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Abstract. We prove that various geometric covering problems re-
lated to the Traveling Salesman Problem cannot be efficiently approxi-
mated to within any constant factor unless P = NP. This includes the
Group-Traveling Salesman Problem (TSP with Neighborhoods) in the
Euclidean plane, the Group-Steiner-Tree in the Euclidean plane and the
Minimum Watchman Tour and Minimum Watchman Path in 3-D. Some
inapproximability factors are also shown for special cases of the above
problems, where the size of the sets is bounded. Group-TSP and Group-
Steiner-Tree where each neighborhood is connected are also considered.
It is shown that approximating these variants to within any constant
factor smaller than 2 is NP-hard.
For the Group-Traveling Salesman and Group-Steiner-Tree Problems
in dimension d, we show an inapproximability factor of O(log(d−1)/d

n)
under a plausible conjecture regarding the hardness of Hyper-Graph
Vertex-Cover.
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1. Introduction

The Traveling Salesman Problem (TSP) is a classical problem in combinatorial
optimization, and has been studied extensively in many forms. It is the prob-
lem of a traveling salesman who has to visit n locations, returning eventually to
the starting point. The goal may be to minimize the total distance traversed,
driving time, or money spent on toll roads, where the cost (in terms of length
units, time units, money or other) is given by an n× n matrix of non-negative
weights. In the geometric TSP, the matrix represents distances in a Euclidean
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space. In other certain natural instances (e.g., time and money), while weights
might not agree with a Euclidean metric, they still obey the triangle inequality,
namely the cost of traversing from a to b is not higher than the cost of travers-
ing from a to b via other points. Formally, the Traveling Salesman Problem can
be defined as follows: given a set P of points in a metric space, find a traver-
sal of shortest length visiting each point of P and returning to the starting
point.

TSP in the plane. Finding the optimal solution of a given instance of TSP
with triangle inequality is NP-hard, as obtained by a simple reduction from the
Hamilton-Cycle problem. Even in the special case where the matrix represents
distances between points in the Euclidean plane, it is also proved to be NP-hard
(Garey et al. 1976; Papadimitriou 1977). The latter problem has a polynomial
time approximation scheme (PTAS)—that is, for any ε > 0, there exists a
polynomial time algorithm which guarantees an approximation of size at most
1+ ε times the optimal solution (Arora 1998; Mitchell 1999). This, however, is
not the case for the non-geometric variants.

Triangle inequality. In the general case, approximating TSP to within any
constant factor is NP-hard (again, by a simple reduction from the Hamilton-
Cycle problem). When only the triangle inequality is ensured, the best known
algorithm gives a 3

2
approximation ratio if weights are symmetric (Christofides

1976). If weights can be asymmetric (that is, the cost from a to b is not nec-
essarily the same as the cost from b to a), the best known approximation ratio
is O(log n) (Frieze et al. 1982). Although the asymmetric case may seem un-
natural having the Euclidean metric intuition in mind, when weights represent
measures other than length, or for example when the lengths are of one-way
roads, the asymmetric formulation is natural.

In regard to the hardness of approximation, Papadimitriou & Vempala
(2000) gave evidence that unless P = NP, the symmetric case cannot be effi-
ciently approximated to within a factor smaller than 220

219
, and the asymmetric

case to within a factor smaller than 117
116

. For bounded metrics Engebretsen
& Karpinski (2001) showed hardness of approximation factors of 131

130
and 174

173

respectively.

Group-TSP. A natural generalization of this problem is the Group-TSP (G-
TSP), known also by the names of the One-of-a-Set-TSP, TSP with neigh-
borhoods and the Errand Scheduling problem. A traveling salesman has to
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meet n customers. Each of them is willing to meet the salesman in speci-
fied locations (referred to as a region). For instances in which each region
contains exactly one point, this becomes the TSP problem. For instances in
which all edges are of weight 1, this becomes the Hitting-Sets (or Set-Cover)
problem. Another natural illustration of the G-TSP is the Errand Schedul-
ing Problem as described in Slavik (1997). A list of n jobs (or errands) to
be carried out is given, each of which can be performed in a few locations.
The objective is to find a close tour of minimal length such that all jobs can
be performed. That is, for every job on the list, there is at least one loca-
tion on the tour, at which the job can be performed (it is allowed to per-
form more than one job at a single location). If every job can be performed
in at most k locations, then we call this problem k-G-TSP. k-G-TSP (with
symmetric weights) can be approximated to within 3k/2 (Slavik 1997). This
algorithm generalizes the 3/2 approximation ratio of Christofides (1976) for
k ≥ 1.

As G-TSP (with triangle inequality) is a generalization of both TSP and
Set-Cover, an inapproximability factor for any of those two problems holds for
the G-TSP. Thus, by Feige (1998), Lund & Yannakakis (1994) and Raz & Safra
(1997) G-TSP is hard to approximate to within a logarithmic factor. However,
this is not trivially true for the geometric variant of G-TSP.

G-TSP in the plane. This problem was first studied by Arkin & Hassin
(1994) who gave a constant approximation ratio algorithm for it where the re-
gions (or neighborhoods) are well behaved in some form (e.g. consist of disks,
parallel segments of equal length or translates of a convex region). Mata &
Mitchell (1995) and Gudmundsson & Levcopoulos (1999) showed an O(log n)
approximation ratio for arbitrary (possibly overlapping) polygonal regions. A
constant factor approximation algorithm for the case where neighborhoods are
disjoint convex fat objects was suggested by de Berg et al. (2002). Recently
Dumitrescu & Mitchell (2003) gave a constant factor approximation algorithm
for the case of arbitrary connected (i.e. path-wise connected) neighborhoods
having comparable diameter, and a PTAS for the special case of pairwise dis-
joint unit disk neighborhoods. Note that the term “connected” refers to the
geometric properties of each object forming a neighborhood, and not to the
underlying weighted graph, which is of course full and thus connected, but in
a different sense.

The best previously known approximation hardness for this problem is
391
390

− ε ≈ 1.003 (de Berg et al. 2002). We improve this result to any con-
stant factor, and give better results under a stronger complexity assumption.
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Steiner Tree. Another related problem is the minimum Steiner spanning
tree problem, or Steiner Tree problem (ST). A Steiner tree of S is a tree whose
nodes contain the given set S. The nodes of the tree that are not the points
of S are called Steiner points. A minimum spanning tree can be found in
polynomial time. In contrast, finding a minimum Steiner spanning tree is an
NP-hard problem. It remains NP-hard even in the Euclidean case (Garey et al.

1977), though a PTAS exists for this variant (Arora 1998; Mitchell 1999).

Group Steiner Tree. The Steiner tree notion can be generalized similarly to
the generalization of TSP to G-TSP. In the Group Steiner Tree Problem (G-ST)
(also known as the Class Steiner Problem, Tree Cover Problem and One-of-a-
Set Steiner Problem) we are given an undirected graph with edge weights and
subsets of the vertices. The objective is to find a minimum weighted tree having
at least one vertex of each subset.

As G-ST is another generalization of set-cover (even when the weight func-
tion obeys the triangle inequality) any approximation hardness factor for set-
cover applies to G-ST (Ihler 1992). Thus, by Feige (1998), Lund & Yannakakis
(1994) and Raz & Safra (1997), G-ST is hard to approximate within a loga-
rithmic factor. Halperin & Krauthgamer (2003) showed that approximating
G-ST to within a poly-logarithmic factor is hard (their complexity assump-
tion is stronger than P 6= NP). As in G-TSP, this is not trivially true for the
geometric domain.

Slavik (1997) gave an O(log n) approximation algorithm for a restricted case
of this problem and a 2k-approximation algorithm for the variant in which sets
are of size at most k. For sets of unbounded size, no constant approximation
algorithm is known, even under Euclidean constraint (Mitchell 2000). If the
weight function obeys the Euclidean metric in the plane, then, for some re-
stricted variant of the problem, there is a polynomial time algorithm which
approximates it within some (large) constant (a corollary of de Berg et al.

2002).

Minimum Watchman Tour and Minimum Watchman Path. The Min-
imum Watchman Tour (WT) and Minimum Watchman Path (WP) are the
problems of a watchman who must have a view of n objects, while also trying
to minimize the length of the tour (or path). These problems were extensively
studied, and given some approximation algorithms as well as solving algorithms
for special instances of the problem (Carlsson et al. 1999; Chin & Ntafos 1988;
Gewali & Ntafos 1998; Mata & Mitchell 1995; Nilsson & Wood 1990; Xue-Hou
et al. 1993).
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1.1. Our results. We show that G-TSP in 2-D, G-ST in 2-D, WT in 3-
D and WP in 3-D are all NP-hard to approximate to within any constant
factor. This resolves a few open problems presented by Mitchell (2000) (open
problems 21, 30 and problem 27—disconnected part). For dimension d, and
under a plausible conjecture regarding the hardness of approximation of hyper-
graph vertex-cover, the hardness of approximation factor for G-TSP and G-
ST becomes O(log(d−1)/d n). These problems can be categorized according to
three important parameters. One is the dimension of the domain; the second
is whether each subset (region, neighborhood) is connected; and the third is
whether sets are pairwise disjoint. For the G-TSP and G-ST problems in 2-D
our results hold only if sets are allowed to be disconnected (but hold even for
pairwise disjoint sets). If each set is connected (but sets are allowed to coincide),
we show an inapproximability factor of 2−ε for both problems1 (this result first
appeared in Schwartz 2002). To achieve this we use an adaptation of a technique
from de Berg et al. (2002). In 3-D our results hold for all parameter settings,
that is, even when each set is connected and all sets are pairwise disjoint. We
also show inapproximability factors of

√
k − 1/2 4

√
3− ε and

√
k − 1/

√
2 4
√

3− ε
for the k-G-ST and k-G-TSP, respectively. The following table summarizes the
main results for G-TSP and G-ST:

G-TSP and G-ST
Dimension 2-D 3-D or more
Pairwise disjoint sets Yes No Yes No

Connected sets - 2 − ε ∀c ∀c
Disconnected sets ∀c ∀c ∀c ∀c

Table 1.1: Inapproximability factors. The ∀c indicates inapproximability for every

constant factor.

1.2. Outline. We first prove our main theorem and show the approximation
hardness factor for G-ST (Section 2). We extend this to hold for various pa-
rameter settings (pairwise disjoint regions in Section 2.1 and connected regions
in 3-D in Section 2.2). We then deduce the same for G-TSP (Section 2.3).
Variants of small regions are considered (Section 2.4). The hardness of G-TSP
is then shown to hold for WT and WP problems in 3-D (Section 2.5). The
proofs for G-TSP and G-ST in the plane with each region connected are given
in Section 3. This is followed by a discussion (Section 4).

1Recently Kindler (2004) showed how to combine our reductions to G-TSP and G-ST,
achieving an inapproximability factor of 2 + 1

π
− ε for the G-TSP with connected regions.
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1.3. Preliminaries. In order to prove inapproximability of a minimization
problem, one usually defines a corresponding gap problem.

Definition 1.1. Let A be a minimization problem. gap-A-[a, b] is the follow-
ing decision problem: Given an input instance, decide whether

◦ there exists a solution of size at most a, or

◦ every solution of the given instance is of size larger than b.

If the size of the solution lies between these values, then any output suffices.

Clearly, for any minimization problem A, if gap-A-[a, b] is NP-hard, then it
is NP-hard to approximate A to within any factor smaller than b/a.

Our main result in this paper is derived by a reduction from the hyper-graph
vertex-cover problem. A hyper-graph G = (V,E) is a set of vertices V , and a
family E of subsets of V , called edges. It is called k-uniform if all edges e ∈ E
are of size k, that is, E ⊆

(

V
k

)

. A vertex-cover of a hyper-graph G = (V,E) is
a subset U ⊆ V that “hits” every edge in G, that is, e ∩ U 6= ∅ for all e ∈ E.

Definition 1.2. The Ek-Vertex-Cover problem is, given a k-uniform graph
G = (V,E), to find a minimum size vertex-cover U .

For k = 2 this is the vertex-cover problem on conventional graphs (VC). To
prove the approximation hardness result of G-ST (for any constant factor) we
use the following approximation hardness of hyper-graph vertex-cover:

Theorem 1.3 (Dinur et al. 2003). For k > 4 , Gap-Ek-Vertex-Cover-[ n
k−1−ε

,
(1 − ε)n] is NP-hard.

2. Group Steiner Tree and Group TSP in the plane

Definition 2.1 (G-ST). We are given X = (P,R): a set P of n points in the
plane, and a family R of subsets of P . A solution to X is a tree T such that
every set r ∈ R has at least one point in the tree, that is, r ∩ T 6= ∅ for all
r ∈ R. The size (length) of a solution T is the sum of the lengths of all its
edges. The objective is to find a solution T of minimal length.

Let us now prove the main result:

Theorem 2.2. G-ST is NP-hard to approximate to within any constant fac-
tor.
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Proof. The proof is by reduction from vertex-cover in hyper-graphs to
G-ST. The reduction generates an instance X of G-ST such that the size of
its minimum tree T is related to the size of the minimum vertex-cover U of
the input graph G = (V,E). Therefore, an approximation for T would im-
ply an approximation for U , and hence the inapproximability factor known for
Gap-Ek-Vertex-Cover yields an inapproximability factor for G-ST.

2.0.1. The construction. Given a k-uniform hyper-graph G = (V,E) with
|V | = n vertices (we can assume that

√
n and

√

n/k are integers), we embed
it in the plane to construct X. All the regions are subsets of points of a single
square of the

√
n ×√

n section of the grid. Each point represents an arbitrary
vertex of G and each region stands for an edge of G. Formally,

P = {pvi
| vi ∈ V }, pvi

= (i mod
√

n, ⌊i/√n⌋).

We now define the set R of regions. For every e ∈ E we define the region
re to be the collection of k points on the grid, the vertices of the edge e:

R = {re | e ∈ E}, re = {pv | v ∈ e}.

Claim 2.3 (Soundness). If every vertex-cover U of G is of size at least (1−ε)n
then every solution T for X is of size at least (1 − ε)n/2.

Proof. Inspect a Steiner tree that covers (1− ε)n of the grid points. Relate
each point on the (segments of the) tree to the nearest covered grid point. As
every covered grid point is connected to the tree, the total length related to
each covered grid point is at least 1/2. Thus the size of the tree is at least
1
2
(1 − ε)n. �

Lemma 2.4 (Completeness). If there is a vertex cover U of G of size at most
n/t then there is a solution T for X of size at most 3n/

√
t.

Proof. We define TN(U), the natural tree according to a vertex-cover U
of G, as follows (see Figure 2.1). We take a vertical segment along the first
column of points, and horizontal segments along every dth row, where d =√

t. For every point pv of v ∈ U which is not already covered by the tree,
we add a segment from it to the closest point qv on any of the horizontal
segments.
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t
{


Figure 2.1: The natural tree.

Definition 2.5. The natural tree TN(U) of a subset U ⊆ V is the polygon
consisting of the following segments:

TN(U) = {((0, 0), (0,
√

n))} ∪ {((0, (i − 1) · d), (
√

n, (i − 1) · d))}i∈[
√

n/d]

∪ {(pv, qv)}v∈U

where

qvi
=

(

i mod
√

n, d ·
⌊

1

d

⌊

i√
n

⌋

+
1

2

⌋)

.

Thus, the natural tree contains
√

n/t+1 horizontal segments of length
√

n
each, a vertical segment of length

√
n, and at most n/t segments, each of length

not more than
√

t/2. Therefore

|TN(U)| ≤
(

√

n

t
+ 2

)√
n +

n

t
·
√

t

2
<

3n√
t
. �

Applying the soundness claim and Lemma 2.4 to Theorem 1.3 we conclude
that for sufficiently large k, Gap-G-ST-[ 3n√

k−1−ε
, 1

2
(1 − ε)n] is NP-hard. Thus,

as k can be arbitrarily large, it is NP-hard to approximate G-ST to within any
constant factor.

2.1. Group Steiner Tree—pairwise disjoint regions. We now show that
the factors for G-ST hold even when regions are pairwise disjoint.

Claim 2.6. The approximation hardness factors for G-ST (Theorem 2.2) ap-
ply even when regions are pairwise disjoint.

Proof (sketch). We extend the reduction, such that the generated instance X
contains only pairwise disjoint sets. For every e ∈ E and v ∈ e, we redefine the
point pv ∈ rout

e : we replace pv with a set of new points pv,e, shifted to a distance
of at most ε′ of the original location (where ε′ > 0 is arbitrarily small), such
that for any ei, ej ∈ E there are no joint points of the regions rei

, rej
. Clearly

this does not affect any of the previous proofs.
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2.2. Group Steiner Tree—connected regions in 3-D

Claim 2.7. The approximation hardness factors for G-ST (Theorem 2.2) ap-
ply in 3-D even when regions are pairwise disjoint, and each region is connected.

Proof (sketch). The above reduction generates a two-dimensional instance in
which the regions are not connected. One can show that the approximation
hardness result applies for connected regions in dimension three or higher. This
is achieved by adding segments to connect the points of every region in such
a way that the optimal solution T does not change. For each relevant point
p in the plane (i.e. a point which is part of a region) we add a segment from
p to a matching point on an enlarged copy of the given plane instance, in
which distances are multiplied by a large factor (say, n4), located parallel to
the original instance, at great height (say, n4) above it. We call that segment
the up-going segment of p (see Figure 2.2).

Figure 2.2: 2-D to 3-D connected.

Each region re will be redefined to contain the up-going segments of all
p ∈ r. We will now describe new segments which connect the different segments
of a region; these new segments will be called the connecting segments. Any
two up-going segments of the same region are connected using a new segment,
parallel to the plane. The new segments are added at each consecutive multiple
of n2 starting from height n3. They are added in a way which ensures that
none of the points on them are at a distance n2 or less from other segments.
To this end, we may, should the need arise, use three segments rather than
one, in order to connect two up-going segments. Each region is once again
redefined to contain both its up-going segments and its connecting segments.
Note that if the original regions were pairwise disjoint then the new regions
are as well. Trivially, an optimal solution T never contains points outside the
original plane.

2.3. Group TSP in the plane. We next show that the hardness factor
shown for G-ST holds for G-TSP with the same parameter settings.
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Definition 2.8 (G-TSP). In G-TSP in the plane we are given X = (P,R): a
set P of points in the plane, and a family R of n subsets of P . A solution to
the G-TSP is a traversal T such that every set (region) r ∈ R has at least one
point in the traversal, that is, r ∩ T 6= ∅ for all r ∈ R. The objective is to find
a solution T of minimal length.

Claim 2.9. If there exists an efficient α-approximation for G-TSP then an
efficient 2α-approximation for G-ST also exists.

Proof. The size of a minimum tree of G-ST, T ∗
G-ST, is smaller than the size

of a minimum tour of G-TSP, T ∗
G-TSP, of the same given instance (as one can

take a tour and transform it to a tree by removing one of its edges). On the
other hand, T ∗

G-ST is at most 2T ∗
G-TSP (as one can take two copies of the same

tree to have a tour). Thus

T ∗
G-ST < T ∗

G-TSP ≤ 2T ∗
G-ST. �

Therefore, by this claim and Theorem 2.2 we conclude:

Corollary 2.10. G-TSP in the plane is NP-hard to approximate to within
any constant factor.

This holds for the same parameter settings as in G-ST (i.e. disconnected sets
for 2-D, and both connected and disconnected for 3-D and higher dimensions).

2.4. Small regions in the plane—Group TSP and Group Steiner Tree.

Let k-G-ST and k-G-TSP be the variants of G-ST and G-TSP respectively,
where each region is comprised of k points. We use a triangular grid (see
Figure 2.3) instead of the grid used in the original proof (of Theorem 2.2) to
achieve better constants of inapproximability for these variants.

 
 
 
 
 
 

2n  

 

3

4  

 

1 

Figure 2.3: The triangular construction.
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Claim 2.11 (Soundness). If any vertex-cover U of G is of size at least an, then
any solution is of size at least (1 − ε)an for the k-G-TSP and of size at least
1
2
(1 − ε)an for the k-G-ST.

Proof. Let T be a solution of X. Let U be a set of vertices that correspond
to points of the grid, covered by T . Clearly T is a solution only if U is a
vertex-cover of G, hence |U | ≥ an. Consider a circle of radius 1/2−ε/2 around
each covered grid point. All these circles are pairwise disjoint.

For the case of k-G-TSP, each circle contains at least two legs of the path,
each of length at least 1

2
− ε

2
, hence the total length of T is

|T | ≥ an(1 − ε).

For the case of k-G-ST, each circle contains a portion of the tree of length
at least 1/2 − ε/2, hence the total length of T is

|T | ≥ an

(

1

2
− ε

2

)

. �

We next give the completeness claims for both problems:

Claim 2.12 (Completeness—k-G-ST). If U is a minimum vertex-cover of G,
then there exists a solution of X (the k-G-ST generated instance) of size at
most

n

d
+
√

2n + |U | ·
√

3

2
· d

2

for any parameter d, 0 < d <
√

n.

 

d  

Figure 2.4: The natural tree.

Proof. The proof is by inspecting the natural tree TN(U) of a minimum
vertex-cover U (as demonstrated in Figure 2.4). TN(U) contains horizontal
segments of decreasing length, every dth row, starting with the bottom row.
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It contains another segment of length
√

2n which connects all leftmost points
of the rows; and at most |U | vertical segments, connecting each point of the

vertex-cover U to the nearest horizontal segment (of length at most
√

3
2
· d
2

each).
The total length of the horizontal segments is

√
2n/d
∑

i=0

(
√

2n − i · d) =
n

d
.

Therefore, the total length of TN(U) is

|TN(U)| ≤ n

d
+
√

2n + |U | ·
√

3

2
· d

2
. �

For |U | = n
k−1−ε

and d =
√

4(k−1−ε)√
3

we conclude that

TN(U) =
4
√

3 n√
k − 1 − ε

+
√

2n.

Therefore by applying the known hardness of Hyper-Graph Vertex-Cover
(Theorem 1.3) to the soundness claim (Claim 2.11) and the above completeness
claim (Claim 2.12) we deduce the following:

Corollary 2.13. For k > 4, k-G-ST is hard to approximate to within

√
k − 1

2 4
√

3
− ε.

Claim 2.14 (Completeness: k-G-TSP). If U is a minimum vertex-cover of G,
then there exists a solution of X (the k-G-TSP generated instance) of size at
most

n

d
+ 2

√
2n + |U | ·

√
3

2
· d

for any parameter d, 0 < d <
√

n.

Proof. The proof is by inspecting the natural tour TN(U) of a minimum
vertex-cover U (as demonstrated in Figure 2.5). TN(U) contains horizontal
segments, as in the natural tree, of total length n/d (see Claim 2.12). It
has another segment of length

√
2n, connecting the rightmost and topmost

points of the grid;
√

2n/d segments of length d (from a horizontal segment to
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d  

Figure 2.5: The natural tour.

the horizontal segment above it); and at most |U | pairs of vertical segments,
connecting each point of the vertex cover U to (and from) the nearest horizontal

segment (of length at most
√

3
2
· d

2
each).

Therefore, the total length of TN(U) is

|TN(U)| ≤ n

d
+ 2

√
2n + 2 · |U | ·

√
3

2
· d

2
. �

Hence for |U | = n
k−1−ε

and d =
√

2
4
√

3

√
k − 1 − ε we conclude

TN(U) =

√
2 4
√

3n√
k − 1 − ε

+ 2
√

2n.

Therefore, applying the known hardness of Hyper-Graph Vertex-Cover
(Theorem 1.3) to the soundness claim (Claim 2.11) and the above completeness
claim (Claim 2.14) we deduce the following:

Corollary 2.15. For k > 4, k-G-TSP is hard to approximate to within

√
k − 1√
2 4
√

3
− ε.

For low k values, for example, k = 4 one can achieve a somewhat better
factor, using the following theorem and a more subtle estimation of TN(U).

Theorem 2.16 (Dinur et al. 2003; Holmerin 2002). For k = 4, Gap-E4-Ver-
tex-Cover-[1/2 + ε, 1 − ε] is NP-hard.

Note that the horizontal segments of the natural tour (or tree) can be shifted
up or down, thus, if d is an integer, we may cover 1

d
fraction of U using these

segments. Hence we have
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Claim 2.17 (Completeness). If U is a minimum vertex-cover of G, then for
any integer d ∈ [

√
n] there exists a solution of X (the generated k-G-TSP

instance) of size

|TN(U)| ≤ n

d
+ 2

√
2n + 2 · d − 1

d
· |U | ·

√
3

2
·
⌊

d

2

⌋

.

By applying completeness (Claim 2.17) and soundness (Claim 2.11) to The-
orem 2.16, and assigning d = 3 we have:

Corollary 2.18. Gap-4-G-TSP-[n(1+
√

3
3

+ ε), n(1 − ε)] is NP-hard. Hence,
4-G-TSP in the plane is NP-hard to approximate to within 3√

3+1
− ε > 1.098.

2.5. Minimum Watchman Tour and Path

Definition 2.19 (WT and WP). In WT (WP) we are given a set P of n
objects (polygons in the 2-D variant, or polyhedra in the 3-D case). A solution
to the WT (WP) is a traversal (path) T such that any point of every object of
P is seen by some point of the cycle (path). The objective is to find a solution
T of minimal length.

As noted in the survey of Mitchell (2000), these problems seem closely
related to G-TSP, since it can be thought of as the shortest cycle (path) problem
in which we have the constraint that the cycle (path) must visit the visibility
region associated with each point of the domain. We show that this is correct,
by a reduction from G-TSP in the plane, and obtain the following factors for
WT and WP in 3-D:

Corollary 2.20. WT and WP in 3-D cannot be approximated to within any
constant factor unless P = NP.

 
  
 

 
Figure 2.6: The WT construction.
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Proof (sketch; see Figure 2.6). We show a gap preserving reduction from an
instance X of G-TSP in the plane with pairwise disjoint (disconnected) regions
to an instance Y of WT. The idea is to use opaque objects. Each object conceals
one point in it, but has a few holes. The point can only be seen through the
openings. A watchman who wants to see all concealed points may visit one
opening of each such object.

We can use such an object to represent a region (composed of a finite number
of points) of G-TSP: each point of the region is represented by a hole in the
object. We do this as follows.

Each region is represented by an octopus-shaped figure (see Figure 2.6).
This object is comprised of hollow cylinders. If a region contains k points then
its corresponding object is composed of k cylinders. The bottom part of each
cylinder is positioned on the corresponding point. All k cylinders converge at
the top. The concealed point is located at that junction.

Thus a watchman of Y has to visit one opening of each object, which
immediately translates to a solution for X. Therefore by Corollary 2.10 we
obtain the same hardness factors for WT in 3-D.

Claim 2.21. If there exists an efficient α-approximation for WP then an effi-
cient 2α-approximation for WT also exists.

Proof. The size of a minimum path of WP, T ∗
WP, is smaller than the size

of a minimum tour of WT, T ∗
WT, of the same given instance (as one can take

a tour and transform it to a path by removing one of its edges). On the other
hand, T ∗

WP is at most 2T ∗
WP (as one can take two copies of the same path to

have a tour). Thus
T ∗

WP < T ∗
WT ≤ 2T ∗

WP. �

Thus the hardness factors of WT apply for WP too.

3. The case of connected regions

In the following proofs, we show that G-ST and G-TSP in the plane where
every region is connected are NP-hard to approximate to within any constant
factor smaller than 2. This extends a known factor of 391

390
−ε ≈ 1.003 by de Berg

et al. (2002) for G-TSP. These reductions are similar to theirs but differ in the
problem we reduce from (vertex-cover on hyper-graphs instead of vertex-cover
on graphs of bounded degree) and in some parts of the gadgets constructed.

3.1. Group TSP—connected regions in the plane. We consider the 2-D
variant of G-TSP in which each set is connected.
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Theorem 3.1. G-TSP in the plane with connected regions is NP-hard to ap-
proximate to within 2 − ε for any constant ε > 0.

Proof. Given a hyper-graph G = (V,E) with |V | = n vertices, we construct
X = (P,R) with points in the plane. All the regions are subsets of two circles
in the plane, of perimeter approximately 1. Some of the regions represent edges
of G (one region for each edge). Other regions represent vertices of G (l regions
for each vertex). Let us first describe the set P of points.

The set P is composed of two sets of points, each of which is equally spaced
on one of the two circles. The circles are concentric, the second one having a
slightly larger radius. They are thus referred to as the inner circle and outer

circle. We will later add to the construction a third circle named the outmost

circle (see Section 3.1.1).

 
Figure 3.1: A vertex-cover and a natural tour.

P contains a set Pinner of nl points on the inner circle (for sufficiently large
l, to be later fixed) and a set Pouter of n points on the outer circle, one point
for each vertex. We set the radius of the inner circle to be ρ ≈ 1/2π, so that
the distance between consecutive points on the inner circle is ε = 1/nl. Define,
formally, P = Pinner ∪ Pouter, which we specify using polar coordinates (radius,
angle):

θε =
2π

nl
, ρ =

ε/2

sin(θε/2)
≈ 1

2π
,

Pinner = {pv,j | v ∈ V, j ∈ [l]}, pvi,j = (ρ, (il + j − 1)θε),

Pouter = {qv | v ∈ V }, qvi
=

(

ρ +
1

2n
, ilθε

)

.

We now define the set of regions R = RV ∪RE where RE contains a region
for each edge, and RV contains l regions for each vertex:

rin
v,j = {pv,j}, RV = {rin

v,j | v ∈ V, j ∈ [l]}.
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For every edge e ∈ E we have a region rout
e composed of points on the outer

circle relating to the vertices of e:

rout
e = {qv | v ∈ e}, RE = {rout

e | e ∈ E}.

One can easily amend each of the disconnected regions (which are all in
RE) to be connected without affecting the following proof. For details see the
last part of this section.

Proof’s idea. We are next going to show that the most efficient way to
traverse X is by traversing all points on the inner circle (say counterclockwise),
detouring to visit the closest points on the outer circle, for every point that
corresponds to a vertex in the minimum vertex-cover of G (see Figure 3.1).
More formally, we have

Definition 3.2. The natural tour TN(U) of a subset U ⊆ V is the closed
polygon consisting of the following segments:

TN(U) = Tin ∪ Tout,

Tin = {(pv,j+1, pv,j+2) | v ∈ V, j ∈ [l − 2]} ∪ {(pvi,l, pvi+1 mod n,1) | i ∈ [n]},
Tout = {(pv,i, qv) | v ∈ U, i ∈ [2]}.

Let us consider the length |TN (U)| of this tour. The natural tour TN(U)
consists of nl − |U | segments of size ε = 1/nl (on the inner circle), |U | seg-
ments for the detourings of size 1/2n, and |U | segments of size in the range
(1/2n, 1/2n + ε). Thus

1 +
|U |
n

(1 − δ) ≤ TN(U) ≤ 1 +
|U |
n

(for some 0 < δ < 1/l). The exact length of TN(U) can be computed, but it is
not important for our purpose. Thus, by the upper bound on |TN(U)| we have:

Claim 3.3 (Completeness). If there is a vertex-cover U of G of size bn, then
there is a solution of X of length at most 1 + b.

We next show

Claim 3.4 (Soundness). If any vertex-cover U of G is of size at least an, then
any solution of X is of length at least 1 + a − 3/l.
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Proof. Let T be a solution of X. Clearly T covers all points of Pinner (oth-
erwise it is not a solution for X). Let U be the set of vertices that correspond
to points on the outer circle, visited by T :

U = {v | qv ∈ T ∩ Pouter}.

Clearly T is a solution only if U is a vertex-cover of G, hence |U | ≥ an. Consider
a circle of radius 1/2n − ε around each covered point of the edge regions qv

(v ∈ U). All these circles are pairwise disjoint (as the distance between two
points of the edge regions is at least 1/n). Each of them contains at least two
legs of the path, each of length at least 1/2n− ε. In addition the tour visits all
the points of the vertex regions, and at least nl − 3n of them are at distance
of at least ε from any of the above circles. Thus the in-going path to at least
nl − 3n extra points is of length at least ε each. Hence the total length of T is

|T | ≥ |U | · 2 ·
(

1

2n
− ε

)

+ (nl − 3n)ε = 1 + a − 2aε − 3

l
≥ 1 + a − 3

l
. �

Hence by the soundness and completeness claims, and fixing l to be suffi-
ciently large we have the following:

Lemma 3.5. If Gap-Ek-Vertex-Cover-[b, a] is NP-hard then for any ε′ > 0, it is
NP-hard to approximate G-TSP in the plane with connected regions to within
1+a
1+b

− ε′.

Plugging in the known gap for vertex-cover in hyper-graphs (Theorem 1.3)
we conclude that G-TSP is NP-hard to approximate to within

1 + 1 − ε′′

1 + 1
k−1−ε′′

− ε′,

hence, for arbitrarily small ε > 0 and for sufficiently large k, G-TSP is NP-hard
to approximate to within 2 − ε, even if each region is connected. �

3.1.1. Making each region connected. To make each region re ∈ RE

connected (see Figure 3.2), we add segments connecting each of the points on
the outer circle to the closest point on a concentric circle (the outmost circle,
C), of radius ρoutmost suitably large (say, n); namely, for each qv ∈ Pouter,
qv = (ρ + 1/2n, α) we add the segment

lv =

[(

ρ +
1

2n
, α

)

, (ρoutmost, α)

]

.
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Edge regions are changed to include the relevant segments and the outmost
circle, that is,

rout
e = C ∪

⋃

v∈e

lv.

The vertex regions RV are left unchanged.

Figure 3.2: Making each region connected using the outmost circle (or polygon).

Clearly the shortest tour never exits the outer circle, therefore all points
outside the outer circle may be ignored in the relevant proofs.

Note also that the outmost circle can be replaced by a polygon, thus all
regions consist of points and segments; in addition, one of the segments of
this polygon can be removed, thus having all regions simply connected (these
observations were already made by de Berg et al. 2002).

3.2. Group ST-connected regions in the plane

Theorem 3.6. G-ST in the plane with connected regions is NP-hard to ap-
proximate to within 2 − ε for any constant ε > 0.

Proof. Given a hyper-graph G = (V,E) with |V | = n vertices and |E| = m
edges, we construct X = (P,R) (see Figure 3.3). All the regions are subsets of
three horizontal segments in the plane, each of length n−1. Some of the regions
represent edges of G (two regions for each edge). Other regions represent
vertices of G (l regions for each vertex).

 


Figure 3.3: Construction.

Let us first describe the set P . It is composed of three sets of points, each
of which is equally spaced on one of the segments. The segments are referred
to as the top segment, the inner segment and the bottom segment.
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P contains a set Pinner of nl points on the inner segment and two sets Ptop

and Pbottom of n points each (one point for each vertex), on the top and bottom
segments respectively. Define, formally, P = Pinner ∪ Ptop ∪ Pbottom, where

qtop
vi

= (i, 1/2), Ptop = {qtop
v | v ∈ V },

qbottom
vi

=

(

i,−1

2

)

, Pbottom = {qbottom
v | v ∈ V },

pvi,j =

(

i +
j − 1

l
, 0

)

, Pinner = {pv,j | v ∈ V, j ∈ [l]}.

We now define the set of regions R = RV ∪ RE where RE contains two
regions for each edge, and RV contains l regions for each vertex:

rin
v,j = {pv,j}, RV = {rin

v,j | v ∈ V, j ∈ [l]}.
For every edge e ∈ E we have two regions rtop

e and rbottom
e , composed of points

on the top segment and on the bottom segment respectively, relating to the
vertices of e:

rtop
e = {qtop

v | v ∈ e}, rbottom
e = {qbottom

v | v ∈ e},
RE = {rtop

e | e ∈ E} ∪ {rbottom
e | e ∈ E}.

One can easily amend each of the disconnected regions (which are all in
RE) to be connected without affecting the following proof. For details see
Section 3.2.1.

Proof’s idea. We are next going to show that the most efficient way to cover
X is by a horizontal segment on Pinner and a vertical segment to connect it to
every point that corresponds to a vertex in the minimum vertex-cover of G (see
Figure 3.4).

 


Figure 3.4: A natural tree.

We call such a solution the natural tree TN(U). More formally:

Definition 3.7. The natural tree TN(U) of a subset U ⊆ V is the following
set of segments:

TN(U) = (pv1,1, pvn,l) ∪ {(qtop
v , qbottom

v ) | v ∈ U}.
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Claim 3.8. The size of the natural tree is |TN(U)| = n − 1/l + |U |.

Proof. TN(U) contains a horizontal segment of length n− 1/l and |U | ver-
tical segments of length 1 each. �

Claim 3.9. A natural tree TN(U) is a solution of X if and only if U is a
vertex-cover of G.

Proof. If U is a vertex-cover of G then for every e ∈ E there is at least
one vertex v ∈ e ∩ U , therefore each of the regions rtop

e and rbottom
e is covered

at least once, at the points qtop
v and qbottom

v respectively (and trivially, in any
natural tree, all regions of RV are covered).

If U is not a vertex-cover of G then there is an edge e ∈ E such that
e ∩ U = ∅, thus no point of rtop

e (and rbottom
e ) is covered, and TN(U) is not a

solution of X. �

We therefore have:

Claim 3.10 (Completeness). If there is a vertex-cover U of G of size bn, then
there is a solution of X of length at most n(1 + b) − 1/l.

Claim 3.11 (Soundness). If any vertex-cover U of G is of size at least an,
then any solution of X is of length at least n(1 + a) − (1 + 2an)/l.

Proof. Let T be a solution of X. Clearly T covers all points of Pinner

(otherwise it is not a solution for X). Let U top be the set of vertices that
correspond to points on the top segment covered by T :

Utop = {v | qtop
v ∈ T ∩ Ptop},

and similarly
Ubottom = {v | qbottom

v ∈ T ∩ Pbottom}.
Clearly T is a solution only if each of Utop and Ubottom is a vertex-cover of

G. Hence |Utop| ≥ an and |Ubottom| ≥ an. Consider a circle of radius 1/2 − 1/l
around each point covered of the top and bottom segments. All these circles
are pairwise disjoint. Each of them contains a part of the tree of length at least
1/2 − ε. In addition the tree covers all the points of the vertex regions. Thus
we account for extra length of at least n − 1/l, and the total length of T is

|T | ≥ |Utop| ·
(

1

2
− 1

l

)

+ |Ubottom| ·
(

1

2
− 1

l

)

+ n− 1

l
≥ n + an− 1 + 2an

l
. �
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Hence by the soundness (Claim 3.11) and completeness (Claim 3.10) we
have the following:

Lemma 3.12. If Gap-Ek-Vertex-Cover-[b, a] is NP-hard then for any ε > 0, it
is NP-hard to approximate G-ST in the plane with connected regions to within
1+a
1+b

− ε′.

Plugging in the known gap for vertex-cover in hyper-graphs (Theorem 1.3)
we conclude that G-ST is NP-hard to approximate to within

1 + 1 − ε′′

1 + 1
k−1−ε′′

− ε′,

hence, for arbitrarily small ε > 0 and for sufficiently large k, G-ST is NP-hard
to approximate to within 2 − ε, even if each region is connected. �

3.2.1. Making each region connected. To make each region re ∈ RE

connected (see Figure 3.5), we add segments connecting each of the points qtop
v

on the top segment to the closest point on a horizontal segment located above
it at a suitably large distance (say, n2), called the top-most segment. Similarly
we connect each of the points qbottom

v on the bottom segment to the closest
point on a horizontal segment located below it at a suitably large distance,
called the bottom-most segment. The edge regions RE are changed to include
the relevant connecting segments and the new horizontal segment (either the
top-most or the bottom-most). The vertex regions RV are left unchanged.

 


Figure 3.5: The top-most and bottom-most segments.

Clearly the shortest tree never gets above the top segment or below the
bottom segment.
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4. Discussion

We have shown that G-TSP, G-ST, WP and WT cannot be efficiently approxi-
mated to within any constant factor unless P = NP. In this respect Group-TSP
and Group-ST seem to behave more like the Set-Cover problems, rather than
the geometric-TSP and geometric-Steiner tree problems.

These reductions illustrate the importance of gap location; the approxima-
tion hardness result for hyper-graph vertex-cover (see Dinur et al. 2003) is
weaker than that of Feige (1998), in the sense that the gap ratio is smaller
(but works, of course, for the bounded variant). However, their gap location,
namely, their almost perfect soundness (Dinur et al. 2003, Lemma 4.3), is a
powerful tool (see for example Petrank 1994). In the reductions shown here
this aspect plays an essential role. We conjecture that the two properties can
be combined:

Conjecture 4.1. Gap-Hyper-Graph-Vertex-Cover-[O(n/log n), (1 − ε)n] is
intractable.

Using the exact same reductions, this will extend the known approximation
hardness factors of G-TSP, G-ST, WT and WP, as follows:

Corollary 4.2. If Conjecture 4.1 is correct then approximating G-TSP in
the plane and G-ST in the plane to within O(log1/2 n) is intractable, and ap-
proximating WT and WP in 3-D to within O(log1/2 n) is also intractable.

This conjecture also implies the following corollary.

Corollary 4.3. If Conjecture 4.1 is correct then approximating G-TSP in
dimension d > 1 and G-ST in dimension d > 1 to within O(log(d−1)/d n) is
hard.

Proof (sketch). By the simplest generalization of the proof for disconnected
sets in 2-D. All the regions are subsets of a section of the d-dimensional grid.
The section is a single d-dimensional cube, with sides of length d

√
n.

Table 4.1 summarizes our result, assuming correctness of Conjecture 4.1.
An interesting open problem is whether the square root loss of the approxi-

mation hardness factor in the 2-D variant is merely a fault of this reduction or is
intrinsic to the plane version of these problems; i.e., is there an approximation
with a ratio smaller than lnn for the plane variants? Are there approximations
to the G-TSP and G-ST that perform better in the plane variants than Slavik’s
(1997) approximations for these problems with triangle inequality only? Does



304 Safra & Schwartz cc 14 (2005)

G-TSP and G-ST
Dimension 2-D 3-D d

Pairwise disjoint sets Yes No Yes No Yes No

Connected sets - 2 − ε log
1

2 n log
1

2 n log
d−2

d−1 n log
d−2

d−1 n

Disconnected sets log
1

2 n log
1

2 n log
2

3 n log
2

3 n log
d−1

d n log
d−1

d n

Table 4.1

higher dimension in these problems impose an increase in complexity? Other
open problems remain for various parameter settings. A most basic variant of
G-TSP and G-ST, namely in 2-D, where every region is connected, and regions
are pairwise disjoint, remains open, as well as the WT and WP in 2-D (open
problem 29 of Mitchell 2000).
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