈ [q] × [d]

(that is, qd permutations, chosen uniformly from St). Define

e[i, j] = { (Πj,1(i), 1), (Πj,2(i), 2) , ..., (Πj,d(i), d) } (4.4)

and let

E = {e[i, j] | (i, j) ∈ [t] × [q]}

Hence |E| = tq. Define a partition of the edges as follows: Ej = {e[i, j] | i ∈ [t]}. Thus

|E1| = ... = |Eq| = t and each set of edges Ej covers every vertex exactly once. Therefore,
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H is q strongly-edge-colorable. On the other hand, every edge contains exactly one vertex

from each set of vertices Vi. Thus H is d-strongly-colorable.

We next show that with high probability H has the disperser property, namely, every

matching M of H is concentrated on a single part of the edges, except for maybe 1
q2 |E| = t

q

edges of M . Denote by P the probability that H does not have the disperser property.

Definition 4.14. Let M be the family of all subsets M ⊆ E such that:

M = {M | M ⊆ E, |M | =
t

q
+

t

q2
,∃i, |M \ Ei| =

t

q
}

Proposition 4.15. If all sets M ∈ M are not matchings, then H is a (q, 1
q2 )-hyper-edge-

disperser.

Proof. This follows from the downward monotonicity of the matching property. To be

more precise, suppose that H is not a (q, 1
q2 )-hyper-edge-disperser. Namely, there exists a

matching M ′ ⊆ E such that it is not concentrated on one color of edges: ∀i, |M ′ \ Ei| >
1
q2 |E| = t

q
. Let i be so that |M ′ ∩ Ei| is maximal, and hence larger than t

q2 . As any subset

of a matching is a matching, we can remove edges of M ′ ∩Ei until we are left with exactly
t
q2 edges there, and remove edges from M ′ \Ei until we are left with exactly t

q
edges there.

But this new set is in M, thus cannot be a matching.

Following the above proposition, we proceed with the proof considering only sets in M.

Denote by Pr[M ] the probability (over the random choice of H) that M is a matching. By

union bound,

P = Pr
H

[∃M ∈ M, M is a matching ] ≤

≤
∑

M∈M
Pr[M ] ≤ |M|Pr[M̂ ] (4.5)

where M̂ ∈ M is the set which maximizes Pr[M̂ ]. Clearly (using the known inequality(
n
k

)
≤ ( en

k
)k),

|M| ≤ q

(
(q − 1)t

t
q

)(
t
t
q2

)
≤ q(eq2)

t
q (eq2)

t

q2 ≤ (eq)
3t
q (4.6)
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We next bound Pr[M̂ ]. Let Mi = M̂ ∩ Ei. Let Bi,j be the event that the sets of edges Mi

and Mj do not share a vertex, and Ai = ∩j<iBi,j. Then

Pr[M̂ ] = Pr

[
⋂

i

Ai

]
=

∏

i

Pr

[
Ai |

⋂

l<i

Al

]

Note however, that the event Ai is independent of the event
⋂

l<i Al as Ai is determined

by (the independently chosen permutations) {Πi,j | j ∈ [d]}, whereas
⋂

l<i Al is determined

by the permutations {Πl,j | l < i, j ∈ [d]}. Thus

Pr[M̂ ] =
∏

i

Pr [Ai] (4.7)

Let Ci,j be the event that there is no collision (common vertex) of Mi and
⋃

l<i Ml on the

subset of vertices Vj (clearly Ai =
⋂

j∈[d] Ci,j). Hence, as for j1 6= j2, Ci,j1 and Ci,j2 are

determined by independent sets of permutations (recall (4.4)) we have

Pr[Ai] =
∏

j∈[d]

Pr[Ci,j] = (Pr[Ci,1])
d ≤ (1 − |Mi|

t
)d|⋃l<i Ml∩V1| = (1 − |Mi|

t
)d

∑
l<i |Ml|

where the sum in the exponent of the rightmost expression is by assuming no collisions

between edges of
⋃

l<i Ml on Vj (which is implied by
⋂

l<i Al). Thus by equation (4.7) we

have ( as 1 − x ≤ e−x ):

Pr[M̂ ] ≤
∏

i

(
1 − |Mi|

t

)d
∑

j<i |Mj |
≤ e−

d
t

∑q
i=2(|Mi|

∑i−1
j=1 |Mj |)

Under the constraint that M̂ ∈ M the sum
∑q

i=2(|Mi|
∑i−1

j=1 |Mj|) is minimized for |M2| =

|M3| = t
2q

hence

Pr[M̂ ] ≤ e
− dt

4q2 (4.8)

Therefore by equations (4.5),(4.6),(4.8),

P ≤ (eq)
3t
q e

− dt

4q2
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Any d which guarantees that (eq)
3t
q e

− dt

4q2 ¿ 1 suffices (for example d ≥ 20q ln q) as P < 1,

thus there exists H with the disperser properties.

4.5.1 Optimality of Hyper-Edge-Disperser Construction

We now turn to see why the Hyper-Edge-Disperser from lemma 4.9 has optimal parameters.

We base our observation on a lemma from [RTS00]:

Definition 4.16. A bipartite graph G = (V1, V2, E) is called a δ-disperser if for every

U1 ⊆ V1, U2 ⊆ V2, |U1|, |U2| ≥ δ|V1| = δ|V2|, the subset U1 ∪ U2 is not an independent set.

Lemma 4.17. Every bipartite d-regular 1
k
-disperser must satisfy d = Ω(k ln k).

Proposition 4.18. Every d-uniform q-strongly-edge-colorable q-regular d-strongly colorable

(q, 1
q2 )-hyper-edge-disperser must satisfy d = Ω(q ln q).

Proof. We prove that if there exists such a hyper-graph which satisfies d = o(q ln q), then

there exists a bipartite o(q ln q)-regular 1
q
-disperser, in contrast to lemma 4.17. We trans-

form a d-partite d-uniform q-regular q-strongly-edge colorable (q, 1
q2 )-Hyper-Edge-Disperser

H = (VH , E1, E2, ..., Eq) into a bipartite d-regular 1
q
-disperser G = (V1, V2, EG) in the fol-

lowing way. Let

V1 = E1

V2 = E2

EG = {(e1, e2) | e1 ∩ e2 6= φ}

Obviously G is a bipartite d-regular graph (we allow multi-edges). In addition, suppose

two sets of fractional sizes:

S1 =
1

q
V1, S2 =

1

q
V2

are an independent set in G. Then the corresponding sets of edges in H are disjoint and are

of fractional size 2
q2 , thus contradicting the fact that H is a (q, 1

q2 )-Hyper-Edge-Disperser.
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4.6 Concluding Remarks and Open Problems

An interesting property of our construction (for both asymptotic and low bound values re-

sults) is the almost perfect completeness. This property refers to the fact that the matching

proved to exist in the completeness claim 4.10 is an almost perfect matching, that is, it

covers 1 − ε of the vertices. Knowing the location of a gap is interesting by itself and may

prove useful (in particular if it is extreme on either the completeness or the soundness pa-

rameters, see for example [Pet94]). In fact, applying our reduction on other PCP variants

instead of Max-3-Lin-q (e.g. parallel repetition of 3-SAT) yields perfect completeness for

k-DimensionalMatching (but with weaker hardness factors).

The ratio between the asymptotic inapproximability factor presented herein for k-

DimensionalMatching and k-SetPacking, and the tightest approximation algorithm

known, was reduced to O(ln k). The open question of where in the range, from 2
k

to

O( ln k
k

) is the approximability threshold is interesting by itself, as well as its implications

to the difference between k-DimensionalMatching and k-IS. The current asymptotic

inapproximability factor of O( ln k
k

) for k-DimensionalMatching approaches the tightest

approximation ratio known for k-IS, namely Ω
(

log k
k log log k

)
[Vis96]. Thus, a small improve-

ment in either the approximation ratio or the inapproximability factor will show these

problems to be of inherently different complexity.
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