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ABSTRACT
Strassen’s algorithm (1969) was the �rst sub-cubic matrix multipli-

cation algorithm. Winograd (1971) improved its complexity by a

constant factor. Many asymptotic improvements followed. Unfor-

tunately, most of them have done so at the cost of very large, o�en

gigantic, hidden constants. Consequently, Strassen-Winograd’s

O
(
nlog

2
7

)
algorithm o�en outperforms other matrix multiplica-

tion algorithms for all feasible matrix dimensions. �e leading

coe�cient of Strassen-Winograd’s algorithm was believed to be

optimal for matrix multiplication algorithms with 2 × 2 base case,

due to a lower bound of Probert (1976).

Surprisingly, we obtain a faster matrix multiplication algorithm,

with the same base case size and asymptotic complexity as Strassen-

Winograd’s algorithm, but with the coe�cient reduced from 6

to 5. To this end, we extend Bodrato’s (2010) method for matrix

squaring, and transform matrices to an alternative basis. We prove a

generalization of Probert’s lower bound that holds under change of

basis, showing that for matrix multiplication algorithms with a 2×2

base case, the leading coe�cient of our algorithm cannot be further

reduced, hence optimal. We apply our technique to other Strassen-

like algorithms, improving their arithmetic and communication

costs by signi�cant constant factors.
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1 INTRODUCTION
Strassen’s algorithm [37] was the �rst sub-cubic matrix multipli-

cation algorithm, with complexity O
(
nlog

2
7

)
. Winograd [40] re-

duced the leading coe�cient from 7 to 6 by decreasing the number

of additions and subtractions from 18 to 15. In practice, Strassen-

Winograd’s algorithm o�en performs be�er than some asymptoti-

cally faster algorithms [3] due to these smaller hidden constants.

�e leading coe�cient of Strassen-Winograd’s algorithm was be-

lieved to be optimal, due to a lower bound on the number of ad-

ditions
1

for matrix multiplication algorithms with 2 × 2 base case,

obtained by Probert [31].

We obtain a method for improving the practical performance

of Strassen and Strassen-like fast matrix multiplication algorithms

by improving the hidden constants inside the O-notation. To this

end, we extend Bodrato’s (2010) method for matrix squaring, and

transform matrices to an alternative basis.

1.1 Strassen-like Algorithms
Strassen-like algorithms are a class of divide-and-conquer algo-

rithms which utilize a base 〈n0,m0,k0; t〉-algorithm: multiplying

ann0×m0 matrix by anm0×k0 matrix using t scalar multiplications,

where n0,m0,k0 and t are positive integers. When multiplying an

n ×m matrix by an m × k matrix, the algorithm splits them into

blocks (each of size
n
n0

× m
m0

and
m
m0

× k
k0

, respectively), and works

block-wise, according to the base algorithm. Additions and multipli-

cation by scalar in the base algorithm are interpreted as block-wise

additions. Multiplications in the base algorithm are interpreted as

block-wise multiplication via recursion. We refer to a Strassen-like

algorithm by its base case. Hence, an 〈n,m,k ; t〉-algorithm may

refer to either the algorithm’s base case or the corresponding block

recursive algorithm, as obvious from context.

1.2 Known Strassen-like algorithms
Since Strassen’s original discovery, many fast matrix multiplication

algorithms followed and improved the asymptotic complexity [6,

12, 13, 26, 29, 32, 33, 36, 38, 39]. Some of these improvements have

come at the cost of very large, o�en gigantic, hidden constants. Le

Gall [26] estimated that even if matrix multiplication could be done

in O
(
n2

)
arithmetic operations, it is unlikely to be applicable as

the base case sizes would have to be astronomical.

Recursive fast matrix multiplication algorithms with reasonable

base case size for both square and rectangular matrices have been

discovered [3, 20, 24, 25, 29, 30, 35]. �us, they have manageable

hidden constants, some of which are asymptotically faster than

Strassen’s algorithm. While many fast matrix multiplication al-

gorithms fail to compete with Strassen’s in practice due to their

1
From here on, when referring to addition and subtraction count we say additions.
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hidden constants. However, some have achieved competitive per-

formance (e.g., Kaporin’s [21] implementation of Laderman et al.’s

algorithm [24]).

Recently, Smirnov presented several fast matrix multiplication

algorithms derived by computer aided optimization tools [35], in-

cluding an 〈6, 3, 3; 40〉-algorithm with asymptotic complexity of

O
(
nlog

54
40

3
)
, faster than Strassen’s algorithm. Ballard and Benson

[3] later presented several additional fast Strassen-like algorithms,

found using computer aided optimization tools as well. �ey im-

plemented several Strassen-like algorithms, including Smirnov’s

〈6, 3, 3; 40〉-algorithm, on shared-memory architecture in order to

demonstrate that Strassen and Strassen-like algorithms can out-

perform classical matrix multiplication in practice (such as, Intel’s

MKL), on modestly sized problems (at least up to n=13000), in

a shared-memory environment. �eir experiments also showed

Strassen’s algorithm outperforming Smirnov’s algorithm in some

of the cases.

1.3 Previous work
Bodrato [7] introduced the intermediate representation method,

for repeated squaring and for chain matrix multiplication compu-

tations. �is enables decreasing the number of additions between

consecutive multiplications. �us, he obtained an algorithm with a

2 × 2 base case, which uses 7 multiplications, and has a leading co-

e�cient of 5 for chain multiplication and for repeated squaring, for

every multiplication outside the �rst one. Bodrato also presented

an invertible linear function which recursively transforms a 2
k ×2

k

matrix to and from the intermediate transformation. While this is

not the �rst time that linear transformations are applied to matrix

multiplication, the main focus of previous research on the subject

was on improving asymptotic performance rather than reducing

the number of additions [10, 17].

Very recently, Cenk and Hasan [8] showed a clever way to ap-

ply Strassen-Winograd’s algorithm directly to n × n matrices by

forsaking the uniform divide-and-conquer pa�ern of Strassen-like

algorithms. Instead, their algorithm splits Strassen-Winograd’s al-

gorithm into two linear divide-and-conquer algorithms which recur-

sively perform all pre-computations, followed by vector multiplica-

tion of their results, and �nally performs linear post-computations

to calculate the output. �eir method enables reuse of sums, result-

ing in a matrix multiplication algorithm with arithmetic complexity

of 5nlog
2

7 + 0.5 · nlog
2

6 + 2nlog
2

5 − 6.5n2
. However, this comes at

the cost of increased communication costs and memory footprint.

1.4 Our contribution
We present the Alternative Basis Matrix Multiplication method,

and show how to apply it to existing Strassen-like algorithms (see

Sections 3). While basis transformation is, in general, as expensive

as matrix multiplications, some can be performed very fast (e.g.,

Hadamard in O
(
n2

logn
)

using FFT [11]). Fortunately, so is the

case for our basis transformation (see Section 3.1). �us, it is a

worthwhile trade-o� of reducing the leading coe�cient in exchange

of an asymptotically insigni�cant overhead (see Section 3.2). We

provide analysis as to how these constants are a�ected and the

impact on both arithmetic and IO-complexity.

We discuss the problem of �nding alternative bases to improve

Strassen-like algorithms (see Section 5), and present several im-

proved variants of existing algorithms, most notable of which

are the alternative basis variant of Strassen’s 〈2, 2, 2; 7〉-algorithm

which reduces the number of additions from 15 to 12 (see Section

3.3), and the variant of Smirnov’s 〈6, 3, 3; 40〉-algorithm with leading

coe�cient reduced by about 83.2%.
2

Theorem 1.1 (Probert’s lower bound). [31] 15 additions are
necessary for any 〈2, 2, 2; 7〉-algorithm.

Our result seemingly contradicts Probert’s lower bound. How-

ever, his bound implicitly assumes that the input and output are

represented in the standard basis, thus there is not contradiction.

We extend Probert’s lower bound to account for alternative bases

(see Section 4):

Theorem 1.2 (Basis invariant lower bound). 12 additions
are necessary for any matrix multiplication algorithm that uses a
recursive-bilinear algorithm with a 2 × 2 base case with 7 multiplica-
tions, regardless of basis.

Our alternative basis variant of Strassen’s algorithm performs 12

additions in the base case, matching the lower bound in �eorem

1.2. Hence, it is optimal.

2 PERLIMINARIES
2.1 �e communication bottleneck
Fast matrix multiplication algorithms have lower IO-complexity

than the classical algorithm. �at is, they communicate asymptoti-

cally less data within the memory hierarchy and between proces-

sors. �e IO-compleixty is measured as a function of the number of

processors P , the local memory size M , and the matrix dimension

n. Namely, the communication costs of a parallel 〈n0,n0,n0; t〉-

algorithm are Θ

((
n√
M

)
logn

0

t
M
P

)
[1, 2, 4, 34]. �us, parallel ver-

sions of Strassen’s algorithm which minimize communication cost

outperform the well tuned classical matrix multiplication in prac-

tice, both in shared-memory [3, 14, 23] and distributed-memory

architectures [1, 16, 27].

Our 〈2, 2, 2; 7〉-algorithm not only reduces the arithmetic com-

plexity by 16.66%, but also the IO-complexity by 20%, compared to

Strassen-Winograd’s algorithm. Hence, performance gain should

be in range of 16-20% on a shared-memory machine.

2.2 Encoding and Decoding matrices
Fact 2.1. Let R be a ring, and let f : Rn × Rm → Rk be a

bilinear function which performs t multiplications. �ere exist

U ∈ Rt×n , V ∈ Rt×m ,W ∈ Rt×k such that

∀x ∈ Rn , y ∈ Rm f (x ,y) =WT ((U · x ) � (V · y))

where � is element-wise vector product (Hadamard product).

De�nition 2.2. (Encoding/Decoding matrices). We refer to the

〈U , V ,W 〉 of a recursive-bilinear algorithm as its encoding/decoding

matrices (where U , V are the encoding matrices andW is the de-

coding matrix).

2
Files containing the encoding/decoding matrices and the corresponding basis trans-

formations can be found at h�ps://github.com/elayeek/matmultfaster.
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Table 1: 〈2, 2, 2; 7〉-algorithms

Algorithm Additions Arithmetic Computations I/O-Complexity

Strassen [37] 18 7nlog
2

7 − 6n2
6 ·

(√
3·n
√
M

)
log

2
7

·M − 18n2 + 3M

Strassen-Winograd [40] 15 6nlog
2

7 − 5n2
5 ·

(√
3·n
√
M

)
log

2
7

·M − 15n2 + 3M

Ours 12 5nlog
2

7 − 4n2 + 3n2
log

2
n 4 ·

(√
3·n
√
M

)
log

2
7

·M − 12n2 + 3n2 · log
2

(√
2 · n√

M

)
+ 5M

Table 2: Alternative Basis Algorithms

Algorithm

Linear

Operations

Improved

Linear

Operations

Arithmetic

Leading

Coe�cient

Improved

Leading

Coe�cient

Computations

Saved

〈2, 2, 2; 7〉 [40] 15 12 6 5 16.6%

〈3, 2, 3; 15〉[3] 64 52 15.06 7.94 47.3%

〈2, 3, 4; 20〉[3] 78 58 9.96 7.46 25.6%

〈3, 3, 3; 23〉[3] 87 75 8.91 6.57 26.3%

〈6, 3, 3; 40〉[35] 1246 202 55.63 9.39 83.2%

De�nition 2.3. Let R be a ring, and let A ∈ Rn×m a matrix. We

denote the vectorization of A by ~A. We use the notation U`, (i, j )
when referring to the element in the `′th row on the column corre-

sponding with the index (i, j ) in the vectorization of A. For ease of

notation, we sometimes write Ai, j rather than ~A(i, j ) .
3

Fact 2.4. (Triple product condition). [22] Let R be a ring, and

let U ∈ Rt×n ·m , V ∈ Rt×m ·k ,W ∈ Rt×n ·k . 〈U , V ,W 〉 are encod-

ing/decoding matrices of an 〈n,m,k ; t〉-algorithm if and only if:

∀i1, i2 ∈ [n] , k1,k2 ∈ [m] , j1, j2 ∈ [k]

t∑
r=1

Ur, (i1,k1 )Vr, (k2, j1 )Wr, (i2, j2 ) = δi1,i2δk1,k2
δj1, j2

where δi, j = 1 if i = j and 0 otherwise.

Notation 2.5. Denote the number of nonzero entries in a matrix

by nnz (A), and the number of rows/columns by rows (A) , cols (A).

Remark 2.6. �e number of linear operations used by a bilinear

algorithm is determined by its encoding/decoding matrices. �e

number of additions performed by each of the encoding is:

AdditionsU = nnz (U ) − rows (U )

AdditionsV = nnz (V ) − rows (V )

�e number of additions performed by the decoding is:

AdditionsW = nnz (W ) − cols (W )

�e number of scalar multiplication performed by each of the encod-

ing/decoding is equal to the total number of matrix entries which

are not 1, −1, and 0.

3
All basis transformations and encoding/decoding matrices assume row-ordered vec-

torization of matrices.

3 ALTERNATIVE BASIS MATRIX
MULTIPLICATION

Fast matrix multiplication algorithms are bilinear computations.

�e number of operations performed in the linear phases of such

algorithms (the application of their encoding/decoding matrices

〈U , V ,W 〉 in the case of matrix multiplication, see De�nition 2.2)

depends on basis of representation. In this section, we detail how

alternative basis algorithms work and address the e�ects of using

alternative bases on arithmetic complexity and IO-complexity.

De�nition 3.1. Let R be a ring and let ϕ, ψ , υ be automorphisms

of Rn ·m , Rm ·k , Rn ·k (respectively). We denote a Strassen-like al-

gorithm which takes ϕ (A) , ψ (B) as inputs and outputs υ (A · B)
using t multiplications by 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm. If n =m = k
and ϕ = ψ = υ, we use the notation 〈n,n,n; t〉ϕ -algorithm. �is

notation extends the 〈n,m,k ; t〉-algorithm notation as la�er applies

when the three basis transformations are the identity map.

Given a recursive-bilinear, 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm, ALG, al-

ternative basis matrix multiplication works as follows:

Algorithm 1 Alternative Basis Matrix Multiplication Algorithm

Input: A ∈ Rn×m , Bm×k

Output: n × k matrix C = A · B
1: function ABS(A,B)

2: Ã = ϕ (A) . Rn×m basis transformation

3: B̃ = ψ (B) . Rm×k basis transformation

4: C̃ = ALG (Ã, B̃) . 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm

5: C = υ−1 (C̃ ) . Rn×k basis transformation

6: return C

Lemma 3.2. LetR be a ring, let 〈U , V ,W 〉 be the encoding/decoding
matrices of an 〈n,m,k ; t〉-algorithm, and let ϕ, ψ , υ be automor-
phisms of Rn ·m , Rm ·k , Rn ·k (respectively).

〈
Uϕ−1, Vψ−1,WυT

〉
are

encoding/decoding matrices of an 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm.
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Proof. 〈U , V ,W 〉 are encoding/decoding matrices of an

〈n,m,k ; t〉-algorithm. Hence, for any A ∈ Rn×m , B ∈ Rm×k

WT
((
U · ~A

)
�

(
V · ~B

))
=
−−−→
A · B

Hence,

υ
(
−−−→
A · B

)
= υ

(
WT

(
U · ~A � V · ~B

))
=

(
WυT

)T (
Uϕ−1 · ϕ

(
~A
)
� Vψ−1 ·ψ

(
~B
))

�

Corollary 3.3. Let R be a ring, and let ϕ, ψ , υ be automor-
phisms of Rn ·m , Rm ·k , Rn ·k (respectively). 〈U , V ,W 〉 are encod-
ing/decoding matrices of an 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm if and only if〈
Uϕ, Vψ ,Wυ−T

〉
are encoding/decoding matrices of an 〈n,m,k ; t〉-

algorithm.

3.1 Fast basis transformation
De�nition 3.4. Let R be a ring and letψ1 : Rn0×m0 → Rn0×m0

be

a linear map. We recursively de�ne a linear mapψk+1
: Rn×m →

Rn×m (where n = n`1

0
, m = m`2

0
for some `1, `2 ≤ k + 1) by

(ψk+1
(A))i, j = ψk (ψ1 (A))i, j , whereAi, j are

n
n0

× m
m0

sub-matrices.

Note that ψk+1
is a linear map. For convenience, we omit the

subscript ofψ when obvious from context.

Claim 3.5. Let R be a ring, letψ1 : Rn0×m0 → Rn0×m0 be a linear
map, and let A ∈ Rn×m (where n = nk+1

0
, m = mk+1

0
). De�ne Ã by(

Ã
)
i, j
= ψk

(
Ai, j

)
. �enψ1

(
Ã
)
= ψk+1

(A).

Proof. ψ1 is a linear map. Hence, for any i ∈ [n0] , j ∈ [m0],

(ψ1 (A))i, j is a linear sum of elements of A. �erefore, there exist

scalars

{
x
(i, j )
r, `

}
r ∈[n0], `∈[m0]

such that

(ψk+1
(A))i, j =ψk (ψ1 (A))i, j

=ψk
*.
,

∑
r, `

x
(i, j )
r, ` · Ar, `

+/
-

By linearity ofψk

=
∑
r, `

x
(i, j )
r, ` ψk

(
Ar, `

)
=

(
ψ1

(
Ã
))
i, j

�

Claim 3.6. Let R be a ring, let ψ1 : Rn0×m0 → Rn0×m0 be an
invertible linear map, and letψk+1

as de�ned above. ψk+1
is invertible

and its inverse is
(
ψ−1

k+1
(A)

)
i, j
= ψ−1

k

(
ψ−1

1
(A)

)
i, j
.

Proof. De�ne Ã by

(
Ã
)
i, j
= ψk

(
Ai, j

)
and de�ne ψ−1

k+1
by(

ψ−1

k+1
(A)

)
i, j
= ψ−1

k

(
ψ−1

1
(A)

)
i, j

. �en:

(
ψ−1

k+1
(ψk+1

(A))
)
i, j
= ψ−1

k

(
ψ−1

1
(ψk+1

(A))
)
i, j

By Claim 3.5

= ψ−1

k

(
ψ−1

1

(
ψ1

(
Ã
)))

i, j
= ψ−1

k

(
Ã
)
i, j

By de�nition of Ã

= ψ−1

k

(
ψk (A)i, j

)
= Ai, j

�

We next analyze the arithmetic complexity and IO-complexity

of fast basis transformations. For convenience and readability, we

presented here the square case only. �e analysis for rectangular

matrices is similar.

Claim 3.7. Let R be a ring, letψ1 : Rn0×n0 → Rn0×n0 be a linear
map, and let A ∈ Rn×n where n = nk

0
. �e arithmetic complexity of

computingψ (A) is

Fψ (n) =
q

n2

0

n2
logn0

n

where q is the number of linear operations performed byψ1.

Proof. Let Fψ (n) be the number of additions required by ψ .

Each step of the recursion consists of computing n2

0
sub-problems

and performs q additions of sub-matrices. �erefore, Fψ (n) =

n2

0
Fψ

(
n
n0

)
+ q

(
n2

n0

)
and Fψ (1) = 0. �us,

Fψ (n) = n2

0
Fψ

(
n

n0

)
+ q

(
n

n0

)
2

=

logn
0

(n)−1∑
k=0

(
n2

0

)k *.
,
q *
,

n

nk+1

0

+
-

2

+/
-

=
q

n2

0

n2 ·

logn
0

(n)−1∑
k=0

*
,

n2

0

n2

0

+
-

k

=
q

n2

0

n2 · logn0

(n)

�

Claim 3.8. Let R be a ring and let ψ1 : Rn0×n0 → Rn0×n0 be a
linear map, and let A ∈ Rn×n where n = nk

0
. �e IO-complexity of

computingψ (A) is

IOψ (n,M ) ≤
3q

n2

0

n2
logn0

(
√

2

n
√
M

)
+ 2M

where q is the number of linear operations performed byψ1.

Proof. Each step of the recursion consists of computing n2

0
sub-

problems and performs q linear operations. �e base case occurs

when the problem �ts entirely in the fast memory (or local memory

in parallel se�ing), namely 2n2 ≤ M . Each addition requires at

most 3 data transfers (one of each input and one for writing the

output). Hence, a basis transformation which performs q linear

operations at each recursive steps has the recurrence:

IOψ (n,M ) ≤



n2

0
IOψ

(
n
n0

,M
)
+ 3q ·

(
n
n0

)
2

2n2 > M

2M otherwise
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�erefore

IOψ (n,M ) ≤ n2

0
IOψ

(
n

n0

,M

)
+ 3q

(
n

n0

)
2

=

logn
0

*
,

n√
M
2

+
-
−1∑

k=0

(
n2

0

)k *.
,
3q *

,

n

nk+1

0

+
-

2

+/
-
+ 2M

=
3q

n2

0

n2 ·

logn
0

(√
2· n√

M

)
−1∑

k=0

*
,

n2

0

n2

0

+
-

k

+ 2M

=
3q

n2

0

n2 · logn0

(
√

2 ·
n
√
M

)
+ 2M

�

3.2 Computing matrix multiplication in
alternative basis

Claim 3.9. Let ϕ1,ψ1,υ1 be automorphisms of Rn0×m0 ,Rm0×k0 ,

Rn0×k0 (respectively), and let ALG be an 〈n0,m0,k0; t〉ϕ1,ψ1,υ1
algo-

rithm. For any A ∈ Rn×m , B ∈ Rm×k :

ALG (ϕ` (A) ,ψ` (B)) = υ` (A · B)

where n = n`
0
, m =m`

0
, k = k`

0
.

Proof. Denote C̃ = ALG (ϕ`+1
(A) ,ψ`+1

(B)) and the encod-

ing/decoding matrices ofALG by 〈U , V ,W 〉. We prove by induction

on ` that C̃ = υ` (A · B). For r ∈ [t], denote

Sr =
∑

i ∈[n0], j ∈[m0]

Ur, (i, j ) (ϕ1 (A))i, j

Tr =
∑

i ∈[m0], j ∈[k0]

Vr, (i, j ) (ψ1 (B))i, j

�e base case, ` = 1, holds by Lemma 3.2 since ALG is an

〈n0,m0,k0; t〉ϕ1,ψ1,υ1
-algorithm. Note that this means that for any

i ∈ [n0] , j ∈ [k0]

(υ1 (AB))i, j =
(
WT ((U · ϕ1 (A)) � (V ·ψ1 (B)))

)
i, j

=
∑
r ∈[t ]

Wr, (i, j ) (Sr ·Tr )

Next, we assume the claim holds for ` ∈ N and show for ` + 1.

Given input Ã = ϕ`+1
(A) , B̃ = ψ`+1

(B), ALG performs t multi-

plications P1, . . . , Pt . For each multiplication Pr , its le� hand side

multiplicand is of the form

Lr =
∑

i ∈[n0], j ∈[m0]

Ur, (i, j )Ãi, j

By De�nition 3.4, (ϕ`+1
(A))i, j = ϕ` (ϕ1 (A))i, j . Hence,

=
∑

i ∈[n0], j ∈[m0]

Ur, (i, j )
(
ϕ` (ϕ1 (A))i, j

)

From linearity of ϕ`

= ϕ`
*.
,

∑
i ∈[n0], j ∈[m0]

Ur, (i, j ) (ϕ1 (A))i, j
+/
-

= ϕ` (Sr )

And similarly, the right hand multiplication Rr is of the form

Rr = ψ` (Tr )

Note that for any r ∈ [t], Sr , Tr are n`
0
×m`

0
and m`

0
× k`

0
matrices,

respectively. Hence, by the induction hypothesis,

Pr = ALG (ϕ` (Sr ) ,ψ` (Tr )) = υ` (Sr ·Tr )

Each entry in the output C̃ is of the form:

C̃i, j =
∑
r ∈[t ]

Wr, (i, j )Pr

=
∑
r ∈[t ]

Wr, (i, j )υ` (Sr ·Tr )

By linearity of υ`

= υ`
*.
,

∑
r ∈[t ]

Wr, (i, j ) (Sr ·Tr )
+/
-

And, as noted in the base case:

(υ1 (A · B))i, j =
*.
,

∑
r ∈[t ]

Wr, (i, j ) (Sr ·Tr )
+/
-(i, j )

Hence,

C̃i, j = υ` (υ1 (A · B))i, j

�erefore, by De�nition 3.4, C̃ = υ`+1
(A · B) �

Notation 3.10. When discussing an 〈n0,n0,n0; t〉ϕ,ψ ,υ -algorithm,

we denote ω0 = logn0

t .

Claim 3.11. Let ALG be an 〈n0,n0,n0; t〉ϕ,ψ ,υ -algorithm which
performsq linear operations at its base case. �e arithmetic complexity
of ALG is

FALG (n) = *
,
1 +

q

t − n2

0

+
-
nω0 − *

,

q

t − n2

0

+
-
n2

Proof. Each step of the recursion consists of computing t sub-

problems and performsq linear operations (additions/multiplication

by scalar) of sub-matrices. �erefore FALG (n) = tFψ
(
n
n0

)
+q

(
n
n0

)
2

and FALG (1) = 1. �us,

FALG (n) =

logn
0

n−1∑
k=0

tk · q · *
,

n

nk+1

0

+
-

2

+ t logn
0

n
· FALG (1)

=
q

n2

0

n2 ·

logn
0

n−1∑
k=0

*
,

t

n2

0

+
-

k

+ nω0

=
q

n2

0

n2

*....
,

(
t
n2

0

)
logn

0

n
− 1

t
n2

0

− 1

+////
-

+ nω0q *
,

nω0 − n2

t − n2

0

+
-
+ nω0

�
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Claim 3.12. Let ALG be an 〈n0,n0,n0; t〉ϕ,ψ ,υ -algorithm which
performs q linear operations at its base case. �e IO-complexity of
ALG is

IOALG (n,M ) ≤ *
,

q

t − n2

0

+
-

(
M

(
√

3 ·
n
√
M

)ω0

− 3n2

)
+ 3M

Proof. Each step of the recursion consists of computing n2

0
sub-

problems and performs q linear operations. �e base case occurs

when the problem �ts entirely in the fast memory (or local memory

in parallel se�ing), namely 3n2 ≤ M . Each addition requires at

most 3 data transfers (one of each input and one for writing the

output). Hence, a basis transformation which performs q linear

operations at each recursive steps has the recurrence:

IOALG (n,M ) ≤



t · IOψ
(
n
n0

,M
)
+ 3q ·

(
n
n0

)
2

3n2 > M

3M otherwise

�erefore

IOALG (n,M ) ≤

logn
0

n√
M
3

−1∑
k=0

tk · 3q *
,

n

nk+1

0

+
-

2

+ 3M

=
3q

n2

0

n2

logn
0

n√
M
3

−1∑
k=0

*
,

t

n2

0

+
-

k

+ 3M

=
3q

n2

0

n2

*....
,

(
t
n2

0

) logn
0

n√
M
3 − 1

t
n2

0

− 1

+////
-

+ 3M

= q
*...
,

M
(√

3 · n√
M

)ω0

− 3n2

t − n2

0

+///
-

+ 3M

�

Corollary 3.13. If ABS (Algorithm 1) performs q linear opera-
tions at the base case, then its arithmetic complexity is

FABS (n) = *
,
1 +

q

t − n2

0

+
-
nω0 − *

,

q

t − n2

0

+
-
n2 +O

(
n2

logn
)

Proof. �e number of �ops performed by the algorithm is the

sum of: (1) the number of �ops performed by the basis transforma-

tions (denoted ϕ, ψ , υ) and (2) the number of �ops performed by

the recursive bilinear algorithms ALG.

FABS (n) = FALG (n) + Fϕ (n) + Fψ (n) + Fυ (n)

�e result immediately follows from Claim 3.7 and Claim 3.11 �

Corollary 3.14. If ABS (Algorithm 1) performs q linear opera-
tions at the base case, then its IO-complexity is

IOALG (n,M ) ≤ *
,

3q

t − n2

0

+
-
*
,
M

(√
3 · n
√
M

)ω0

− n2+
-

+ 3M +O

(
n2

log

n
√
M

)

Proof. �e IO-complexity is the sum of: (1) the IO-complexity

of the recursive bilinear algorithms ALG and (2) the IO-complexity

of the basis transformations (denoted ϕ, ψ , υ).

IOABS (n,M ) =IOALG (n,M ) + IOϕ (n,M )

+ IOψ (n,M ) + IOυ (n,M )

�e result immediately follows from Claim 3.8 and Claim 3.12. �

3.3 Optimal 〈2, 2, 2; 7〉-algorithm
We now present a basis transformation ψopt : R4 → R4

and an

〈2, 2, 2; 7〉ψ -algorithm which performs only 12 linear operations.

Notation 3.15. Let,ψopt refer to the following transformation:

ψopt =
*....
,

1 0 0 0

0 1 −1 1

0 0 −1 1

0 1 0 1

+////
-

ψ−1

opt =

*....
,

1 0 0 0

0 1 −1 0

0 −1 0 1

0 −1 1 1

+////
-

For convenience, when applying ψ to matrices, we omit the

vectorization and refer to it asψ : R2×2 → R2×2
:

ψopt (A) = ψ1

(
A1,1 A1,2

A2,1 A2,2

)
=

(
A1,1 A1,2 −A2,1 +A2,2

A21 −A2,2 A1,2 +A2,2

)
Where Ai, j can be ring elements or sub-matrices. ψ−1

opt is de�ned

analogously. Bothψopt andψ−1

opt extend recursively as in De�nition

3.4.

〈
Uopt , Vopt ,Wopt

〉
=

〈*...........
,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 1 −1 0

−1 1 0 0

0 −1 0 1

+///////////
-

,

*...........
,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 −1 0 1

0 1 −1 0

−1 1 0 0

+///////////
-

,

*...........
,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1 1 0 0

0 −1 0 −1

0 1 1 0

+///////////
-

〉

Figure 1: 〈U , V ,W 〉 are the encoding/decoding matrices of
our 〈2, 2, 2; 7〉ψopt -algorithm which performs 12 linear opera-
tions

Claim 3.16.

〈
Uopt , Vopt ,Wopt

〉
are encoding/decoding matrices

of an 〈2, 2, 2; 7〉ψopt -algorithm.

Proof. Observe that〈
Uopt ·ψopt , Vopt ·ψopt ,Wopt ·ψ

−T
opt

〉
=

〈*...........
,

0 1 0 1

0 0 −1 1

0 1 −1 1

1 0 0 0

0 1 0 0

−1 1 −1 1

0 0 1 0

+///////////
-

,

*...........
,

0 1 0 1

0 0 −1 1

0 1 −1 1

1 0 0 0

0 0 1 0

0 1 0 0

−1 1 −1 1

+///////////
-

,

*...........
,

0 0 1 1

0 −1 0 1

0 1 −1 −1

1 0 0 0

1 1 −1 −1

0 −1 0 0

0 0 −1 0

+///////////
-

〉
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It is easy to verify that

〈
Uopt ·ψopt , Vopt ·ψopt ,Wopt ·ψ

−T
opt

〉
satisfy the triple product condition in Fact 2.4. Hence, they are en-

coding/decoding algorithm of an 〈2, 2, 2; 7〉-algorithm. By Corollary

3.3, the claim follows. �

Claim 3.17. Let R be a ring, and let A ∈ Rn×n where n = 2
k . �e

arithmetic complexity of computingψopt (A) is

Fψopt (n) = n
2

log
2
n

�e same holds for computingψ−1

opt (A).

Proof. Bothψopt , ψ
−1

opt perform q = 4 linear operations at each

recursive step and has base case size of n0 = 2. �e lemma follows

immediately from Claim 3.7. �

Claim 3.18. Let R be a ring, and let A ∈ Rn×n where n = 2
k . �e

I/O-complexity of computingψopt (A) is

IOψopt (n,M ) ≤ 2n2
log

2

(
√

2

n
√
M

)
+ 2M

Proof. Bothψopt , ψ
−1

opt perform q = 4 linear operations at each

recursive step. �e lemma follows immediately from Claim 3.8 with

base case n0 = 2. �

Corollary 3.19. Our 〈2, 2, 2; 7〉ψopt -algorithm’s arithmetic com-

plexity is Fopt (n) = 5nlog
2

7 − 4n2.

Proof. Our 〈2, 2, 2; 7〉ψopt -algorithm has a 2 × 2 base case and

performs 7 multiplications. Applying Fact 2.6 to its encoding/decoding

matrices

〈
Uopt , Vopt ,Wopt

〉
, we see that it performs 12 linear op-

erations. �e result follows immediately from Claim 3.11 �

Corollary 3.20. Our 〈2, 2, 2; 7〉ψopt -algorithm’s IO-complexity
is

IOopt (n,M ) ≤12 · *
,

√
3 ·M

(
n
√
M

)
log

2
7

− 3n2+
-
+ 3M

Proof. Our algorithm has a 2 × 2 base case and performs 7

multiplications. By applying Fact 2.6 to its encoding/decoding

matrices (as shown in Figure 1), we see that it performs 12 linear

operations. �e result follows immediately from Claim 3.12. �

Corollary 3.21. �e arithmetic complexity of ABS (Algorithm 1)
with our 〈2, 2, 2; 7〉ψopt -algorithm is

FABS (n) = 5nlog
2

7 − 4n2 + 3n2
log

2
n

Proof. �e proof is similar to that of Corollary 3.13 �

Corollary 3.22. �e IO-complexity of ABS (Algorithm 1) with
our 〈2, 2, 2; 7〉ψopt -algorithm is

IOALG (n,M ) ≤4 ·

(√
3 · n
√
M

) log
2

7

·M − 12n2

+ 3n2 · log
2

(
√

2 ·
n
√
M

)
+ 5M

Proof. �e proof is similar to that of Corollary 3.14 �

Theorem 3.23. Our 〈2, 2, 2; 7〉ψopt -algorithm’s sequential and

parallel IO-complexity is bound by Ω
((

n√
M

)ω0 M
P

)
(where P is the

number of processors, 1 in the sequential case, and ω0 = log
2

7).

Proof. We refer to the undirected bipartite graph de�ned by

the decoding matrix of our a Strassen-like algorithm as its decod-

ing graph (i.e., the edge (i, j ) exists if Wi, j , 0). In [2], Ballard

et al. proved that for any square recursive-bilinear Strassen-like

algorithm with n0 × n0 base case which performs t multiplications,

if the decoding graph is connected then these bounds apply with

ω0 = logn0

t . �e decoding graph of our algorithm is connected.

Hence, the claim is true. �

4 BASIS-INVARIANT LOWER BOUND ON
ADDITIONS FOR 2 × 2 MATRIX
MULTIPLICATION

In this section we prove �eorem 1.2 which says that 12 additions

are necessary to compute 2 × 2 matrix multiplication recursively

with base case of 2 × 2 and 7 multiplications, irrespective of basis.

�eorem 1.2 completes Probert’s lower bound which says that for

standard basis, 15 additions are required.

De�nition 4.1. Denote the permutation matrix which swaps row-

order for column-order of vectorization of an I × J matrix by PI×J .

Lemma 4.2. [19] Let 〈U , V ,W 〉 be the encoding/decoding matrices
of an 〈m,k,n; t〉-algorithm. �en

〈
WPn×m , U , VPn×k

〉
are encod-

ing/decoding matrices of an 〈n,m,k ; t〉-algorithm.

We use the following results, shown by Hopcro� and Kerr [20]:

Lemma 4.3. [20] If an algorithm for 2 × 2 matrix multiplica-
tion has k le� (right) hand side multiplicands from the set S ={
A1,1,

(
A1,2 +A2,1

)
,
(
A1,1 +A1,2 +A2,1

)}
, where additions are done

modulo 2, then it requires at least 6 + k multiplications.

Corollary 4.4. [20] Lemma 4.3 also applies for the following
de�nitions of S :

(1)

(
A1,1 +A2,1

)
,
(
A1,2 +A2,1 +A2,2

)
,
(
A1,1 +A1,2 +A2,2

)
(2)

(
A1,1 +A1,2

)
,
(
A1,2 +A2,1 +A2,2

)
,
(
A1,1 +A2,1 +A2,2

)
(3)

(
A1,1 +A1,2 +A2,1 +A2,2

)
,
(
A1,2 +A2,1

)
,
(
A1,1 +A2,2

)
(4) A2,1,

(
A1,1 +A2,2

)
,
(
A1,1 +A2,1 +A2,2

)
(5)

(
A2,1 +A2,2

)
,
(
A1,1 +A1,2 +A2,2

)
,
(
A1,1 +A1,2 +A2,1

)
(6) A1,2,

(
A1,1 +A2,2

)
,
(
A1,1 +A1,2 +A2,2

)
(7)

(
A1,2 +A2,2

)
,
(
A1,1 +A2,1 +A2,2

)
,
(
A1,1 +A1,2 +A2,1

)
(8) A2,2,

(
A1,2 +A2,1

)
,
(
A1,2 +A2,1 +A2,2

)
Corollary 4.5. Any 2× 2 matrix multiplication algorithm where

a le� hand (or right hand) multiplicand appears at least twice (modulo
2) requires 8 or more multiplications.

Proof. Immediate from Lemma 4.3 and Corollary 4.4 since it

covers all possible linear sums of matrix elements, modulo 2. �

Fact 4.6. A simple counting argument shows that any 7 × 4

binary matrix with less than 10 non-zero entries has a duplicate

row (modulo 2) or an all zero row.

Lemma 4.7. Irrespective of basis transformations ϕ, ψ , υ, the en-
coding matrices U , V , of an 〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm contain no
duplicate rows.
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Proof. Let 〈U , V ,W 〉 be encoding/decoding matrices of an

〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm. By Corollary 3.3,

〈
Uϕ, Vψ ,Wυ−T

〉
are

encoding/decoding matrices of a 〈2, 2, 2; 7〉-algorithm. Assume,

w.l.o.g, that U contains a duplicate row, which means that Uϕ con-

tains a duplicate row as well. In that case,

〈
Uψ , Vψ ,Wυ−T

〉
is a

〈2, 2, 2; 7〉-algorithm in which one of the encoding matrices contains

a duplicate row, in contradiction to Corollary 4.5. �

Lemma 4.8. Irrespective of basis transformations ϕ, ψ , υ, the en-
coding matricesU ,V , of a 〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm have at least 10

non-zero entries.

Proof. No row in U ,V can be zeroed out since otherwise the

algorithm would require less than 7 multiplications. �e result then

follows from Fact 4.6 and Lemma 4.7. �

Lemma 4.9. Irrespective of basis transformations ϕ, ψ , υ, the de-
coding matrixW of an 〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm has at least 10 non-
zero entries.

Proof. Let 〈U ,V ,W 〉 be encoding/decoding matrices of an

〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm and suppose by contradiction thatW has

less than 10 non-zero entries. W is a 7 × 4 matrix. By Fact 4.6, it

either has a duplicate row (modulo 2) or an all zero row. Corollary

3.3 states that

〈
Uϕ,Vψ ,Wυ−T

〉
are encoding/decoding matrices of

a 〈2, 2, 2; 7〉-algorithm. By Lemma 4.2, because

〈
Uϕ,Vψ ,Wυ−T

〉
de�ne a 〈2, 2, 2; 7〉-algorithm, so does

〈
Wυ−T P2×2,Uϕ,VψP2×2

〉
.

HenceWυ−T P2×2 is an encoding matrix of a 〈2, 2, 2; 7〉-algorithm

which has duplicate or all zero rows, contradicting Corollary 4.5.

�

Proof (of Theorem 1.2). Lemma 4.8 and 4.9 then show that

each encoding/decoding matrix must contain at least 10 non-zero

entries. By Remark 2.6, the number of additions used by each of the

encoding matrix is nnz (U ) − rows (U ) (and analogously forV ) and

the number of additions used by the decoding is nnz (W )−cols (W ).
Hence, 12 additions are necessary for an 〈2, 2, 2; 7〉ϕ,ψ ,υ -algorithm

irrespective of basis transformations ϕ, ψ , υ. �

5 OPTIMAL ALTERNATIVE BASES
To apply our alternative basis method to other Strassen-like matrix

multiplication algorithms, we �nd bases which reduce the number

of linear operations performed by the algorithm. As we mentioned

in Fact 2.6, the non-zero entries of the encoding/decoding matri-

ces determine the number of linear operations performed by an

algorithm. Hence, we want our encoding/decoding matrices to be

as sparse as possible, and ideally to have only entries of the form

−1, 0 and 1. From Lemma 3.2 and Corollary 3.3 we see that any

〈n,m,k ; t〉-algorithm and dimension compatible basis transforma-

tions ϕ, ψ , υ can be composed into an 〈n,m,k ; t〉ϕ,ψ ,υ -algorithm.

�erefore, the problem of �nding a basis in which a Strassen-like

algorithm performs the least amount of linear operations is closely

tied to the Matrix Sparsi�cation problem:

Problem 5.1. Matrix Sparsi�cation Problem (MS): Let U be an

m × n matrix of full rank, �nd an invertible matrix A such that

A = argmin
A∈GLn

(nnz (UA))

�at is, �nding basis transformations for a Strassen-like algo-

rithm consists of three independent MS problems. Unfortunately,

MS is not only NP-Hard [28] to solve, but also NP-Hard to approxi-

mate to within a factor of 2
log

.5−o (1) n
[15] (Over Q, assuming NP

does not admit quasi-polynomial time deterministic algorithms).

�ere seem to be very few heuristics for matrix sparsi�cation (e.g.,

[9]), or algorithms under very limiting assumptions (e.g., [18]).

Nevertheless, for existing Strassen-like algorithms with small base

cases, the use of search heuristics to �nd bases which signi�cantly

sparsify the encoding/decoding matrices of several Strassen-like

algorithms proved useful. Our resulting alternative basis Strassen-

like algorithms are summarized in Table 2. Note, particularly, our

alternative basis version of Smirnov’s 〈6, 3, 3; 40〉-algorithm, which

is asymptotically faster than Strassen’s, where we have reduced

the number of linear operations in the bilinear-recursive algorithm

from 1246 to 202, thus reducing the leading coe�cient by 83.2%.

6 IMPLEMENTATION AND PRACTICAL
CONSIDERATIONS

6.1 Recursion cuto� point
Implementations of fast matrix multiplication algorithms o�en

take several recursive steps then call the classical algorithm from a

vendor-tuned library. �is gives be�er performance in practice due

to two main reasons: (1) the asymptotic improvement of Strassen-

like algorithms makes them faster than classical algorithms by mar-

gins which increase with matrix size, and (2) vendor-tuned libraries

have extensive built-in optimization, which makes them perform

be�er than existing implementations of fast matrix multiplication

algorithms on small matrices.

We next present theoretical analysis for �nding the optimal

number of recursive steps without tuning.

Claim 6.1. Let ALG be an 〈n,n,n; t〉-algorithm with q linear

operations at the base case. �e arithmetic complexity of running

ALG for ` steps, then switching to classical matrix multiplication is:

FALG (n, `) =
q

t − n2

0

*.
,
*
,

t

n2

0

+
-

`

− 1
+/
-
· n2+

+ t` *.
,
2
*
,

n

n`
0

+
-

3

− *
,

n

n`
0

+
-

2

+/
-

Proof. Each step of the recursion consists of computing t sub-

problems and performsq linear operations. �erefore, FALG (n, `) =

t · FALG
(
n
n0

, ` − 1

)
+ q

(
n
n0

)
2

and FALG (n, 0) = 2n3 − n2
. �us

FALG (n, `) =
`−1∑
k=0

tk · q · *
,

n

nk+1

0

+
-

2

+ t` · FALG *
,

n

n`
0

+
-

=
q

n2

0

n2

*....
,

(
t
n2

0

)`
− 1

t
n2

0

− 1

+////
-

+ t` *.
,
2
*
,

n

n`
0

+
-

3

− *
,

n

n`
0

+
-

2

+/
-

=
q

t − n2

0

*.
,
*
,

t

n2

0

+
-

`

− 1
+/
-
· n2 + t` *.

,
2
*
,

n

n`
0

+
-

3

− *
,

n

n`
0

+
-

2

+/
-
�
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When running an alternative basis algorithm for a limited num-

ber of recursive steps, the basis transformation needs to be com-

puted only for the same number of recursive steps. If the basis

transformation is computed for more steps than the alternative

basis multiplication, the classical algorithm will compute incorrect

results as it does not account for the input being represented in an

alternative basis. �is introduces a small saving in the runtime of

basis transformation.

Claim 6.2. Let R be a ring and let ψ1 : Rn0×n0 → Rn0×n0 be an
invertible linear map, let A ∈ Rn×n where n = nk

0
, and let ` ≤ k . �e

arithmetic complexity of computingψ` (A) is

Fψ (n, `) =
q

n2

0

n2 · `

Proof. Let Fψ`
(n) be the number of additions required byψ` .

Each recursive consists of computing n2

0
sub-problems and perform-

ing q linear operations. �erefore, Fψ (n, `) = n2

0
· Fψ

(
n
n0

, ` − 1

)
+

q ·
(
n
n0

)
2

and Fψ (n, 0) = 0

Fψ`
(n) =

`−1∑
k=0

(
n2

0

)k
· q *

,

n

nk+1

0

+
-

2

=
q

n2

0

n2 ·

`−1∑
k=0

*
,

n2

0

n2

0

+
-

k

=
q

n2

0

n2 · `

�

6.2 Performance experiments
We next present performance results for our 〈2, 2, 2; 7〉ψopt -algorithm.

All experiments were conducted on a single compute node of

HLRS’s Hazel Hen, with two 12-core (24 threads) Intel Xeon CPU

E5-2680 v3 and 128GB of memory.

We used a straightforward implementation of both our algorithm

and Strassen-Winograd’s [40] algorithm using OpenMP. Each al-

gorithm runs for a pre-selected number of recursive steps before

switching to Intel’s MKL DGEMM routine. Each DGEMM call uses

all threads, matrix additions are always fully parallelized. All results

are the median over 6 experiments.

In Figure 2 we see that our algorithm outperforms Strassen-

Winograd’s, with the margin of improvement increasing with each

recursive step and nearing the theoretical improvement.

7 DISCUSSION
Our method obtained novel variants of existing Strassen-like al-

gorithms, reducing the number of linear operations required. Our

algorithm also outperforms Strassen-Winograd’s algorithm for any

matrix dimension n ≥ 32. Furthermore, we’ve obtained an alterna-

tive basis algorithm of Smirnov’s 〈6, 3, 3; 40〉-algorithm, reducing

the number of additions by 83.8%. While the problem of �nding

bases which optimally sparsify an algorithm’s encoding/decoding

matrices is NP-Hard (see Section 5), it is still solvable for many

fast matrix multiplication algorithms with small base cases. Hence,

�nding basis transformations could be done in practice using search

heuristics, leading to further improvements.

We leave large scale implementations for future research but

note that both kernels of our alternative basis algorithms (basis

Figure 2: Comparing the performance of our 〈2, 2, 2; 7〉ψopt -
algorithm to Strassen-Winograd’s on square matrices of
�xed dimension N = 32768. �e graph shows our algo-
rithm’s runtime, normalized by Strassen-Winograd’s algo-
rithm’s runtime, as a function of the number of recursive
steps taken before switching to Intel’s MKL DGEMM. �e
top horizontal (at 1) line represents Strassen-Winograd’s
performance and the bottom horizontal line (at 0.83) repre-
sents the theoretical ratiowhen taking themaximal number
of recursive steps.

transformation and recursive-bilinear algorithms) are known to

be highly parallelizable recursive divide-and-conquer algorithms,

and admit various communication minimizing parallelization tech-

niques (e.g., [1, 5]).
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