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Abstract. Given a k-uniform hypergraph, the Maximum k-Set Pack-

ing problem is to find the maximum disjoint set of edges. We prove
that this problem cannot be efficiently approximated to within a factor
of Ω(k/ ln k) unless P = NP. This improves the previous hardness of
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1. Introduction

This paper studies the following basic optimization problem: given a family
of sets over a certain domain, find the maximum number of disjoint sets. We
consider the case where all sets in the given family are of the same size k.

For the case where k = 2, we can view the sets as edges in a graph whose
vertices are the domain, and hence the problem is exactly the famous max-
imal matching problem which is solvable in polynomial time (Papadimitriou
1994). For k ≥ 3, again viewing the sets as hyper-edges in a hyper-graph,
the problem of finding the maximum matching in k-uniform hyper-graphs is
NP-hard. Hence, unless P = NP, the best hope is to obtain a polynomial time
approximation algorithm with provably good approximation guaranty.

The simple greedy algorithm is the following: iteratively pick an arbitrary
set and add it to the collection of sets maintained thus far, while removing
all sets intersecting it. Continue as long as there remain edges in the graph.
Obviously this algorithm returns a family of pairwise disjoint sets. It is easy to
prove that this algorithm provides a k-approximation to the optimal solution. A
constant improvement in the approximation ratio, to k/2 (Hurkens & Schrijver
1989), can be obtained by a simple local search heuristic, and is the best known
approximation to date.

In this work we prove that the latter approximation guaranty is almost
tight, proving the following:
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Theorem 1.1. It is NP-hard to approximate k-SP to within Ω(k/ln k).

1.1. Previous results. The general Maximum Set Packing problem is
as follows: given a family F = {S1, . . . , Sm} of sets over a certain domain
D = {x1, . . . , xn}, the objective is to find a maximum packing, i.e. a maximum
number of pairwise disjoint sets from the given family. This problem is often
phrased in graph theory terminology, as a set system is in fact a hyper-graph
where the vertices are the items in the domain and the edges are the given sets.
In graph theory jargon, a disjoint set of edges is called a matching, hence the
objective is to find a maximum matching.

Packing problems are among the fundamental combinatorial optimization
problems. Variants of Maximum Set Packing, including the Maximum

Independent Set and Maximum Clique problems, have been widely stud-
ied (Arora et al. 1998; Arora & Safra 1998; Bar-Yehuda & Moran 1984; Bop-
pana & Halldórsson 1992; Feige et al. 1996; H̊astad 1999; Wigderson 1983).
These general formulations of packing problems are notoriously hard even
to approximate: H̊astad (1999) showed that Maximum Clique (and there-
fore Maximum Independent Set and Maximum Set Packing as well)
cannot be approximated to within O(N1−ε) unless NP ⊆ ZPP (for every
ε > 0). The best approximation algorithm for Maximum Independent

Set achieves an approximation ratio of O(N/log2 N) (Boppana & Halldórsson
1992).

In this paper we consider several natural variants of packing problems. The
first, and perhaps most natural, is when the size of the hyper-edges is bounded
by k. This problem is called Maximum k-Set Packing (for short k-SP). If in
addition we bound the degree of the vertices by two, this becomes the problem
of maximum independent set in graphs of degree at most k.

Another (stronger) natural restriction studied here is when we impose a
bound on the colorability of the input graph. This is the problem of Maximum

k-Dimensional Matching (for short k-DM). It is a variant of Maximum

k-Set Packing where the vertices of the input hyper-graph are a union of k
disjoint sets, V = V1∪· · ·∪Vk, and each hyper-edge contains exactly one vertex
from each set, i.e., E ⊆ V1×· · ·×Vk. In other words, the vertices of the hyper-
graph can be colored using k colors, so that no hyper-edge contains the same
color twice. A graph having this property is called k-strongly-colorable. Thus
the color-bounded version of Maximum k-Set Packing is, given a k-uniform
k-strongly-colorable hyper-graph, find a matching of maximum size.

These bounded variants of Maximum Set Packing are known to admit
approximation algorithms better than their general versions, the quality of the
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approximation being a function of the bounds. As mentioned previously, the
greedy algorithm guarantees a k-approximation for Maximum k-Set Pack-

ing. A simple local-search heuristic achieves an approximation ratio of k/2
(Hurkens & Schrijver 1989). This is, to date, the best approximation algo-
rithm for Maximum k-Dimensional Matching as well.

For the special case where k = 2, both problems are solvable in polynomial
time. Maximum 2-Dimensional Matching is just the problem of finding a
maximum matching in a bipartite graph, and can be solved in polynomial time,
say by a reduction to network flow problems (Papadimitriou 1994). Maximum

2-Set Packing is the problem of finding a maximum matching in a general
graph, and for this problem polynomial time algorithms are also known (Ed-
monds 1965) (for recent efficient algorithms see Mucha & Sankowski 2004).

However, for all k ≥ 3, Maximum k-Dimensional Matching is NP-
hard (Karp 1972; Papadimitriou 1994). Furthermore, for k = 3, the problem is
known to be APX-hard (Kann 1991). Alon et al. (1995) proved that for a suit-
ably large k, Maximum k-Independent Set (finding an independent set of
maximum size in k-regular graphs, for short k-IS) is NP-hard to approximate
to within kc for some c > 0. This was later improved to the currently best
asymptotical inapproximability factor of k/2O(

√
ln k) (Trevisan 2001). All hard-

ness factors for Maximum k-Independent Set hold in fact for Maximum

k + 1-Dimensional Matching as well (by a simple reduction).

The best known approximation algorithm for k-IS achieves an approxi-
mation ratio of O(k log log k/log k) (Vishwanathan 1996). For k-IS of low k
values, the best approximation algorithm achieves an approximation ratio of
(k + 3)/5 for k ≥ 3 (Berman & Fujito 1995; Berman & Furer 1994). Berman
& Karpinski (2003) showed an inapproximability factor of 98/97 for Maxi-

mum 3-Dimensional Matching. For more on low-degree inapproximability
results see Hazan (2002).

1.2. Our contribution. We improve the inapproximability factor for Max-

imum k-Set Packing, and prove that it is NP-hard to approximate k-SP
to within Ω(k/ln k). We extend this result to Maximum k-Dimensional

Matching. These results also imply the same bound for (k + 1)-claw-free
graphs (see Halldórsson 1998 for definition of this problem and relation to
k-SP). They do not hold, however, for k-IS.

The proof of these lower bounds introduces a combinatorial object called
hyper-edge-disperser, and we present a randomized construction of such an
object. This object may be of independent interest.
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1.3. Outline. Some preliminaries are given in Section 2. Section 2.2 presents
the notion of hyper-edge-dispersers. Section 3 contains the proof of the asymp-
totic hardness of approximation for k-SP. Section 4 extends the proof to hold
for k-DM. The existence of a good hyper-disperser is proved in Section 5. The
optimality of its parameters is shown in Section 5.1. Section 6 contains a dis-
cussion on the implications of our results, the techniques used and some open
problems.

2. Preliminaries

In order to prove inapproximability of a maximization problem, one usually
defines a corresponding gap problem.

Definition 2.1. Let A be a maximization problem. gap-A-[a, b] is the follow-
ing decision problem: Given an input instance, decide whether

◦ there exists a solution of fractional size at least b, or

◦ every solution of the given instance is of fractional size smaller than a.

If the size of the solution is located between these values, then the output is
unconstrained.

Clearly, for any maximization problem, if gap-A-[a, b] is NP-hard, than it
is NP-hard to approximate A to within any factor smaller than b/a.

Our main result in this paper is derived by a reduction from the following
problem.

Definition 2.2. MAX-3-LIN-q is the following optimization problem:
Input: A set Φ of linear equations modulo an integer q, each depending on
three variables.
Problem: Find an assignment that satisfies the maximum number of equations.

The following central theorem stems from a long line of research, using
the PCP theorem (Arora et al. 1998; Arora & Safra 1998) and the parallel
repetition theorem (Raz 1998) as a starting point:

Theorem 2.3 (H̊astad 2001). For every q ∈ N and ε > 0, gap-MAX-3-LIN-
q-[1/q + ε, 1 − ε] is NP-hard. Furthermore, the result holds for instances of
MAX-3-LIN-q in which the number of occurrences of each variable is a constant
(depending on ε and on q).
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We denote an instance of MAX-3-LIN-q by Φ = {ϕ1, . . . , ϕm}. Φ is over the
set of variables X = {x1, . . . , xn}. Let Φ(x) be the (multi) set of all equations in
Φ depending on x ∈ X (i.e. it can be seen as all the occurrences of x). Denote
by Sat(Φ, A) the set of all equations in Φ satisfied by the assignment A. For
an assignment A, we denote by A|x the value a ∈ [q] that A assigns to x.

2.1. Hyper-graphs. A hyper-graph H = (V,E) consists of a set of vertices
V and a collection E of subsets of V called hyper-edges (for short, edges).

As usual, the degree of a vertex is the number of edges it appears in. A
hyper-graph H is called d-regular if the degree of each of its vertices is exactly d,
and k-uniform if the size of each of its edges is exactly k.

A matching is a subset M of E such that all edges of M are pairwise disjoint.
We use the following non-standard definition of an independent set in hyper-

graphs:

Definition 2.4. Let H = (V,E) be a hyper-graph. A subset of vertices I ⊆ V
is called an independent set if any edge e ∈ E contains at most one vertex
from I.

From it we derive the corresponding (but non-standard) definition of col-
orability:

Definition 2.5. The hyper-graph H =(V,E) is said to be k-strongly-colorable
if there is a partition of V into k sets such that each part is an independent
set.

Hence, a k-uniform k-strongly-colorable hyper-graph H may be denoted by
H = (V 1, . . . , V k, E), where E ⊆ V 1×· · ·×V k. An analogous notion to strong
colorability applies to the edges of a hyper-graph:

Definition 2.6. A hyper-graph H = (V,E) is said to be d-strongly-edge-
colorable if there exists a coloring of the edges f : E → [d] so that every vertex
participates in at most one edge of each color.

Using these definitions we can formally define the related packing problem
studied here:

Definition 2.7. Maximum k-Set Packing is the following optimization
problem:
Input: A k-uniform hyper-graph H = (V 1, . . . , V k, E).
Problem: Find a matching of maximum size in H.
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Maximum k-Dimensional Matching is the same problem, where the
input graph is k-strongly colorable.

2.2. Hyper-dispersers. The following definition is a generalization of dis-
perser graphs. For definitions and results regarding dispersers see Radhakrish-
nan & Ta-Shma (2000).

Definition 2.8. A hyper-graph H = (V,E) is a (q, δ)-hyper-edge-disperser if
there exists a partition of its edges: E = E1 ∪ · · · ∪ Eq with |E1| = · · · = |Eq|,
such that every large matching M of H is (almost) concentrated in one part of
the edges. Formally, for every M there exists i so that

|M \ Ei| ≤ δ|E|.

Lemma 2.9. For every q > 1 and t > c(q) (where c(q) is a constant depending
only on q) there exists a hyper-graph H = (V,E) such that

◦ V = [t] × [d], where d = Θ(q ln q).

◦ H is a (q, 1/q2)-hyper-edge-disperser.

◦ H is d-uniform, d-strongly-colorable.

◦ H is q-regular, q-strongly-edge-colorable.

Henceforth we denote such a graph by D[t, q]. Because of the regularity, uni-
formity and colorability conditions on this hyper-graph, the number of edges is
exactly qt, and they can be partitioned into q disjoint color sets. We therefore
name its edges e[i, j] where j ∈ [q] is the color of the edge by an arbitrary
strong edge coloring (a coloring where no two edges of the same color share a
vertex) and i ∈ [t] is an arbitrary indexing of the t edges of each color. Note
that the t edges of any single color cover all the vertices of D[t, q].

A proof of the above lemma appears in Section 5. Note that D[t, 2] is the
dual graph of a standard disperser.

3. Proof of the asymptotic inapproximability factor

for k-SP

This section provides a polynomial time reduction from MAX-3-LIN-q to k-SP.
Given an instance Φ of MAX-3-LIN-q, that is, a set of equations modulo inte-
ger q, we construct an instance of k-SP, namely a k-uniform hyper-graph.

For the hyper-graph we construct, we add hyper-edges corresponding to
the equations of Φ and satisfying assignments to them. The main idea of the
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reduction is to construct the hyper-graph in such a way that a large matching
corresponds to a consistent satisfying assignment to Φ. For this purpose, the
hyper-graph has common vertices for edges that correspond to assignments
that are inconsistent.

In general, the sparsity and uniformity of the constructed graph are strongly
related to the quality of the hardness result. In order to obtain a sparse graph
with small edge size, while retaining edge-intersection properties, we utilize the
hyper-edge-disperser graphs defined in the previous section.

3.1. The construction. Let Φ = {ϕ1, . . . , ϕn} be an instance of MAX-3-
LIN-q over the set of variables X, where each variable x ∈ X occurs a constant
number of times c(x) = O(1) (as in Theorem 2.3). Let us now describe how
to construct, in polynomial time, an instance of k-SP, the hyper-graph HΦ =
(V,E).

Let us fix, for every variable x ∈ X, a one-to-one mapping between all
indices ix ∈ [c(x)] and all occurrences of x in Φ.

Recall Lemma 2.9 that asserts the hyper-edge-disperser D[t, q] (Definition
2.8) exists. For every variable x ∈ X consider the graph D[c(x), q]. Each vertex
in V (D[c(x), q]) corresponds to an occurrence of x in Φ, and a number in [d],
where d = Θ(q log q). Each of the edges in E(D[c(x), q]) is in a one-to-one
correspondence with an occurrence ix ∈ [c(x)] and a value a ∈ [q] according to
the strong edge coloring of D[c(x), q], so let us denote these edges by e〈x, ix, a〉.

The set of vertices V of HΦ consists of one copy of the vertices of the
disperser graph D[c(x), q] for every variable x ∈ X. Namely,

V , {v〈x, i, j〉 | x ∈ X, i ∈ [c(x)], j ∈ [d]}.

Henceforth, for any variable x ∈ X, the copy of D[c(x), q] over the vertices
Vx , {v〈x, i, j〉 | i ∈ [c(x)], j ∈ [d]} will be denoted Dx.

Let us now define the set of edges E of HΦ. The edges of HΦ will be
composed of several edges from the hyper-graphs Dx. The set E consists of
one edge for every equation ϕ ∈ Φ over variables x, y, z and assignment A to
x, y, z that satisfies ϕ. Denote by A|x, A|y, A|z ∈ [q] the values that A assigns
to these variables (notice there are q2 such satisfying assignments). Denote by
ix, iy, iz the indices of the occurrences of x, y, z respectively in ϕ. The edge
corresponding to ϕ and A is a union of three edges from the copies of hyper-
graphs Dx,Dy,Dz of the variables in the equation ϕ:

e〈ϕ,A〉 = e〈x, ix, A|x〉 ∪ e〈y, iy, A|y〉 ∪ e〈z, iz, A|z〉.

Clearly, the cardinality of each edge e〈ϕ,A〉 is 3d, as it is the disjoint
union of three edges of cardinality d. Note that each of the three edges
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e〈x, ix, A|x〉, e〈y, iy, A|y〉, e〈z, iz, A|z〉, which compose e〈ϕ,A〉, participates in q
edges of the hyper-graph HΦ.

Altogether, the edges of HΦ are

E = {e〈ϕ,A〉 | ϕ ∈ Φ, A is a satisfying assignment to ϕ}.

This concludes the construction of the k-SP instance HΦ.
Notice that for every constant q, the construction can be carried out in

deterministic polynomial time. To this end, each disperser Dx should be con-
structed in deterministic polynomial time. As each variable x occurs c(x) =
O(1) times (by Theorem 2.3), the size of Dx is constant as well. According to
Lemma 2.9, we know that Dx exists. Therefore, we can enumerate all possible
hyper-graphs of the required size and verify whether they are indeed hyper-
edge-dispersers with the required parameters.

3.2. Proof of correctness. We next show that the size of a maximum
matching in HΦ is proportional to the maximum number of equations of Φ
that can be simultaneously satisfied. That is, if there exists an assignment
that satisfies almost all equations of Φ then there exists a matching that covers
almost all vertices of HΦ. On the other hand, if every assignment satisfies at
most a small fraction of the equations of Φ, then every matching of HΦ is small.

Lemma 3.1 (Completeness). If there is an assignment to Φ which satisfies 1−ε
of its equations, then there is a matching in HΦ of size ((1 − ε)/q2)|E|.

Proof. Let A : X → [q] be an assignment that satisfies 1−ε of the equations.
Consider the matching M ⊆ E consisting of all edges corresponding to A, i.e.

M = {e〈ϕ,A〉 | ϕ ∈ Sat(Φ, A)}.

As M contains one edge corresponding to each satisfied equation, and for each
equation there are q2 satisfying assignments, we have |M | = ((1 − ε)/q2)|E|.
To see that these edges are indeed a matching, consider any two edges of M .
If they do not relate to the same variables then they do not contain vertices
from a joint hyper-edge-disperser. On the other hand, if they do relate to a
joint variable x ∈ X, then they relate to different occurrences ix,1, ix,2 ∈ [c(x)],
but the same assignment a ∈ [q] to it. Hence they contain vertices of the
same hyper-edge-disperser Dx, but from two distinct edges of the same color,
therefore they do not share a vertex. �

Lemma 3.2 (Soundness). If every assignment to Φ satisfies at most a 1/q + ε
fraction of its equations, then every matching in HΦ is of size O(q−3|E|).
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The proof idea is as follows: given a matching M , each edge in it corresponds
to an assignment to three variables. Given a matching M , we use it to define a
global assignment Amaj to the variables of Φ: every variable is assigned the value
which agrees with the maximal number of hyper-edges of M . We then partition
the edges of M into two sets: those that agree with the global assignment
(named Mmaj) and the complement set (named Mmin). The size of Mmaj is
bounded, as it corresponds to the set equations satisfied by Amaj (which is
small). We then proceed to bound the size of Mmin using the expansion property
of the hyper-edge-dispersers.

Proof. Denote by Ex the edges of HΦ corresponding to equations that con-
tain the variable x,

Ex = {e〈ϕ,A〉 | ϕ ∈ Φ(x), e〈ϕ,A〉 ∈ E}.

Denote by Ex=a the subset of Ex corresponding to an assignment of a to x,
that is,

Ex=a = {e〈ϕ,A〉 | e〈ϕ,A〉 ∈ Ex, A|x = a}

Let M be a matching of maximum size in HΦ. According to the matching
M we define the majority assignment Amaj as follows: for every x ∈ X, the
assignment Amaj(x) is the value a ∈ [q] such that |Ex=a∩M | is maximized. Let
Mmaj be the set of edges in M that agree with Amaj, and Mmin be all the other
edges in M :

Mmaj = M ∩ {e〈ϕ,Amaj〉 | ϕ ∈ Φ}, Mmin = M \ Mmaj.

As the number of equations satisfied by Amaj satisfies |Sat(Φ, Amaj)|≤1/q + ε,
and for each equation there are q2 edges corresponding to all satisfying assign-
ments for this equation, we have

|Mmaj| <

(

1

q
+ ε

)

|E|

q2
.(3.3)

We next bound the size of Mmin. The idea is as follows: we decompose each
edge in Mmin into the three constructing edges. At least one of those three edges
corresponds to an assignment other than the majority assignment. Hence it
suffices to bound the number of “constructing edges” that correspond to the
minority assignments. This is accomplished using the disperser property.

Consider a certain variable x ∈ X. Then Dx is a (q, 1/q2)-hyper-edge-
disperser (recall Definition 2.8). That is, in any subset of edges of Dx which is
a matching, all but at most a 1/q2 fraction of the edges are of one color (which
corresponds to a single assignment to the variable x). Clearly, if two edges of
Dx intersect, then so do any pair of edges of HΦ containing these two edges.
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Therefore,

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q2
|E(Dx)|(3.4)

where |E(Dx)| is the number of edges of Dx.
Consider an edge e〈x, ix, a〉 of Dx, where ix is the index of x when it appears

in the equation ϕ ∈ Φ. This edge was used in the construction of q edges of HΦ,
namely those that correspond to the satisfying assignments of ϕ that assign a
to x.

Hence, every edge of Dx is a subset of q hyper-edges in Ex. However, no
more than one of these q edges may participate in M (as M is a matching).
Plugging this observation into (3.4) we obtain

∑

a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q3
|Ex|.(3.5)

Summing up over the variables of Φ yields

|Mmin| ≤
∑

x∈X, a 6=Amaj(x)

|Mmin ∩ Ex=a| ≤
1

q3

∑

x∈X

|Ex| =
3

q3
|E|(3.6)

where the last equality follows from the fact that each equation contains three
variables. Thus, from (3.3) and (3.6),

|M | = |Mmin| + |Mmaj| ≤

(

4

q3
+ ε

)

|E|. �

By Lemmas 3.1 and 3.2 we showed that Gap-k-SP-[4/q3+ε, 1/q2−ε] is NP-hard.
Since each edge is of size k = 3d = Θ(q log q) it is NP-hard to approximate
k-SP to within Ω(k/ln k).

4. Extending the proof for k-DM

The proof for k-DM is similar to the k-SP proof, yet we take additional care
to ensure that the graph HΦ we construct has the required structure (namely,
that HΦ is not only k-uniform, but also k-strongly-colorable).

The construction for k-DM takes into account the location of the variables
in the equations they appear in. As there are three variables per equation,
there are three possible locations. We use the following notation: Φ(x, l) is the
subset of Φ(x) where x is the lth variable in the equation (l ∈ [3]). We may
assume that every variable appears the same number of times in every location
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(Φ(x, 1) = Φ(x, 2) = Φ(x, 3)), as we can take three copies of each equation, and
shift the location of the variables.

Similar to the k-SP construction, we associate a vertex with each appearance
of a variable. For every variable x ∈ X, we now have three copies of a hyper-
edge-disperser (instead of just one we had for k-SP): a different disperser for
each location in the equations. For every location l ∈ [3], we have a hyper-
disperser D[c(x)/3, q] which is denoted by Dx,l. The vertices of HΦ are the
union of the vertices of all these hyper-dispersers corresponding to all variables
in the equation set and all locations.

Since c(x) is exactly the number of appearances of the variable x in the
equation set Φ, we can enumerate the vertices of HΦ according to the variable
x ∈ X and equation ϕ ∈ Φ they correspond to (and these two parameters
determine the location of the variable in the equation as well):

V = {v〈x, ϕ, j〉 | x ∈ X, ϕ ∈ Φ(x), j ∈ [d]}.

The construction of the edges of HΦ is almost identical to that of the k-SP
instance, the difference being the distinction between the three dispersers for
each variable. Notice there is a bijection between an occurrence of a variable
in a certain equation and the corresponding vertex in one of the three hyper-
graphs corresponding to this variable. Therefore, there is no ambiguity in the
edge construction process, which is otherwise identical to the one for k-SP.

The notation we use for the edges is identical to the k-SP construction
as well: the edges correspond to the satisfying assignments to the equations,
and are composed of three disperser edges each, e〈ϕ,A〉 = e〈x, ix, A|x〉 ∪
e〈y, iy, A|y〉 ∪ e〈z, iz, A|z〉 (where these three edges are taken from Dx,1, Dy,2

and Dz,3 respectively). The set of all edges is denoted

E = {e〈ϕ,A〉 | ϕ ∈ Φ, A is a satisfying assignment to ϕ}.

This concludes the construction for k-DM. We first show that the graph
constructed is indeed a k-DM instance:

Proposition 4.1. HΦ is 3d-strongly-colorable.

Proof. We show how to partition V into 3d independent sets of equal size.
Let the sets be Pl,i for i ∈ [d] and l ∈ [3], where

Pl,i = {v〈x, ϕ, i〉 | x ∈ X, ϕ ∈ Φ(x, l)}.

Pl,i is clearly a partition of the vertices, as each vertex belongs to exactly one
part.
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We now explain why each part is an independent set. Let Pl,i be an arbitrary
part, and let e〈ϕ,A〉 ∈ E be an arbitrary edge, where the equation ϕ depends
on the variables x, y, z. By construction, this edge is a disjoint union of three
hyper-disperser edges corresponding to the three variables x, y, z,

e〈ϕ,A〉 = e〈x, ix, A|x〉 ∪ e〈y, iy, A|y〉 ∪ e〈z, iz, A|z〉.

Pl,i∩e〈ϕ,A〉 may contain vertices corresponding only to one of the variables
x, y, z, since it contains variables corresponding to a single location (first, second
or third). Let that variable be, say, x. Since the hyper-graph Dx,1 is d-uniform
and d-strongly-colorable, the edge e〈x, ix, A|x〉 (and hence e〈ϕ,A〉) contains
exactly one vertex from each of the d parts. Therefore, the set Pl,i ∩ e〈ϕ,A〉
contains exactly one vertex. Since |Pl,i ∩ e〈ϕ,A〉| = 1 for every edge and every
set Pl,i, the graph HΦ is 3d-strongly-colorable. �

We proceed to prove the gap in maximum matching size between the cases
in which the equation set Φ is almost satisfiable and very unsatisfiable. For the
case in which Φ is almost satisfiable, the completeness lemma (Lemma 3.1) is
valid for the current construction as well. We prove the appropriate soundness
lemma, which is very similar to Lemma 3.2.

Lemma 4.2 (Soundness). If every assignment to Φ satisfies at most a 1/q + ε
fraction of its equations, then every matching in HΦ is of size O(q−3|E|).

Proof. Denote by Ex,l the edges of HΦ corresponding to equations ϕ con-
taining the variable x in location l,

Ex,l = {e〈ϕ,A〉 | ϕ ∈ Φ(x, l), A ∈ [q2]}.

Denote by Ex=a,l the subset of Ex,l corresponding to an assignment of a ∈ [q]
to x, that is,

Ex=a,l = {e〈ϕ,A〉 | ϕ ∈ Φ(x, l), A|x = a}.

Let M be a matching of maximum size in HΦ. According to the matching
M we define the majority assignment Amaj, taking into account the locations

of the variables, as follows: for every x ∈ X, let l̂(x) be the location for which
|Ex,l̂(x) ∩ M | is maximized. The assignment Amaj(x) is the value a ∈ [q] such

that |Ex=a,l̂(x) ∩ M | is maximized.
As before, let Mmaj be the set of edges in M that agree with Amaj, and Mmin

be all the other edges in M :

Mmaj = M ∩ {e〈ϕ,Amaj〉|ϕ ∈ Φ}, Mmin = M \ Mmaj.
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For the exact same reasons as in the previous soundness proof (Lemma 3.2),
we have the estimates analogous to (3.3) and (3.5):

|Mmaj| <

(

1

q
+ ε

)

|E|

q2
,(4.3)

∀x ∈ X
∑

a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)| ≤
1

q3
|Ex,l̂(x)|.(4.4)

Proceeding along the lines of Lemma 3.2, we obtain

|M | ≤
∑

x,l

|M ∩ Ex,l|

≤
∑

x,l

|Mmaj ∩ Ex,l| +
∑

x,l,a 6=Amaj(x)

|Mmin ∩ Ex=a,l|

≤ 3
∑

x

|Mmaj ∩ Ex,l̂(x)| + 3
∑

x,a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)|

(since |Ex,l̂(x) ∩ M | is maximized by l̂(x))

≤ 3|Mmaj| + 3
∑

x,a 6=Amaj(x)

|Mmin ∩ Ex=a,l̂(x)|

< 3

(

1

q
+ ε

)

|E|

q2
+

3

q3

∑

x

|Ex,l̂(x)| (by (4.3) and (4.4))

≤

(

6

q3
+ 3ε

)

|E|. �

Finally, by the completeness lemma from the previous section and Lemma 4.2
we conclude that Gap-k-DM-[6/q3 +3ε, 1/q2−ε] is NP-hard, thus it is NP-hard
to approximate k-DM to within Ω(k/ln k).

5. Hyper-dispersers

In this section, we prove Lemma 2.9. As stated before, hyper-dispersers are
generalizations of disperser graphs. In Section 5.1, we prove that the parame-
ters given below are the best (up to a constant) for a hyper-disperser one can
hope to achieve.

Lemma 2.9. For every q > 1 and t > c(q) (where c(q) is a constant depending
only on q) there exists a hyper-graph H = (V,E) such that

◦ V = [t] × [d], where d = Θ(q ln q).
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◦ H is a (q, 1/q2)-hyper-edge-disperser.

◦ H is d-uniform, d-strongly-colorable.

◦ H is q-regular, q-strongly-edge-colorable.

We denote this graph by D[t, q].

Proof. We prove that the probability that a randomly generated graph is
not a D[t, q] graph is strictly smaller than 1, which yields the existence of such
graphs. Let

V = [t] × [d]

and define Vi = [t] × {i}. We next randomly construct the edges of the hyper-
graph, so that it is d-uniform and q-regular. Let St be the set of all permutations
over t elements. For every (i1, i2) ∈ [q] × [d] choose a permutation from St

uniformly at random:
Πi1,i2 ∈R St.

Define

(5.1) e[i, j] = {(Πj,1(i), 1), (Πj,2(i), 2), . . . , (Πj,d(i), d)}

and let
E = {e[i, j] | (i, j) ∈ [t] × [q]},

so |E| = tq. Define a partition of the edges as follows: Ei = {e[j, i] | j ∈ [t]}.
Thus |E1| = · · · = |Eq| = t and each set Ej of edges covers every vertex
exactly once. Therefore, H is q-strongly-edge-colorable. On the other hand,
every edge contains exactly one vertex from each set of vertices Vi. Thus H is
d-strongly-colorable.

We next show that, with high probability, H has the disperser property,
namely, every matching M of H is concentrated on a single part of the edges,
except for maybe (1/q2)|E| = t/q edges of M . Denote by P the probability
that H does not have the disperser property.

Definition 5.2. Define

Mk =

{

M ⊆ E

∣

∣

∣

∣

|M ∩ Ek| ≤
t

q
, |M \ Ek| =

t

q
, ∀i, |M ∩ Ek| ≥ |M ∩ Ei|

}

.

Proposition 5.3. If H is not a (q, 1/q2)-hyper-edge-disperser, then there
exists a k ∈ [q] and a set M ∈ Mk that is a matching.
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Proof. Suppose that H is not a (q, 1/q2)-hyper-edge-disperser. Then there
exists a matching M ′ ⊆ E that is not concentrated on one color of edges:
∀i, |M ′ \Ei| > (1/q2)|E| = t/q. Let k ∈ [q] be such that |M ′ ∩Ek| is maximal.
As any subset of a matching is a matching, we can remove edges from M ′ \Ek

until we are left with exactly t/q edges. Likewise, we can remove edges of
M ′ ∩ Ek until this set contains at most t/q edges. Note that the property
∀i, |M ′ ∩ Ek| ≥ |M ′ ∩ Ei| cannot be violated by the deletion of those edges.
Thus the new set obtained is a matching in Mk. �

Having the above proposition, we proceed with the proof considering only
sets in M1. Denote by Pr[M ] the probability (over the random choice of H)
that M is a matching. By union bound, symmetry with respect to k, and the
above proposition,

P ≤ Pr
H

[∃k, M ∈ Mk, M is a matching](5.4)

≤ q
∑

M∈M1

Pr[M ] ≤ q|M1|Pr[M̂ ]

where M̂ ∈ M1 is the set which maximizes Pr[M ]. The size of M1 is bounded
from above by the number of possibilities to choose at most t/q edges from E1

and another t/q edges from the rest of the edge color sets. Therefore, using the
known inequality

(

n
k

)

≤ (en/k)k and assuming t ≫ q ≫ 2 we obtain

(5.5) |M1| ≤

(

(q − 1)t

t/q

)(

t + 1

t/q

)

≤ (eq2)t/q(eq)2t/q ≤ (eq)4t/q.

We next bound Pr[M̂ ]. Denote by M̂i the event that M̂ restricted to the
vertices of Vi is a matching (that is, the edges of M̂ do not share a vertex
in Vi). According to the independent choice of permutations in the construction
of H (recall (5.1)), the events M̂i are independent and identically distributed.
Hence,

(5.6) Pr[M̂ ] =
d

∏

i=1

Pr[M̂i]

and we proceed to bound Pr[M̂1]. Henceforth we shall only consider vertices
of V1.

Let Mi be the set of edges in M̂ ∩ Ei restricted to the vertices of V1. Let
Ai be the event that the sets of edges {Mj | j ≤ i} are all disjoint. Then

(5.7) Pr[M̂1] = Pr
[

q
⋂

i=2

Ai

]

=

q
∏

i=2

Pr[Ai |Ai−1].



cc 15 (2006) Complexity of approximating k-set packing 35

The probability of the event Ai |Ai−1 is the probability of picking at random
|Mi| different vertices from a set of t vertices (the set V1), and avoiding all ver-
tices from

⋃i−1
l=1 Ml. Naturally, this probability is smaller than the probability

of picking |Mi| vertices from a set of t vertices with repetition (one is allowed to
choose the same vertex more than once). The assumption Ai−1 implies that the
sets Ml for all l < i are disjoint, and hence |

⋃i−1
l=1 Ml| =

∑i−1
l=1 |Ml|. Therefore,

Pr[Ai |Ai−1] ≤

(

1 −

∑

l<i |Ml|

t

)|Mi|
≤ e−t−1|Mi|

∑

l<i |Ml|

where for the last inequality we used 1 − x ≤ e−x. Thus by (5.6) and (5.7) we
have

Pr[M̂ ] ≤ e−(d/t)
∑q

i=2
(|Mi|

∑i−1
j=1

|Mj |) = e−(d/t)
∑

i<j |Mi||Mj |.(5.8)

We need an upper bound on the previous probability, and that is obtained
when the term

∑

i<j |Mi||Mj| is minimized. In our case, the constraint that

M̂ ∈ M1 implies that |M1| ≥ maxq
i=2 |Mi| and

∑q
i=2 |Mi| = t/q. Lemma 5.10

below shows that the minimum of this expression under these constraints is
at least t2/4q2. Therefore, from 5.8, we obtain the following bound on the
probability:

(5.9) Pr[M̂ ] ≤ e
− d

t
· t2

4q2 = e
− dt

4q2 .

Therefore by (5.4), (5.5), (5.9),

P ≤ q(eq)4t/qe−dt/4q2

Any d which guarantees that q(eq)4t/qe−dt/4q2

≪ 1 suffices to conclude that
P < 1, and therefore that there exists H with the disperser properties. Simple
calculations show that we require d > (4q2 ln q)/t + 12q(1 + ln q). Since t > q
≥ 2, any d ≥ 100q ln q suffices. �

It remains to prove the following technical lemma:

Lemma 5.10. Under the constraints

∀i ∈ [m], xi ≥ 0, x1 ≥
q

max
i=2

xi,

q
∑

i=2

xi = T,

we have
∑

1≤i<j≤q

xixj ≥
1

4
T 2.
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Proof. If x1 ≥ T/2, then we directly obtain

∑

1≤i<j≤q

xixj ≥ x1

q
∑

i=2

xi ≥
T

2
· T ≥

1

4
T 2.

Otherwise, we know that

∑

1≤i<j≤q

xixj ≥
∑

2≤i<j≤q

xixj =
1

2

(

q
∑

i=2

xi

)2

−
1

2

q
∑

i=2

x2
i ≥

1

2
T 2 −

q
∑

i=2

x2
i .

The function
∑q

i=2 x2
i is convex, and hence under the constraints

∑q
i=2 xi = T

and maxq
i=2 xi ≤ T/2, it is maximized where x2 = x3 = T/2 and the rest of the

variables are zero. We obtain
∑q

i=2 x2
i ≤

1
4
T 2, and finally

∑

1≤i<j≤q

xixj ≥
1

2
T 2 −

q
∑

i=2

x2
i ≥

T 2

4
. �

5.1. Optimality of hyper-disperser construction. We now turn to see
why the hyper-disperser from Lemma 2.9 has optimal parameters. We base our
observation on the lemma below from Radhakrishnan & Ta-Shma (2000):

Definition 5.11. A bipartite graph G = (V1, V2, E) is called a δ-disperser if
for every U1 ⊆ V1 and U2 ⊆ V2 with |U1|, |U2| ≥ δ|V1| = δ|V2|, the subset U1∪U2

is not an independent set.

Lemma 5.12 (Radhakrishnan & Ta-Shma 2000). Every bipartite d-regular
1/k-disperser must satisfy d = Ω(k ln k).

Using this lemma we prove:

Lemma 5.13. Every d-uniform, d-strongly-colorable, q-regular, q-strongly-
edge-colorable (q, 1/q2)-hyper-edge-disperser must satisfy d = Ω(q ln q).

Proof. Consider a hyper-disperser H = (VH , E1, . . . , Eq) as in the state-
ment. Let us construct a bipartite graph G = (V1, V2, EG) as follows. Let

V1 , E1, V2 , E2,

EG = {(ei, ej) | ei ∈ E1, ej ∈ E2, ei ∩ ej 6= ∅}.

The graph G is bipartite since the edge sets E1 and E2 of H are non-
intersecting (as H is q-strongly-edge-colorable). To conclude that G is also d-
regular observe the following: H is d-uniform, therefore, every edge e ∈ E1∪E2



cc 15 (2006) Complexity of approximating k-set packing 37

contains d vertices. Moreover, H is q-regular, q-strongly-edge-colorable, thus
every vertex of H is contained once in an edge of E1 and once in an edge of E2.
Therefore, every edge of E1 intersects one edge of E2 for each of its d vertices
(and vice versa). Thus, every vertex of G is of degree d.

In addition, G is a disperser: consider any two sets S1 ⊆ V1 and S2 ⊆ V2 of
size |S1| = (1/q)|V1| and |S2| = (1/q)|V2|. The corresponding sets (of edges) in
H are of fractional size 1/q2 each, thus, as H is a (q, 1/q2)-hyper-edge-disperser,
they contain intersecting edges implying that S1 ∪S2 is not an independent set
in G. Since this is true for any S1 ⊆ V1 and S2 ⊆ V2, G is a 1/q-disperser.

As G is a bipartite d-regular 1/q-disperser, d = Ω(q ln q) by Lemma 5.12. �

6. Discussion

An interesting property of our construction is the almost perfect completeness.
This property refers to the fact that the matching proved to exist in the com-
pleteness lemma 3.1 is almost perfect, that is, it covers 1 − ε of the vertices.
Knowing the location of a gap is interesting in its own right and may prove
useful (in particular if it is extreme on either the completeness or the soundness
parameters, see for example Petrank 1994). In fact, applying our reduction on
other PCP variants instead of Max-3-Lin-q (e.g. parallel repetition of 3-SAT)
yields perfect completeness for k-SP and for k-DM (but with weaker hardness
factors).

The ratio between the asymptotic inapproximability factor presented herein
for k-SP and k-DM, and the tightest approximation algorithm known was
reduced to O(ln k). The open question of where in the range, from k/2 to
O(k/ln k) is the approximability threshold, is of independent interest, as its
implications to the difference between k-DM and k-IS. The current asymptotic
inapproximability factor of Ω(k/ln k) for k-DM approaches the tightest ap-
proximation ratio known for k-IS, namely O(k log log k/log k) by Vishwanathan
(1996). Thus, a small improvement in either the approximation ratio or the
inapproximability factor will show these problems to be of inherently different
complexity.
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