
ar
X

iv
:1

60
3.

05
62

7v
1

 [
cs

.D
C

]
 1

7
M

ar
 2

01
6

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication

GREY BALLARD, Sandia National Laboratories, gmballa@sandia.gov

ALEX DRUINSKY, Lawrence Berkeley National Laboratory, adruinsky@lbl.gov

NICHOLAS KNIGHT, New York University, nknight@nyu.edu

ODED SCHWARTZ, Hebrew University, odedsc@cs.huji.ac.il

We propose a fine-grained hypergraph model for sparse matrix-matrix multiplication (SpGEMM), a key

computational kernel in scientific computing and data analysis whose performance is often communication

bound. This model correctly describes both the interprocessor communication volume along a critical path

in a parallel computation and also the volume of data moving through the memory hierarchy in a sequential

computation. We show that identifying a communication-optimal algorithm for particular input matrices is

equivalent to solving a hypergraph partitioning problem. Our approach is sparsity dependent, meaning that

we seek the best algorithm for the given input matrices.

In addition to our (3D) fine-grained model, we also propose coarse-grained 1D and 2D models that cor-

respond to simpler SpGEMM algorithms. We explore the relations between our models theoretically, and

we study their performance experimentally in the context of three applications that use SpGEMM as a

key computation. For each application, we find that at least one coarse-grained model is as communication

efficient as the fine-grained model. We also observe that different applications have affinities for different

algorithms.

Our results demonstrate that hypergraphs are an accurate model for reasoning about the communication

costs of SpGEMM as well as a practical tool for exploring the SpGEMM algorithm design space.

1. INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is a fundamental computation in sci-
entific computing and data analysis. It is a key component in applications ranging from
linear solvers [Brezina and Vassilevski 2011; Yamazaki and Li 2011] and graph algo-
rithms [Rabin and Vazirani 1989; Azad et al. 2015b] to Kohn-Sham theory in compu-
tational chemistry [Borštnik et al. 2014]. Unlike dense matrix-matrix multiplication,
SpGEMM is an irregular computation, and its performance is typically communica-
tion bound. Previous research on SpGEMM algorithms has focused on communication
costs, both interprocessor communication and data movement within the memory hi-
erarchy [Buluç and Gilbert 2012; Ballard et al. 2013; Azad et al. 2015a].

We focus on communication costs and argue in this paper that the amount of
communication required for sequential and parallel SpGEMM algorithms depends
strongly on the matrices’ nonzero structures. That is, algorithms that are commu-
nication efficient for SpGEMMs within one application are not necessarily the most
efficient in the context of another application. The simplest SpGEMM algorithms
to design, analyze, and implement are based on dense matrix multiplication algo-
rithms: these algorithms are parametrized only by the matrix dimensions and dif-
fer from dense matrix-matrix multiplication in that they use sparse data struc-
tures and avoid operating on and communicating zeros. We refer to these algorithms
as “sparsity independent” [Ballard et al. 2013, Def. 2.5]; two examples are the row-
wise algorithm with block partitioning [Faisal et al. 2014] and Sparse SUMMA (Sp-
SUMMA) [Buluç and Gilbert 2012].

One of the main goals in this paper is to explore sparsity-dependent SpGEMM al-
gorithms and determine how communication efficient an algorithm can be if it is able
to inspect the input matrices’ nonzero structures and determine the data distributions
and parallelization of arithmetic operations accordingly. Currently this approach is
only theoretical in general: in practice, the cost of nonzero structure inspection can
exceed that of even an inefficient SpGEMM. However, practical, application-specific

http://arxiv.org/abs/1603.05627v1

2 Ballard, Druinsky, Knight, Schwartz

algorithmic insight can be gained from the results of this paper and our techniques
can be used for other applications not considered here.

We use hypergraphs to model arithmetic operations and dependencies and hyper-
graph partitioning to model parallelizing and scheduling operations. Hypergraphs
have previously been used to model sparse matrix-vector multiplication (SpMV) (see,
e.g., [Vastenhouw and Bisseling 2005; Çatalyürek et al. 2010]), and hypergraph parti-
tioning software has been developed to help design algorithms for SpMV and other
computations [Çatalyürek and Aykanat 1999; Boman et al. 2007]. They have also been
used in the context of SpGEMM [Akbudak and Aykanat 2014; Ballard et al. 2015a]; in
this paper we present a hypergraph model that generalizes previous models for SpMV
and SpGEMM. We discuss these and other related works in Sec. 2.

We present a general, fine-grained hypergraph model for SpGEMM in Sec. 3 and use
it to prove sparsity-dependent communication lower bounds for both parallel (Sec. 4.1)
and sequential (Sec. 4.2) algorithms. We reduce identifying a communication-optimal
algorithm for given input matrices to solving a hypergraph partitioning problem. We
also compare with previous lower bounds, showing that ours are more general and can
be tighter.

In addition to our general SpGEMM model, we also consider several restricted
classes of algorithms. In Sec. 5 we define a framework for coarsening the fine-grained
model to obtain simpler hypergraphs that maintain correct modeling of communica-
tion costs. In particular, we consider the classification of 1D, 2D, and 3D SpGEMM
algorithms [Ballard et al. 2013] and examine the relationships among the seven sub-
classes of algorithms that naturally arise from this classification. The class of 1D algo-
rithms includes row-wise and outer-product algorithms, and the class of 2D algorithms
includes SpSUMMA. Finding communication-optimal algorithms within each subclass
also corresponds to solving simpler hypergraph partitioning problems.

Our experimental results, presented in Sec. 6, use existing hypergraph partition-
ing software to compare the communication costs of algorithms from each subclass
for a variety of SpGEMMs, with input matrices coming from three particular appli-
cations. We use representative examples from each application to explore the algo-
rithmic space of SpGEMM; our results can guide algorithmic design choices that are
application specific. In particular, our empirical results lead to different conclusions
for each of the three applications we consider. For example, we find that certain 1D
algorithms, although simple, are sufficient in the context of an algebraic multigrid
application [Brezina and Vassilevski 2011] but that 2D and 3D algorithms are much
more communication efficient than 1D algorithms in the context of Markov cluster-
ing applied to social-network matrices [Satuluri and Parthasarathy 2009]. We discuss
overall conclusions in more detail in Sec. 7.

As is the case for other irregular computations, there exists a tradeoff between
simplicity and efficiency for SpGEMM algorithms and implementations. Using hyper-
graphs to model SpGEMM communication costs, we provide a mechanism for quan-
tifying the relative efficiency of algorithms of varying complexity. We illuminate this
tradeoff in the context of several applications, providing practical insight into the de-
sign of algorithms and software.

2. RELATED WORK

We base our communication models and analysis on classical results for dense matrix
multiplication. Hong and Kung [1981] used a two-level sequential memory model and
established communication lower bounds for dense matrix multiplication and other
computations using a graph-theoretic approach. Irony, Toledo, and Tiskin [2004] used
a distributed-memory parallel model and established communication lower bounds

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 3

for dense matrix multiplication using a geometric approach. See Ballard et al.’s sur-
vey [2014] for more details on these models and results.

Ballard et al. [2011; 2012] proved communication lower bounds, in both sequential
and parallel models, for a general set of matrix computations that includes SpGEMM.
These lower bounds are parameterized by the number of multiplications involved
in the multiplication of the specific input matrices, and they are not tight in gen-
eral. There has been other theoretical work in deriving bounds on the communication
costs of SpGEMM in the sequential two-level memory model. Pagh and Stöckel [2014]
proved matching worst-case upper and lower bounds based on the number of nonze-
ros in the matrices. Greiner [2012, Ch. 6] used a different approach to establish other
worst-case lower and upper bounds that apply to a restricted set of matrices and algo-
rithms. We compare our lower bounds with previous work in more detail in Secs. 4.1
and 4.2.

On the practical side of sequential SpGEMM algorithms, Gustavson [1978] proposed
the first algorithm that exploits sparsity in the inputs and outputs, and Davis [2006]
implemented a variant of that algorithm in the general-purpose CSPARSE library.
Neither the algorithm nor implementation are designed to specifically reduce commu-
nication costs specifically, but the approach is typically efficient in terms of memory
footprint and operation count. Buluç and Gilbert [2008] proposed an alternative sparse
data structure and sequential algorithm that are more memory and operation-count
efficient than Gustavson’s algorithm for “hypersparse” matrices, which can arise in the
context of parallel distribution of sparse matrices.

There exists more variation in parallel SpGEMM algorithms. We use the 1D/2D/3D
classification of SpGEMM algorithms defined in [Ballard et al. 2013]. They surveyed
many of the previous algorithms in the literature and theoretically analyzed their
communication costs for a particular class of input matrices (Erdős-Rényi random ma-
trices), comparing with expectation-based communication lower bounds. Buluç and
Gilbert [2012] proposed a general-purpose 2D algorithm called Sparse SUMMA, which
uses random permutations to achieve load balance, and they analyzed its communica-
tion cost for general inputs. Ballard, Siefert, and Hu [2015b] considered the communi-
cation costs of 1D algorithms in an algebraic multigrid application.

As a tool for minimizing communication, hypergraph partitioning has gained popu-
larity in the parallel computing community in large part due to its application SpMV.
While there is a vast literature on hypergraph partitioning for SpMV, we highlight here
only a small sample from which we borrow notation. Çatalyürek and Aykanat [1999]
introduced column-net and row-net models for 1D SpMV algorithms, and in a subse-
quent paper [2001] presented the fine-grain model for 2D SpMV. Çatalyürek, Aykanat,
and Uçar [2010] summarize and compare models for 1D and 2D SpMV algorithms (see
also [Vastenhouw and Bisseling 2005]). Akbudak, Kayaaslan, and Aykanat [2013] also
used hypergraphs to improve cache locality of SpMV on a single processor.

Hypergraph partitioning has been used in the context of SpGEMM as well. Krish-
namoorthy et al. [2006] introduced a hypergraph model for a general class of compu-
tations including SpGEMM, and described a heuristic for scheduling out-of-core algo-
rithms with the goal of minimizing disk I/O. Akbudak and Aykanat [2014] introduced
a hypergraph model for parallel outer-product algorithms that represents both the
computation and the data involved in SpGEMM (see Ex. 5.2); they also implemented
and benchmarked the performance based on the partitions. Our earlier conference pa-
per [2015a] introduced a slightly simpler version of the SpGEMM hypergraph model
given by Def. 3.1; that paper also presented initial results concerning the application
of algebraic multigrid (see Sec. 6.1).

4 Ballard, Druinsky, Knight, Schwartz

∗ ∗
∗ ∗
∗

A

I

↑

↓

K →←

∗
∗
∗ ∗
∗

B

K

↑

↓

J →←

=

∗ ∗
∗

∗

C

I

↑

↓

J →←

Fig. 1: Notation for a particular SpGEMM instance.

3. HYPERGRAPH MODEL FOR SPGEMM

3.1. Notation and Assumptions

The notation introduced in this section will be used throughout the rest of the paper.
Let N = {0, 1, . . .}; for any n ∈ N, [n] = {1, . . . , n}, with [0] = ∅. For any n ∈ N and

set X , an n-way partition of X , denoted {X1, . . . , Xn}, is a function [n] ∋ i 7→ Xi ⊆ X
such that

⋃

i∈[n] Xi = X and
⋃

i6=j∈[n] Xi ∩Xj = ∅. Another partition of X , {Y1, . . . , Ym},
refines {X1, . . . , Xn} if for every j ∈ [m] there exists an i ∈ [n] such that Yj ⊆ Xi.

Let A and B be I-by-K and K-by-J matrices with entries from a set X , which con-
tains an element 0 and is closed under two binary operations called addition (com-
mutative and associative with identity element 0) and multiplication (with absorbing
element 0). For example, X could be a semiring.

Matrix multiplication is the function (A,B) 7→ C = A · B, where C is an I-by-J
matrix over X defined entrywise by cij =

∑

k∈[K] aikbkj . We let SA ⊆ [I] × [K], SB ⊆
[K] × [J], and SC ⊆ [I] × [J] denote the nonzero structures of A, B, and C. In this
work, we study SpGEMM algorithms, the class of algorithms that evaluate and sum all
nontrivial multiplications aikbkj , where both aik 6= 0 and bkj 6= 0, and thus depend only
on SA and SB. We do not consider algorithms that exploit additional structure on X or
more general relations on the entries of A and B: in particular, we ignore numerical
cancellation, so SA and SB induce SC. Fig. 1 illustrates our notation for a particular
SpGEMM instance; under our assumptions we do not distinguish the nonzero values
of the matrices. We maintain the nonzero structure of the example in each of Figs. 1
to 4.

Given additional structure on X , there may exist many algorithms that do not sim-
ply compute the sums of products. For example, if X is a ring, then additive inverses
can be exploited to obtain Strassen’s algorithm, where the multiplicands do not gen-
erally equal the input matrix entries. As another example, given known relations on
the entries of A and B, one may be able to avoid evaluating some nontrivial multipli-
cations.

To simplify the presentation, we assume that neither A or B have any zero rows or
columns, so every nonzero input matrix entry participates in at least one nontrivial
multiplication. While this can always be enforced, doing so may incur a preprocessing
cost.

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 5

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC
I

↑

↓

K →←
J
→

←

Fig. 2: Geometric view of the SpGEMM instance in Fig. 1. correspond to the iteration
space of matrix multiplication. Each sub-cube represents a multiplication, which is
nontrivial if its projections onto the A and B faces both correspond to nonzero val-
ues. The projections of nontrivial multiplications onto the C face define the nonzero
structure of C.

Our hypergraph terminology borrows from Çatalyürek and Aykanat [1999]. A hy-
pergraph H is a generalization of a graph; it consists of a set of vertices V and a set of
nets N , where each net n ∈ N is a subset of the vertices, n ⊆ V . We use the term pin to
refer to a vertex in a particular net. Each vertex v ∈ V may have a weight w associated
with it, and each net n ∈ N may have a cost c associated with it. Weights and costs are
typically scalar-valued but can be vector-valued; we will use vector-valued weights.

3.2. Fine-Grained Hypergraph Model

In this section we define our most general hypergraph model for SpGEMM. It may be
helpful to visualize an instance of SpGEMM geometrically, as the three-dimensional
“iteration space” of matrix multiplication: Fig. 2 illustrates this geometric perspective.
The set of IKJ multiplications are arranged as a set of cubes so that nontrivial mul-
tiplications are distinguished by having nonzero projections on the A- and B-faces.
Nonzero entries of C are determined by projecting the nontrivial multiplications onto
the C-face.

We now define our hypergraph model and connect its definition to its geometric in-
terpretation.

Definition 3.1. Consider matrices A, B, and C = A ·B, continuing notation. Define
the fine-grained SpGEMM hypergraphH(A,B) = (V ,N), where V = Vm ∪ Vnz, with

Vnz = VA ∪ VB ∪ VC,

Vm = {vikj : (i, k) ∈ SA ∧ (k, j) ∈ SB},
VA = {vAik : (i, k) ∈ SA},
VB = {vBkj : (k, j) ∈ SB}, and

VC = {vCij : (i, j) ∈ SC},

6 Ballard, Druinsky, Knight, Schwartz

and N = NA ∪ NB ∪NC, with

NA = {nA

ik : (i, k) ∈ SA},
NB = {nB

kj : (k, j) ∈ SB}, and

NC = {nC

ij : (i, j) ∈ SC}.
Net membership is defined such that each vAik ∈ nA

ik, each vBkj ∈ nB

kj , each vCij ∈ nC
ij , and

each vikj ∈ nA

ik ∩ nB

kj ∩ nC
ij . Equivalently, pins are defined such that for each (i, k) ∈ SA,

nA

ik = {vikj : (k, j) ∈ SB} ∪ {vAik},
for each (j, k) ∈ SB,

nB

jk = {vikj : (i, k) ∈ SA} ∪ {vBkj},
and for each (i, j) ∈ SC,

nC

ij = {vikj : (i, k) ∈ SA ∧ (k, j) ∈ SB} ∪ {vCij}.
The vertices V have two types of weights, corresponding to computation and memory.
For all vikj ∈ Vm,

wcomp(vikj) = 1,

wmem(vikj) = 0.

For all vAik, v
B

kj , v
C
ij ∈ Vm,

wcomp(v
A

ik) = wcomp(v
B

kj) = wcomp(v
C
ij) = 0,

wmem(vAik) = wmem(vBkj) = wmem(vCij) = 1.

The cost of each net n ∈ N is c(n) = 1.

In summary, each vertex v of H(A,B) corresponds either to a nontrivial multiplica-
tion or to a nonzero entry of A, B, or C, and each net corresponds to a nonzero of A, B,
or C. Each multiplication vertex v ∈ Vm is a member of the three nets corresponding to
nonzeros involved in the multiplication; each nonzero vertex v ∈ Vnz is a member of its
corresponding net. Conversely, each net corresponds to a nonzero value and includes
as members its corresponding nonzero vertex as well all associated multiplication ver-
tices.

In the geometric context of Fig. 2, we can think of each multiplication vertex vikj as a
point in the three-dimensional iteration space, and we can think of each nonzero vertex
vAik, vBkj , or vCij as a point on one of the (two-dimensional) faces of the iteration space.

Likewise, a net nA

ik, nB

kj , or nC
ij corresponds to a (one-dimensional) fiber perpendicular

to one of the faces, and its pins are the vertices that lie along the fiber.
We provide two other visualizations of the hypergraph defined by the SpGEMM in-

stance given in Fig. 1. Fig. 3 depicts the hypergraph as a bipartite graph, where hy-
pergraph vertices are denoted by circles, hypergraph nets are denoted by squares, and
net membership is defined by edges in the graph. Fig. 4 shows the incidence matrix of
the hypergraph, where rows correspond to vertices, columns correspond to nets, and
net membership is defined by the nonzero pattern.

This hypergraph is nearly the same as the one proposed in our earlier pa-
per [Ballard et al. 2015a, Definition 1]. The difference here is the introduction of
nonzero vertices and the inclusion of each in its corresponding nonzero’s net. The pur-
pose of adding these vertices is to enable enforcing memory balance in the parallel case
(see Sec. 4.1), and for relating the hypergraph model to a computation DAG model in
the sequential case (see Sec. 4.2).

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 7

vA00
vA02

vA10
vA13

vA21

nA
00

nA
02

nA
10

nA
13

nA
21

vB01

vB10

vB20

vB21

vB31

nB
01

nB
10

nB
20

nB
21

nB
31

v020 v001 v021 v101 v131 v210

nC
00 nC

01 nC
11 nC

20

vC00 vC01 vC11 vC20

Fig. 3: Hypergraph of the SpGEMM instance in Fig. 1. Circles correspond to vertices
and squares correspond to nets.

v020

v001

v021

v101

v131

v210

nA
00 nA

02 nA
10 nA

13 nA
21 nB

01 nB
10 nB

20 nB
21 nB

31 nC
00 nC

01 nC
11 nC

20

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Fig. 4: Submatrix of the incidence matrix of the hypergraph of the SpGEMM instance
in Fig. 1. Rows correspond to multiplication vertices and columns correspond to nets.
The rows of the incidence matrix not shown here correspond to nonzero vertices; they
form a diagonal submatrix.

4. COMMUNICATION LOWER BOUNDS

4.1. Parallel Lower Bound

We consider performing SpGEMM with input matrices A and B on a parallel machine
with p processors with disjoint memories. LetH = H(A,B). A parallelization is a p-way
partition of Vm (assigning multiplications to processors) and a data distribution is a
p-way partition of Vnz (assigning nonzeros to processors). Thus, a partition of V defines
both a parallelization and a data distribution. We define a parallel SpGEMM algo-

8 Ballard, Druinsky, Knight, Schwartz

rithm by not only a parallelization and data distribution, but also by a communication
pattern and each processor’s local computation algorithm(s). So, a single partition of V
corresponds to a family of parallel SpGEMM algorithms, and each parallel SpGEMM
algorithm corresponds to a single partition of V . For the rest of Sec. 4.1, “algorithm”
means “parallel SpGEMM algorithm”.

Given a partition of V , the communication for any corresponding algorithm com-
prises two phases: the expand phase, where the processors exchange nonzero entries
of A and B (initially distributed according to the partitions of VA and VB) in order to
perform their multiplications (assigned according to the partition of Vm), and the fold
phase, where the processors communicate to reduce partial sums for nonzero entries
of C (finally distributed according to the partition of VC).

We now bound below the parallel communication costs of an algorithm in terms of
the cuts of H induced by that algorithm’s associated partition of V .

Definition 4.1. Given a partition {V1, . . . ,Vp} of V , for each i ∈ [p], Qi denotes the
subset ofN whose elements (nets) have nonempty intersections with both Vi and V\Vi.

LEMMA 4.2. Given a partition {V1, . . . ,Vp} of V , for any associated algorithm, the
number of words each processor i ∈ [p] sends or receives is at least |Qi|, and the critical-
path communication cost is at least maxi∈[p] |Qi|.

PROOF. For each processor i ∈ [p], for each net in Qi, processor i must either receive
or send the corresponding nonzero, since at most one processor owns each nonzero at
the start and end of the computation. The bound on the critical-path communication
cost is obtained by maximizing over i ∈ [p], as each processor can send only one word
at a time along the critical path [Ballard et al. 2014].

Furthermore, for each partition, there exists an algorithm that attains these lower
bounds, within constant factors in the cases of the per-processor costs and within a
logarithmic factor in the case of the critical-path cost.

LEMMA 4.3. Given a partition {V1, . . . ,Vp}, there exists an associated algorithm
such that the number of words each processor i ∈ [p] sends or receives is O(|Qi|), and
the critical-path communication cost is O(log p ·maxi∈[p] |Qi|).

PROOF. The basic idea of the algorithm is as follows. For the expand phase, every
input nonzero that corresponds to a cut net will be sent to the processors whose parts Vi
intersect the net via a binary-tree broadcast. For the fold phase, every output nonzero
that corresponds to a cut net will be reduced to the processor whose part includes the
nonzero vertex via a binary-tree reduction.

In more detail, consider first the expand phase. All of the broadcasts are performed
synchronously: in the first step, each root sends its nonzero to two other processors;
in the second step, every processor that receives a nonzero from a root sends it to
two other processors in the second step; and so on. Since at most p processors can
be involved in any one broadcast, the expand phase requires at most O(log p) steps.
Processor i receives each of its required nonzeros at most once and sends each at most
twice, for a total (per-processor) cost of O(|Qi|). Furthermore, at each expand step,
processor i performs one receive and two sends in each of a subset of |Qi| broadcast
trees, so each expand step involves O(maxi∈[p] |Qi|) sends or receives along any critical
path. Analysis of the fold phase is symmetric, using binary-tree reductions.

For efficient algorithms, we constrain the partitions to enforce load balance of mem-
ory and computation. We define sets of load-balanced partitions in terms of two pa-
rameters:

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 9

Definition 4.4. For any δ, ǫ ∈ [0, p−1], let Πδ,ǫ be the set of all partitions {V1, . . . ,Vp}
of V where

wmem(Vi) ≤ (1 + δ)
|Vnz|
p

and wcomp(Vi) ≤ (1 + ǫ)
|Vm|
p

for each i ∈ [p]. We say an algorithm with partition {V1, . . . ,Vp} ∈ Πδ,ǫ is (δ, ǫ)-load
balanced.

Given Πδ,ǫ, if δ = 0 then the memory requirements are perfectly load-balanced,
and if ǫ = 0 then the computations (multiplications) are perfectly load-balanced. If
δ = ǫ = p − 1 then Πδ,ǫ includes the trivial partition wherein no interprocessor com-
munication is required, since one processor stores all three matrices and performs the
whole computation.

Finally, we state our parallel communication lower bound:

THEOREM 4.5. The critical-path communication cost of an (δ, ǫ)-load balanced par-
allel SpGEMM algorithm is at least

min
{V1,...,Vp}∈Πδ,ǫ

max
i∈[p]
|Qi|.

This lower bound is tight up to at most a logarithmic factor in the number of processors.

PROOF. The lower bound follows directly from Lem. 4.2 and Def. 4.4. The tightness
of the lower bound follows from applying Lem. 4.3 to any optimal partition.

We compare Thm. 4.5 with the distributed-memory parallel communication lower
bounds for SpGEMM derived by Ballard et al. [2011; 2012]. In our notation, with
the additional assumption that each processor is restricted to using M words of its
local memory, the critical-path communication cost is bounded below by a function
contained in the union of the sets

Ω

(|Vm|
pM1/2

− αM

)

and Ω

(|Vm|2/3
p2/3

− β
|Vnz|
p

)

(1)

for some α, β > 0. These two asymptotic lower bounds are called memory-dependent
and memory-independent, respectively; the memory-independent bound requires an
additional asymptotic assumption that the computational load balance parameter ǫ =
O(1); we refer to [Ballard et al. 2011; Ballard et al. 2012] for details regarding these
asymptotic expressions, like the constants α, β, and others suppressed by asymptotic
notation, and a discussion of when one lower bound dominates the other.

The combined lower bound eq. (1) is tight (within constant factors) when A and B

are dense matrices [Irony et al. 2004], but asymptotically loose in expectation when
I = J = K = n and each entry of A and B is nonzero with probability d/n for any d in

the intersection of the sets ω(1), o(
√
M), and o(

√
n) [Ballard et al. 2013]. On the other

hand, by considering the nonzero structures of A and B, the conclusion of Lem. 4.2 is
always tight, within a logarithmic factor.

4.2. Sequential Lower Bound

Now we turn to the communication costs of SpGEMM algorithms executed on a se-
quential machine with a two-level memory. In this computation model, communica-
tion is data movement between a fast memory of M -word capacity, M ≥ 3, and a slow
memory of unbounded capacity; operations are only performed on data in fast mem-
ory. Communication cost is defined as the total number of loads and stores, i.e., words
moved from slow to fast and from fast to slow memory. We will derive communication

10 Ballard, Druinsky, Knight, Schwartz

lower bounds in terms of the SpGEMM hypergraph model (see Sec. 3.2. For the rest of
Sec. 4.2, “algorithm” means “sequential SpGEMM algorithm”.

We follow Hong and Kung’s approach [1981, Sec. 3] for deriving lower bounds on
communication in this sequential model, as well as their graph-theoretic SpGEMM
model [1981, Sec. 6]. Hong and Kung model algorithms schematically as uninterpreted
directed acyclic graphs (DAGs): the SpGEMM hypergraph model in Def. 3.1 is closely
related to Hong and Kung’s DAG model of SpGEMM. In particular, each SpGEMM
hypergraph H(A,B) represents a family of SpGEMM DAGs G(A,B) whose members
differ only in the order in which they sum the (nontrivial) multiplications. After for-
malizing this relationship, we exploit it to approximate and simplify Hong and Kung’s
communication lower bounds framework using hypergraphs.

We define a summation tree as any DAG with exactly one zero-outdegree vertex,
called the root; the zero-indegree vertices are called the leaves. The members of G(A,B)
are parameterized by a function that associates each (i, j) ∈ SC with a summation tree
Tij whose leaves are {vikj : (∃k) vikj ∈ V} and whose non-leaves are disjoint from V and
the other trees. Having associated disjoint summation trees with SC in this manner,
the generic member (V,E) ∈ G(A,B) is defined by

V = VA ∪ VB ∪ {V (Tij) : (i, j) ∈ SC}
E =

{

(vAik, vikj) : (∃i, k, j) vAik, vikj ∈ V
}

∪
{

(vBik, vikj) : (∃i, k, j) vBkj , vikj ∈ V
}

∪ {E(Tij) : (i, j) ∈ SC} .

Of the vertices V , we distinguish the inputs I, which have no predecessors, and the
outputs O, which have no successors; by construction, these two sets are disjoint. We
remark that G(A,B) can be specialized to obtain Hong and Kung’s SpGEMM DAGs,
by restricting each Tij to be a binary tree with at least two leaves; this excludes, e.g.,
multiplication of diagonal matrices.

The key to Hong and Kung’s communication analysis is the set of S-partitions of a
DAG (V,E). A partition {V1, . . . , Vh} of V is an S-partition if additionally

(1) Each Vi has a dominator set of size at most S — a dominator set of Vi contains a
vertex on every path from I to Vi);

(2) Each Vi has a minimum set of size at most S — the minimum set of Vi is the set of
all elements of Vi with no successors in Vi); and

(3) There is no cyclic dependence among V1, . . . , Vh — where Vi depends on Vj if (Vi ×
Vj) ∩ E 6= ∅.

We exploit G(A,B)’s members’ common structure to derive lower bounds on dominator
and minimum set sizes.

LEMMA 4.6. Consider any (V,E) ∈ G(A,B) and any U ⊆ V . Let DU be any domi-
nator set of U and let MU be the minimum set of U .

|DU | ≥ max
(

|{(i, k) : (∃j) vikj ∈ U}|, |{(k, j) : (∃i) vikj ∈ U}|
)

|MU | ≥ |{(i, j) : (∃k) vikj ∈ U}|
PROOF. There exists a set of disjoint paths, each starting from a distinct element of

{vAik : (∃j) vikj ∈ U} ⊂ I and ending in U . Similarly, there exists a set of disjoint paths,

each starting from a distinct element of {vBkj : (∃i) vikj ∈ U} ⊂ I and ending in U . By

definition, DU must contain at least one vertex from every path in each of the two sets,
so the first lower bound follows. Now observe that for each pair (i, j) such that vikj ∈ U
for some k ∈ [K], Tij ∩ U is nonempty and, since the summation trees are disjoint, has

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 11

at least one element with no successors in U . Thus each such Tij contributes at least
one element to MU , establishing the second lower bound.

We now relate the DAGs G(A,B) and the hypergraph H(A,B).

Definition 4.7. Consider any partition {V1, . . . ,Vh} of V . For each part Vi, let WA
i ,

WB
i , and WC

i be the subsets ofNA,NB, andNC, resp., having nonempty intersections
with Vi.

LEMMA 4.8. Consider any G ∈ G(A,B) and S ∈ {1, 2, . . .}. For any S-partition
{V1, . . . , Vh} of G, there exists a partition {V1, . . . ,Vh} of V with |WA

i |, |WB
i |, |WC

i | ≤ S
for each i ∈ [h].

PROOF. We construct {V1, . . . ,Vh} from {V1, . . . , Vh} as follows. Define a partition
{V ′

1 , . . . , V
′
h} of Vm by intersecting each subset V1, . . . , Vh with Vm. Every element of N

has a nontrivial intersection with at least one subset V ′
1 , . . . , V

′
h. Moreover, applying

Lem. 4.6 to each subset V ′
i , we have that |W ′A

i |, |W ′B
i |, |W ′C

i | ≤ S. Now add each vAik ∈
VA to an arbitrarily chosen V ′

i that intersects the corresponding net nA

ik, and likewise

for each vBkj ∈ VB and each vCij ∈ VC. In this manner, we obtain a partition {V1, . . . ,Vh}
of V . Moreover, augmenting V ′

1 , . . . , V
′
h with elements of Vnz in this manner does not

change the intersected nets, i.e., WA
i = W ′A

i , WB
i = W ′B

i , and WC
i = W ′C

i for each
(Vi, V ′

i) pair.

LEMMA 4.9. Consider any S ∈ {1, 2, . . .} and partition {V1, . . . ,Vh} of V with
|WA

i |, |WB
i |, |WC

i | ≤ S for each i ∈ [h]. There exists an algorithm with communication
cost O(Mh(S/M + 1)3).

PROOF. For each i ∈ [h], partition WA
i ,WB

i ,WC
i so that each part has size m =

⌊M/3⌋ except possibly for one smaller part. These three partitions naturally induce
a partition {U1, . . . ,Ug} of V , whose parts are called blocks. Observe that {U1, . . . ,Ug}
refines {V1, . . . ,Vh}; in particular, each part Vi is partitioned into to at most ⌈S/m⌉3
blocks. Thus, the total number of blocks g ≤ h⌈S/m⌉3.

The algorithm considers Uj for each j ∈ [g]:

(1) Load A- and B-matrix entries associated with WA
j and WB

j , as well as any partial

sums of C-matrix entries WC
j previously computed — at most 3m loads.

(2) Perform all possible nontrivial multiplications and additions — this can be done
with no data movement by processing each C-matrix entry in sequence.

(3) Store the updated C-matrix entries — at most m stores.

There are at most 4mg ≤ 4Mh(5S/M + 1)3/3 loads and stores in total.

Finally, we apply these results within Hong and Kung’s communication lower
bounds framework.

THEOREM 4.10. The communication cost of an algorithm is at least M(h−1), where
h is the minimum cardinality of a partition {V1, . . . ,Vh} of V with |WA

i |, |WB
i |, |WC

i | ≤
2M for each i ∈ [h]. When h > 1, this lower bound is tight up to a constant factor.

PROOF. Any algorithm can be represented in Hong and Kung’s model by some G ∈
G(A,B). By Hung and Kung’s argument [1981, Lem. 3.1], the communication cost is
at least M(P (2M)− 1), where P (S) denotes the minimum cardinality of an S-partition
of G. We apply Lem. 4.8 to bound P (2M) below by h. Tightness follows from applying
Lem. 4.9 with S = 2M .

12 Ballard, Druinsky, Knight, Schwartz

Thm. 4.10 simplifies Hong and Kung’s key lemma by requiring a single hypergraph
partitioning problem, vs. |G(A,B)| graph partitioning problems. Additionally, Hong
and Kung did not address attainability of their key lemma.

We note that another of Hong and Kung’s results [1981, Thm. 6.1] yields the lower
bound Ω(|Vm|/M1/2), a sequential analogue of the memory-dependent bound in eq. (1).
While this lower bound is attainable in the cases where A and B are both dense (see,
e.g., [Ballard et al. 2011]), it is asymptotically loose in many sparse cases. For example,
if I = J = K = n and SA = SB = {(i, i) : i ∈ [n]}, then any algorithm requires moving at
least 3|Vm| words between the two levels, the nonzero entries of A, B, and C. However,
a trivial lower bound of |Vnz| also exists, under the assumption that fast memory must
be empty before and after the computation. It remains open to show whether or not
the combination of this bound and the memory-dependent one is asymptotically loose.

We mention some other communication bounds that have appeared previously. Pagh
and Stöckel [2014] proved matching worst-case upper and lower bounds based on the
number of nonzeros in the input and output matrices. That is, given a number of nonze-
ros, they showed that there exist input matrices that require a certain amount of com-
munication; they also gave an algorithm that never requires more than a constant
factor times this worst-case cost. Greiner [2012, Ch. 6] considered restricted classes
of algorithms and matrices and used a different approach to establish other worst-
case lower and upper bounds, which are not always tight. In contrast to these results,
Thm. 4.10 is input specific rather than worst case.

5. RESTRICTING SPGEMM ALGORITHMS

Each SpGEMM hypergraph (defined in Sec. 3.2) models a class of SpGEMM algorithms
via partitions of its vertices. This hypergraph model can be simplified in the study of
subclasses of algorithms and matrix nonzero structures. Here, we only consider the
distributed-memory parallel case, as described in Sec. 4.1.

In Sec. 5.1, we describe how to simplify SpGEMM hypergraphs using a vertex coars-
ening technique while still correctly modeling algorithmic costs. We use vertex coarsen-
ing to model subclasses of algorithms, restricting the parallelization (Sec. 5.2), the data
distribution (Sec. 5.3), and both (Sec. 5.4). We can also use vertex coarsening when
modeling subclasses of matrix nonzero structures, as we demonstrate in Sec. 5.5 in the
case of sparse matrix-vector multiplication (SpMV). Lastly, in Sec. 5.6, we show how
vertex coarsening can also be used to model SpGEMM-like algorithms that violate two
of the assumptions in Sec. 3.1, exploiting relations between the input matrix entries
(Sec. 5.6.1) and only computing a subset of the output matrix entries (Sec. 5.6.2).

5.1. Vertex Coarsening

We can restrict the class of algorithms modeled by an SpGEMM hypergraph by forcing
certain subsets of vertices to be monochrome, or all assigned to the same part, in the
partition. For example, we can enforce that a certain subset of multiplications will be
performed by the same processor or that a particular multiplication is performed by
the processor that owns a corresponding nonzero entry. To implement such restrictions
in an SpGEMM hypergraph, we coarsen vertices, choosing a new vertex to represent
each subset of constituent vertices that must be monochrome. We will use the symbol
“∼” to mean “represents” in this sense.

After vertex coarsening, in order to model communication costs correctly, we de-
fine net membership as follows: a coarsened vertex is a member of a net if any of its
constituent vertices was a member of that net. This is because the computation corre-
sponding to the coarsened vertex requires the matrix entries associated with any nets
that contained a constituent vertex.

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 13

In order to model computational and memory costs correctly, the weights of a coars-
ened vertex equal the sum of the constituent vertices’ weights. This is because the
processor assigned the coarsened vertex will perform the computation corresponding
to all of the multiplication constituent vertices and will own all of the nonzero con-
stituent vertices.

After coarsening the vertices and updating net memberships, there may be multi-
ple coalesced nets that contain identical sets of vertices, and there may be singleton
nets that contain only a single vertex. To reduce the number of nets, we can combine
coalesced nets into one coarsened net; the cost of the coarsened net equals the sum of
the coalesced nets’ costs. Because singleton nets cannot be cut, we can omit them, a
further simplification.

5.2. Restricted Parallelizations

We first apply vertex coarsening to the multiplication vertices Vm ⊂ V of an SpGEMM
hypergraph (V ,N) = H(A,B), representing parallelizing computation across proces-
sors at a coarser granularity than individual multiplications. We represent each coars-

ened set by a new vertex v̂, and let V̂m denote the set of these new v̂ vertices. In this

section, we leave the remaining vertices Vnz untouched, so V̂ = V̂m ∪ Vnz; we will ad-
dress restricting data distribution subsequently in Secs. 5.3 and 5.4. Net memberships

are updated in terms of the v̂ vertices as described in Sec. 5.1, i.e., N induces a set N̂
of nets on V̂ , thus obtaining the simplified hypergraph (V̂ , N̂). Since each net contains

a distinct nonzero vertex, no nets are coalesced/combined, so |N̂ | = |N | and the nets’
costs remain unit. Additionally, the nonzero vertices are untouched, so the only weights

that change are the computational weights of elements v̂ of V̂m: each wcomp(v̂) equals
the number of multiplication vertices it combined.

The simplified hypergraph has fewer vertices than the original: Vm is replaced by V̂m,
whose cardinality is that of the given partition of Vm. Additionally, while the number
of nets is unchanged, the number of pins generally decreases.

In the remainder of Sec. 5.2, we will study two types of coarsenings of Vm: by slice
and by fiber. Fig. 5 shows visualizations of each type of coarsening.

Slice-wise coarsenings, which model what we call 1D parallelizations, coarsen the
computational cube by slices parallel to one of the three coordinate planes. Coarsening
by slices means we identify all vikj with the same i, j, or k index — the choice of index
gives rise to three 1D models, called row-wise, column-wise, and outer-product:

row-wise V̂m = {v̂i : i ∈ [I]}, v̂i ∼ {vits : (∃t, s) vits ∈ V}
column-wise V̂m = {v̂j : i ∈ [J]}, v̂j ∼ {vrtj : (∃r, t) vrtj ∈ V}
outer-product V̂m = {v̂k : k ∈ [K]}, v̂k ∼ {vrks : (∃r, s) vrks ∈ V}.

Fiber-wise coarsenings, which model what we call 2D parallelizations, coarsen the
computational cube by fibers parallel to one of the three coordinate axes. Coarsening
by fibers means we identify all vikj with the same pair (i, k), (k, j), or (i, j), of indices —
this choice gives rise to three 2D models, called monochrome-A, monochrome-B, and
monochrome-C:

monochrome-A V̂m = {v̂ik : (i, k) ∈ SA}, v̂ik ∼ {viks : (∃s) viks ∈ V}
monochrome-B V̂m = {v̂kj : (k, j) ∈ SB}, v̂kj ∼ {vrkj : (∃r) vrkj ∈ V}
monochrome-C V̂m = {v̂ij : (i, j) ∈ SC}, v̂ij ∼ {vitj : (∃t) vitj ∈ V}.

Each model is identified with a set of parallelizations. In a row-wise parallelization,
every B-slice is monochrome, and the parallelization corresponds to a partition of the
row-wise model; column-wise and outer-product parallelizations are defined similarly.

14 Ballard, Druinsky, Knight, Schwartz

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(a) Row-Wise

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(b) Column-Wise

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(c) Outer-Product

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(d) Monochrome-A

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(e) Monochrome-B

∗ ∗

∗ ∗

∗

SA

∗
∗ ∗

∗ ∗
S B

∗
∗
∗
∗

SC

(f) Monochrome-C

Fig. 5: Visualizations of restricted parallelizations. The top row (Figs. 5a to 5c) corre-
sponds to slice-wise coarsenings or 1D parallelizations; the bottom row (Figs. 5d to 5f)
corresponds to fiber-wise coarsenings or 2D parallelizations. In each figure, a partic-
ular coarsened vertex is highlighted as a shaded set of cubes; the coarsened vertex
corresponds to all multiplication vertices in the shaded set.

In a monochrome-A parallelization, every A-fiber is monochrome, and the paralleliza-
tion corresponds to a partition of the monochrome-A model; monochrome-B and -C
parallelizations are defined similarly. A general parallelization is called fine-grained.

We now discuss relationships among these seven classes of parallelizations, as il-
lustrated in Fig. 6. Let F denote the set of all (fine-grained) parallelizations. Let
R,L,U ,A,B, C ⊆ F denote the row-wise, column-wise, outer-product, monochrome-A,
-B, and -C parallelizations, respectively. Fig. 6 depicts the inclusions that hold among
these 7 sets. Notice in particular that these 7 sets define a 13-way partition of F , whose
parts are listed in the first column of Tab. I; we now verify that these 13 parts indeed
form a partition of F . Observe that R ⊆ A ∩ C, L ⊆ B ∩ C, and U ⊆ A ∩ B. Actu-
ally, U = A ∩ B. To see the converse inclusion, consider any P ∈ A ∩ B, and observe
that every C-slice must be monochrome in P ; this is because C-slices are Cartesian
products of their projections onto the A- and B-faces, but a similar property does not
generally hold for the A- and B-slices. The preceding inclusions suffice to demonstrate
correctness of the 13-way partition of F in Fig. 6.

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 15

fine-grained

m
on

och
rom

e-A
m

on
oc

h
ro

m
e-
B

monochrome-C

outer

product

ro
w

-w
is

e col-w
ise

Fig. 6: Venn diagram showing relationships among restricted parallelizations.

Tab. I uses the following four SpGEMM instances to show that each of the 13 parts
is not empty.

[∗ ∗
∗ ∗

]

=

[∗ ∗
∗ ∗

] [∗ ∗
∗ ∗

]

(2)

[∗ ∗
∗ ∗

]

=

[∗
∗

] [∗ ∗
∗ ∗

]

(3)

[∗ ∗
∗ ∗

]

=

[∗ ∗
∗ ∗

] [∗
∗

]

(4)

[∗ ∗
∗ ∗

]

=

[∗ ∗
∗ ∗

]

∗
∗
∗
∗

(5)

5.3. Restricted Data Distributions

Now we apply vertex coarsening to the nonzero vertices Vnz ⊂ V of an SpGEMM hyper-
graph (V ,N) = H(A,B), representing distributing data across processors at a coarser
granularity than individual matrix entries. We represent each coarsened set by a new

vertex v̂, and let V̂nz be the set of these new v̂ vertices. In this section, we leave the

remaining vertices Vm untouched, so V̂ = Vm ∪ V̂nz; we addressed parallelizations pre-
viously in Sec. 5.2 and will synthesize the two approaches subsequently in Sec. 5.4. Net

memberships are updated in terms of the v̂ vertices, i.e., N induces a set N̂ of nets on

V̂, thus obtaining the simplified hypergraph (V̂ , N̂). Now, it is possible that some nets

are coalesced, and thus are combined in N̂ ; the cost of each net in N̂ is the number
of coalesced nets it combines. Additionally, the multiplication vertices are untouched,

so the only weights that change are the memory weights of elements v̂ of V̂nz: each
wmem(v̂) equals the number of nonzero vertices it combines.

16 Ballard, Druinsky, Knight, Schwartz

Table I: Examples showing that each of the 13 parts in Fig. 6 is nonempty. The “finest”
parallelization is where each nontrivial multiplication is assigned to a distinct proces-
sor. A parallelization “by fiber” means that each fiber (of a given type) is assigned to a
distinct processor. A parallelization “by slice” means that each slice (of a given type) is
assigned to a distinct processor. The “coarsest” parallelization is where all nontrivial
multiplications are assigned to the same processor.

Part SpGEMM Instance Parallelization

F \ (A ∪ B ∪ C) eq. (2) finest

A \ (B ∪ C) eq. (2) by A-fiber

B \ (A ∪ C) eq. (2) by B-fiber

C \ (A ∪ B) eq. (2) by C-fiber

((B ∩ C) \ A) ∩ L eq. (2) by A-slice

((A ∩ C) \ B) ∩R eq. (2) by B-slice

(A ∩ B) \ C eq. (2) by C-slice

A ∩ B ∩ C ∩ R ∩ L eq. (2) coarsest

((B ∩ C) \ A) \ L eq. (3) finest

(A ∩ B ∩ C ∩ R) \ L eq. (3) by A-fiber

((A ∩ C) \ B) \ R eq. (4) finest

(A ∩ B ∩ C ∩ L) \ R eq. (4) by B-fiber

(A ∩ B ∩ C) \ (R∪ L) eq. (5) finest

The simplified hypergraph has fewer vertices than the original: Vnz is replaced by

V̂nz, whose cardinality is that of the given partition of Vnz.
In the remainder of Sec. 5.2, we will study two classes of data distributions, row-wise

and column-wise, meaning the matrix nonzeros are distributed by rows or columns. We

coarsen VA, VB, and VC separately, leading to sets of coarsened vertices V̂A, V̂B, and

V̂C:

A row-wise V̂A = {v̂Ai : i ∈ [I]}, v̂Ai ∼ {vAit : (∃t) vAit ∈ V}
A column-wise V̂A = {v̂Ak : k ∈ [K]}, v̂Ak ∼ {vArk : (∃r) vArk ∈ V}
B row-wise V̂B = {v̂Bk : k ∈ [K]}, v̂Bk ∼ {vBks : (∃s) vBks ∈ V}
B column-wise V̂B = {v̂Bj : j ∈ [J]}, v̂Bj ∼ {vBtj : (∃t) vBtj ∈ V}
C row-wise V̂C = {v̂Ci : i ∈ [I]}, v̂Ci ∼ {vCis : (∃s) vCis ∈ V}
C column-wise V̂C = {v̂Cj : j ∈ [J]}, v̂Cj ∼ {vCrj : (∃r) vCrj ∈ V}.

The unrestricted choices V̂A = VA, V̂B = VB, and V̂C = VC, are called fine-grained.

Having picked a distribution for each of A, B, and C, we assemble V̂nz = V̂A∪V̂V ∪V̂C.
We remark here that some choices of these distributions naturally correspond to the

1D parallelization schemes. That is, a row-wise parallelization corresponds to a match-
ing distribution of the rows of A and C, a column-wise parallelization corresponds to a
matching distribution of the columns of B and C, and an outer-product parallelization
corresponds to a matching distribution of the columns of A and rows of B. We revisit
this connection next, in Sec. 5.4, when we consider pairing parallelizations and data
distributions.

5.4. Restricted Algorithms

In Secs. 5.2 and 5.3, we considered vertex coarsening using partitions of Vm or Vnz.
Now we extend this idea to partitions of V whose parts may combine vertices from both

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 17

Vm and Vnz. This models the algorithmic constraint where a processor who performs a
certain set of multiplications must also store a certain set of matrix entries.

Revisiting the parallelizations in Sec. 5.2, when coarsening Vm by fiber, there is a
natural choice of a nonzero vertex to associate with each fiber; likewise, when coars-
ening Vm by slice, there is a natural set of nonzero vertices to associate with each
slice. More generally, if all the multiplication vertices associated with a particular
set of nonzero vertices are to be coarsened, it is natural to include those nonzero
vertices. (However, this assignment does impose additional constraints on load bal-
ance, which may be unnatural in certain applications.) An expression (xyz), where
x, y, z ∈ {r,c,f,R,C,F}, indicates the data distributions (row-wise, column-wise, or fine-
grained) used for A, B, and C. Capital letters indicate that the data distribution is
a natural choice, in the sense just described, and the corresponding nonzero vertices
have been absorbed into coarsened vertices. We highlight the following coarsenings:

row-wise (RfR): V̂ =
⋃

{ {v̂i : i ∈ [I]},
VB

}

, v̂i ∼
⋃

{vits : (∃t, s) vits ∈ V},
{vAit : (∃t) vAit ∈ V},
{vCis : (∃s) vCis ∈ V}

column-wise (fCC): V̂ =
⋃

{ {v̂j : j ∈ [J]},
VA

}

, v̂j ∼
⋃

{vrtj : (∃r, t) vrtj ∈ V},
{vBtj : (∃t) vBtj ∈ V},
{vCrj : (∃r) vCrj ∈ V}

outer-product (CRf): V̂ =
⋃

{ {v̂k : k ∈ [K]},
VC

}

, v̂k ∼
⋃

{vrks : (∃r, s) vrks ∈ V},
{vArk : (∃r) vArk ∈ V},
{vBks : (∃s) vBks ∈ V}

monochrome-A (Fff): V̂ =
⋃

{ {v̂ik : (i, k) ∈ SA},
VB, VC

}

, v̂ik ∼
⋃

{ {viks : (∃s) viks ∈ V},
{vAik}

}

monochrome-B (fFf): V̂ =
⋃

{ {v̂kj : (k, j) ∈ SB},
VA, VC

}

, v̂kj ∼
⋃

{

{vrkj : (∃r) vrkj ∈ V},
{vBkj}

}

monochrome-C (ffF): V̂ =
⋃

{ {v̂ij : (i, j) ∈ SC},
VA, VB

}

, v̂ij ∼
⋃

{

{vitj : (∃t) vitj ∈ V},
{vCij}

}

The coarsened vertices now have both nonzero computational and memory weights,
indicating the number of multiplication and nonzero vertices, respectively, that they
combined. Note that the nets corresponding to the coarsened nonzero vertices become
singletons, and are therefore omitted from the simplified hypergraph — in the six
cases above, the nets induced by NA ∪ NC, NB ∪ NC, NA ∪ NB, NA, NB, and NC,

respectively, are omitted from N̂ .
Further simplifications are possible, but perhaps less natural. For instance, in the

row-wise and monochrome-A cases, it is arguably natural to coarsen VB along rows
of B: every entry in a row of B is involved in multiplications with the same entries of
A. After this coarsening, the nets induced by NB are coalesced along each row of B,
and so are combined into a single net whose cost equals the number of coalesced nets
(also the sum of their costs). Similarly, in the column-wise and monochrome-B cases,
it is arguably natural to coarsen VA along columns of A: every entry in a column of
A multiplies the same entries of B; the nets induced by NA are coalesced/combined
along column of A as before.

These (arguably) natural simplifications don’t always coarsen the nonzeros of all
three matrices. In particular, in the outer-product, monochrome-A, and monochrome-

18 Ballard, Druinsky, Knight, Schwartz

B cases, there is no natural choice of rows or columns of C, and in the monochrome-
C case, there is no natural choice of rows or columns of A or B. Of course, nonzero
vertex coarsening may be dictated by the application. For example, C may need to be
distributed in a certain way for use after the SpGEMM. Or, in the row-wise case, if A
and C are to be distributed row-wise, then additionally distributing B row-wise may be
simplest from a software-design standpoint (and similarly distributing A column-wise
in the column-wise case).

We have presented several restricted classes of algorithms that enable simplifi-
cations to the SpGEMM hypergraph. For concreteness, we conclude with four self-
contained examples, stated similarly to Def. 3.1. (We continue our simplifying assump-
tion that A and B have no zero rows or columns.)

Example 5.1 (Row-wise (RrR)). Our first example pairs a row-wise parallelization
with row-wise distributions of A, B, and C, where the distributions of A and C are
matched with the parallelization while the distribution of B is not.

V = {vi : i ∈ [I]} ∪ {vBk : k ∈ [K]},
N = {nB

k = {vi : (∃i) (i, k) ∈ SA} ∪ {vBk } : k ∈ [K]},
wcomp(vi) = |{(i, k, j) : (∃k) ((i, k) ∈ SA ∧ (∃j) (k, j) ∈ SB)}|,
wmem(vi) = |{(i, k) : (∃k) (i, k) ∈ SA}|+ |{(i, j) : (∃j) (i, j) ∈ SC}|,
wcomp(v

B

k) = 0, wmem(vBk) = c(nB

k) = |{(k, j) : (∃j) (k, j) ∈ SB}|.

We have that |V| = I +K and |N | = K, where each net has between 2 and I + 1 pins.
Note that computing the weights vmem(vi) requires determining SC.

Example 5.2 (Outer-product (CRf)). Our second example pairs an outer-product
parallelization with a column-wise distribution of A, a row-wise distribution of B, and
a fine-grained distribution of C, where the distributions of A and B are matched with
the parallelization while the distribution of C is not.

V = {vk : k ∈ [K]} ∪ {vCij : (i, j) ∈ SC},
N = {nC

ij = {vk : (∃k) (i, k) ∈ SA ∧ (k, j) ∈ SB} ∪ {vCij} : (i, j) ∈ SC},
wcomp(vk) = |{i : (∃k) (i, k) ∈ SA}| · |{j : (∃k) (k, j) ∈ SB}|,
wmem(vk) = |{i : (∃k) (i, k) ∈ SA}|+ |{j : (∃k) (k, j) ∈ SB}|,

wcomp(v
C

ij) = 0, wmem(vCij) = c(nC

ij) = 1.

We have that |V| = K + |SC| and |N | = SC, where each net has between 2 and K + 1
pins. Note that constructing V andN requires determining SC. A closely related hyper-
graph model for this example and two specializations (CRr and CRc) was previously
studied [Akbudak and Aykanat 2014].

Example 5.3 (Monochrome-A (Frf)). Our third example pairs a monochrome-A
parallelization with a row-wise distribution of B and fine-grained distributions of A
and C, where the distribution of A is matched with the parallelization while the dis-

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 19

tributions of B and C are not.

V = {vik : (i, k) ∈ SA} ∪ {vBk : k ∈ [K]} ∪ {vCij : (i, j) ∈ SC},

N =
⋃

{

{nB

k = {vik : (∃i) (i, k) ∈ SA} ∪ {vBk } : k ∈ [K]},
{nC

ij = {vik : (∃k) (i, k) ∈ SA ∧ (k, j) ∈ SB} ∪ {vCij} : (i, j) ∈ SC}

}

,

wcomp(vik) = wmem(vBk) = c(nB

k) = |{j : (∃j) (k, j) ∈ SB}|,
wmem(vik) = wmem(vCij) = c(nC

ij) = 1, wcomp(v
B

k) = wcomp(v
C

ij) = 0.

We have that |V| = |SA| +K + |SC| and |N | = K + |SC|, where each of the K nets nB

k

has between 2 and I + 1 pins, and each of the |SC| nets nC
ij has between 2 and K + 1

pins. Note that constructing V and N requires determining SC.

Example 5.4 (Monochrome-C (ffF)). Our fourth example pairs a monochrome-C
parallelization with fine-grained distributions of A, B, and C, where the distribution
of C is matched with the parallelization while the distributions of A and B are not.

V = {vij : (i, j) ∈ SC} ∪ {vAik : (i, k) ∈ SA} ∪ {vBkj : (k, j) ∈ SB},

N =
⋃

{

{nA

ik = {vij : (∃j) (k, j) ∈ SB} ∪ {vAik} : (i, k) ∈ SA},
{nB

kj = {vij : (∃i) (i, k) ∈ SA} ∪ {vBkj} : (k, j) ∈ SB}

}

,

wcomp(vij) = |{k : (∃k) (i, k) ∈ SA ∧ (k, j) ∈ SB}|,
wmem(vij) = wmem(v

A

ik) = wmem(vBkj) = c(nA

ik) = c(nB

kj) = 1,

wcomp(v
A

ik) = wcomp(v
B

kj) = 0.

We have that |V| = |SA|+ |SB|+ |SC| and |N | = |SA|+ |SB|, where each of the |SA| nets
nA

ik has between 2 and J +1 pins, and each of the |SB| nets nB

kj has between 2 and I +1

pins. Note that constructing V requires determining SC.

In each of these four examples, the simplified hypergraph is potentially much
smaller than the original (fine-grained) hypergraph in terms of the numbers of ver-
tices, nets, or pins. Our experiments in Sec. 6 using the PaToH hypergraph partitioning
software demonstrated orders-of-magnitude improvements in runtime when partition-
ing simplified (vs. fine-grained) hypergraphs.

We caution that constructing the simplified hypergraphs in these four examples re-
quires determining SC, which can be as expensive as computing C. This cost can be
avoided, e.g., in the row-wise (RrR) case (Ex. 5.1), if we omit memory weights.

5.5. Sparse Matrix-Vector Multiplication (SpMV)

In the case of multiplying a sparse matrix by a dense vector (SpMV), our hypergraph
model simplifies in several ways. If the input matrix B is a dense vector of length K,
then the output matrix C is a dense vector of length I, since A has a nonzero in every
row under the assumptions of Sec. 3.1. In this case, there is only one multiplication
performed for each nonzero of A, so the multiplication vertices of V can be indexed by
only two parameters, letting us write Vm = {vik : (i, k) ∈ SA}. Furthermore, the B and
C nonzero vertices can be indexed by only one parameter and simplify to VB = {vBk :
k ∈ [K]} and VC = {vCi : i ∈ [I]}.

In addition to the simplifications based on the inputs of SpMV, we can also apply
vertex coarsening, restricting the set of algorithms, to reproduce the “fine-grain” model
for SpMV of Çatalyürek and Aykanat [2001]; this model assumes that I = K, i.e., A is
a square matrix. There are three steps in the following derivation.

20 Ballard, Druinsky, Knight, Schwartz

First, because each nonzero of A is involved in exactly one multiplication, we force
vik and vAik to be monochrome for each (i, k) ∈ SA. (This corresponds to monochrome-A
(Fff), discussed in Sec. 5.4.) We use the notation v̂ik to refer to the coarsened vertex,
which has weights wcomp(v̂ik) = 1 and wmem(v̂ik) = 1. Note that this coarsening implies

that all nets in NA have exactly one vertex, and thus we omit them.
Second, we apply further coarsening to attain a symmetric partitioning of the

input and output vector entries. We do this to satisfy the “consistency condi-
tion” [Çatalyürek and Aykanat 2001], motivated by the problem of performing re-
peated SpMV operations with the same matrix. For every i ∈ [I] = [K], we force vBi , vCi ,
and v̂ii (if it exists) to be monochrome. This corresponds to assigning vector entries to
the processor that owns the corresponding diagonal entry of the matrix. We maintain
the notation v̂ii to reference the coarsened vertex, which has weights wcomp(v̂ii) = 1
and wmem(v̂ii) = 3, if (i, i) ∈ SA, and wcomp(v̂ii) = 0 and wmem(v̂ii) = 2, if (i, i) 6∈ SA.

Third, because the fine-grain SpMV model does not explicitly enforce memory bal-
ance, we drop the memory balance constraint on partitions by setting δ = p− 1. Even
though we removed the memory balance constraints, computational balance in this
model guarantees a balanced partition of the nonzeros of A. However, the memory al-
located to the input and output vectors is not accounted for, and so the overall memory
imbalance can potentially be higher than the computational imbalance.

The preceding derivation reproduces the “fine-grain” model for
SpMV [Çatalyürek and Aykanat 2001], which consists of a vertex for every nonzero
in the matrix (and a zero-weight “dummy” vertex for every zero diagonal en-
try) and a net for each row and each column. Similar simplifications to 1D
SpGEMM algorithms (see Sec. 5.4) yield row-wise and column-wise SpMV algo-
rithms [Çatalyürek and Aykanat 1999]. In particular, the row-wise (RrR) hypergraph
(Ex. 5.1) is identical to the “column-net” SpMV hypergraph (modeling a row-wise
algorithm), except for the presence of the B-nonzero vertices and the memory
weights. Similarly, the outer-product (CRf) hypergraph (Ex. 5.2) is identical to the
“row-net” SpMV hypergraph (modeling a column-wise algorithm), except for the
presence of the C-nonzero vertices and the memory weights. On the other hand,
the column-wise SpGEMM parallelizations applied to SpMV have no analogue in
Çatalyürek and Aykanat’s models [1999; 2001] since there is no parallelism. Addition-
ally, the monochrome-A, -B, and -C SpGEMM parallelizations, in the case of SpMV,
correspond to the aforementioned “fine-grain”, “row-net”, and “column-net” SpMV
hypergraphs.

5.6. Generalizing SpGEMM Algorithms

In this section, we explore two directions in which the class of SpGEMM algorithms
(defined in Sec. 3) can be generalized. The first generalization exploits relations among
the input matrices’ entries to reduce algorithmic costs — recall that Sec. 3.1 assumed
A- and B-entries are unrelated. A common application is exploiting symmetry of A, B,
or C. The second generalization considers the case where only a subset of the output
entries are desired, a task called masked SpGEMM — recall that Sec. 3.1 assumed all
nonzero C-entries are computed.

We show that both classes of algorithms can be modeled by straightforward simpli-
fications to the SpGEMM hypergraph (defined in Sec. 3.2). In particular, we apply ver-
tex coarsening similarly to as in Sec. 5.1, except here we adjust vertex weights and net
costs in a simpler manner. The hypergraph-based communication bounds in Secs. 4.1
and 4.2, as well as the restrictions studied in the previous subsections of Sec. 5, extend
to both these classes of algorithms with only minor changes required to address the
vertex coarsening.

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 21

5.6.1. Exploiting Input Matrix Relations. We consider modifying SpGEMM algorithms to
exploit known equivalence relations on the nonzero entries of A and B to reduce algo-
rithmic costs. For simplicity, we will consider equality relations: e.g., if A = A

T , then
nonzeros in the upper triangle of A equal the corresponding entries in the lower tri-
angle of A. However, the following approach extends to cases like A = −AT , or more
generally to the case where each equivalence class is assigned a single value and each
nonzero in that equivalence class is a function of that value.

Consider any equality relation on the nonzeros of A and B. We first consider
SpGEMM-like algorithms that store exactly one copy of repeated A- and B-entries, but
still perform all nontrivial multiplications and compute all nonzero C-entries, regard-
less of whether these values also include repetitions. Such algorithms can be naturally
modeled by altering the SpGEMM hypergraph (V ,N) = H(A,B) according to a given
partition of VA ∪ VB, where each part is a set of nonzero entries that must have the
same value. For example, if an algorithm only inputs the unique entries of A = A

T ,
then the partition groups each pair of distinct vertices vAik and vAki while keeping the

nonzero vertices associated with the diagonal of A, as well as all of VB, in singleton
parts. Now coarsen these vertex sets, following the approach in Sec. 5.1 except setting
the memory costs of the coarsened vertices to 1, rather than the number of coarsened
vertices. Since only nonzero vertices are combined, no nets are coalesced by this coars-
ening.

We next extend the preceding class of SpGEMM-like algorithms to avoid perform-
ing redundant nontrivial multiplications and computing redundant C-entries. We say
that two nontrivial multiplications are redundant if their left operands are equal and
their right operands are equal. For example, if A = A

T and B = B
T , then any nontriv-

ial multiplication almbml must equal amlblm. More generally, if there exist (i, k, j) and
(r, t, s) such that aik = art and bkj = bts, then aikbkj = artbts — only one of these two
multiplicationsies needs to be performed. We say that two C-entries are redundant
if their summands can be matched as pairs of redundant nontrivial multiplications.
For example, if all entries of A and B are equal to the same nonzero value, then all
C-entries are equal. More generally, if there exist (i, j) and (r, s) in SC and a bijection

φ : K = {k : (∃k) ((i, k) ∈ SA ∧ (k, j) ∈ SB)} → {t : (∃t) ((r, t) ∈ SA ∧ (t, s) ∈ SB)}

such that aik = arφ(k) and bkj = bφ(k)s for each k ∈ K, then cij = crs, and only one of
the two needs to be computed. We further alter the SpGEMM hypergraph to exploit
these savings as follows. Let the notation u ≡ v assert that u, v ∈ V are contained
in the same part in some fixed partition of V . We extend the partition of VA ∪ VB

to all of V in two steps, partitioning Vm and then VC. First, for each pair vikj , vrts ∈
Vm, we specify that vikj ≡ vrts if vAik ≡ vArt and vBkj ≡ vBts. Second, for each vCij , v

C
rs ∈

VC, we specify that vCij ≡ vCrs if nC
ij and nC

rs intersect the same parts of Vm. We then

coarsen V according to this partition: we follow the approach in Sec. 5.1 except setting
both the memory costs of the coarsened nonzero vertices and the computation costs
of the coarsened multiplication vertices to 1, rather than to the numbers of coarsened
nonzero and multiplication vertices. Now, it is possible that some nets are coalesced:
coalesced nets can be combined without increasing net costs since only one nonzero
needs to be stored/sent/received.

Lastly, we next extend the preceding class of SpGEMM-like algorithms to exploit
commutative multiplication, which is not guaranteed in our model (see Sec. 3). For
example, if B = A, then almbml = amlblm; or, if B = A

T , then C = C
T ; neither of

these redundancies necessarily occur without commutative multiplication. We model
algorithms that avoid this larger class of redundant multiplications (and C-entries) by

22 Ballard, Druinsky, Knight, Schwartz

augmenting the preceding construction in just one place: for each pair vikj , vrts ∈ Vm,

we additionally specify that vikj ≡ vrts if vAik ≡ vBrt and vAkj ≡ vBts.

5.6.2. Masked SpGEMM. We consider modifying SpGEMM algorithms to only com-
pute a subset of the entries of C = A · B; this is known as masked SpGEMM (see,
e.g., [Azad et al. 2015b]), where S ⊆ SC indexes the desired subset of C-entries and
SC \ S is called the mask. That is, only for each (i, j) ∈ S are cij and its associated
nontrivial multiplications aikbkj computed. We develop a hypergraph model starting

with the usual SpGEMM hypergraph, (V ,N) = H(A,B). We remove fromNC each net
nC
ij where (i, j) 6∈ S, as well as that net’s elements (vertices) from V . In particular, for

each (i, j) ∈ SC \ S, this removes from VC the vertex vCij and from Vm each vertex vikj
with k ∈ [K].

Depending on SA, SB, and S, it is possible that some entries of A and B are not
involved in any nontrivial multiplications after masking. Avoiding this triviality moti-
vated our simplifying assumption in Sec. 3 that A and B have no zero rows or columns.
In terms of the hypergraph, this manifests as elements ofNA andNB becoming single-
tons, containing only their associated nonzero vertices vAik or vBkj . To model algorithms

that reduce memory costs by not storing the associated nonzero entries, these nets and
vertices can be removed from NA or NB, and VA or VB, respectively.

Next, we consider a generalization of masked SpGEMM. When the underlying set
X has a right multiplicative identity 1, masking can be viewed as computing (A ·
B) ⊙M, where ⊙ denotes the Hadamard (or entrywise) matrix product and where
the {0, 1}-valued matrix M has the same dimensions as C = A · B and SM = S.
To generalize, consider computing C = (A · B) ⊙M, where M is a general sparse
matrix with the same dimensions as C. Let (V ,N) denote the hypergraph for masked
SpGEMM with S = SM, as in the preceding paragraphs. Suppose the algorithmic
constraint that any processor who stores some cij also must both store mij and perform
the multiplication involving mij . To model this, for each of the (unmasked) nonzero

vertices vCij , we set its memory cost to 2 and its computation cost to 1. It is possible

to relax this algorithmic constraint by introducing additional multiplication vertices
v′ij for the Hadamard product, additional nonzero vertices vMij for the M-entries, and

additional nets nM
ij = {v′ij , vMij , vCik}.

6. EXPERIMENTAL RESULTS

We now compare our fine-grained hypergraph model from Sec. 3.2 with the six re-
stricted parallelizations developed in Sec. 5.2, in the context of three applications:
algebraic multigrid (AMG, Sec. 6.1), linear programming (LP, Sec. 6.2), and Markov
clustering (MCL, Sec. 6.3). A list of the SpGEMMs that we study in our experiments is
shown in Tab. II. Our experiments consider only the distributed-memory parallel case,
where we expect communication cost to be most closely correlated with execution time.
Because hypergraph partitioning is NP-hard (in general), hypergraph partitioners use
heuristics to approximate optimal partitions; results we present are not guaranteed
to be optimal. However, it remains open whether partitioning SpGEMM hypergraph
instances are NP-hard.

The hypergraph partitioner we use is PaToH (version
3.2) [Çatalyürek and Aykanat 1999]. PaToH minimizes the “connectivity metric,”
defined as the sum, over all nets, of the product of each net’s cost and its number
of incident parts minus one. The communication costs shown below represent the
maximum, over all parts, of the sum of each part’s non-internal incident nets’ costs
(matching Lem. 4.2). This cost is most closely aligned with the parallel running time

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 23

Table II: The SpGEMMs that we studied in our experiments and their parameters. The
model AMG problem is represented by the rows 27-AP and 27-PTAP, corresponding to
the A·P and PT ·(AP) SpGEMMs, respectively, and the SA-ρAMGe problem is similarly
represented by the rows SA-AP and SA-PTAP. The AMG experiments were carried out
in a weak scaling regime and are represented in this table by the largest instances.
The LP experiments have one input matrix and compute C = A · AT , and the MCL
experiments have one input matrix and compute C = A · A. In addition to the the
dimensions of the SpGEMM, we provide the average number of nonzeros per row of
each matrix and the ratio of nontrivial multiplications to output nonzeros.

Name I K J |SA|/I |SB|/K |SC|/I |Vm|/|SC|

A
M

G

(S
e
c.

6
.1

) 27-AP 970,299 970,299 35,937 26.5 4.5 12.1 9.9

27-PTAP 35,937 970,299 35,937 4.5 12.1 25.4 49.0

SA-AP 1,088,640 1,088,640 31,496 26.4 20.1 38.5 13.9

SA-PTAP 31,496 1,088,640 31,496 696.3 38.5 216.4 139.3

L
P

(S
e
c.

6
.2

)

fome21 67,748 216,350 67,748 6.9 2.2 9.5 1.6

pds80 129,181 434,580 129,181 7.2 2.1 9.7 1.6

pds100 156,243 514,577 156,243 7.0 2.1 9.4 1.6

cont11l 1,468,599 1,961,394 1,468,599 3.7 2.7 12.3 1.5

sgpf5y6 246,077 312,540 246,077 3.4 2.7 11.3 1.2

M
C

L

(S
e
c.

6
.3

)

biogrid11 5,853 5,853 5,853 21.5 21.5 2,105.7 1.6

dip 5,051 5,051 5,051 8.7 8.7 200.9 1.6

wiphi 5,955 5,955 5,955 8.4 8.4 85.6 1.5

dblp 425,957 425,957 425,957 4.9 4.9 64.8 1.7

enron 36,692 36,692 36,692 10.0 10.0 831.0 1.7

facebook 4,039 4,039 4,039 43.7 43.7 717.1 6.5

roadnetca 1,971,281 1,971,281 1,971,281 2.8 2.8 6.5 1.4

devoted to communicating words of data, called the “critical-path bandwidth cost” by
Ballard et al. [2014].

We do not constrain memory load balance (i.e., δ = p − 1) — and so we omit Vnz

from the hypergraphs — but we do constrain computation load balance, ǫ = 0.01. In a
few cases, our partitioner failed to produce such a balanced partition. We discuss these
cases below.

We performed our experiments on two machines at the National Energy Research
Supercomputing Center in Berkeley, California. The experiments with the AMG model
problem were carried out on a node (1 TB memory) of the machine Carver; all other
experiments were carried out on a node (128 GB memory) of the machine Cori.

Building the fine-grained hypergraph and partitioning it is as expensive as perform-
ing the associated SpGEMM, and furthermore our partitioner is sequential. Although
we are not focused on partitioning times in this study, fast partitioning is important
for a user who seeks to find the best SpGEMM strategy for a particular problem. In
our experiments, the partitioning times varied from a few seconds up to 5 hours, while
the time to build the hypergraph was negligible in comparison. We observed that the
partitioning time varied with the dimensions of the matrices (smaller was faster), the
hypergraph model (1D was fastest while fine-grained was slowest), and on whether
the matrices have a regular nonzero structure (the 27-point stencil matrices in Sec. 6.1
were quicker to partition, while the social-network matrices in Sec. 6.3 were slower).

24 Ballard, Druinsky, Knight, Schwartz

2
3

2
5

2
7

2
9

2
11

2
11

2
12

2
13

2
14

2
15

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(a) Model A ∗ P

2
3

2
5

2
7

2
9

2
11

2
9

2
10

2
11

2
12

2
13

2
14

Processors

Row-wise

Column-wise
Outer-product

Monochrome-A
Monochrome-B

Monochrome-C
Fine-grained

Geometric-row
Geometric-outer

(b) Model PT ∗ (AP)

2
3

2
5

2
7

2
9

2
11

2
13

2
14

2
15

2
16

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(c) SA-ρAMGe A ∗ P

2
3

2
5

2
7

2
9

2
11

2
10

2
12

2
14

2
16

Processors

Row-wise

Column-wise
Outer-product

Monochrome-A
Monochrome-B

Monochrome-C
Fine-grained

(d) SA-ρAMGe PT ∗ (AP)

Fig. 7: Communication costs of various parallelizations for performing the top-level
triple product in the setup phase of algebraic multigrid (AMG — Sec. 6.1).

6.1. Application: Algebraic Multigrid

First, we consider the SpGEMMs that arise in the context of algebraic multigrid
(AMG). AMG methods are linear solvers typically applied to systems of linear equa-
tions arising from the discretization of partial differential equations (PDEs). AMG
methods operate in two stages: setup and solve. The setup stage consists of forming a
“grid hierarchy,” which is a sequence of matrices that represent the PDE at progres-
sively coarser levels of discretization.

To build the grid hierarchy, we generate a sequence of “prolongators” P1, . . . , Pℓ−1,
where ℓ is the number of levels in the hierarchy, an algorithm parameter. Prolongators
are matrices with more rows than columns and the number of rows in each prolongator
is equal to the number of columns in its predecessor. The grid hierarchy A1, . . . , Aℓ is
then formed by successively computing

A2 = PT
1 A1P1, A3 = PT

2 A2P2, . . . , Aℓ = PT
ℓ−1Aℓ−1Pℓ−1, (6)

where A1 is the fine-grained discretization of the PDE, an algorithm input.
Typically, AMG methods are designed such that all of the matrices in eq. (6) are

sparse, so each triple product is computed using two SpGEMMs: one that forms Ak ·Pk,
followed by another that forms PT

k · (AkPk) for k ∈ [ℓ− 1]. In practice, the SpGEMMs in
eq. (6) can take a large part of the time spent in the setup phase, and the setup phase

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 25

can take a large part of the total time. Considerable effort has been made recently to
optimize these SpGEMMs (see, e.g., [Ballard et al. 2015b; Park et al. 2015]).

We consider the first level of the grid hierarchy for both a model problem and a
realistic problem. In the model problem, the rows of the input matrix A1 correspond
to points of an N × N × N regular grid, and its nonzero structure corresponds to a
27-point stencil so that each point is adjacent to its (at most) 26 nearest neighbors.
The prolongator matrix P1 is N3 × (N/3)3 (we assume N is divisible by 3) and is de-
fined so that 3× 3× 3 sub-grids correspond to single points in the coarser grid, and its
values are computed using the technique of “smoothed aggregation” (using damped Ja-
cobi). This model problem is one that has been previously studied [Ballard et al. 2015a;
Ballard et al. 2015b]. Because the grid is regular, we can compare our partitioning re-
sults with regular, geometric partitions. For example, the natural partition of the rows
of A corresponds to assigning each processor a contiguous (N/p1/3)×(N/p1/3)×(N/p1/3)
subcube of points (assuming N/p1/3 is an integer).

The second set of matrices comes from an oil-reservoir simulation called
SPE10 [Christie and Blunt 2001]. In this problem, the Darcy equation, in dual form,
is used to model fluid flow in porous media. The spatial domain is a rectangular
prism, tessellated using a hexahedral mesh and discretized using linear finite el-
ements [Barker et al. 2015; Christensen et al. 2015]. Brezina and Vassilevski [2011]
solved this problem using an AMG variant called SA-ρAMGe, wherein P1 has approx-
imately 35× more rows than columns (slightly more aggressive coarsening than the
model problem) and is constructed using a polynomial smoother, giving more nonze-
ros. For details of the implementation, see [Kalchev 2012; Kalchev et al. 2013].

We consider both SpGEMMs for both problems, comparing the fine-grained model
with all six restricted parallelizations from Sec. 5.2. In the case of the model problem,
we also compare against 1D algorithms based on geometric partitions of the regular
grid; these natural and efficient (but not necessarily optimal) instances can validate
the quality of results obtained from the hypergraph partitioner. For both problems, we
present a weak-scaling study, maintaining I/p, where I = K is the number of rows and
columns of A1. The model problem ranges from dimension 183 = 5832 on 8 processors
up to dimension 993 = 970229 on 1331 processors, and the SA-ρAMGe problem ranges
from dimension 4900 on 8 processors up to dimension 1088640 on 2048 processors.

In four cases involving the SA-ρAMGe matrices, our partitioner failed with an out-
of-memory error. The P1 matrix in SA-ρAMGe has more nonzero entries than in the
model problem, and so the corresponding hypergraphs and their partitioning require
more memory. The SpGEMMs that failed were the largest for the fine-grained model
of A · P , the largest for the monochrome-C model of PT · (AP), and the two largest for
the fine-grained model of PT · (AP).

The results for the model problem are given in the top row of Fig. 7. We see in Fig. 7a
that for the first SpGEMM, all parallelizations except for column-wise require about
the same amount of communication (to within a factor of 2). Note that the row-wise
algorithm with geometric partitioning (labeled “Geometric-row”) achieves the least
communication on 1331 processors; this implies that PaToH is not finding an opti-
mal partition at that scale (at least in the row-wise, monochrome-A, monochrome-C,
or fine-grained cases), but we believe that the optimal partition is not much better
than the geometric one. We can also compare the relative costs discovered by hyper-
graph partitioning with Ballard et al.’s theoretical analysis [2015b, Table 2] based on
geometric partitioning. Theoretically, for geometric partitions, the row-wise algorithm
requires factors of 2.0 and 4.9 less communication than outer-product and column-wise
algorithms, respectively; the ratios for partitions discovered by PaToH are 1.3 and 6.7
on 1331 processors. We conclude from this data that a row-wise parallelization is the

26 Ballard, Druinsky, Knight, Schwartz

simplest parallelization that is nearly optimal for computing A · P ; this agrees with
previous results [Ballard et al. 2015a; Ballard et al. 2015b].

For the second SpGEMM, we see that the outer-product, monochrome-A, and
monochrome-B parallelizations all perform as well as the fine-grained model (recall
from Fig. 6 that monochrome-A and -B parallelizations refine outer product paral-
lelizations). The other parallelizations all perform similarly to each other, and require
about 10×more communication than the fine-grained parallelization. We note that the
outer-product algorithm based on geometric partitioning (labeled “Geometric-outer”)
is (slightly) outperformed by the partitions discovered by PaToH. For geometric parti-
tions, the outer-product algorithm communicates a factor of 5× less than the row-wise
algorithm (matching previous theoretical analyses [Ballard et al. 2015b, Tab. 2]); us-
ing hypergraph partitioning that difference increases to 7× on 1331 processors. We
conclude that an outer-product parallelization is the simplest parallelization that is
nearly optimal for computing PT · (AP). In our earlier paper [Ballard et al. 2015a],
for the second SpGEMM, we compared Geometric-row with the fine-grained model
and concluded that Geometric-row was suboptimal. The present experiments add the
course-grained models and Geometric-outer and draw stronger conclusions.

The results for the SA-ρAMGe problem are shown in the bottom row of Fig. 7. For
both SpGEMMs, the results are qualitatively very similar to those of the model prob-
lem. Because the mesh’s geometry is not available within the AMG code, we do not
have parallelizations based on geometric partitions with which to compare. The con-
clusions are the same: the row-wise algorithm is nearly optimal for the case of A · P ,
and the outer-product parallelization is nearly optimal for the case of PT · (AP).

6.2. Application: Linear Programming Normal Equations

We next consider SpGEMMs within a linear programming application, studied pre-
viously by Akbudak and Aykanat [2014], wherein a linear program is solved by an
interior-point method. During each iteration of this method, normal equations of the
form A · D2 · AT are constructed via SpGEMM, and the resulting system is solved ei-
ther directly (via Cholesky factorization) or iteratively (via a Krylov subspace method).
Boman, Parekh, and Phillips [2005] reported that these SpGEMMs can dominate
the overall runtime. The matrix A encodes the linear constraints and remains fixed
throughout the iterations, while the positive diagonal matrix D varies with each itera-
tion. Therefore, the SpGEMMs always have the form A ·B, where SB = SAT and both
SA and SB remain unchanged throughout the iterations. This means there is potential
to amortize the cost of forming and partitioning the SpGEMM hypergraph.

Akbudak and Aykanat considered SpGEMM algorithms similar to what we call
outer-product (CRf), (CRr), and (CRc) — see Ex. 5.2).

We consider the same five linear programming constraint matrices as Akbudak and
Aykanat — fome21, pds-80, pds-100, sgpf5y6, and cont11l — all from the Univer-
sity of Florida collection [Davis and Hu 2011]. In each case, the SpGEMM dimensions
I = J < K, i.e., the output matrix is smaller in dimension than the input matrices.
In Fig. 8, we compare the fine-grained hypergraph model with the six restricted par-
allelizations from Sec. 5.2 for these five problems; note that since SB = SAT , column-
wise is equivalent to row-wise and monochrome-B is equivalent to monochrome-A, so
we omit these curves. We perform a strong-scaling study, increasing the number of
processors for fixed matrices.

In the first four problems (Figs. 8a to 8d), the fine-grained, outer-product, and
monochrome-A parallelizations were the most communication efficient, while the row-
wise and monochrome-C parallelizations were the least. The largest difference be-
tween row-wise and outer-product parallelizations was observed in the fourth prob-
lem (Fig. 8d), with a communication cost ratio of 23× (on 128 processors). This trend is

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 27

less clear in the fifth problem (Fig. 8e), where all parallelizations’ costs varied within
a factor of two. For all problems, we observed the differences between parallelization
costs to be much less sensitive to processor count than in the following experiment (see
Fig. 9).

Since monochrome-A includes outer-product and monochrome-C includes row-wise
(in the sense of Fig. 6), these results suggest that 2D parallelizations don’t provide
much advantage over 1D parallelizations; on the other hand, it is important to use
outer-product instead of row-wise. The observation in all cases that the outer-product
curve closely tracks the fine-grained curve supports Akbudak and Aykanat’s decision
to consider only outer-product parallelizations, at least for these problems.

6.3. Application: Markov Clustering

Van Dongen’s Markov Clustering Algorithm (MCL) [2000] is an iterative scheme for
determining clusters in graphs. The basic idea is to square the adjacency matrix of
a graph, “inflate” and prune the result based on its values to maintain sparsity, and
then iterate on the result. The computational bottleneck for the algorithm is using
SpGEMM to square the sparse matrix, so in this section we explore squaring several
different matrices coming from social-network and protein-interaction graphs, where
Markov clustering is commonly used.

We consider only the first iteration of MCL, squaring the original ad-
jacency matrix, as a representative example of the iteration. There have
been several proposed variants of MCL, including (multi-level) regularized
MCL [Satuluri and Parthasarathy 2009; Niu et al. 2014], that perform slightly differ-
ent SpGEMMs. We believe that the present experiments can help inform algorithmic
choices for parallelizing any clustering algorithm applied to scale-free graphs that uses
SpGEMM as its computational workhorse.

Of the 11 non-synthetic data sets considered by Niu et al. [2014], we present results
for the 7 matrices that are publicly available and whose fine-grained hypergraphs fit
in memory on our machine. The matrices dblp, enron, and facebook are social network
matrices, roadnetca is a graph representing roads and intersections, and dip, wiphi,
and biogrid11 are protein-protein interaction matrices. Fig. 9 presents the results.

We consider the fine-grained hypergraph model as well as four of the restricted par-
allelizations: row-wise, outer-product, monochrome-A, and monochrome-B. Because
we’re squaring symmetric matrices in this section, column-wise and monochrome-B
parallelizations are equivalent. Note that we do not exploit symmetry in these experi-
ments. As in Sec. 6.2, we perform a strong-scaling study.

The overall conclusion from Fig. 9 is that 2D algorithms seem to require signifi-
cantly less communication than 1D algorithms, particularly at high processor counts.
The largest difference was for the facebook matrix, where the ratio of communica-
tion costs between monochrome-C and outer-product was 83× (on 4096 processors).
Furthermore, the downward trend of 2D and 3D plot lines show that per-processor
communication costs decreased as the number of processors increased, indicating scal-
ability. The 1D plot lines are mostly horizontal, implying that 1D algorithms are not
scalable for these problems. The partitions of the 1D models we obtained from the
partitioner violated our load-balance constraint (ǫ = 0.01) and were increasingly im-
balanced as we increased the number of parts. We attribute this to the presence of
“heavy” vertices whose weights exceeded the maximum per-part weight prescribed by
our constraint. The exception to these trends is the roadnetca matrix, which is quali-
tatively different from the social network and protein-protein interaction matrices (we
include it for completeness).

We mention that Faisal, Parthasarathy, and Sadayappan [2014] parallelized regular-
ized MCL within a graph framework. Their MPI-based algorithm used a 1D (row-wise)

28 Ballard, Druinsky, Knight, Schwartz

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
7

2
9

2
11

2
13

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(a) fome21

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
8

2
10

2
12

Processors

(b) pds-80

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
8

2
10

2
12

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(c) pds-100

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
7

2
9

2
11

2
13

Processors

(d) sgpf5y6

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
10

2
11

2
12

2
13

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

Row-wise

Outer-product
Monochrome-A

Monochrome-C
Fine-grained

(e) cont11l

Fig. 8: Communication costs of various hypergraph models for constructing the coeffi-
cient matrix for the normal equations in the context of the interior point methods for
Linear Programming (LP — Sec. 6.2).

parallelization, but the data from these experiments suggests that a 2D parallelization
would likely perform better for these types of matrices. This conclusion agrees with Bo-
man, Devine, and Rajamanickam’s premise [2013] in the context of SpMV: when SA is
a scale-free graph, 1D partitions of the SpMV hypergraph are often sub-optimal.

7. CONCLUSION

We have proposed a framework for studying SpGEMM algorithms, called the fine-
grained hypergraph model, which captures communication and computation costs, as
well as memory usage (see Sec. 3). We have defined hypergraph partitioning problems

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 29

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
12

2
14

2
16

2
18

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(a) dblp

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
15

2
17

2
19

Processors

(b) enron

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
12

2
14

2
16

2
18

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(c) facebook

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
8

2
9

2
10

Processors

(d) roadnetca

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

(e) dip

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
9

2
10

2
11

2
12

2
13

2
14

Processors

(f) wiphi

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
14

2
16

2
18

2
20

Processors

C
o
m

m
u

n
ic

a
ti

o
n

C
o
st

Row-wise

Outer-product
Monochrome-A

Monochrome-C
Fine-grained

(g) biogrid11

Fig. 9: Communication costs of various hypergraph models for squaring symmetric
matrices in the context of the Markov Clustering Algorithm (MCL — Sec. 6.3).

30 Ballard, Druinsky, Knight, Schwartz

whose solutions yield lower bounds on communication costs on both parallel and se-
quential machines, and algorithms that attain these lower bounds within constant
factors (see Sec. 4). We have also shown how to simplify the fine-grained hypergraph
model, applying vertex coarsening to focus on special classes of SpGEMM algorithms
such as 1D and 2D classes (see Sec. 5). We applied these theoretical tools to real-
world SpGEMM problems, experimentally confirming that hypergraph partitioning
helps identify algorithms with reduced communication costs (see Sec. 6).

A key feature of our approach to SpGEMM analysis is that it is sparsity dependent.
The fact that our communication lower bounds, parameterized by the nonzero struc-
tures of the input matrices, are tight suggests that a simpler parameterization — in
terms of numbers of nonzeros, number of arithmetic operations, etc. — is unlikely.
However, for specific classes of instances, simpler tight lower bounds are possible: e.g.,
in the case where the input matrices are both dense, tight lower bounds are parame-
terized by the matrix dimensions (see, e.g., [Ballard et al. 2014]).

The class of SpGEMM algorithms studied in this paper is quite general, and effi-
ciently implementing a generic member of this class remains a practical challenge.
On the other hand, implementations of 1D and 2D algorithms are much simpler, and
our experiments demonstrated that in some cases these simpler approaches suffice
to minimize communication. For example, in the AMG and LP applications (Secs. 6.1
and 6.2), we observed that some (but not all) of the 1D algorithms could minimize
communication. On the other hand, in the MCL application (Sec. 6.3), 2D algorithms
minimized communication and 1D algorithms did not, assuming that the partition of
the fine-grained model is optimal, or nearly so.

We have proposed hypergraph analysis as a practical tool for SpGEMM algorithm
design. We do not advocate solving hypergraph partitioning problems on the fly: this
cost could dominate that of the actual SpGEMM computation. Our approach would
be most practical when the preprocessing overhead can be amortized over many
SpGEMMs, like when a sequence of matrices with the same (or similar) nonzero struc-
ture are to be multiplied (see, e.g., [Boman et al. 2005; Kalchev et al. 2013]).

One direction for future work is refining our parallel communication cost model to
capture latency cost (number of messages) in addition to bandwidth cost (number of
words). It is straightforward to derive a lower bound on latency cost by modifying
Lem. 4.2 to count the number of adjacent parts instead of the number of adjacent nets.
On the other hand, the algorithm in Lem. 4.3 may not attain the latency lower bound,
due to sending messages of containing single words.

Another interesting extension to our model is considering parallel machines with
shared memory. A promising approach is to generalize our sequential model to have
multiple processors, each with their own fast memory. Of course, Hong and Kung’s
communication lower bound result, invoked in Thm. 4.10, must be replaced by a
shared-memory extension, of which several have appeared in the literature.

Another direction for future work is considering additional coarsenings of the fine-
grained model. In the case of SpMV, “regular” partitions have been proposed to
limit latency costs [Vastenhouw and Bisseling 2005; Boman et al. 2013]. In the case
of SpGEMM, SpSUMMA [Buluç and Gilbert 2012] corresponds to a regular partition,
a special case of monochrome-C. Coarsening the fine-grained model and restricting
to regular partitions yields simpler algorithms that may also exhibit reduced latency
cost.

ACKNOWLEDGMENTS

We thank Erik Boman and Siva Rajamanickam for helpful discussions, particularly their suggestion to

augment the hypergraph model with nonzero vertices.

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 31

This research was supported in part by an appointment to the Sandia National Laboratories Truman

Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned

subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S.

Department of Energy Contract No. DE-AC04-94AL85000.

Research is supported by grants 1878/14 and 1901/14 from the Israel Science Foundation (founded by the

Israel Academy of Sciences and Humanities) and grant 3-10891 from the Ministry of Science and Technology,

Israel. Research is also supported by the Einstein Foundation and the Minerva Foundation. This paper

is supported by the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI). This

research was supported by a grant from the United States-Israel Binational Science Foundation (BSF),

Jerusalem, Israel.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research.

This research used resources of the National Energy Research Scientific Computing Center, which is a

DOE Office of Science User Facility.

REFERENCES

K. Akbudak and C. Aykanat. 2014. Simultaneous input and output matrix partitioning for outer-product–
parallel sparse matrix-matrix multiplication. SIAM Journal on Scientific Computing 36, 5 (2014), C568–
C590. DOI:http://dx.doi.org/10.1137/13092589X

K. Akbudak, E. Kayaaslan, and C. Aykanat. 2013. Hypergraph partitioning based models and methods for
exploiting cache locality in sparse matrix-vector multiplication. SIAM Journal on Scientific Computing
35, 3 (2013), C237–C262. DOI:http://dx.doi.org/10.1137/100813956

A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, and S. Williams. 2015a. Exploit-
ing multiple levels of parallelism in sparse matrix-matrix multiplication. Technical Report 1510.00844.
arXiv. http://arxiv.org/abs/1510.00844

A. Azad, A. Buluç, and J. Gilbert. 2015b. Parallel triangle counting and enumeration using matrix algebra.
In Proceedings of the IPDPSW, Workshop on Graph Algorithm Building Blocks (GABB ’15). 804 – 811.
DOI:http://dx.doi.org/10.1109/IPDPSW.2015.75

G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and S. Toledo. 2013. Com-
munication optimal parallel multiplication of sparse random matrices. In Proceedings of the 25th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’13). ACM, 222–231.
DOI:http://dx.doi.org/10.1145/2486159.2486196

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. 2014. Communication lower
bounds and optimal algorithms for numerical linear algebra. Acta Numerica 23 (May 2014), 1–155.
DOI:http://dx.doi.org/10.1017/S0962492914000038

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. 2012. Brief announcement: strong scaling of
matrix multiplication algorithms and memory-independent communication lower bounds. In Proceed-
ings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’12). ACM,
New York, NY, USA, 77–79. DOI:http://dx.doi.org/10.1145/2312005.2312021

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. 2011. Minimizing communication in numerical lin-
ear algebra. SIAM Journal on Matrix Analysis and Applications 32, 3 (September 2011), 866–901.
DOI:http://dx.doi.org/10.1137/090769156

G. Ballard, A. Druinsky, N. Knight, and O. Schwartz. 2015a. Brief announcement: hypergraph parti-
tioning for parallel sparse matrix-matrix multiplication. In Proceedings of the 27th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’15). ACM, New York, NY, USA, 86–88.
DOI:http://dx.doi.org/10.1145/2755573.2755613

G. Ballard, C. Siefert, and J. Hu. 2015b. Reducing communication costs for sparse matrix multiplica-
tion within algebraic multigrid. Technical Report SAND2015-3275. Sandia National Laboratories.
http://prod.sandia.gov/techlib/access-control.cgi/2015/153275.pdf

A. Barker, D. Kalchev, I. Mishev, P. Vassilevski, and Y. Yang. 2015. Accurate coarse-scale AMG-based finite
volume reservoir simulations in highly heterogeneous media. In SPE Reservoir Simulation Symposium.
SPE–173277–MS. DOI:http://dx.doi.org/10.2118/173277-MS

E. Boman, K. Devine, L. Fisk, R. Heaphy, B. Hendrickson, C Vaughan, Ü. Çatalyürek, D. Bozdag,
W. Mitchell, and J. Teresco. 2007. Zoltan 3.0: Parallel Partitioning, Load Balancing, and Data-
Management Services; User’s Guide. Technical Report SAND2007-4748W. Sandia National Laborato-
ries. http://www.cs.sandia.gov/Zoltan/ug html/ug.html

E. Boman, K. Devine, and S. Rajamanickam. 2013. Scalable matrix computations on large scale-free graphs
using 2D graph partitioning. In Proceedings of the International Conference on High Performance Com-

http://dx.doi.org/10.1137/13092589X
http://dx.doi.org/10.1137/100813956
http://arxiv.org/abs/1510.00844
http://dx.doi.org/10.1109/IPDPSW.2015.75
http://dx.doi.org/10.1145/2486159.2486196
http://dx.doi.org/10.1017/S0962492914000038
http://dx.doi.org/10.1145/2312005.2312021
http://dx.doi.org/10.1137/090769156
http://dx.doi.org/10.1145/2755573.2755613
http://prod.sandia.gov/techlib/access-control.cgi/2015/153275.pdf
http://dx.doi.org/10.2118/173277-MS
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

32 Ballard, Druinsky, Knight, Schwartz

puting, Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 50, 12 pages.
DOI:http://dx.doi.org/10.1145/2503210.2503293

E. Boman, O. Parekh, and C. Phillips. 2005. LDRD final report on massively-parallel linear pro-
gramming: the parPCx system. Technical Report SAND2004-6440. Sandia National Laboratories.
http://prod.sandia.gov/techlib/access-control.cgi/2004/046440.pdf

U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter. 2014. Sparse matrix multiplication: the
distributed block-compressed sparse row library. Parallel Computing 40, 5–6 (2014), 47–58.
DOI:http://dx.doi.org/10.1016/j.parco.2014.03.012

M. Brezina and P. Vassilevski. 2011. Smoothed aggregation spectral element agglomeration AMG: SA-
ρAMGe. In Proceedings of the 8th International Conference on Large-Scale Scientific Computing (LSSC)
(Lecture Notes in Computer Science), I. Lirkov, S. Margenov, and J. Waśniewski (Eds.), Vol. 7116.
Springer, 3–15. DOI:http://dx.doi.org/10.1007/978-3-642-29843-1 1

A. Buluc and J. Gilbert. 2008. On the representation and multiplication of hypersparse matrices.
In IEEE International Symposium on Parallel and Distributed Processing (IPDPS ’08). 1–11.
DOI:http://dx.doi.org/10.1109/IPDPS.2008.4536313

A. Buluç and J. Gilbert. 2012. Parallel sparse matrix-matrix multiplication and indexing: imple-
mentation and experiments. SIAM Journal on Scientific Computing 34, 4 (2012), C170–C191.
DOI:http://dx.doi.org/10.1137/110848244

Ü. Çatalyürek and C. Aykanat. 1999. PaToH: Partitioning Tool for Hypergraphs. Technical Report. (Revised
March 2011). http://bmi.osu.edu/umit/PaToH/manual.pdf

Ü. Çatalyürek and C. Aykanat. 2001. A fine-grain hypergraph model for 2D decomposition of sparse matri-
ces. In Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS
’01). 118–123. DOI:http://dx.doi.org/10.1109/IPDPS.2001.925093

Ü. Çatalyürek, C. Aykanat, and B. Uçar. 2010. On two-dimensional sparse matrix partitioning:
models, methods, and a recipe. SIAM Journal on Scientific Computing 32, 2 (2010), 656–683.
DOI:http://dx.doi.org/10.1137/080737770

U. Çatalyürek and C. Aykanat. 1999. Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10, 7 (Jul 1999),
673–693. DOI:http://dx.doi.org/10.1109/71.780863

M. Christensen, U. Villa, and P. Vassilevski. 2015. Multilevel techniques lead to accurate numerical up-
scaling and scalable robust solvers for reservoir simulation. In SPE Reservoir Simulation Symposium.
SPE–173257–MS. DOI:http://dx.doi.org/10.2118/173257-MS

M. Christie and M. Blunt. 2001. Tenth SPE comparative solution project: a comparison of up-
scaling techniques. SPE Reservoir Evaluation & Engineering 4, 04 (August 2001), 308–317.
DOI:http://dx.doi.org/10.2118/72469-PA

T. Davis. 2006. Direct Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics.
DOI:http://dx.doi.org/10.1137/1.9780898718881

T. Davis and Y. Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on Mathe-
matical Software 38 (2011), 1:1–1:25.

S. Faisal, S. Parthasarathy, and P. Sadayappan. 2014. Global graphs: a middleware for large
scale graph processing. In 2014 IEEE International Conference on Big Data (Big Data). 33–40.
DOI:http://dx.doi.org/10.1109/BigData.2014.7004369

G. Greiner. 2012. Sparse Matrix Computations and Their I/O Complexity. Dissertation. Technische Univer-
sität München, München. http://mediatum.ub.tum.de?id=1113167

F. Gustavson. 1978. Two fast algorithms for sparse matrices: multiplication and permuted
transposition. ACM Transactions on Mathematical Software 4, 3 (Sept. 1978), 250–269.
DOI:http://dx.doi.org/10.1145/355791.355796

J. Hong and H. Kung. 1981. I/O complexity: the red-blue pebble game. In Proceedings of the
Thirteenth Annual ACM Symposium on Theory of Computing (STOC ’81). ACM, 326–333.
DOI:http://dx.doi.org/10.1145/800076.802486

D. Irony, S. Toledo, and A. Tiskin. 2004. Communication lower bounds for distributed-memory ma-
trix multiplication. Journal of Parallel and Distributed Computing 64, 9 (2004), 1017–1026.
DOI:http://dx.doi.org/10.1016/j.jpdc.2004.03.021

D. Kalchev. 2012. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coeffi-
cients. Master’s thesis. Sofia University. https://e-reports-ext.llnl.gov/pdf/594392.pdf

D. Kalchev, C. Ketelsen, and P. Vassilevski. 2013. Two-level adaptive algebraic multigrid for a sequence of
problems with slowly varying random coefficients. SIAM Journal on Scientific Computing 35, 6 (2013),
B1215–B1234. DOI:http://dx.doi.org/10.1137/120895366

http://dx.doi.org/10.1145/2503210.2503293
http://prod.sandia.gov/techlib/access-control.cgi/2004/046440.pdf
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1007/978-3-642-29843-1_1
http://dx.doi.org/10.1109/IPDPS.2008.4536313
http://dx.doi.org/10.1137/110848244
http://bmi.osu.edu/umit/PaToH/manual.pdf
http://dx.doi.org/10.1109/IPDPS.2001.925093
http://dx.doi.org/10.1137/080737770
http://dx.doi.org/10.1109/71.780863
http://dx.doi.org/10.2118/173257-MS
http://dx.doi.org/10.2118/72469-PA
http://dx.doi.org/10.1137/1.9780898718881
http://dx.doi.org/10.1109/BigData.2014.7004369
http://mediatum.ub.tum.de?id=1113167
http://dx.doi.org/10.1145/355791.355796
http://dx.doi.org/10.1145/800076.802486
http://dx.doi.org/10.1016/j.jpdc.2004.03.021
https://e-reports-ext.llnl.gov/pdf/594392.pdf
http://dx.doi.org/10.1137/120895366

Hypergraph Partitioning for Sparse Matrix-Matrix Multiplication 33

S. Krishnamoorthy, Ü. Çatalyürek, J. Nieplocha, A. Rountev, and P. Sadayappan. 2006. Hypergraph par-
titioning for automatic memory hierarchy management. In Proceedings of the ACM/IEEE SC 2006
Conference (SC ’06). 34–46. DOI:http://dx.doi.org/10.1109/SC.2006.36

Q. Niu, P.-W. Lai, S. Faisal, S. Parthasarathy, and P. Sadayappan. 2014. A fast implementation of MLR-MCL
algorithm on multi-core processors. In 21st International Conference on High Performance Computing
(HiPC ’14). 1–10. DOI:http://dx.doi.org/10.1109/HiPC.2014.7116888

R. Pagh and M. Stöckel. 2014. The input/output somplexity of sparse matrix multiplication. In Algorithms
- ESA 2014, A. Schulz and D. Wagner (Eds.). Lecture Notes in Computer Science, Vol. 8737. Springer
Berlin Heidelberg, 750–761. DOI:http://dx.doi.org/10.1007/978-3-662-44777-2 62

J. Park, M. Smelyanskiy, U. Meier Yang, D. Mudigere, and P. Dubey. 2015. High-performance algebraic
multigrid solver optimized for multi-core based distributed parallel systems. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and Analysis (SC ’15).
Article 54, 12 pages. DOI:http://dx.doi.org/10.1145/2807591.2807603

M. Rabin and V. Vazirani. 1989. Maximum matchings in general graphs through randomization. Journal of
Algorithms 10, 4 (1989), 557 – 567. DOI:http://dx.doi.org/10.1016/0196-6774(89)90005-9

V. Satuluri and S. Parthasarathy. 2009. Scalable graph clustering using stochastic flows: applica-
tions to community discovery. In Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’09). ACM, New York, NY, USA, 737–746.
DOI:http://dx.doi.org/10.1145/1557019.1557101

S. van Dongen. 2000. Graph Clustering by Flow Simulation. Ph.D. Dissertation. University of Utrecht.
http://www.library.uu.nl/digiarchief/dip/diss/1895620/full.pdf

B. Vastenhouw and R. Bisseling. 2005. A two-dimensional data distribution method
for parallel sparse matrix-vector multiplication. SIAM Review 47, 1 (2005), 67–95.
DOI:http://dx.doi.org/10.1137/S0036144502409019

I. Yamazaki and X. Li. 2011. On techniques to improve robustness and scalability of a parallel hybrid lin-
ear solver. In 9th International Conference on High Performance Computing for Computational Science
(VECPAR ’10), José M. Laginha M. Palma, Michel Daydé, Osni Marques, and João Correia Lopes (Eds.).
Springer Berlin Heidelberg, 421–434. DOI:http://dx.doi.org/10.1007/978-3-642-19328-6 38

http://dx.doi.org/10.1109/SC.2006.36
http://dx.doi.org/10.1109/HiPC.2014.7116888
http://dx.doi.org/10.1007/978-3-662-44777-2_62
http://dx.doi.org/10.1145/2807591.2807603
http://dx.doi.org/10.1016/0196-6774(89)90005-9
http://dx.doi.org/10.1145/1557019.1557101
http://www.library.uu.nl/digiarchief/dip/diss/1895620/full.pdf
http://dx.doi.org/10.1137/S0036144502409019
http://dx.doi.org/10.1007/978-3-642-19328-6_38

	1 Introduction
	2 Related Work
	3 Hypergraph Model for SpGEMM
	3.1 Notation and Assumptions
	3.2 Fine-Grained Hypergraph Model

	4 Communication Lower Bounds
	4.1 Parallel Lower Bound
	4.2 Sequential Lower Bound

	5 Restricting SpGEMM Algorithms
	5.1 Vertex Coarsening
	5.2 Restricted Parallelizations
	5.3 Restricted Data Distributions
	5.4 Restricted Algorithms
	5.5 Sparse Matrix-Vector Multiplication (SpMV)
	5.6 Generalizing SpGEMM Algorithms
	5.6.1 Exploiting Input Matrix Relations
	5.6.2 Masked SpGEMM

	6 Experimental Results
	6.1 Application: Algebraic Multigrid
	6.2 Application: Linear Programming Normal Equations
	6.3 Application: Markov Clustering

	7 Conclusion

