
Matrix Multiplication I/O-Complexity by Path Routing

Jacob Scott
University of California at

Berkeley
jnscott@math.berkeley.edu

Olga Holtz
University of California at

Berkeley
holtz@math.berkeley.edu

Oded Schwartz
The Hebrew University of

Jerusalem
odedsc@cs.huji.ac.il

ABSTRACT
We apply a novel technique based on path routings to ob-
tain optimal I/O-complexity lower bounds for all Strassen-
like fast matrix multiplication algorithms computed in serial
or in parallel, assuming no reuse of nontrivial intermedi-
ate linear combinations. Given fast memory of size M , we

prove an I/O-complexity lower bound of Ω
((

n√
M

)ω0

·M
)

for any Strassen-like matrix multiplication algorithm applied
to n × n matrices of arithmetic complexity Θ(nω0) with
ω0 < 3 under this assumption. This generalizes an approach
by Ballard, Demmel, Holtz, and Schwartz that provides a
tight lower bound for Strassen’s matrix multiplication al-
gorithm but which does not apply to algorithms with dis-
connected encoding or decoding components of the underly-
ing computation graph or algorithms with multiply copied
values. We overcome these challenges via a new graph-
theoretical approach for proving I/O-complexity lower bounds
without the use of edge expansions.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; Computations
on matrices

General Terms
Algorithms, Design, Performance

Keywords
Communication-avoiding algorithms; Fast matrix multipli-
cation; I/O-complexity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3588-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2755573.2755594 .

1. INTRODUCTION
In practice, most of the runtime of an algorithm is often

due to the communication of data within memory hierarchy
and between multiple processors, rather than the arithmetic
computations. The amount of communication performed
during an algorithm depends on the order in which inter-
mediate values are computed and kept in/discarded from
cache. While much work has gone into constructing imple-
mentations of algorithms that reduce communication, in this
paper we show lower bounds on the communication of any
implementation of a common class of fast (but not classical;
see Lemma 1) matrix multiplication algorithms.

The I/O-complexity of an algorithm is defined as the min-
imum possible number of cache operations required to com-
pute all outputs of the algorithm using a fixed cache size M .
In 2011, Ballard, Demmel, Holtz, and Schwartz showed a
tight lower bound on the I/O-complexity of Strassen’s fast
matrix multiplication algorithm [6]. We prove an analogous
I/O-complexity bound via a more general technique for any
fast square matrix multiplication algorithm based on a uni-
form recursive step that does not recompute any interme-
diate values, subject to the assumption that every inter-
mediate linear combination is used in only one multiplica-
tion. We also claim, without proof, that this assumption can
be lifted. Because algorithms achieving our I/O-complexity
bounds have been found [3], our bounds are optimal.

Machine model
In this paper, we assume a 2-layer memory hierarchy for

sequential computations consisting of slow memory and fast
memory. The slow memory is of unlimited size and repre-
sents the hard drive of a computer, while the fast memory,
called cache, is of limited size M and may represent RAM.
We model the I/O communication of an algorithm as fol-
lows: initially, all data resides in slow memory and the cache
is empty. A single value may be input into cache from slow
memory or output to slow memory from cache for the cost
of one I/O. A computation in the algorithm may only be
performed if all input values to that computation already
reside in cache; when computed, the result is also put in
cache. The algorithm halts when all outputs of the algo-
rithm are stored in slow memory. In this model we assume
that no arithmetic computation is ever performed more than
once. See [10] for the formalization of this model as a pebble
game played on the computation graph.

The number of cache I/Os (henceforth simply called I/Os)
required may depend on the order in which intermediate
values of the algorithm are computed. The algorithm’s I/O-

35

complexity is thus defined as the minimum number of I/Os
over all sequences of computations and I/Os that computes
the algorithm’s outputs.

For parallel computations we consider P processors, each
having independent local memory of size M . As in [6] and
[16], we define the bandwidth cost of an algorithm executed
in parallel to be the number of values communicated be-
tween processors along the critical path. In other words, we
count the total number of words (single values) sent between
processors, except that words sent between processors simul-
taneously count as only one I/O. We call this the bandwidth
cost of the algorithm.

Previous Work
In 1981 Hong and Kung [10] proved a tight lower bound

on the I/O-complexity of the classical Θ(n3) matrix mul-
tiplication algorithm (achieved by blocked multiplication)
using S-partitions. A different proof of this result was given
in [12] and later generalized in [5] via the Loomis-Whitney
inequality [13]; this approach was also shown to apply to sev-
eral other problems in numerical linear algebra. See [1] and
[9] for further generalizations using other geometric bounds.
However, these proofs apply only to direct numerical linear
algebra algorithms, but not to algorithms that use distribu-
tivity for cancellation, such as Strassen’s algorithm.

The edge expansion approach detailed in [6] relates the
I/O-complexity of an algorithm to the edge expansion prop-
erties of the underlying computation graph. This technique
provides an I/O-complexity lower bound for Strassen’s fast
matrix multiplication algorithm, but fails for algorithms with
base graphs (the computation graph representing one recur-
sive step; see Section 3) containing disconnected encoding
or decoding graphs and those involving multiple copying. In
[4], this approach is extended to fast recursive matrix mul-
tiplication algorithms for rectangular matrices whose base
graphs consist of multiple equal-size connected components.
This is sufficient to yield lower bounds for some common fast
matrix multiplication algorithms, such as Bini’s algorithm
[8] and the Hopcroft-Kerr algorithm [11], but still does not
address algorithms with general base graphs.

In this paper we present the first approach for proving
I/O-complexity lower bounds for recursive fast matrix multi-
plication algorithms involving arbitrary base graphs, as long
as the same base graph is used at each recursive step.

2. NEW APPROACH
Most previous lower bounds in this field are based on the

Loomis-Whitney inequality (as in [12]), dominator sets/S-
partitions (as in [10], [14], and [7]), or edge expansions (as in
[6] and [4]). In this paper we apply a new technique, based
on the existence of a routing of paths within the underlying
computation graph. In particular, we show the existence of
a set of paths between all the inputs and all the outputs
of sufficiently large matrix multiplication subcomputations
such that each vertex is hit relatively few times. We then
show that if some, but not all, of these input and output
vertices are to be computed in one computation segment,
then there must exist many other vertices that contribute
cache I/Os as a result. This new approach may generalize to
other problems that have sufficient symmetry to guarantee
the existence of an efficient routing.

3. PRELIMINARIES
As in [6], we define the computation directed acyclic graph

(CDAG) of an algorithm to be the directed graph that con-
tains a vertex for every value in the computation (input,
output, or intermediate value) and an edge whenever one
value depends directly on another.

Strassen’s matrix multiplication algorithm works as fol-
lows: to multiply 2× 2 matrices A and B, compute specific
linear combinations of the entries of A and linear combina-
tions of the entries of B, perform 7 multiplications of these
linear combinations, and then take linear combinations of
the results to get the entries of C = AB. For larger square
input matrices, divide each input matrix in half horizontally
and vertically and apply the above procedure, recursively
computing the necessary products of submatrices.

A Strassen-like algorithm is a square matrix multiplica-
tion algorithm that takes a similar form: to multiply matri-
ces of dimensions n0 × n0, take linear combinations of the
input matrices, compute products, and take linear combina-
tions of the results to yield the entries of the output matrix.
For larger matrices, divide into blocks and recurse.

Let Gr be the CDAG of a Strassen-like algorithm for
nr
0 × nr

0 square matrix multiplication C = AB, necessarily
consisting of r recursive levels. We call G1 the base graph.
G1 consists of two encoding graphs, which compute linear
combinations of entries of A and of B, a multiplication layer
with b multiplication vertices, which compute products of
these linear combinations, and then a decoding graph, which
takes linear combinations of these products to yield the en-
tries of C. Note that G1 has 2n2

0 inputs, n2
0 from each input

matrix. Further note that the same linear combination of
input elements may be used as inputs in multiple product
vertices. In this paper all figures show computations that
proceed from bottom to top; we therefore omit the direc-
tions of edges. See Figure 1.

Figure 1: The base graph G1 of Strassen’s algorithm
for multiplying two 2 × 2 matrices A and B. Here
b = 7.

Note that Gr is a ranked graph, with inputs on rank 0 and
outputs on rank 2r. Ranks 0 through r lie in the encoding
graphs and ranks r+1 through 2r lie in the decoding graph;
the multiplication layer occurs between ranks r and r + 1.

An intermediate vertex in Gr may have a single input
vertex and, in this case, may have the same value as its
one input. We call this copying ; if the same value is copied
to more than one child vertex, we call it multiple copying.
We could consider this an artifact of our drawing of Gr and
choose to identify these vertices. However, doing so would

36

break the simple ranked, recursive structure of Gr. Instead,
we group all vertices that represent the same value into a sin-
gle meta-vertex. The vertices corresponding to each meta-
vertex form a chain in the case of single copying and an
upwards-branching subtree of the CDAG in the case of mul-
tiple copying, where each vertex of the subtree apart from
the root has no other edges entering it from below. See Fig-
ure 2 for a depiction of a meta-vertex in the case of multiple
copying. For most of this paper we consider only vertices,
not meta-vertices, and then show that our technique still
applies when copying or multiple copying occurs.

Figure 2: The meta-vertex corresponding to copies
of the vertex v. Edges whose endpoints are not
shown denote edges to vertices not in the shown
meta-vertex. If this meta-vertex is in the CDAG for
Strassen-like matrix multiplication, the structure of
the meta-vertex is actually more regular than de-
picted due to the simple recursion.

The approach in [6] fails when the decoding graph of the
base graph G1 has a disconnected encoding or decoding
graph. Note that the entire CDAG Gr (and similarly G1)
must be connected simply because it computes matrix mul-
tiplication (this will be shown in greater detail in the process
of proving Lemma 4), but the decoding graph and/or encod-
ing graph may not be connected individually.

In this paper, we first demonstrate a technique to de-
rive the I/O-complexity bound for Strassen’s algorithm pre-
sented in [6] more easily. We then show how to extend
the technique, via use of Theorem 2, to the case of dis-
connected decoding and/or encoding graphs, allowing us to
derive strong lower bounds for all Strassen-like matrix mul-
tiplication algorithms in which each linear combination is
used in only one multiplication. This will prove Theorem 1,
our main result. Finally, we present a proof of Theorem 2.

Theorem 1 (Main Theorem). Let a and b be small
constants. Consider a Strassen-like matrix multiplication al-
gorithm for n×n matrices with arithmetic complexity o(n3)
using cache size M ≤ o

(
n2
)

in which the base graph has
2a inputs and b outputs. If in the base graph every non-
trivial linear combination of elements of the input matrices

is used in only one multiplication, then the algorithm has
I/O-complexity

Ω

((
n√
M

)2 loga b

·M

)
.

If run on P processors each of local cache size M , then the
bandwidth cost is

Ω

((
n√
M

)2 loga b

· M
P

)
.

In other words, if a Strassen-like matrix multiplication algo-
rithm performs Θ(nω0) arithmetic operations with ω0 < 3,
then its I/O-complexity is

Ω

((
n√
M

)ω0

·M
)
.

If run on P processors, the bandwidth cost is

Ω

((
n√
M

)ω0

· M
P

)
.

Furthermore, regardless of the cache size the bandwidth
cost is

Ω

(
n2

P 2/ω0

)
as long as computation is load balanced per rank of the com-
putation graph.

In [3] an explicit algorithm is given that attains the bounds
in Theorem 1. The sequential-to-parallel argument from [2]
(as well as [6], [12], and [5]) allows us to take P = 1 – that
is, work entirely in the serial model – and get the factor of 1

P
in the parallel case with no additional work. Therefore, the
remainder of this paper is devoted to proving a lower bound

of Ω

((
n√
M

)2 loga b

·M
)

in the sequential case, from which

Theorem 1 follows. By [3], the lower bounds in Theorem 1
are optimal.

4. DEFINITIONS
The proof presented in [6] relies on the notion of edge

expansion; it shows a lower bound for the edge expansion
of small subsets of vertices of the CDAG for Strassen’s al-
gorithm and then applies a lemma to yield a better edge
expansion bound that relies on the fact that Gr contains as
subgraphs many edge-disjoint copies of Gk for k < r. In
our proof we bypass edge expansions entirely by explicitly
cutting Gr into many copies of Gk for k < r. Both meth-
ods rely on the following fact, which is a consequence of the
recursive definition of Strassen-like algorithms:

Fact 1. For 0 ≤ k ≤ r, let Gr,k be the induced subgraph
of Gr formed by the middle 2(k + 1) levels of vertices (i.e.
ranks r − k through r of the encoding graphs and rank 0
through k of the decoding graph). Then Gr,k consists of br−k

vertex-disjoint copies of the graph Gk.

In other words, the middle 2(k+1) layers of Gr are responsi-
ble for computing br−k independent matrix multiplications
of square matrices of size nk

0 × nk
0 .

37

Definition 1. For any subset S of vertices of a compu-
tation graph G with directed edges E, define the following:

1. R(S) = {v ∈ G− S | for some w ∈ S, (v, w) ∈ E}

2. W (S) = {v ∈ S | for some w ∈ G− S, (v, w) ∈ E}

3. δ(S) = R(S)
⋃
W (S)

Note that R(S) and W (S) are disjoint, so |δ(S)| = |R(S)|+
|W (S)|. If S denotes a set of consecutively-computed ver-
tices of G, then R(S) denotes the set of vertices of G that
must be read into cache, if not already present, during the
computation of the vertices of S, and W (S) the set of ver-
tices of G that must be written to cache, if not to remain in
cache after the computation of S. We assume that no ver-
tex in G is ever computed more than once, meaning that if a
vertex is used in the computations of multiple other vertices,
it must either remain in cache until all the computations of
vertices depending on it have finished or else be written to
and read from cache.

We also assume that every linear combination of inputs in
the base graph – except for the inputs themselves – is used
in at most one multiplication in the base graph; this implies
that every meta-vertex in the base graph is either a single
vertex or else is rooted at one of the input vertices.

If S′ is a subset of meta-vertices of G, we similarly define
δ′(S′) = {meta-vertex v′ of G not in S′ |

for some w′ ∈ S′, v′ and w′ are adjacent},
where two meta-vertices v′ and w′ are considered to be adja-
cent if for some vertex v ∈ v′ and vertex w ∈ w′, (v, w) ∈ E
or (w, v) ∈ E. In other words, δ′(S′) is the set of meta-
vertices adjacent to any of those in S′.

The main proof in this paper is based on finding routings
of paths between sets of vertices in subgraphs of the CDAG
that avoid using any vertex too many times. To this end we
make the following definition:

Definition 2. If X and Y are subsets of the vertices
V (G) of a directed graph G, define an m-routing between X
and Y to be a collection R of |X||Y | paths such that for any
x ∈ X and y ∈ Y there exists a path, ignoring the direct-
edness of edges, in G between x and y and such that every
vertex of G is used collectively amongst all the paths in R at
most m times. Similarly, if F is a subset of V (G)× V (G),
define an m-routing for F to be a collection of paths, one
for every (v, w) ∈ F , such that every vertex of G is hit at
most m times.

We will consider only the case where X and Y are disjoint.
Note that m-routings need not be unique, and in fact part
of the challenge of our proof is constructing a canonical m-
routing with sufficiently small m.

Definition 3. Let G = (V,E) and S ⊆ V . If p is a
path in G that contains at least one vertex in S and at least
one vertex in G− S, then we call p boundary-crossing with
respect to S in G.

Note that any boundary-crossing path contains a pair of ad-
jacent vertices such that one is in S and the other is not. Our
basic strategy will be to show the existence of m-routings for
relatively small m, and then show that such a routing must
contain many boundary-crossing paths, implying the exis-
tence of many vertices in δ(S) and thus many meta-vertices
in δ′(S′).

5. SIMPLE PROOF FOR STRASSEN’S AL-
GORITHM

First we use our technique to rederive the lower bound on
the I/O-complexity for Strassen’s algorithm presented in [6],

Ω

((
n√
M

)log2 7

·M
)

. As in [6], we consider the sequence of

computations of vertices performed by the algorithm. In [6],
this sequence is divided up into segments of sufficient length
such that the I/O due to each segment is guaranteed to be
at least M , the cache size. To do this, the smallest segment
length s is found such that for any segment S of size s we are
guaranteed that |δ(S)| ≥ 3M . All vertices present in δ(S)
contribute to the I/Os due to S, except for vertices in R(S)
already present in cache (at most M) and vertices in W (S)
that need not be written to cache (at most M). Because
[6] considers only the decoding graph of Gr, there are no
concerns about vertex copying.

We use the same basic argument, but instead divide the
sequence of vertex computations of the CDAG Gr into the
smallest segments possible such that each segment S (except
perhaps the last segment) contains 66M vertices from rank
k of the decoding graph (rank r+k of Gr) 1. When a vertex
v is in S we consider every vertex in the same meta-vertex
as v to also be in S; however, because there is no copying in
the decoding graph every meta-vertex can contain only one
vertex from the decoding graph. Note that the size of each
segment may be different; we care only about the number
of vertices on this specific rank. We let k = dlog4(132M)e,
the smallest integer k such that 4k ≥ 2 · 66M . Because
rank k of the decoding graph contains 4k7r−k vertices, there

are
⌊
4k7r−k

66M

⌋
such complete segments. Let S be one such

complete segment and let S̄ denote the vertices in S on rank
k of the decoding graph of Gr. Thus we pick S as small
as possible such that |S̄| = 66M . If Gr is the CDAG for
Strassen’s algorithm for multiplying nr

0×nr
0 matrices, recall

that Gr,k contains 7r−k copies of the graph Gk. For 1 ≤ i ≤
7r−k, let Gi

k be the ith such copy, Si be the subset of S in
Gi

k, and S̄i be the subset of vertices of Si on rank k of Gr.
Intuitively, we “count”S by the number of vertices of S on

this particular rank. It is these vertices that will contribute,
perhaps indirectly, to I/Os performed during the computa-
tion of S, regardless of what vertices on other ranks lie in
S.

Let Dk be the decoding graph of Gk. We now claim that
there exists a routing of paths between all the input vertices
and output vertices of Dk such that no vertex of Dk is hit
too often:

Claim 1. There exists an
(
11 · 7k

)
-routing in Dk between

the set of inputs of Dk and the set of outputs of Dk.

Proof. If D1 were simply the complete graph K7,4, there
would exist a very natural routing of paths between inputs
and outputs of Dk: for any input and output, there is a
unique chain of vertices between them defined by the se-
quence of subcomputations the input lies in. A vertex on
rank i of Dk is then hit 7i4k−i ≤ 7k times in this routing,
once for every pair of input vertex beneath it and output
vertex above it.

Unfortunately, D1 is not a complete graph. However, be-
cause D1 is connected there still exists a path within each
copy of D1 from any input vertex to any output vertex.

1We did not optimize for the constant factor.

38

Where each path previously went directly from an input
vertex v to an output vertex w of each D1, it will now take
any path (that doesn’t repeat vertices) through the same D1

component from v to w. This idea is depicted in Figure 3.
This multiplies the number of times a vertex is hit in the
routing by at most the number of vertices in D1, 11.

Figure 3: One of the encoding graphs in G1 for
Strassen’s algorithm. Because there is no edge from
v to w, a chain must instead take a more indirect
path, shown in red, through the encoding graph.

Each Gi
k contains a copy of Dk – for this proof we consider

only the decoding piece Dk of Gk, but in the full proof we
must consider Gk in its entirety in order to account for base
graphs with disconnected encoding/decoding portions. Let
Di

k be the copy of Dk lying in Gi
k and note that |S̄i| ≤ 1

2
4k,

so at most half of the vertices on the top rank of Di
k are in

S. For each 1 ≤ i ≤ 7r−k, fix an
(
11 · 7k

)
-routing in Di

k

between the 7k inputs and 4k outputs. See Figure 4. There
are now two cases:

1. Fewer than half of the 7k vertices on the bottom rank
of Di

k are in S. In this case, there exist at least |S̄i| 127k

paths in the routing going from an input to Di
k not in

S to an output in S.

2. At least half of the vertices on the bottom rank of Di
k

are in S. In this case, there exist at least
(
4k − |S̄i|

)
1
2
7k

paths in the routing going from an input in S to an
output not in S.

In either case, there are at least 1
2
|S̄i|7k boundary-crossing

(between Si and Di
k − Si) paths in the routing. Associate

to each boundary-crossing path an edge in the path that
crosses between Si and Di

k − Si. The vertex of this edge
that is not in S lies in δ(Si). By the definition of m-routing,

|δ(Si)| ≥
1
2
|S̄i|7k

11 · 7k
=

1

22
|S̄i|

Adding this up over all the S̄i yields

|δ(S)| ≥
7r−k∑
i=1

1

22
|S̄i| =

1

22
|S̄| (1)

This step relies on the Dk being disjoint and the lack of
copying in the decoding graph of Strassen’s (or any Strassen-
like) matrix multiplication algorithm. If multiple copying
did occur, vertices in the different Di

k need not correspond
to distinct computations. This will add an additional layer
of complexity to the upcoming proof.

Since |S̄| was chosen to be 66M , this yields δ(S) ≥ 3M .
Therefore the computation of S contributes at least M I/Os.
Thus the total I/O is at least⌊4k7r−k

66M

⌋
·M = Ω

(
7r

(
4

7

)k
)

= Ω

(
|V (Gr)| M

M log4 7

)

= Ω

((
n0√
M

)log2 7

·M

)
as long as M ≤ o

(
n2
0

)
(which guarantees that 66M ≤

4k7r−k). �

Figure 4: An example of a path considered in the(
11 · 7k

)
-routing between an input vertex (to D1

k)
that is not in S and an output vertex that is in S.
The submultiplications are shown in red, S1 is shown
in blue, and S̄1 is circled. Note that the path zags
up and down, as explained in Figure 3. For simplic-
ity, only one encoding graph is shown and only 3
submultiplications are drawn.

6. STRASSEN-LIKE ALGORITHMS
We now turn our attention to Strassen-like square ma-

trix multiplication algorithms. Several nuances prevent our
above proof from working as-is:

1. G1 may have disconnected encoding or decoding graphs.
This prevents us from finding an m-routing in the de-
coding graph Dk because Dk itself may no longer be
connected. We will solve this problem by considering
Gk, consisting of the decoding graph as well as the two
encoding graphs. The paths in our m-routing will no
longer be chains or even chains with length 1 “zags,”
but may need to bounce between inputs and outputs
of Gk several times. See Figure 5.

2. Multiple copying may occur in the encoding graphs.
This means a collection of m-routings for the Gi

k could
potentially hit a meta-vertex more than m times. We
will show via Theorem 2 that m-routings will only hit
a meta-vertex entirely within Gk at most m times and
then change the overall counting argument slightly to
prevent meta-vertices between multiple Gi

ks from be-
ing hit too often.

39

As before, we divide the sequence of vertex computa-
tions of Gr into segments such that each segment S con-
tains enough vertices of a certain type. Again let Gi

k be the
ith subcomputation of Gr,k for 1 ≤ i ≤ br−k. Let a du-
plicated vertex be a vertex of the CDAG Gr with at least
one other copy (called a duplicate) in Gr, that is one whose
meta-vertex contains more than one vertex. We call two
subcomputations input-disjoint if none of their inputs lie in
the same meta-vertex.

Let S be a segment of the sequence of vertex computa-
tions. Recall that when v ∈ S we consider every vertex
w in the same meta-vertex as v to also be in S. For this
argument we count only the vertices on rank k of the de-
coding graph of Gr and rank r− k of either encoding graph
that are in mutually input-disjoint subcomputations Gr,k.
We choose k = dloga 72Me, the smallest integer k such that
ak ≥ 2 · 36M .

First we show that counting only vertices lying in sub-
computations that do not share inputs reduces the number
of vertices on the relevant ranks by only a constant factor.

Lemma 1. Let k ≤ r − 2. If not every vertex in the en-
coding graph for A of G1 is a duplicated vertex and similarly
for the encoding graph for B of G1, then a fraction 1

b2
of the

subcomputations Gi
k are mutually input-disjoint.

Proof. Consider the recursion tree of subcomputations
computed by Gr. Let P1 be the “grandparent” subcompu-
tation of Gi

k – the subcomputation in the recursion tree two
levels above Gi

k – and suppose P1 multiplies matrices A1

by B1. Then at least one child subcomputation P2 of P1

multiplies matrices A2 by B2 such that A2 shares no meta-
vertices with A1. Similarly, at least one child subcomputa-
tion of P2 multiplies matrices A3 by B3 such that B3 shares
no meta-vertices with B2, and hence with B1. Thus at least
one subsubcomputation of P1 is input-disjoint from it. P1

has b2 subcomputations two levels down from it, so at least
a fraction 1

b2
of all the subcomputations Gi

k are mutually
input-disjoint.

Fix a collection C of br−k−2 mutually input-disjoint sub-
computations Gi

k. Let S̄ be the set of vertices of S on the
aforementioned ranks in these subcomputations. Formally,
for v ∈ S we let v ∈ S̄ if both conditions below are met:

1. v lies on one of the following ranks: rank k of the
decoding graph of Gr, rank r−k of the encoding graph
of Gr that encodes A, or rank r − k of the encoding
graph of Gr that encodes B.

2. The subcomputation Gi
k that v lies in (necessarily as

an input or output of) is in C.

Divide the sequence of vertex computations into the smallest
segments such that for each segment S we have |S̄| ≥ 36M .
Let Si be the subset of S in Gi

k and S̄i be the subset of S̄ in
Gi

k. Note that if Gi
k is not one of the chosen input-disjoint

subcomputations then S̄i = ∅. Intuitively, only the vertices
in S̄ “count” towards our I/O lower bound, regardless of how
many other vertices lie in S, and we choose our segment di-
visions such that each segment has enough counted vertices.
See Figure 5.

Note that if the condition of Lemma 1 is not met, then
the algorithm never computes linear combinations of one
of the input matrices. It is well known that any matrix

Figure 5: The overall idea of the main proof. For
simplicity only one encoding graph is explicitly
drawn. The set S is shown in blue. Note that only
the elements on rank k of the decoding graph and
rank r − k of the encoding graphs in input-disjoint
Gi

ks lie in S̄. A typical boundary-crossing path in G3
k

is shown. (Not shown) The two vertices of the path
on the bottom rank of G3

k lie in different encoding
graphs.

multiplication algorithm that computes linear combinations
of only one of the input matrices performs no better than
naive matrix multiplication and so does not have o(n3) arith-
metic complexity (i.e., is not a fast matrix multiplication
algorithm). Thus from now on we assume the condition of
Lemma 1 is met.

Second, we show that our choice of partitioning the se-
quence of vertex computations into segments S exists. If
meta-vertices contained multiple input and/or output ver-
tices counted in S̄, then including into S the next vertex v in
the sequence of vertex computations – which by definition
also includes into S every vertex in the same meta-vertex as
v – could increase this count by more than one.

Lemma 2. If Gi
k and Gj

k are input-disjoint, then the meta-
vertices corresponding to the inputs and outputs of Gi

k and
Gj

k are all distinct.

Proof. Note that the decoding graph of G1 cannot con-
tain copying. If it did, then in the base case of n0 × n0

matrix multiplication C1 = A1B1 some outputs would be
identically equal, which is not the case. Hence the decoding
graph of Gr contains no copying, and so every output ver-
tex of Gi

k and Gj
k is non-duplicated. By definition, the input

vertices of Gi
k and Gj

k are in distinct meta-vertices, proving
the lemma.

For the remainder of this proof we will consider, for each
i, the entire subcomputation graph Gi

k (as opposed to just
the decoding portion Di

k). We must consider the decoding
graph and both encoding graphs of Gi

k together because the
decoding graph by itself, or even the decoding graph plus
one encoding graph, may be disconnected. We now state
the main theorem used in our proof, whose proof we defer
until Section 7. Compare to the routing found in Section 5
between the input and output vertices of each Di

k.

40

Theorem 2 (Routing Theorem). Let Gk be the CDAG
for nk

0 × nk
0 matrix multiplication, a = n2

0, and let the
encoding graph of the base graph G1 have 2a inputs and b
outputs. Then there exists a 6ak-routing between the set of
inputs of Gk and the set of outputs of Gk. Furthermore, ev-
ery meta-vertex in Gk is also hit by the routing at most 6ak

times.

For each of the mutually input-disjoint Gi
k in C, fix a

6ak-routing guaranteed by the Routing Theorem between
the inputs and outputs of Gi

k. Because the size of the top
rank of Gi

k is ak and the size of the bottom rank is 2ak and
|S̄i| ≤ |S̄| ≤ 1

2
ak, for every vertex v in S̄i there exist at least

1
2
ak paths in the routing that go either:

1. between a vertex in S on the bottom rank of Gi
k and

a vertex not in S on the top rank of Gi
k (if v is on the

bottom rank)

2. between a vertex not in S on the bottom rank of Gi
k

and a vertex in S on the top rank of Gi
k (if v is on the

top rank).

Thus the routing in Gi
k contains at least 1

2
ak|S̄i| boundary-

crossing paths; call the set of such paths Pi and let P =
⋃
i

Pi

be all these boundary-crossing paths in the above routings
for all input-disjoint Gi

k. Then |P | ≥
∑
i

1
2
ak|S̄i| = 1

2
ak|S̄|.

By the Routing Theorem every meta-vertex contained en-
tirely within Gi

k is hit by the routing at most 6ak times. No
meta-vertex in Gi

k extends beneath the bottom rank of Gi
k,

and so every meta-vertex in Gr intersects at most one of the
mutually input-disjoint Gi

k. Therefore every meta-vertex in
Gr is hit at most 6ak times by the paths in P .

Let S′ be the set of meta-vertices represented by S, and
recall that δ′(S′) denotes all meta-vertices adjacent to S′

that are not in S′ itself. Then

|δ′(S′)| ≥
1
2
ak|S̄|
6ak

=
1

12
|S̄| (2)

This is a more general analogue of Equation 1.
Every meta-vertex adjacent to S necessarily contributes

one to the I/Os due to computing S, except possibly for
those meta-vertices already in memory (at most M) and
those that need not be written to cache (at most M). Be-
cause |S̄| = 36M , we have |δ′(S′)| ≥ 3M , and so computing
S requires at least M I/Os.

As indicated above, because Gr has o(n3) multiplications
we may apply Lemma 1. Because rank k of the decoding
graph of Gr and rank r − k of the encoding graphs of Gr

together have size 3akbr−k and 1
b2

of these vertices are in

mutually input-disjoint subcomputations Gi
k, the total I/O

from computing Gr is at least⌊ 1
b2

3akbr−k

36M

⌋
·M = Ω

(
br
(a
b

)k)
= Ω

(
|V (Gr)| M

M loga b

)

= Ω

((
n√
M

)2 loga b

·M

)
as long as M ≤ o

(
n2
)

(which guarantees that 36M ≤
1
b2

3akbr−k and k ≤ r − 2).
In the parallel case, we apply the above argument to a pro-

cessor that computes an above-average number of vertices

of S̄, yielding a factor of 1
P

as in [2]. The cache-independent

result comes from instead picking k = Θ
(

logb
nω0

P

)
and let-

ting S represent the computations performed by just one
processor. This proves Theorem 1. �

7. PROOF OF THE ROUTING THEOREM
In this section we prove Theorem 2. Let Gk be the CDAG

for a square Strassen-like matrix multiplication algorithm for
C = AB, let Out be the set of outputs of Gk (corresponding
to entries of C), In be the set of inputs, InA be the set
of inputs to the encoding graph for A within Gk, and InB

be the inputs to the encoding graph for B. Then |Out| =
|InA| = |InB | = ak = n2k

0 . For v ∈ In and w ∈ Out, we say
that the input-output pair (v, w) is a guaranteed dependence
if in any correct matrix multiplication algorithm there exists
a chain from v to w, or equivalently if the output element
corresponding to w explicitly depends on the input element
corresponding to v. It is clear that if v ∈ InA represents
the input aij and w represents the output ci′j′ then there
is a guaranteed dependence between v and w if and only if
i = i′, and similarly if v ∈ InB represents the input bij , then
there is a guaranteed dependence between v and w if and
only if j = j′.

To prove the Routing Theorem we will combine the fol-
lowing two lemmas, whose proofs follow in the succeeding
sections:

Lemma 3. Let F ⊆ V (Gk)×V (Gk) be the set of all guar-
anteed dependencies (v, w) of Gk with v ∈ In and w ∈ Out.
Then there exists a 2nk

0-routing for F in Gk consisting only
of chains.

Intuitively, we can route chains between all pairs of input
and output vertices where a chain is guaranteed to exist
while using no vertex more than 2

√
ak times. That every

path of the routing is a chain is not necessary to complete
the proof of the Routing Theorem.

Lemma 4. Fix a routing for F , where F is as defined in
Lemma 3. Then there exists a routing between In and Out
such that every path in the routing consists of the concate-
nation of chains in F – some reversed in direction – such
that each chain in F is used 3nk

0 times.

In other words, given any way of routing chains between
all guaranteed dependencies, we can combine those chains,
backwards and forwards, to give a path between every input
and every output vertex while not using any such chain more
than 3

√
ak times.

Given these lemmas, the proof is simple:

Proof of the Routing Theorem. By Lemma 3, fix a
2nk

0-routing R0 for the set of guaranteed dependencies F . By
Lemma 4, there exists a routing R between the inputs and
outputs of Gr composed of concatenations of chains (some
reversed) in R0 such that every chain in R0 is used at most
3nk

0 times. Thus in the routing R every vertex of G is used
at most 2nk

0 · 3nk
0 = 6ak times, and so R is a 6ak-routing, as

desired.
Because every meta-vertex is an upward-facing subtree

(see Figure 2), any path hitting a meta-vertex also hits the
root vertex of the meta-vertex. Hence every meta-vertex is
also hit at most 6ak times.

41

7.1 Proof of Lemma 4
In this section we prove the second, significantly easier,

lemma. The proof of this lemma is constructive, yielding an
explicit scheme for routing chains between all inputs and
outputs given a routing for all guaranteed dependencies.
This lemma holds for any correct matrix multiplication algo-
rithm based only on the definition of matrix multiplication.

Proof of Lemma 4. For an input vertex v of Gk and

output vertex w corresponding to element ci′j′ of C, suppose

first that v ∈ InA. Let v then represent element aij of A.

We form the following sequence of guaranteed dependencies:

aij → cij′ → bjj′ → ci′j′

That is, (aij , cij′) is a guaranteed dependence, (bjj′ , cij′)
is a guaranteed dependence, and (bjj′ , ci′j′) is a guaranteed
dependence. Note that every guaranteed dependence in this
chain involves 3 out of the 4 variables i, i′, j, and j′. Hence
as i, j, i′, and j′ vary between 1 and nk

0 , each guaranteed
dependence above is used nk

0 times, once for each value of
the missing variable (for each time it appears in the above
sequence). For example, for any i, j, and j′, the guaranteed
dependence between aij and cij′ is used exactly once for

every 1 ≤ i′ ≤ nk
0 . See Figure 6 for another interpretation

of this pattern.

Similarly, if v ∈ InB let v correspond to element bij of B.

The following sequence of guaranteed dependencies has the

same properties:

bij → ci′j → ai′i → ci′j′

Amongst both these sequences, each guaranteed depen-
dence between an element of A and one of C is used exactly
3 · nk

0 times and similarly for every guaranteed dependence
between B and C. This proves Lemma 4.

Note that these sequences are not unique. When routing

aij to ci′j′ , any sequence of the form

aij → cij′ → b j′ → ci′j′

where the blank is any value forms a set of sequences of
guaranteed dependencies. However, unless the values that
the blank takes are well-distributed over j for all choices of
i, i′, and j′, this sequence will not have the desired property.
This explains the odd use of j as a row index, and similarly
the use of i as a column index when routing bij to ci′j′ .

Figure 6: The sequence of guaranteed dependencies
between aij and ci′j′ shown as elements in the ma-
trices A, B, and C. Note the use of j as a row index.

7.2 Proof of Lemma 3
This lemma is significantly harder to prove. We use the

following overall strategy: In order to prove there exists a
2nk

0-routing between all guaranteed dependencies, we show
there exists a n0-routing of guaranteed dependencies in the
subgraph of G1 formed by the decoding graph together with
the encoding graph for A; by the recursive structure of Gk,
this is sufficient to prove it in general. Define a middle-rank
vertex of G1 to be a vertex on the top rank of the encoding
graph of A. To show the lemma for this 2

3
of G1, we show

a (several-to-one) matching between guaranteed dependen-
cies and middle-rank vertices on some chain satisfying the
dependence. By assumption, every vertex representing a lin-
ear combination of elements of A is adjacent to exactly one
multiplication vertex; thus a routing of guaranteed depen-
dencies that uses each middle-rank vertex at most n0 times
also uses each multiplication vertex at most n0 times.

We will prove the existence of this matching via a version
of Hall’s Matching Theorem. In order to apply this theo-
rem, we will need to show that for every set of d guaranteed
dependencies, there exist chains between those dependen-
cies collectively hitting at least d

n0
middle-rank vertices. We

demonstrate that if this is not the case, then setting some
entries of the n0 × n0 input matrix A to be identically 0
results in an algorithm that correctly computes many of the
guaranteed dependencies between C and A using relatively
few multiplications. Finally, we show that this implies the
existence of an algorithm for multiplying a n0 × n0 matrix
by a length n0 vector in fewer than n2

0 operations, which is
known to be impossible [15]. This will conclude the proof.

Let G′k be the induced subgraph of Gk containing the
vertices from the decoding graph of Gk and the encoding
graph of Gk for A (excluding only the encoding graph for B).
Let F ′ be the subset of F with both vertices lying in G′k, that
is the set of guaranteed dependencies (v, w) between inputs
v of A and outputs w of C. For simplicity, we simply call
F ′ the guaranteed dependencies of G′k. We now consider m-
routings for the set of guaranteed dependencies (that is, F ′)
of G′k. It then suffices to find an ak-routing of guaranteed
dependencies in G′k.

Claim 2. If there exists an m-routing for the guaranteed
dependencies of G′1, then there exists an mk-routing for the
guaranteed dependencies of G′k.

Proof. This lemma follows from the recursive structure
of G′k. Intuitively, the graph G′k is formed by placing b
copies of G′k−1 in parallel, connecting up their inputs with

ak−1 copies of the encoding graph for A, and connecting up
their outputs with ak−1 copies of the decoding graph for C.
See Figure 7. In other words, take ak−1 copies of G′1 and
replace their middle two ranks with copies of G′k−1. Any
number of copies of G′1 in parallel still have an m-routing for
guaranteed dependencies, and replacing their middle ranks
effectively replaces a pair of adjacent vertices on the middle
ranks with a guaranteed dependence in G′k−1. Thus if there

exists an mk−1-routing for Gk−1 then there exists an mk

routing for Gk. The claim then follows by induction.

Therefore it will suffice to prove the existence of an n0-
routing for the guaranteed dependencies of G′1. We now
apply a version of Hall’s Matching Theorem:

42

Figure 7: The construction of G′k from b copies of
G′k−1. A pair of adjacent vertices on the middle two
ranks is replaced with a guaranteed dependence in
one of the G′k−1.

Theorem 3 (Hall’s Matching Theorem). (Many-to-
one version) Let G = (X,Y) be a bipartite graph and for
D ⊆ V (G) let N(D) denote the set of neighbors of D in G.

If for every D ⊆ X we have |N(D)| ≥ |D|
p

, then there exists
a many-to-one matching between X and Y such that every
vertex in X is used exactly once and every vertex in Y is
used at most p times.

This theorem follows from the standard form of Hall’s Match-
ing Theorem by simply duplicating all vertices in Y p times.

We now construct a graph H = (X,Y) to which to apply
Theorem 3. For every guaranteed dependence (v, w) in G′1
(with v an input representing an element of A and w an
output representing an element of C), define a corresponding
vertex in X. Let Y be the set of middle-rank vertices of G1:
all vertices on the top rank of the encoding graph for A.
It suffices to assign to each guaranteed dependence in X
a middle-rank vertex from Y through which its chain may
pass. To this end, if x ∈ X corresponds to the guaranteed
dependence (v, w) and y ∈ Y corresponds to the middle-
rank vertex t, let there be an edge between x and y if there
exists some chain between v and w passing through t. See
Figure 8.

Figure 8: The vertices shown in red are those adja-
cent to the vertex in H corresponding to the guaran-
teed dependence (v, w), where v corresponds to the
input a12 of A and w corresponds to the output c11
of C. The graph shown is the G′1 for Strassen’s al-
gorithm.

Lemma 5. For any set D ⊆ X, we have |N(D)| ≥ |D|
n0

.

From Lemma 5, the proof of Lemma 3 follows, and thus
our main result:

Proof of Lemma 3. By Hall’s Matching Theorem (The-
orem 3), there exists a many-to-one matching from X to Y
using every vertex in Y at most n0 times. Fix such a match-
ing. For every guaranteed dependence (v, w) of G′1, simply
route a chain through the vertex of Y that (v, w) is matched
with. Every vertex on the middle two ranks of G′1 is thus hit
at most n0 times. Every vertex on the top and bottom ranks
of G′1 is hit exactly n0 times by any routing for guaranteed
dependencies that uses only chains, because in n0 × n0 ma-
trix multiplication every element of A influences n0 elements
of C, and every element of C depends on n0 elements of A.
Thus there exists a n0-routing for the guaranteed dependen-
cies in G′1, and so by Claim 2 there exists a nk

0-routing for
the guaranteed dependencies of G′k. The same holds for the
induced subgraph of G1 consisting of the decoding graph to-
gether with the encoding graph for B, yielding a 2nk

0-routing
for the guaranteed dependencies of Gk.

7.3 Proof of Lemma 5
Finally, we prove Lemma 5 to complete the proof of the

Routing Theorem and thus our main result, Theorem 1:

Proof of Lemma 5. Suppose by way of contradiction
that for some subset D ⊆ X of guaranteed dependencies

in G′1 we have |N(D)| < |D|
n0

. Recall that a guaranteed
dependence occurs between the vertex representing aij and
the vertex representing ci′j′ exactly when i = i′. We may
thus partition D by the choice of i: let Di be the subset of
D consisting of guaranteed dependencies between aij and
cij′ for some j and j′. Because 1 ≤ i ≤ n0, for some

i we have |Di| ≥ |D|
n0

. Since N(Di) ⊆ N(D), we have

|N(Di)| < |D|
n0
≤ |Di|. In other words, the set of guar-

anteed dependencies Di is computed using fewer than |Di|
multiplication vertices.

We now demonstrate that this is impossible by using this
structure to create a matrix-vector multiplication algorithm
that requires fewer than n2

0 multiplications. For fixed Di, de-
fine the computation graph G◦1 as follows: G◦1 is the induced
subgraph of G1 containing as inputs vertices corresponding
to all the elements of B and their linear combinations, the
elements aij of A for all j, and the elements cij′ of C for all
j′. G◦i additionally contains all the middle-rank vertices in
N(Di) and all vertices on the bottom rank of the decoding
graph. G◦1 may now contain “useless” vertices – we draw
G◦1 with these vertices additionally removed, but it does not
matter for the bounds in this proof.

By the structure of G1, every multiplication vertex multi-
plies a linear combination

∑
i,j

λA
ijaij by a linear combination∑

i,j

λB
ijbij for some coefficients λA

ij and λB
ij in the ground field

F (R or C). We consider linear combinations of the aijs
with coefficients in F [b11, b12, . . . , bn0n0]. In other words,
consider bijs to be coefficients and aijs to be variables. For
1 ≤ j ≤ n0, let aij and cij be the inputs and outputs of G◦1
respectively. Note that for all 1 ≤ j, j′ ≤ n0, cij depends
on aij′ . We now define a boolean-valued function f that
represents whether the coefficient of each input is correct
in each output: For 1 ≤ j, j′ ≤ n0, define f(j, j′) to be 1

43

Figure 9: G◦1 for Strassen’s algorithm when i = 2
and D2 = {(a21, c21), (a21, c22), (a22, c22)}. The crossed-
out vertices are those removed from G1 to construct
this reduced computation graph G◦1. Because the
guaranteed dependence (a22, c21) is not included in
D2, the vertex crossed out in blue is removed, and
so G◦1 does not quite compute vector-matrix multi-
plication; the coefficient of a22 in the computation of
c21 may not be correct.

exactly when the coefficient of aij′ in cij is its correct value
for matrix multiplication, namely bj′j , and otherwise 0.

Let nf denote the number of pairs (j, j′) with 1 ≤ j, j′ ≤
n0 at which f takes the value 1 – that is, the number of coef-
ficients correctly set by G◦1. By the definition of G◦1 relative
to the matching graph H, we have nf ≥ |Di|: If the guaran-
teed dependence of cij on aij′ is represented in Di, then the
coefficient of aij′ in cij must be “correct” for matrix mul-
tiplication, since, by definition of G◦1, there exists no chain
between the vertices corresponding to cij and aij′ contained
in G1 (which correctly computes matrix multiplication) but
not in G◦1.

Finally, we use G◦1 to construct a new, correct, vector-
matrix multiplication algorithm. Define Ḡ◦1 to be the CDAG
formed as follows: to the CDAG G◦1 add n2

0−nf multiplica-
tion vertices, one for each pair (j, j′) for which f(j, j′) = 0.
For 1 ≤ j, j′ ≤ n0 let the coefficient of aij′ in cij com-
puted by G◦1 be xj′j ∈ F [b11, b12, . . . , bn0n0] – a linear com-
bination of the “coefficients” bij . For each such j and j′ at
which f(j, j′) = 0, use a multiplication vertex to compute
aij′ (bj′j − xj′j) and add it to the output vertex represent-
ing cij . In other words, for every incorrect dependence of
cij on aij′ we may use a single multiplication vertex to “fix”
the dependence. Now Ḡ◦1 correctly computes n0×n0 vector-
matrix multiplication. G◦1 contained fewer than |Di| multi-
plication vertices and we added at most n2

0 − nf , so Ḡ◦1 has
< |Di| + n2

0 − nf ≤ |Di| + n2
0 − |Di| = n2

0 multiplication
vertices. Thus we have constructed a correct algorithm for
computing n0×n0 vector-matrix multiplication using fewer
than n2

0 multiplications, which is known to be impossible
[15]. This concludes the proof of Lemma 5 and hence of our
main result Theorem 1.

We state the result we obtained in the proof of Lemma 5
as its own Lemma:

Lemma 6. Let G◦1 be a CDAG with inputs aij and bij and
outputs cij for 1 ≤ i, j ≤ n0 where each cij is computed as
a product of linear combinations of the aij and bij. If for d
pairs (j, j′), 1 ≤ j, j′ ≤ n0, the coefficient of aij′ in cij is
bj′j, then G◦1 uses at least d multiplications.

8. CONCLUSION
We have proven optimal lower bounds for the I/O-complexity

of any Strassen-like square matrix multiplication algorithm
in which every linear combination in the base graph is used
in only one multiplication by proving the existence of a rout-
ing between the inputs and outputs of such an algorithm
that uses every intermediate computation vertex relatively
few times. The proof generalizes easily to algorithms com-
posed of different base graphs, as long as each base graph
performs square matrix multiplication with 2a inputs and
b subcomputations and satisfies the conditions of Lemma 1.
This bound holds regardless of the form of the base graph(s),
including those that have disconnected encoding or decod-
ing pieces and those that perform multiple copying. Our
technique provides a novel alternative to the edge expansion
argument in [6] that applies to less straightforward recursive
computation graphs.

We believe that the assumption that every linear combi-
nation is used in only one multiplication can also be lifted.
Without this assumption Lemma 5 no longer holds; vertices
representing linear combinations used in multiple multipli-
cations may require too many paths routed through them.
Thus a more general approach to routing guaranteed de-
pendencies is required. This difficulty can be overcome by
routing paths in response to the choice of S, where paths are
now allowed to “jump” to other vertices on the same rank
of Gk that have the same membership in S. We believe it
can be shown that this optimization does not decrease the
number of boundary-crossing edges and still results in every
vertex lying on at most 6ak “generalized”paths, thus extend-
ing our result to all fast Strassen-like matrix multiplication
algorithms.

9. ACKNOWLEDGMENTS
Research is supported by grants 1878/14, and 1901/14

from the Israel Science Foundation (founded by the Israel
Academy of Sciences and Humanities) and grant 3-10891
from the Ministry of Science and Technology, Israel. Re-
search is also supported by the Einstein Foundation and the
Minerva Foundation.

10. REFERENCES
[1] G. Ballard, E. Carson, J. Demmel, M. Hoemmen,

N. Knight, and O. Schwartz. Communication lower
bounds and optimal algorithms for numerical linear
algebra. Acta Numerica, 23:1–155, 5 2014.

[2] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Brief announcement: strong scaling of
matrix multiplication algorithms and
memory-independent communication lower bounds. In
Proc. 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), SPAA ’12,
pages 77–79, New York, NY, USA, 2012. ACM.

[3] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Communication-optimal parallel
algorithm for Strassen’s matrix multiplication.
Proceedings of the 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
2012, 2012.

[4] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz. Graph expansion analysis for
communication costs of fast rectangular matrix

44

multiplication. Design and Analysis of Algorithms,
7659:13–36, 2012.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in numerical linear
algebra. SIAM J. Matrix Anal. & Appl.,
32(3):866–901, 2011.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast
matrix multiplication. Journal of the ACM, 59(6),
2012.

[7] G. Bilardi, A. Pietracaprina, and P. D’Alberto. On the
space and access complexity of computation dags.
Proceedings of the 26th International Workshop on
Graph-Theoretic Concepts in Computer Science,
London, UK, pages 47–58, 2000.

[8] D. Bini, M. Capovani, F. Romani, and G. Lotti.
o(n2.7799) complexity for n× n approximate matrix
multiplication. Information processing letters,
8(5):234–235, 1979.

[9] M. Christ, J. Demmel, N. Knight, T. Scanlon, and
K. A. Yelick. Communication lower bounds and
optimal algorithms for programs that reference arrays
- part 1. Technical Report UCB/EECS-2013-61, EECS
Department, University of California, Berkeley, May
2013.

[10] J. W. Hong and H. T. Kung. The red-blue pebble
game. STOC 1981: Proceedings of the thirteenth
annual ACM symposium on theory of computing,
pages 326–333, 1981.

[11] J. Hopcroft and L. Kerr. On minimizing the number
of multiplications necessary for matrix multiplication.
SIAM Journal on Applied Mathematics, 20(1):30–36,
1971.

[12] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[13] L. H. Loomis and H. Whitney. An inequality related
to the isoperimetric inequality. Bulletin of the
American Mathematical Society, 55(10), 1949.

[14] J. Savage. Space-time tradeoffs in memory hierarchies.
Technical report, Brown University, Providence, RI,
USA, 1994.

[15] S. Winograd. On the number of multiplications
required to compute certain functions. Proceedings of
the National Academy of Science, 58(5), 1967.

[16] C.-Q. Yang and B. Miller. Critical path analysis for
the execution of parallel and distributed programs.
Proceedings of the 8th International Conference on
Distributed Computing Systems, pages 366–373, 1988.

45

