
MATRIX MULTIPLICATION,
A LITTLE FASTER

ELAYE KARSTADT AND ODED SCHWARTZ

GOALS
Improve the practical performance of fast matrix multiplica-
tion algorithms.

1. We reduce the number of arithmetic operations by a
constant factor

2. We reduce the number of data transfers within memory
hierarchy by a constant factor

OUR METHOD

Strassen-like 〈n,m, k; t〉-algorithms are block-recursive algo-
rithms. Defined by n ×m, m × k, and n × k base case for the
linear part, and t multiplications.
Bodrato [2] used a method of intermediate representation of
2×2 matrices for repeated squaring and for chain matrix mul-
tiplication computations. We extend this method to alterna-
tive basis Strassen-like matrix multiplication.

Alternative basis Strassen-like 〈n,m, k; t〉φ, ψ, υ-algorithms
take input φ (A) , ψ (B) and output υ (A ·B).

Lemma (Karstadt & Schwartz 2017). Let R be a ring, and let
φ, ψ, υ be automorphisms of Rn·m, Rm·k, Rn·k (respectively).
〈U, V, W 〉 are encoding/decoding matrices of an 〈n,m, k; t〉φ,ψ,υ-
algorithm if and only if

〈
Uφ, V ψ, Wυ−T

〉
are encoding/decoding

matrices of an 〈n,m, k; t〉-algorithm

We compute over alternative bases where:

• Transformation between the standard and our alterna-
tive basis can be done in O

(
n2 log n

)
time, which is

asymptotically negligible.
• A Strassen-like algorithm in our alternative basis uses

fewer additions/subtractions.

INTRODUCTION
Strassen’s algorithm (1969), was the first sub-cubic matrix
multiplication algorithm. Winograd (1971) improved the
leading coefficient of its complexity from 7 to 6. Can we do
better?

Theorem (Probert 1976). Any Strassen-like algorithm with 2x2
base case and 7 multiplications requires at least 15 additions.

Strassen-Winograd’s algorithm was believed to be optimal
due to this bound.

Theorem (Karstadt & Schwartz 2017). There is a Strassen-like
algorithm with 2x2 base case and 7 multiplications requires at least
12 additions.

Our theorem seems to implicitly contradict Probert’s lower
bound. However, this bound assumes that the input and
output are represented in the standard basis. We extend
Probert’s lower pound to account for alternative bases.

Theorem (Karstadt & Schwartz 2017). Irrespective of in-
put/output bases, a Strassen-like algorithm with 2x2 base case and
7 multiplications requires at least 12 additions.

Our generalization of Probert’s lower bound shows our algo-
rithm to be optimal for matrix multiplication with 2x2 base
case and with 7 multiplications.

ALTERNATIVE BASIS STRASSEN
Given an 〈n0,m0, k0; t〉φ, ψ, υ-algorithm (RBA), and its cor-
responding φ ∈ GLn0·m0

(R), ψ ∈ GLm0·k0 (R), υ ∈
GLn0·k0 (R)

Input: A ∈ Rn×m, B ∈ Rm×k

Output: C ∈ Rn×k such that C = A ·B
1: function ABS(A,B)
2: Ã = φ(A) . O

(
nm · logn0·m0

(nm)
)

3: B̃ = ψ(B) . O
(
mk · logm0·k0 (mk)

)
4: C̃ = RBA(Ã, B̃)
5: C = υ−1(C̃) . O

(
nk · logn0·k0 (nk)

)
6: return C

Basis transformations are block-recursive, i.e., given φ1 we
define:

(ψk+1 (A))i,j = ψk (ψ1 (A))i,j

FURTHER APPLICATIONS

Algorithm
Prev.
Coeffi-
cient

New
Coefficient Saves

〈3, 2, 3; 15〉[1] 15.06 7.94 47.2%

〈2, 3, 4; 20〉[1] 9.96 7.46 25.1%

〈2, 2, 2; 7〉[8] 6 5 16.6%

〈6, 3, 3; 40〉[5] 55.63 9.39 83.1%

Table 1: A Sample of Alternative Basis Algorithms

Finding optimal bases for Strassen-like algorithms reduces
to the Matrix Sparsification problem, which is NP-Hard [3].
However, our need is for fixed base case sizes.
For algorithms with a base case larger than Strassen-
Winograd’s, the search space gets quite big. We utilized com-
puter aided search and found several alternative basis vari-
ants of known Strassen-like algorithms.

CONTACT INFORMATION
Mail {elayeek, odedsc}@cs.huji.ac.il

Web www.cs.huji.ac.il/ ∼ {elayeek, odedsc}

ACKNOWLEDGMENTS
Research is supported by grants 1878/14, and 1901/14 from the Israel Science Foundation (founded by the Israel Academy
of Sciences and Humanities) and grant 3-10891 from the Ministry of Science and Technology, Israel. Research is also sup-
ported by the Einstein Foundation and the Minerva Foundation. This work was supported by the Peta- Cloud industry-
academia consortium. This research was supported by a grant from the United States-Israel Bi-national Science Founda-
tion (BSF), Jerusalem, Israel. This work was supported by the HUJI Cyber Security Research Center in conjunction with
the Israel National Cyber Bureau in the Prime Minister’s Office. We acknowledge PRACE for awarding us access to Hazel
Hen at GCS@HLRS, Germany.

REFERENCES

[1] A. R. Benson and G. Ballard. A framework for practical parallel fast matrix multiplication. ACM SIGPLAN Notices,
50(8):42–53, 2015.

[2] M. Bodrato. A Strassen-like matrix multiplication suited for squaring and higher power computation. In Proceedings
of the 2010 International Symposium on Symbolic and Algebraic Computation, pages 273–280. ACM, 2010.

[3] L. Gottlieb and T. Neylon. Matrix sparsification and the sparse null space problem. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 205–218. Springer, 2010.

[4] R. L. Probert. On the additive complexity of matrix multiplication. SIAM Journal on Computing, 5(2):187–203, 1976.

[5] A. Smirnov. The bilinear complexity and practical algorithms for matrix multiplication. Computational Mathematics and
Mathematical Physics, 53(12):1781–1795, 2013.

[6] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356, 1969.

[7] E. Karstadt and O. Schwartz. Matrix Multiplication, a Little Faster. Submitted to SPAA ’17.

[8] S. Winograd. On multiplication of 2× 2 matrices. Linear algebra and its applications, 4(4):381–388, 1971.

ENCODING/DECODING MATRICES
Any bi-linear algorithm which uses t multiplications can be
described by encoding/decoding matrices 〈U, V, W 〉:

U ∈ Rt×n·m, V ∈ Rt×m·k, W ∈ Rt×n·k

Such that ∀A ∈ Rn·m, B ∈ Rm·k

ALG (A,B) =WT ((U ·A)� (V ·B))

where · is matrix multiplication and� is element-wise vector
product (Hadamard product).

OPTIMAL 〈2, 2, 2; 7〉φ,ψ,υ-ALGORITHM

Uopt =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1−1 0
−1 1 0 0
0−1 0 1


Vopt =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0−1 0 1
0 1−1 0
−1 1 0 0


Wopt =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 1 0 0
0−1 0−1
0 1 1 0


{φ, ψ}opt =


1 0 0 0
0 1−1 1
0 0−1 1
0 1 0 1

 υ−1
opt =


1 0 0 0
0 1−1 0
0−1 0 1
0−1 1 1



Algorithm 1: Encoding/Decoding and basis transformation matrices for our 〈2, 2, 2; 7〉φ,ψ,υ − algorithm

COMPARING OUR 〈2, 2, 2; 7〉φ,ψ,υ-ALGORITHM TO STRASSEN-WINOGRAD’S
Algorithm Arithmetic Complexity I/O-Complexity (with a cache of size M )

Strassen [6] 7nlog2 7 − 6n2 6 ·
(√

3·n√
M

)log2 7

·M − 18n2 + 3M

Strassen-Winograd [8] 6nlog2 7 − 5n2 5 ·
(√

3·n√
M

)log2 7

·M − 15n2 + 3M

Ours 5nlog2 7 − 4n2 + 3n2 log2 n 4·
(√

3·n√
M

)log2 7

·M−12n2+3n2 ·log2
(√

2 · n√
M

)
+5M

Table 2: Complexity of 〈2, 2, 2; 7〉-algorithms

Due to its lower leading coefficient of 5 instead of 6, our
〈2, 2, 2; 7〉φ,ψ,υ-algorithm asymptotically performs 16.6% less
arithmetic operations than Strassen-Winograd’s. Preliminary
benchmark results indicate that our algorithm achieves an
improvement close to theory even on modestly sized input
(N = 32768) with few cores (P = 6), and outperforms
Strassen-Winograd’s algorithm.
We expect the 20% improvement in I/O-complexity to play a
greater role on larger inputs with more cores.


