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Abstract. We describe and analyze a novel symmetric triangular factorization algorithm. The
algorithm is essentially a block version of Aasen’s triangular tridiagonalization. It factors a dense
symmetric matrix A as the product A = PLTLTPT , where P is a permutation matrix, L is lower
triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite
communication-avoiding factorization: it performs an asymptotically optimal amount of communi-
cation in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm
to parallel computers are likely to be communication efficient as well; one such adaptation has been
recently published. The current paper describes the algorithm, proves that it is numerically stable,
and proves that it is communication optimal.
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1. Introduction. The running time of algorithms is mostly determined by the
amount of arithmetic (or other primitive data transformations) and by the amount
and types of data movements that are required. Early analyses of algorithms focused
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COMMUNICATION-AVOIDING INDEFINITE FACTORIZATION 1365

on the amount of arithmetic and early algorithmic optimizations focused on attempts
to reduce this amount. These analyses are good predictors of actual running times
only on computers with a flat fine-grained memory, in which bringing a word to an
arithmetic unit costs about the same for all words.

Modern computers have multiple processors and memory systems that are far
from flat and fine-grained. These architectural features have been used for decades
now, but their effect on running times is becoming more and more significant [2].
In particular, communication between nodes in distributed-memory computers and
communication between levels in memory hierarchies have become major determinants
of performance.

The focus of this paper is a symmetric factorization algorithm that minimizes
these communication costs. The algorithm is a block variant of Aasen’s triangular
tridiagonalization algorithm [1]. We designed the algorithm so that it can be imple-
mented by a sequence of operations, each involving a constant number of b-by-b index-
contiguous submatrices (blocks), where b is a tunable parameter. Most of these block
operations perform Θ(b3) arithmetic operations, which implies that the computation-
to-communication ratio of the algorithm is Θ(b). Furthermore, since blocks are always
contiguous in the row/column index space, they can be stored contiguously in mem-
ory, implying that each block operation requires only O(1) data transfers that move
Θ(b2) words, which we refer to as messages.

For succinctness, in our description of the algorithm below, we coalesced indi-
vidual b-by-b block operations into larger matrix-matrix operations. The individual
block operations that correspond to each matrix operation will be clear from the
description.

Matrix algorithms with such a structure usually perform well when implemented
on sequential or shared-memory parallel computers. They can usually be adapted to
distributed-memory parallel computers, but these adaptations are often intricate and
far from trivial. The focus of this paper is on the block algorithm and its memory-
hierarchy performance. A companion conference paper [5] described a shared-memory
parallel implementation and its performance.1 We do not discuss distributed-memory
parallelization in this paper.

Models of computation and communication. Many computational models
have been used in the literature for analyzing the communication efficiency of algo-
rithms [10, 13, 19, 35, 36, 37]. In this paper we use a model that includes a processor
connected to a fast memory containing M words that is too small to store all the
algorithm’s data structures. Data structures that do not fit within fast memory are
stored in a slower, larger memory. Data transfers between the two memories occur in
groups of nCL contiguous aligned words (cache lines). Some algorithms are efficient
only when cache lines are short (the so-called tall-cache assumption [13]). Because our
algorithm transfers data using messages of Θ(b2) contiguous words and because we can
choose b, our algorithm does not rely on such assumptions. If we choose b = Θ(

√
M),

the algorithm is efficient even when nCL is close to M ; more formally, we assume only
that M = cnCL, where c ≥ 4. Algorithms that are asymptotically optimal in terms
of the amount of data transferred between these memories are called communication
avoiding [6] (there is also a generalization for distributed-memory computations that
we do not use in this paper). Algorithms that are efficient in this model are also

1The main contributions of this paper relative to the companion conference paper [5] are complete
numerical and complexity analyses of the algorithm; these did not appear in the conference paper.
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1366 BALLARD ET AL.

efficient when cache lines are small (nCL is small), and they do not depend on a fully
associative cache; a four-way set-associative cache is sufficient.

Factorizations of symmetric indefinite matrices. Aasen’s algorithm [1] fac-
tors

A = PTLTLTP ,

where P is a permutation matrix selected for numerical stability, L is lower triangular
(with ones on the diagonal and |Lij | ≤ 1), and T is symmetric and tridiagonal. The
algorithm performs n3/3 + o(n3) arithmetic operations, where n is the order of the
matrices; it improves upon an earlier algorithm by Parlett and Reid that computes
the same factorization in 2n3/3 + o(n3) operations [25]. The two algorithms were
published in 1970 and 1971, respectively; neither is used extensively. A few years later
Kaufman and Bunch discovered a similar factorization, one in which the tridiagonal
T is replaced by a matrix that is block diagonal with 2-by-2 and 1-by-1 blocks [9].

Like other early factorizations, the algorithms of Aasen and of Parlett and Reid are
not communication efficient even for very simple memory hierarchies. If M < n2/8,
both algorithms transfer Θ(n3) words between fast and slow memory (even if cache
lines are short). This is very inefficient. An implementation of the Bunch–Kaufman

factorization that transfers only O(min(n3, n
2

M · n2)) = O(n4/M) words was later
discovered,2 and this implementation was included in LAPACK [3]. More recently,
Rozložńık, Shklarski, and Toledo discovered how to compute the factors produced
by Aasen’s algorithm (as well as Parlett and Reid’s algorithm) with the same com-
munication efficiency as LAPACK [29]. Reid and Scott also recently proposed a
symmetric-indefinite factorization algorithm [28] whose design and communication
requirements are similar to those of Rozložńık et al. The pivot search in their algo-
rithm can potentially increase communication to the same level of the original Aasen
and Parlett–Reid algorithms, although they report in their paper that this is usually
not the case. (This never happens in our algorithm.)

In this paper, we describe and analyze a stable symmetric factorization algo-
rithm that is communication avoiding; it generates O(n3/

√
M) cache misses even for

nCL = Θ(M). In terms of communication, this is much more efficient than any exist-
ing symmetric-indefinite factorization. However, the algorithm produces a T that is
banded rather than tridiagonal. To achieve this communication efficiency, the block
size b and the half bandwidth of T must be Θ(

√
M). We also show that the resulting

T can be factored further in a way that is communication avoiding, and the resulting
factorization allows linear systems of equations to be solved quickly.

Our algorithm is fundamentally a block version of Aasen’s algorithm. While
the methodology of producing block-matrix algorithms from element-by-element al-
gorithms is well understood, applying it to this case proved to be challenging. The
first block Aasen algorithm that we designed proved highly unstable. In Aasen’s orig-
inal algorithm, diagonal elements of T are computed by solving a scalar equation. In
the block version, this scalar equation transforms into a linear system of equations
whose solution is a diagonal block of T , which is symmetric. But the system itself
is unsymmetric and the symmetry of the solution is implicit. When the system is

2The O(n4/M) bound is attained when M ≥ n. In this regime, the algorithm factors panels of
roughly M/n columns. Updating a trailing submatrix of dimension Θ(n) after the factorization of
Θ(n/(M/n)) such panels transfers Θ(n4/M) words. When M < n, the algorithm transfers O(n3)
words; in this regime the fast memory has no significant beneficial effect.
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COMMUNICATION-AVOIDING INDEFINITE FACTORIZATION 1367

solved in floating-point arithmetic, the computed block of T can have a nonnegligi-
ble skew-symmetric component in addition to its symmetric part, and this excites
an instability. To address this difficulty, we designed an algorithm that produces a
symmetric T even in floating point. The algorithm reduces the computation of the
diagonal blocks of T to the solution of symmetric two-sided triangular systems of
linear equations; an algorithm for solving such systems is described in section 2.4.

The rest of the paper is organized as follows. We present the algorithm in sec-
tion 2. Section 3 analyzes the stability of the algorithm, and section 4 its computa-
tion and communication complexity. We present a communication lower bound for
the algorithm in section 5; this lower bound, along with the upper bound presented
in section 4, establishes the asymptotic communication optimality of the algorithm.
Numerical experiments presented in section 6 provide additional insights into the
behavior of the algorithm. Section 7 presents our conclusions from this research.

2. The algorithm. To keep the notation simple, we initially ignore pivoting in
the description of the algorithm. The algorithm factors the n-by-n matrix A into

A = LTLT ,

where L is unit lower triangular and T is symmetric and banded with half bandwidth
b (i.e., Tij = 0 if |i− j| > b). The algorithm processes the matrices in aligned blocks of
size b-by-b (except for the blocks that correspond to the trailing block row and column,
which may have fewer than b rows and columns, respectively). The algorithm is a
block version of Aasen’s algorithm, so we view T as a block tridiagonal matrix with
triangular blocks in the positions immediately adjacent to the main diagonal.

To describe the algorithm we must specify three auxiliary matrices. The first is a
block upper-triangular matrix with symmetric diagonal blocks R that we require to
satisfy

RT +R = T .

The blocks above the diagonal in R are the same as the corresponding blocks in T ,
the diagonal blocks of R are scaled copies of those of T (with scaling 1/2), and the
blocks below the diagonal in R are zero (unlike in T , which is symmetric). The other
two matrices are denoted by W and H and are required to satisfy

W = RLT , H = TLT .

Aasen’s original algorithm also computes H (forming it was the key step that allowed
Aasen to eliminate half the arithmetic operations from Parlett and Reid’s algorithm),
but it does not compute W .

We present the algorithm in the form of block-matrix equations, each of which
defines one or two sets of blocks in these matrices. The blocks that are computed
from each equation are underlined. We use capital I and capital J to denote block
indices, and we denote the block dimension of all the matrices by N = �n/b�. We
denote blocks of matrices using indexed notation with block indices. For example, the
submatrix that is specified by A1+(I−1)b:Ib,1+(J−1)b:Jb in scalar-index colon notation
is denoted AI,J .

The initialization step of the algorithm assigns

L1:N,1 = (identity matrix)1:N,1 .
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1368 BALLARD ET AL.

=

LTW R

Fig. 1. An illustration of computing superdiagonal blocks of W via matrix multiplication in
(AA1). Here N = 6 and J = 4. The blocks that participate in the equation are enclosed in thick
rectangles, and the blocks that are computed using this equation are crossed. The first block row of
LT is equal to the corresponding block row of the identity matrix. The same notation is used in
other diagrams in this section.

That is, the first b columns of L have ones on the diagonal and zeros everywhere
else. After this initialization, the algorithm computes a block column of each of the
matrices in every step. Step J computes column J + 1 of L and columns J of T , H ,
and W (diagonal blocks of W are never needed so they are not computed) according
to the following formulas, which we derive in section 2.1:

W1:J−1,J = R1:J−1,1:J(LJ,1:J)
T ,(AA1)

AJ,J = LJ,1:J−1W1:J−1,J + (W1:J−1,J)
T (LJ,1:J−1)

T + LJ,JTJ,J(LJ,J)
T ,(AA2)

H1:J,J = T1:J,1:J(LJ,1:J)
T ,(AA3)

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J ,(AA4)

HJ+1,J = TJ+1,J(LJ,J)
T .(AA5)

2.1. Correctness. We now show that the algorithm is correct. Verifying that
the blocks that are computed in each equation depend only on blocks that are already
known is trivial. Therefore, we focus on showing that A = LTLT whenever L and
T are computed in exact arithmetic. The analysis also constitutes a more detailed
presentation of the algorithm.

Equation (AA1) computes a column of W by multiplying two submatrices, using
the equation W = RLT , as shown in Figure 1. This guarantees that WI,J = (RLT )I,J
for all I < J . The diagonal blocks of W are not computed, and we define for conve-
nience WJ,J = (RLT )J,J for all J . Because all other blocks of W and RLT are zero,
W = RLT .

Equation (AA2) computes a diagonal block of T by solving a two-sided triangular
linear system, as shown in Figure 2. This linear system can be solved by one of the
existing solvers which we describe in section 2.4. The right-hand side matrix in this
system,

AJ,J − LJ,1:J−1W1:J−1,J − (LJ,1:J−1W1:J−1,J )
T ,

must be computed symmetrically; this is done using the BLAS routine syr2k [12].
The equation guarantees that

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J )
T + LJ,JTJ,J(LJ,J)

T .
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=

WA L

+

+

LT

LT

W T

L T

Fig. 2. Computing a diagonal block of T in (AA2) by updating the corresponding block of A
and solving a two-sided triangular system. The letters below each matrix describe only the matrices
involved in the expression for AJ,J ; they do not constitute a matrix equation.

By noting that

LJ,JTJ,J(LJ,J)
T = LJ,J(RJ,J + (RJ,J)

T )(LJ,J)
T

= LJ,JRJ,J(LJ,J)
T + (LJ,JRJ,J(LJ,J)

T )T

and that the diagonal blocks of W = RLT are WJ,J = RJ,J(LJ,J)
T , as shown in

Figure 3, we can transform (AA2) into

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)
T + LJ,JWJ,J + (LJ,JWJ,J)

T

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J )
T

= (LW + (LW )T )J,J .

Substituting W = RLT we obtain

AJ,J = (LRLT + (LRLT )T )J,J

= (L(R+RT )LT )J,J

= (LTLT )J,J .

Equation (AA3) computes a block column of H , except for the subdiagonal block,
by multiplying matrices, as shown in Figure 4. Equation (AA4) multiplies blocks of
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=

LTRW

Fig. 3. An expression for the diagonal blocks of W .

=

LTH T

Fig. 4. Computing blocks of H via matrix multiplication in (AA3).

L and H , subtracts the product from a block of A, and factors the difference using an
LU factorization, as shown in Figure 5. This equation represents a left-looking update
operation followed by a panel factorization. Equation (AA5) solves a triangular linear
system with a triangular right-hand side to compute a subdiagonal block of T , as
shown in Figure 6.

Equations (AA3) and (AA5) guarantee that HI,J = (TLT )I,J for all I ≤ J and
for all I = J + 1, respectively, and because all other blocks of H and TLT are zero,
H = TLT . Equation (AA4) makes sure that AI,J = (LH)I,J for all I > J , and
substituting H = TLT shows that AI,J = (LTLT )I,J for all I > J . Because both A
and LTLT are symmetric, this holds for all I < J as well, and thus A = LTLT .

2.2. Pivoting. Just like the original elementwise Aasen algorithm, without piv-
oting, the new block algorithm can break down or become unstable. To stabilize the
algorithm, in (AA4), the blocks LJ+1:N,J+1 and HJ+1,J are computed using an LU
factorization with row pivoting, meaning that step J factors

(2.1) LJ+1:N,J+1HJ+1,J = P (J) (AJ+1:N,J − LJ+1:N,1:JH1:J,J) ,

where P (J) is a permutation matrix. There are several ways of computing P (J) in
order to ensure the communication optimality of the overall algorithm; we list and
analyze them in section 4.2.2. We use the pivoting strategy of the LU factorization in
(AA4) as a black box, and other than this we do not require any additional pivoting
to ensure the numerical stability of our algorithm.

Obtaining a row reordering from the factorization in (AA4) means that instead

of computing a factorization of A, we are computing the factorization of PJA (PJ)
T ,

where

PJ =

[
I

P (J)
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=

HA L

Fig. 5. Computing a block column of L and a subdiagonal block of H in (AA4) via the LU
factorization of an updated submatrix of A.

=

LTH T

Fig. 6. Computing a block of T by solving a triangular system in (AA5).

and I is the identity matrix of order Jb. To make sure that subsequent steps of the
algorithm take this change of plans into account, we must change the ordering of A
to reflect the effect of PJ on its rows and columns. We accomplish this by replacing
the trailing submatrix AJ+1:N,J+1:N with its reordered version,

P (J)AJ+1:N,J+1:N

(
P (J)

)T

.

Although PJ changes the ordering not just of the trailing submatrix but also of the
first J block rows and columns of A, we do not need to explicitly reorder these rows
and columns because they have already been processed and do not participate in the
rest of the computation.

The introduction of pivoting in (AA4) and the consequent reordering of A in
step J may have rendered some of the equations (AA1)–(AA5) invalid, and this has
happened not just for the instances of these equations that correspond to step J , but
also for those that correspond to steps K such that K < J . The already-computed
blocks of the factorization must be adjusted to restore the validity of the equations.

Consider first the instance of (AA4) that corresponds to step K. Our postmulti-

plication of A by (PJ)
T
has no effect on the first J block columns of A, and therefore

the effect that the reordering of A has on the equation amounts to premultiplying the
equation’s left-hand side with a permutation matrix that corresponds to P (J). To re-
store the validity of the equation, we must apply the same operation to its right-hand
side, premultiplying the right-hand side by the same matrix and thereby reorder-
ing the rows of the already-computed part of L. This is accomplished by replacing
the matrix LJ+1:N,1:J with P (J)LJ+1:N,1:J , which restores the validity of (AA4) for
K = 1, 2, . . . , J − 1. The same operation also restores the validity for K = J ; this
follows from (2.1).

By reordering the already-computed part of L, we have restored the validity of
(AA4), but what about the other equations? It turns out that introducing pivoting
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has no effect on their validity. This is because our reordering applies only to block
rows or columns J + 1, J + 2, . . . , N of A and L, whereas (AA1)–(AA3) and (AA5)
only feature the first J diagonal blocks of A and the first J block rows of L, to which
our reordering does not apply. Therefore, (AA1)–(AA5) are satisfied by the reordered
matrices, and the arguments that we used in section 2.1 to show that A = LTLT can
also be used now, showing that PAPT = LTLT , where P = PN−1 · · ·P2P1.

Applying the permutation to L and to the trailing submatrix is not trivial to do
in a communication-avoiding way, especially since only the upper or lower triangle of
the trailing submatrix is stored. The details are explained in section 4.2.3.

2.3. Computing W and H. As we show in section 4, the arithmetic and com-
munication costs of our algorithm are asymptotically dominated by the computation
that corresponds to (AA4). Nevertheless, if optimizing the computation that corre-
sponds to the other equations can yield any savings, then pursuing such optimizations
would be desirable from a practical standpoint. It turns out that savings are possible
in (AA1) and (AA3). These equations state that individual blocks of H and W are
computed according to the formulas

HI,J = TI,I−1 (LJ,I−1)
T
+ TI,I (LJ,I)

T
+ TI,I+1 (LJ,I+1)

T

and

WI,J = RI,I (LJ,I)
T
+RI,I+1 (LJ,I+1)

T

= 0.5 TI,I (LJ,I)
T
+ TI,I+1 (LJ,I+1)

T

for all I < J . (We encourage the reader to review Figures 1 and 4 for a visualization

of these relations.) The blocks TI,I (LJ,I)
T and TI,I+1 (LJ,I+1)

T appear in these
equations twice but need to be computed only once. By avoiding the recomputation
of these blocks, the number of b-by-b matrix products required to compute HI,J and
WI,J is reduced from five to three, thereby making the computation of W essentially
free.

A pseudocode description of the algorithm that includes this optimization is given
in Algorithm 1. Our pseudocode includes matrix update operations in lines 12 and 18
that involve indexing expressions where the starting index can be greater than the
ending index. For example, line 12 contains the index set 2:J−1, which for J = 1 is
translated to 2:0. We interpret such indexing expressions as indicating empty index
sets, which correspond to empty updates that return the updated matrix without
change, similarly to how such expressions are interpreted in MATLAB.

Our implementation of the algorithm requires a workspace of 5 panels of size
n-by-b; further details are given in [5, section IV.E].

2.4. Solving two-sided triangular linear systems. We now describe the pro-
cedure that solves the two-sided triangular linear system in (AA2). The method is
a new recursive and communication-avoiding generalization of an existing algorithm
called sygst, which is used to reduce symmetric generalized eigenproblems to stan-
dard eigenproblems in LAPACK and ScaLAPACK [8, 31]. Other solvers that produce
a symmetric solution would also be suitable for the task. Examples of such solvers
are the subroutine reduc in EISPACK [24, 32] and the algorithms implemented in
the Elemental library [26, 27]. Because we apply the solver to block-sized problems,
its arithmetic and communication costs do not have a substantial impact on the over-
all costs of the algorithm. The stability of the solver is important, and we analyze
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COMMUNICATION-AVOIDING INDEFINITE FACTORIZATION 1373

Algorithm 1. Block Aasen factorization.

1: Input: the matrix A
2: Output: the factors L and T and the permutation matrix P
3: Initialize: P = I, L1,1 = I, L2:N,1 = 0

4: for J ← 1, 2, . . . , N do

5: for I ← 2, 3, . . . , J − 1 do � Eq. (AA1) and part of Eq. (AA3)

6: X ← TI,I−1 (LJ,I−1)
T

7: Y ← TI,I (LJ,I)
T

8: Z ← TI,I+1 (LJ,I+1)
T

9: WI,J ← 0.5Y + Z
10: HI,J ← X + Y + Z
11: end for

� Eq. (AA2)

12: C ← AJ,J − LJ,2:J−1W2:J−1,J − (LJ,2:J−1W2:J−1,J )
T

� blas call syr2k

13: TJ,J ← (LJ,J)
−1

C (LJ,J)
−T

� lapack call sygst

14: if J < N then

15: if J > 1 then � the rest of Eq. (AA3)

16: HJ,J ← TJ,J−1 (LJ,J−1)
T
+ TJ,J (LJ,J)

T

17: end if

18: E ← AJ+1:N,J − LJ+1:N,2:JH2:J,J � Eq. (AA4)
19:

[
LJ+1:N,J+1, HJ+1,J , P

(J)
]← LU(E) � LU factorization

� Eq. (AA5)

20: TJ+1,J ← HJ+1,J (LJ,J)
−T

� lapack call trsm

21: TJ,J+1 ← (TJ+1,J)
T

22: LJ+1:N,2:J ← P (J)LJ+1:N,2:J � back-pivoting
23: AJ+1:N,J+1:N ← P (J)AJ+1:N,J+1:N(P (J))T � forward-pivoting
24: PJ+1:N,1:N ← P (J)PJ+1:N,1:N

25: end if
26: end for

the stability of sygst and of our generalization in section 3.2. So long as the solver
satisfies a bound similar to the one that we prove there, the impact on the overall
algorithm is limited to the size of the constant in the backward stability bound.

Let us describe the algorithm. The equation that defines TJ,J is of the form
KXKT = B, where K and B are known matrices of dimensions m-by-m, K is
lower triangular, and B is symmetric. A trivial way to solve such systems is using
a conventional triangular solver twice. That is, first solve for K−1B and then solve
for X = (K−1B)K−T . This method produces a solution X that is not symmetric in
floating-point arithmetic, and is thus not suitable for use in the block Aasen algorithm.
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1374 BALLARD ET AL.

Another approach, which leads to a symmetric X and which performs only half the
arithmetic, is an algorithm that we now describe. We partition the matrices that
we introduce in this section such that they are all 2-by-2 block matrices with first
diagonal blocks of dimensions c-by-c and second diagonal blocks of dimensions (m−c)-
by-(m− c). To describe the algorithm we must define an auxiliary matrix Y , which
we require to be a block upper-triangular matrix with symmetric diagonal blocks that
satisfies

X = Y T + Y .

Such a matrix must have the form[
Y11 Y12

Y21 Y22

]
=

[
0.5X11 X12

0 0.5X22

]
.

We also need two additional auxiliary matrices G and V , which we will require to
satisfy

G = XKT , V = Y KT .

The algorithm works by solving for the underlined blocks in the following equations:

B11 = K11X11(K11)
T ,(ST1)

B12 = K11G12 ,(ST2)

G12 = 0.5X11(K21)
T + V12 ,(ST3)

V12 = 0.5X11(K21)
T +X12(K22)

T ,(ST4)

B22 = K21V12 + (K21V12)
T +K22X22(K22)

T .(ST5)

The key in this algorithm is to compute B22 − K21V12 − (K21V12)
T in (ST5) sym-

metrically, which allows the algorithm to compute X22 symmetrically as well. Note
that the block 0.5X11(K21)

T is computed twice; the algorithm trades off additional
computation for a reduction in workspace requirements, as we explain further at the
end of this section.

We derived (ST1)–(ST5) by considering specific blocks of the equations

B = KXKT , B = KG , B = KV + (KV )T , G = Y TKT + V , V = Y KT .

The derivation is described by diagrams in Figures 7–11.

=

K K TXB

Fig. 7. Computing the first diagonal block of X by recursively solving a smaller two-sided
triangular system in step (ST1).
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=

K GB
Fig. 8. Solving a triangular system to compute the superdiagonal block of G in step (ST2).

=

K TG Y T V

+

Fig. 9. Computing the superdiagonal block of V in step (ST3) by updating the corresponding
block of G.

=

K TV Y
Fig. 10. Computing the superdiagonal block of Y in step (ST4) by updating the corresponding

block of V and solving a triangular system.

We will now verify the correctness of the algorithm, meaning that KXKT = B
whenever X is computed in exact arithmetic. The algorithm computes the diagonal
and superdiagonal blocks of X and the superdiagonal blocks of G and V . The sub-
diagonal block of X is not computed because X is symmetric, and therefore that
block is not needed. The diagonal and subdiagonal blocks of G and V are also not
computed, and thus we are free to define them so that our notation is simplified. We
define the uncomputed blocks of G and V such that the corresponding blocks of the
equations G = XKT and V = Y KT hold.

We start by verifying that (KXKT )12 = B12. Step (ST4) makes sure that V12 =
(Y KT )12 and thus V = Y KT , due to the way we defined the uncomputed blocks of
V . Step (ST3) guarantees that G12 = (Y TKT + V )12. Substituting V = Y KT and
noting that Y TKT + Y KT = XKT shows that G12 = (XKT )12 and thus G = XKT ,
again due to our definition of the uncomputed blocks of G. Finally, step (ST2) makes
sure that B12 = (KG)12, and substituting G = XKT shows that B12 = (KXKT )12.
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=

VB K

+

+

K X

K T

K T

V T

Fig. 11. Computing the second diagonal block of X in step (ST5) by updating the corresponding
block of B and solving a smaller two-sided triangular system.

Next we verify that (KXKT )22 = B22 by transforming (ST5):

B22 = K21V12 + (K21V12)
T +K22X22(K22)

T

= K21V12 + (K21V12)
T +K22Y22(K22)

T + (K22Y22(K22)
T )T

= K21V12 + (K21V12)
T +K22V22 + (K22V22)

T

= (KV + (KV )T )22

= (KYKT +KY TKT )22

= (K(Y + Y T )KT )22

= (KXKT )22 .

Finally, step (ST1) corresponds to recursively solving a smaller system. Using induc-
tion on the size of the system, we may conclude that (KXKT )11 = B11 and thus
KXKT = B.

We did not specify the dimensions of the blocks; different choices yield different
algorithms. If we choose c = 1, we end up with an algorithm that computes the
columns of X one at a time, in which (ST5) iterates over remaining columns. This
version is called sygs2 in LAPACK and ScaLAPACK. The costs in this partitioning
are dominated by the triangular solve in (ST4) and the symmetric update in (ST5),
which require (m − i)2 and 2(m − i)2 flops, respectively. Thus, the leading term in
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COMMUNICATION-AVOIDING INDEFINITE FACTORIZATION 1377

flop cost is given by

F1(m) =

m−1∑
i=1

3(m− i)2 = 3

m−1∑
i=1

i2 = m3 + o(m3) .

If instead of c = 1 we choose some fixed c > 1, we obtain sygst, which works by
computing a total of c columns ofX at a time. Step (ST1) here corresponds to a call to
sygs2, and step (ST5) iterates over the remaining block columns. As long as m� c,
the costs are again dominated by the triangular solve in (ST4) and the symmetric
update in (ST5), which require (m− ic)2c and 2(m− ic)2c flops, respectively (here i
iterates over block columns). Thus, the leading term in the flop cost is given by

Fc(m) =

m/c−1∑
i=1

3(m− ic)2c = 3c3
m/c−1∑
i=1

i2 = m3 + o(m3) .

We can also formulate the algorithm recursively, with X11 being
⌊
m
2

⌋ × ⌊
m
2

⌋
.

This recursive version is new, and it is communication avoiding and cache oblivious
even for large matrices (we use it only on blocks, so this is not useful for the block
Aasen algorithm). Steps (ST1) and (ST5) are recursive calls. The triangular solves in
steps (ST2) and (ST4) and the block multiplications in steps (ST3), (ST4), and (ST5)
all contribute to the leading term in the flop cost. The product X11(K21)

T is a symm

BLAS which costs 2(m/2)3. The triangular solves are trsm calls that cost (m/2)3

each, and the product K21V12 is a gemm call that costs 2(m/2)3 (after computing
and subtracting the product we also subtract its transpose). If we store the block
X11(K21)

T in step (ST3) and reuse it in step (ST4), the recurrence is

FR(m) = 2FR

(m
2

)
+ 6

(m
2

)3

,

which again solves to

FR(m) =
3

4
m3

logm−1∑
i=0

(
1

4

)i

=
3

4
· 4
3
m3 + o(m3) = m3 + o(m3) .

Storing X11(K21)
T requires a workspace of m2/4 words. If we choose to recompute

that block in order to run the algorithm in place, the flop count is increased to
(4/3)m3 + o(m3).

2.5. The second phase of the algorithm: Factoring T . There are several
single-pass algorithms that efficiently factor a banded symmetric matrix. All of these
algorithms process O(b) rows and columns at a time, so if we choose a small enough
b = Θ(

√
M), whereM is the size of fast memory, the total number of cache misses that

these algorithms generate is O(bn/M), which makes them communication avoiding
(because the size of input and output is O(bn)). Furthermore, given such a one-pass
algorithm, the two phases can be fused together so that every new batch of O(b) rows
and columns of T is factorized by the second phase as soon as it is produced by the
first one, before that batch is evicted from fast memory.

Single-pass algorithms for banded matrices include the unsymmetric banded LU
factorization with partial pivoting, the banded QR factorization, Kaufman’s retrac-
tion algorithm [22], and Irony and Toledo’s snap-back algorithm [20]. The banded
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LU and QR factorizations are well known and require no further comments. The
two other methods produce a symmetric factorization. They minimize growth in the
factorization while preserving the band structure using somewhat complex strategies
to annihilate out-of-band fill. All four methods produce a factorization that is essen-
tially banded with bandwidth O(b), although the factors are represented in implicit
economical forms and are not formed explicitly because their explicit forms are not
banded. All of these factorizations can be used to solve linear systems of equations
using O(bn) arithmetic per right-hand side and O(bn/M) cache misses (for up to
O(
√
M) right-hand sides).

3. Numerical stability. We analyze the stability of the factorization of PAPT ,
where P is the permutation matrix generated by the selection of pivots. We assume in
the analysis that the matrix has been prepermuted so the algorithm is applied directly
to PAPT (rather than to A) and that it never pivots. The sequence of arithmetic
operations in such a run of the algorithm is identical to that of the pivoting version
applied to A, except perhaps for the order of summation in inner products. Our
analysis does not depend on this ordering, so our results apply to the pivoting version.

We do not make any assumptions about the permutation P , and in fact our
analysis applies even if there is no pivoting. As a consequence, Theorem 3.10, which
we prove below, guarantees backward stability, but the guarantee is conditioned on
having moderate growth in the factorization. The role of pivoting is to control growth,
as in Aasen’s original algorithm and in LU with partial pivoting. We discuss growth
in more detail in section 3.5.

Our model of floating-point arithmetic is

(FL1) fl (x op y) = (x op y) (1 + δ) , |δ| ≤ u , op = +,−,×,÷ ,

where u is unit roundoff [18, section 2.2]. We also assume that 0.5 is a floating-point
number and that

(FL2) fl (0.5x) = 0.5x .

In the following, we use the notation |X |, where X is a matrix, to refer to the
elementwise absolute value, and inequalities of the form |X | ≤ |Y |, where X and Y
are two matrices of the same dimension, to denote elementwise inequalities.

3.1. Known stability results. We begin by citing a few lemmas of floating-
point error analysis, all of which are either well known or can be easily derived from
well-known results.

We use the notation γn = nu/ (1− nu) for any positive n. The following lemma
provides a rule for manipulating expressions involving γn or quantities bounded by it.

Lemma 3.1 (see [18, Lemma 3.3]). The bound

γm + γn + γmγn ≤ γm+n

holds. Furthermore, if θm and θn are such that |θm| ≤ γm and |θn| ≤ γn and if θm+n

is such that

(1 + θm) (1 + θn) = 1 + θm+n ,

then

|θm+n| ≤ γm+n .
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The following lemma provides a bound on the accuracy of matrix-matrix products.
In our analysis we assume that matrices are multiplied using the conventional method,
as opposed to Strassen’s algorithm or any related scheme.

Lemma 3.2 (see [18, section 3.5]). Let A and B be m-by-p and p-by-n matrices,
respectively. If the product X = AB is formed in floating-point arithmetic, then

X = AB +Δ , |Δ| ≤ γp |A| |B| .

The following two lemmas also deal with matrix-matrix multiplication. Their
proofs are similar to the proof of Lemma 8.4 in [18], with the only difference stemming
from the possible scaling by 0.5 in Lemma 3.3. The assumption (FL2) in our model
guarantees that this scaling has no effect on the ultimate bound.

Lemma 3.3. Let A, B, and C be matrices of dimensions m-by-p, p-by-n, and m-
by-n, respectively, and let α be one of the scalars 0.5 and 1. If the matrix X = C−αAB
is formed in floating-point arithmetic, then

C = αAB +X +Δ , |Δ| ≤ γp (α |A| |B|+ |X |) .

Lemma 3.4. Let A, B, and C be matrices of dimensions m-by-p, p-by-m, and
m-by-m, respectively. If the matrix X = C −AB− (AB)

T
is formed in floating-point

arithmetic, then

C = AB + (AB)T +X +Δ , |Δ| ≤ γ2p

(
|A| |B|+ (|A| |B|)T + |X |

)
.

Finally, the following two lemmas provide bounds on the accuracy of triangular
solves and of the LU factorization.

Lemma 3.5 (see [18, section 8.1]). Let T and B be matrices of dimensions m-by-
m and m-by-n, respectively, and assume that T is triangular. If the m-by-n matrix
X is computed by solving the system TX = B using substitution in floating-point
arithmetic, then

TX = B +Δ , |Δ| ≤ γm |T | |X | .

Furthermore, if the system being solved is XT = B and the dimensions of X and B
are n-by-m, then

XT = B +Δ , |Δ| ≤ γm |X | |T | .

Lemma 3.6 (see [18, section 9.3]). Let A be an m-by-n matrix and let r =
min {m,n}. If L and U are the LU factors of A, computed in floating-point arithmetic,
then

A = LU +Δ , |Δ| ≤ γr |L| |U | .

3.2. The stability of the two-sided triangular solver. Our notation in this
section is the same as in section 2.4. The matrix X and the superdiagonal blocks of G
and V represent the actually computed floating-point matrices. We use Y to denote
the exact matrix

Y =

[
0.5X11 X12

0 0.5X22

]
,
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and we define the diagonal and subdiagonal blocks of G and V such that the corre-
sponding blocks of G = XKT and V = Y KT hold.

Lemma 3.7. If the two-sided triangular system KXKT = B is solved in floating-
point arithmetic, then

KXKT = B +Δ , |Δ| ≤ γ3m−1|K||X ||KT | .
Proof. We prove by induction on m that |Δ| ≤ γf(m)|K||X ||KT | with f(m) =

3m − 1. In the base case of the induction, we are solving 1-by-1 systems and the
bound clearly holds. Next, assume that the inductive hypothesis is true when we
solve systems of order up to m−1, and let us prove that it is also satisfied for systems
of order m.

Let the matrices Δ(t) for t = 1, 2, . . . , 5 be such that

B = KG+Δ(1) , G = Y TKT + V +Δ(2), V = Y KT +Δ(3),

B = KV + (KV )T +Δ(4) , G = XKT +Δ(5) .

Substituting the last of these expressions into the first one shows that

B = K(XKT +Δ(5)) + Δ(1)

= KXKT +KΔ(5) +Δ(1),

and therefore

(3.1) Δ = −Δ(1) −KΔ(5) .

Substituting the third expression into the fourth one, we see that

B = K(Y KT +Δ(3)) + (K(Y KT +Δ(3)))T +Δ(4)

= KYKT +KY TKT +KΔ(3) + (KΔ(3))T +Δ(4)

= K(Y + Y T )KT +KΔ(3) + (KΔ(3))T +Δ(4)

= KXKT +KΔ(3) + (KΔ(3))T +Δ(4) ,

and therefore

(3.2) Δ = −Δ(4) −KΔ(3) − (KΔ(3))T .

Equations (3.1) and (3.2) provide us with two distinct expressions for Δ that we can
use for bounding the magnitudes of that matrix’s elements. Now we substitute the
third expression into the second one, obtaining

G = Y TKT + Y KT +Δ(2) +Δ(3)

= (Y T + Y )KT +Δ(2) +Δ(3)

= XKT +Δ(2) +Δ(3),

and therefore

(3.3) Δ(5) = Δ(2) +Δ(3) .

That formula will help us to bound |Δ(5)|.
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Next we consider each of the steps (ST1)–(ST5) and list the bounds on the matri-
ces |Δ(t)| that we can derive directly by analyzing the computations in each of these
steps. In step (ST1) we compute X11 by solving the system K11X11(K11)

T = B11

recursively. Because K11X11(K11)
T = (KXKT )11, the errors committed in this com-

putation correspond to the block Δ11. To bound these errors we use the inductive
hypothesis, which yields

|Δ11| ≤ γf(c)|K11||X11||K11|T
= γf(c)(|K||X ||KT |)11 .(3.4)

In step (ST2) we compute G12 by solving the triangular system B12 = K11G12.
Because K11G12 = (KG)12, the errors committed in this computation correspond to

the block Δ
(1)
12 . A bound on the accuracy of solving triangular systems is given in

Lemma 3.5, which yields the bound

|Δ(1)|12 ≤ γc|K11||G12|
= γc(|K||G|)12 .(3.5)

In step (ST3) we compute V12 using the formula V12 = G12 − 0.5X11(K21)
T . The

errors committed in this computation correspond to the block Δ
(2)
12 , and they can be

bounded using Lemma 3.3, which guarantees that

|Δ(2)|12 ≤ γc(0.5|X11||K21|T + |V12|)
= γc(|Y11|T |K21|T + |V12|)
= γc(|Y T ||KT |+ |V |)12 .(3.6)

In step (ST4) we compute X12 by forming the matrix F4 = V12 − 0.5X11(K21)
T and

then solving the triangular system F4 = X12(K22)
T . Let the matrices Φ4 and Ψ4 be

such that

V12 = 0.5X11(K21)
T + F4 +Φ4 , F4 = X12(K22)

T +Ψ4 .

Substituting the second of these expressions into the first one yields

V12 = 0.5X11(K21)
T +X12(K22)

T +Φ4 +Ψ4

= (Y KT )12 +Φ4 +Ψ4 ,

and therefore

(3.7) Δ
(3)
12 = Φ4 +Ψ4 .

Hence, bounding |Φ4| and |Ψ4| allows us to bound |Δ(3)
12 |. Our bounds on |Φ4| and

|Ψ4| follow from Lemmas 3.3 and 3.5, respectively:

|Φ4| ≤ γc(0.5|X11||K21|T + |F4|) , |Ψ4| ≤ γm−c|X12||K22|T .

Applying these bounds to (3.7), substituting F4 = X12(K22)
T + Ψ4, and bounding

|Ψ4| again yields

|Δ(3)|12 ≤ γc(0.5|X11||K21|T + |F4|) + γm−c|X12||K22|T
≤ γc 0.5|X11||K21|T + (γc + γm−c + γcγm−c)|X12||K22|T ,
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and because γc + γm−c + γcγm−c ≤ γm by Lemma 3.1, we obtain

|Δ(3)|12 ≤ γc 0.5|X11||K21|T + γm|X12||K22|T
≤ γm 0.5|X11||K21|T + γm|X12||K22|T
= γm(|Y ||KT |)12 .(3.8)

Finally, in step (ST5) we compute X22 by forming the matrix F5 = B22 −K21V12 −
(K21V12)

T and then recursively solving the system F5 = K22X22(K22)
T . Let the

matrices Φ5 and Ψ5 be such that

B22 = K21V12 + (K21V12)
T + F5 +Φ5 , F5 = K22X22(K22)

T +Ψ5 .

Substituting the second of these expressions into the first one, we obtain

B22 = K21V12 + (K21V12)
T +K22X22(K22)

T +Φ5 +Ψ5 ,

and because

K22X22(K22)
T = K22(Y22 + (Y22)

T )(K22)
T

= K22Y22(K22)
T + (K22Y22(K22)

T )T

= K22V22 + (K22V22)
T

we may conclude that

B22 = K21V12 + (K21V12)
T +K22V22 + (K22V22)

T +Φ5 +Ψ5

= (KV + (KV )T )22 +Φ5 +Ψ5

and therefore

(3.9) Δ
(4)
22 = Φ5 +Ψ5 .

This shows that bounding |Φ5| and |Ψ5| allows us to bound |Δ(4)
22 |. Our bounds on

|Φ5| and |Ψ5| follow from Lemma 3.4 and from the inductive hypothesis, respectively:

|Φ5| ≤ γ2c(|K21||V12|+ (|K21||V12|)T + |F5|) , |Ψ5| ≤ γf(m−c)|K22||X22||K22|T .

Applying these bounds to (3.9), substituting F5 = K22X22(K22)
T +Ψ5, and bounding

|Ψ5| again yields

|Δ(4)|22 ≤ γ2c(|K21||V12|+ (|K21||V12|)T + |F5|)
+ γf(m−c)|K22||X22||K22|T

≤ γ2c(|K21||V12|+ (|K21||V12|)T )
+ (γ2c + γf(m−c) + γ2cγf(m−c))|K22||X22||K22|T

≤ γ2c(|K21||V12|+ (|K21||V12|)T ) + γf(m−c)+2c|K22||X22||K22|T .(3.10)

Next we bound |Δ(5)|. Applying (3.6) to (3.3) and then substituting V = Y KT +
Δ(3), we obtain

|Δ(5)|12 ≤ γc(|Y T ||KT |+ |V |)12 + |Δ(3)
12 |

≤ γc(|Y T ||KT |+ |Y ||KT |+ |Δ(3)|)12 + |Δ(3)
12 |

= γc((|Y T |+ |Y |)|KT |)12 + (1 + γc)|Δ(3)
12 |

= γc(|X ||KT |)12 + (1 + γc)|Δ(3)
12 | .
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Bounding |Δ(3)
12 | in that expression using (3.8) yields

|Δ(5)|12 ≤ γc(|X ||KT |)12 + (1 + γc)γm(|Y ||KT |)12
≤ γc(|X ||KT |)12 + (1 + γc)γm((|Y T |+ |Y |)|KT |)12
= γc(|X ||KT |)12 + (1 + γc)γm(|X ||KT |)12
≤ (γc + γm + γcγm)(|X ||KT |)12
≤ γm+c(|X ||KT |)12 .(3.11)

Next we bound |Δ12|. Applying (3.5) to (3.1) we obtain

|Δ12| ≤ |Δ(1)|12 + (|K||Δ(5)|)12
≤ γc(|K||G|)12 + (|K||Δ(5)|)12 .

Further substituting G = XKT +Δ(5) yields

|Δ12| ≤ γc(|K||X ||KT |+ |K||Δ(5)|)12 + (|K||Δ(5)|)12
= γc(|K||X ||KT |)12 + (1 + γc)(|K||Δ(5)|)12 .

Bounding the block of |Δ(5)| that appears in that expression using (3.11) yields

|Δ12| ≤ γc(|K||X ||KT |)12 + (1 + γc)γm+c(|K||X ||KT |)12
= (γc + γm+c + γcγm+c)(|K||X ||KT |)12 ,

and because γc + γm+c + γcγm+c ≤ γm+2c, our bound on |Δ12| is
(3.12) |Δ12| ≤ γm+2c(|K||X ||KT |)12 .

Next we bound |Δ22|. We use the formula (3.2), starting with the terms KΔ(3)

and (KΔ(3))T in that formula. Because the diagonal and off-diagonal blocks of V are
not computed by the algorithm, we defined them such that VI,J = (Y KT )I,J , and

therefore Δ
(3)
I,J = 0 for all I ≥ J . Therefore

(KΔ(3) + (KΔ(3))T )22 = K21Δ
(3)
12 + (K21Δ

(3)
12 )

T .

Applying the bound (3.8) on |Δ(3)| to that expression yields

|K21||Δ(3)
12 |+ (|K21||Δ(3)

12 |)T ≤ γm(|K21|(|Y ||KT |)12 + (|K21|(|Y ||KT |)12)T ) .
The expression on the right-hand side can be transformed into a more informative
form:

|K21|(|Y ||KT |)12 + (|K21|(|Y ||KT |)12)T
= |K21||Y11||K21|T + |K21||Y12||K22|T

+ |K21||Y11|T |K21|T + |K22||Y12|T |K21|T
= |K21|(|Y11|+ |Y11|T )|K21|T + |K21||Y12||K22|T + |K22||Y12|T |K21|T
= |K21||X11||K21|T + |K21||Y12||K22|T + |K22||Y12|T |K21|T
= |K21||X11||K21|T + |K21||X12||K22|T + |K22||X21||K21|T
= (|K||X ||KT |)22 − |K22||X22||K22|T ,

D
ow

nl
oa

de
d 

06
/1

9/
16

 to
 1

32
.6

4.
31

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1384 BALLARD ET AL.

and therefore

(3.13) |KΔ(3) + (KΔ(3))T |22 ≤ γm((|K||X ||KT |)22 − |K22||X22||K22|T ) .
Next we bound |Δ(4)| using (3.10). The expression |K21||V12|+(|K21||V12|)T in (3.10)
can be bounded by substituting V = Y KT + Δ(3) and proceeding along the same
lines as in our derivation of (3.13). This produces the bound

(3.14) |K21||V12|+ (|K21||V12|)T ≤ (1 + γm)((|K||X ||KT |)22 − |K22||X22||K22|T ) .
Now we substitute (3.14) into (3.10) and then substitute the result together with (3.13)
into (3.2), yielding

|Δ22| ≤ γ2c(1 + γm)((|K||X ||KT |)22 − |K22||X22||K22|T )
+ γf(m−c)+2c|K22||X22||K22|T
+ γm((|K||X ||KT |)22 − |K22||X22||K22|T )

= (γ2c + γm + γ2cγm)((|K||X ||KT |)22 − |K22||X22||K22|T )
+ γf(m−c)+2c|K22||X22||K22|T

≤ γm+2c((|K||X ||KT |)22 − |K22||X22||K22|T )
+ γf(m−c)+2c|K22||X22||K22|T

≤ γmax{m,f(m−c)}+2c((|K||X ||KT |)22 − |K22||X22||K22|T )
+ γmax{m,f(m−c)}+2c|K22||X22||K22|T

= γmax{m,f(m−c)}+2c(|K||X ||KT |)22 .(3.15)

Gathering together the bounds (3.4), (3.12), and (3.15), we see that

|ΔI,J | ≤ γC(I,J)(|K||X ||KT |)I,J
for 1 ≤ I, J ≤ 2, where

C =

[
f(c) m+ 2c

m+ 2c max{m, f(m− c)}+ 2c

]
.

We bound the elements of C as follows:

f(c) = 3c− 1 ≤ 3(m− 1)− 1 = 3m− 4 ,

m+ 2c ≤ m+ 2(m− 1) = 3m− 2 ,

max {m, f (m− c)}+ 2c = max{m+ 2c, f(m− c) + 2c}
≤ max{3m− 2, f(m− c) + 2c}
= max{3m− 2, 3(m− c)− 1 + 2c}
= max{3m− 2, 3m− c− 1}
≤ max{3m− 2, 3m− 2}
= 3m− 2 .

Therefore C(I, J) ≤ 3m − 2 for 1 ≤ I, J ≤ 2, and thus the inductive hypothesis is
true for systems of order m. Although we showed that C(I, J) ≤ 3m− 2, the larger
constant γ3m−1 in the statement of the lemma is required to account for the case
m = 1.
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3.3. The stability of the overall algorithm. We now show that the block
Aasen algorithm is backward stable. We use the symbols L, T , H, and W to denote
the corresponding floating-point matrices and not their abstract exact equivalents.
The exception to this is the diagonal blocks of W , which are not computed by the
algorithm and which we define for convenience as being exactly

WJ,J = (RLT )J,J = RJ,JL
T
J,J .

Similarly, R is also not computed by the algorithm due to the optimization described
in section 2.3. We define R as the block upper-triangular matrix with symmetric
diagonal blocks that satisfies RT +R = T . Its superdiagonal blocks are exactly those
of the computed T and its diagonal blocks are obtained from those of the computed
T by scaling them by 0.5.

Lemma 3.8. The computed factors satisfy A = LTLT +Δ, where

|ΔI,J | ≤ γn+2b(|L||T ||LT |)I,J
whenever I 	= J .

Proof. Let the matrices Δ(1) and Δ(2) be such that

A = LH +Δ(1) , H = TLT +Δ(2) .

Substituting the second expression into the first one yields

A = LTLT + LΔ(2) +Δ(1) ,

and thus

(3.16) Δ = Δ(1) + LΔ(2) .

Bounding |Δ| requires that we obtain bounds on |Δ(1)| and |Δ(2)|.
Let us bound the subdiagonal blocks of |Δ(1)| by considering the computation

that corresponds to (AA4). In that equation we form the matrix F = AJ+1:N,J −
LJ+1:N,1:JH1:J,J and then compute its LU factorization F = LJ+1:N,J+1HJ+1,J . Let
Φ and Ψ be such that

AJ+1:N,J = LJ+1:N,1:JH1:J,J + F +Φ ,(3.17)

F = LJ+1:N,J+1HJ+1,J +Ψ .(3.18)

Substituting the second expression into the first one yields

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J +Φ +Ψ

= LJ+1:N,1:J+1H1:J+1,J +Φ+Ψ ,

because HJ+2:N,J is zero,

AJ+1:N,J = (LH)J+1:N,J +Φ +Ψ ,

and therefore

(3.19) Δ
(1)
J+1:N,J = Φ+Ψ .

We analyze the accuracy of forming F using Lemma 3.3, which yields the bound

|Φ| ≤ γJb(|LJ+1:N,1:J ||H1:J,J |+ |F |) .
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However, because L2:N,1 is zero, the inner dimension of the product LJ+1:N,1:JH1:J,J

is effectively (J − 1)b instead of Jb, and therefore

(3.20) |Φ| ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |F |) .
The accuracy of the LU factorization of F can be analyzed using Lemma 3.6, which
yields

(3.21) |Ψ| ≤ γb|LJ+1:N,J+1||HJ+1,J | .
Substituting (3.20) and (3.21) into (3.19) yields

|Δ(1)
J+1:N,J | ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |F |) + γb|LJ+1:N,J+1||HJ+1,J | ,

and further substituting (3.18) and using (3.21) again yields

|Δ(1)
J+1:N,J | ≤ γ(J−1)b|LJ+1:N,1:J ||H1:J,J |

+ (γ(J−1)b + γb + γ(J−1)bγb)|LJ+1:N,J+1||HJ+1,J | .
Bounding the constants in this expression according to

γ(J−1)b ≤ γJb ,

γ(J−1)b + γb + γ(J−1)bγb ≤ γJb ,

where the second bound is justified by Lemma 3.1, yields

|Δ(1)
J+1:N,J | ≤ γJb|LJ+1:N,1:J ||H1:J,J |+ γJb|LJ+1:N,J+1||HJ+1,J |

= γJb(|L||H |)J+1:N,J ,

and therefore

(3.22) |Δ(1)
I,J | ≤ γJb(|L||H |)I,J

for all I > J .
We bound the diagonal and superdiagonal blocks of |Δ(2)| by considering the

computation that corresponds to (AA3). In that equation we compute blocks of H
by forming the corresponding blocks of TLT , and as we discuss in section 2.3, these
blocks are formed according to the formula

HI,J = TI,I−1(LJ,I−1)
T + TI,I(LJ,I)

T + TI,I+1(LJ,I+1)
T .

This is equivalent to multiplying the b-by-3b matrix TI,I−1:I+1 by the 3b-by-b matrix
(LJ,I−1:I+1)

T , and the accuracy of this computation is bounded in Lemma 3.2, which
guarantees that

|Δ(2)
I,J | ≤ γ3b(|T ||LT |)I,J

for all I ≤ J . The blocks Δ
(2)
J+1,J correspond to (AA5), which solves the triangular

system HJ+1,J = TJ+1,J(LJ,J)
T . This is analyzed in Lemma 3.5, which guarantees

that

|Δ(2)
J+1,J | ≤ γb(|T ||LT |)J+1,J .
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All other blocks of Δ(2) are zero, and thus

(3.23) |Δ(2)| ≤ γ3b|T ||LT | .
Substituting (3.22) and (3.23) into (3.16) yields

|ΔI,J | ≤ γJb(|L||H |)I,J + γ3b(|L||T ||LT |)I,J
for all I > J . Further substituting H = TLT + Δ(2) and using (3.23) once again
yields

|ΔI,J | ≤ (γJb + γ3b + γJbγ3b)(|L||T ||LT |)I,J
≤ γJb+3b(|L||T ||LT |)I,J .

The constant γJb+3b is maximized when J = N − 1, which yields the required bound
for all I > J . As for I < J, the same bound holds because Δ is the difference of the
two symmetric matrices A and LTLT and is thus itself symmetric.

Lemma 3.9. The computed factors satisfy A = LTLT +Δ, where

|ΔJ,J | ≤ γ2n−b−1(|L||T ||LT |)J,J
for J = 1, 2, . . . , N .

Proof. Let the matrices Δ(1) and Δ(2) be such that

A = LW + (LW )T +Δ(1) , W = RLT +Δ(2) .

Substituting the second expression into the first one yields

A = LRLT + (LRLT )T + LΔ(2) + (LΔ(2))T +Δ(1)

= L(R+RT )LT + LΔ(2) + (LΔ(2))T +Δ(1)

= LTLT + LΔ(2) + (LΔ(2))T +Δ(1)

and therefore

(3.24) Δ = Δ(1) + LΔ(2) + (LΔ(2))T .

Equation (AA2) computes TJ,J by forming F = AJ,J − LJ,1:J−1W1:J−1,J −
(LJ,1:J−1W1:J−1,J)

T and then solving LJ,JTJ,J(LJ,J)
T = F . Let the matrices Φ and

Ψ be such that

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)
T + F +Φ ,(3.25)

F = LJ,JTJ,J(LJ,J)
T +Ψ .(3.26)

Substituting (3.26) into (3.25) yields

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J )
T + LJ,JTJ,J(LJ,J)

T +Φ +Ψ .

Rewriting the term LJ,JTJ,J(LJ,J)
T according to

LJ,JTJ,J(LJ,J)
T = LJ,J(RJ,J + (RJ,J)

T )(LJ,J)
T

= LJ,JRJ,J(LJ,J)
T + (LJ,JRJ,J(LJ,J)

T )T

= LJ,JWJ,J + (LJ,JWJ,J)
T
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gives

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)
T + LJ,JWJ,J + (LJ,JWJ,J )

T +Φ+Ψ

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J)
T +Φ +Ψ

= (LW + (LW )T )J,J +Φ+Ψ

and thus

(3.27) Δ
(1)
J,J = Φ+Ψ .

The accuracy of forming F and then solving for TJ,J can be bounded using Lemmas 3.4
and 3.7, which guarantee that

|Φ| ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T + |F |) ,
|Ψ| ≤ γ3b−1|LJ,J ||TJ,J ||LJ,J |T .

Substituting these bounds into (3.27), further substituting (3.26), and bounding again
yields

|Δ(1)
J,J | ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )

+ (γ2(J−2)b + γ3b−1 + γ2(J−2)bγ3b−1)|LJ,J ||TJ,J ||LJ,J |T
≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )

+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T ,(3.28)

which is the bound we require for |Δ(1)|.
The superdiagonal blocks of Δ(2) correspond to (AA1). That equation states that

blocks of W are computed by forming the corresponding blocks of the product RLT ,
which are formed according to the formula

WI,J = 0.5(TI,I(LJ,I)
T ) + TI,I+1(LJ,I+1)

T ,

as we explain in section 2.3. Because of the scaling by 0.5 we cannot apply Lemma 3.2
directly to this formula. Instead we must bound the errors resulting from forming the
two single-block products separately, and then use assumptions (FL2) and (FL1) to
account for the effects of scaling and summation, respectively. We skip the details;
the resulting bound is

(3.29) |Δ(2)
I,J | ≤ γb+1(|R||LT |)I,J

for all I < J .
Next we return to bounding (3.24), starting with the last two terms. The diagonal

and subdiagonal blocks of W are defined such that the corresponding blocks of Δ(2)

are zero, and therefore

(|L||Δ(2)|+ (|L||Δ(2)|))J,J = |LJ,1:J−1||Δ(2)
1:J−1,J |+ (|LJ,1:J−1||Δ(2)

1:J−1,J |)T .

Substituting (3.29) yields

(|L||Δ(2)|+ (|L||Δ(2)|))J,J ≤ γb+1

(|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T
+ (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T

)
,
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which can be further simplified according to

|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T + (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T

=

J−1∑
I=1

(2 |LJ,I ||RI,I ||LJ,I |T + |LJ,I ||RI,I+1||LJ,I+1|T + |LJ,I+1||RI,I+1|T |LJ,I |T )

=

J−1∑
I=1

(|LJ,I ||TI,I ||LJ,I |T + |LJ,I ||TI,I+1||LJ,I+1|T + |LJ,I+1||TI+1,I ||LJ,I |T )

= (|L||T ||L|T )J,J − |LJ,J ||TJ,J ||LJ,J |T ,

yielding

(3.30) (|L||Δ(2)|+ (|L||Δ(2)|)T )J,J ≤ γb+1((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T ) .
To bound the first term in (3.28) we substitute W = RLT +Δ(2) and apply the same
arguments we used to produce (3.30), obtaining

|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T ≤ (1 + γb+1)((|L||T ||LT |)J,J
− |LJ,J ||TJ,J ||LJ,J |T ) .(3.31)

Finally, substituting (3.31) into (3.28) and then substituting the result together
with (3.30) into (3.24) yields

|ΔJ,J | ≤ (γ2(J−2)b + γb+1 + γ2(J−2)bγb+1)((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T )
+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T .

Because b ≥ 1, we can bound

γ2(J−2)b + γb+1 + γ2(J−2)bγb+1 ≤ γ2(J−2)b+b+1 ≤ γ2(J−2)b+3b−1 ,

which allows us to cancel the two instances of |LJ,J ||TJ,J ||LJ,J |T and obtain

|ΔJ,J | ≤ γ2(J−2)b+3b−1(|L||T ||LT |)J,J .

The constant γ2(J−2)b+3b−1 is maximized when J = N , which yields the required
bound.

Theorem 3.10. The computed factors satisfy A = LTLT +Δ, where

|Δ| ≤ γ2n−b−1|L||T ||LT |
if n > 3b and

|Δ| ≤ γn+2b|L||T ||LT |
otherwise.

Proof. Lemmas 3.8 and 3.9 state that

|ΔI,J | ≤ γn+2b(|L||T ||LT |)I,J
whenever I 	= J , and

|ΔI,J | ≤ γ2n−b−1(|L||T ||LT |)I,J
whenever I = J , and therefore the bound

|ΔI,J | ≤ max {γn+2b, γ2n−b−1} (|L||T ||LT |)I,J
holds for all I and J . The quantity γn increases monotonically with n (so long as
nu < 1) and therefore γ2n−b−1 ≥ γn+2b whenever 2n− b − 1 ≥ n + 2b, which occurs
whenever n > 3b.
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3.4. The stability of solving linear systems. Next we analyze the stability
of using our factorization for solving systems of linear equations. In our analysis we
assume that banded systems that involve the matrix T are solved using a specific
algorithm, the LU factorization with partial pivoting. Using the other solvers that we
mention in section 2.4 is also possible, but banded LU with partial pivoting is more
suitable because it is implemented in LAPACK and has a straightforward analysis.

Let Ax = f be the system that we are solving, and let PAPT = LTLT be the
factorization that we compute using our algorithm. We remind the reader that b
denotes the block size of the factorization and the bandwidth of T . We compute x by
using the following steps:

1. Solve the triangular system Lu = Pf .
2. Solve the banded system Tv = u.
3. Solve the triangular system LTw = v.
4. Set x = PTw.

The next lemmas can be proved by following the analyses of triangular solve and of
the LU factorization, respectively, in [18, sections 8.1 and 9.3], while taking advantage
of the special structure of the matrices to obtain the reduced constants that figure in
the bounds.

Lemma 3.11. Let T be a unit lower-triangular matrix, and assume that it is
equal to the identity matrix in the first b columns. If the system Tu = v is solved in
floating-point arithmetic using substitution, then

(T +Δ)u = v , |Δ| ≤ γn−b−1 |T | .

Alternatively, if T is a unit upper-triangular matrix that equals to the identity matrix
in the first b rows, then the same bound holds.

Lemma 3.12. Let Au = v be a banded linear system, and let b be its bandwidth.
If the LU factorization with partial pivoting PA = LU is used to solve the system in
floating-point arithmetic, then(

A+ PTΔ
)
u = v , |Δ| ≤ γn+4b+1 |L| |U | .

Our bound is given in the following theorem.
Theorem 3.13. If the system Ax = f is solved in floating-point arithmetic by

using the factorization PAPT = LTLT , computed using our algorithm, and the LU
factorization with partial pivoting P1T = L1U1, then(

A+ PTΔP
)
x = f ,

where

|Δ| ≤ γg(n,b) |L| |T | |L|T + γh(n,b) |L|PT
1 |L1| |U1| |L|T +O(u2)

for

g(n, b) =

{
4n− 3b− 3 if n > 3b ,

3n− 2 otherwise
and h(n, b) = n+ 4b+ 1 .

Proof. Let the matrices Δt for t = 1, 2, 3 and Γ1 and Γ2 be such that

(L+Δ1)u = Pf , (T +Δ2) v = u ,
(
LT +Δ3

)
w = v
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and

PAPT + Γ1 = LTLT , (L+Δ1) (T +Δ2)
(
LT +Δ3

)
= LTLT + Γ2 .

Combining the equations that correspond to the Δt matrices yields

(L+Δ1) (T +Δ2)
(
LT +Δ3

)
w = Pf ,

and applying to this the equations that correspond to Γ1 and Γ2 yields(
PAPT + Γ1 + Γ2

)
w = Pf .

Substituting w = Px and premultiplying both sides of this equation by PT yields(
A+ PT (Γ1 + Γ2)P

)
x = f ,

and therefore

(3.32) Δ = Γ1 + Γ2 .

Next we expand the left-hand side in the equation that defines Γ2 and obtain

Γ2 = Δ1TL
T + LTΔ3 +Δ1TΔ3

+ LΔ2L
T +Δ1Δ2L

T + LΔ2Δ3 +Δ1Δ2Δ3 .(3.33)

Our bounds on the Δt matrices, in absolute value, follow from Lemmas 3.11 and 3.12,
which guarantee that

|Δ1| ≤ γn−b−1 |L| |Δ2| ≤ γn+4b+1P
T
1 |L1| |U1| |Δ3| ≤ γn−b−1 |L|T .

Substituting these bounds into (3.33) yields

|Γ2| ≤ γ2n−2b−2 |L| |T | |L|T + γn+4b+1 (1 + γ2n−2b−2) |L|PT
1 |L1| |U1| |L|T .

Our bound on |Γ1| is given by Theorem 3.10, and substituting this bound together
with the one on |Γ2| into (3.32) yields the required bound on |Δ|.

The theorem states that the norms of |L| |T | |L|T and |L|PT
1 |L1| |U1| |L|T deter-

mine the stability of the solution. The goal of pivoting is to make sure that these
norms are as close as possible to ‖A‖.

3.5. Growth. Stability depends on the magnitude of the factors relative to
that of A. How large can the factors get? In the elementwise Aasen algorithm,
the magnitude of elements of L is bounded by 1 (because the algorithm uses partial
pivoting), and it is easy to show that |Tij | ≤ 4n−2maxij |Aij | [17]; the argument
is essentially the same as the one that establishes the bound on |Uij | in Gaussian
elimination with partial pivoting (GEPP). This bound is higher than the correspond-
ing bounds of 2n−1 maxij |Aij | for Gaussian elimination with partial pivoting and of
(2.57)n−1maxij |Aij | for the Bunch–Kaufman algorithm [9]. Furthermore, the bound
is attained by a known matrix of order n = 3, although larger matrices that attain
the bound are not known [18, p. 224].

It is important to interpret this bound correctly. The actual expression (4n−2)
is not important, because it does not indicate the growth that is normally attained.
The same is true for LU with partial pivoting; it is stable in spite of the fact that the
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growth factor bound is as large as 2n−1, not because this bound is small (it is not; it
is huge). Two other things are important. One is that the bound shows that growth
is not related to the condition number of A. The second is that growth in practice
is small. The reasons for this are complex and not completely understood even in
LU with partial pivoting, but this is the reality; for deeper analyses and discussion,
see [30, 34] and [18, section 9.4].

If we compute the factorization in (AA4) using LU with partial pivoting (GEPP),
essentially the same bounds hold for our block algorithm. The block columns of the
L factor are generated by GEPP, so the same two-sided doubling-up argument shows
that the growth factor for T is bounded by 4n−b−1 (since the first columns of L are
unit vectors and additions/subtractions start only in column b+ 1).

When the factorization in (AA4) is computed in a communication-avoiding way
using the tall-and-skinny LU algorithm [14] (TSLU), L is still bounded, but the bound
is 2bh, where h is a parameter of TSLU that normally satisfies h = O(log n). This can
obviously be much larger than 1, although experiments indicate that L is usually much
smaller. This implies that growth in T is still bounded, but the bound is now 4nbh.
This is worse than with GEPP, but as we explained above, this theoretical bound
is not what normally governs the stability of the algorithm. The recently developed
panel rank-revealing LU factorization [23] may improve the growth bounds in our
algorithm, but we have not fully explored this.

4. Complexity analyses. In this section we analyze the costs of the algorithm.
We begin with an analysis of the computational complexity (asymptotic number of
machine instructions, including arithmetic operations). We then analyze the commu-
nication costs of the algorithm. These costs consist of the number of words communi-
cated and the number of messages communicated, which we refer to as the bandwidth
and latency costs, respectively.

We use the word bandwidth in this section in two unrelated contexts. Matrix
bandwidth refers to the location of the nonzero elements in a matrix and is distinct
from the bandwidth cost of an algorithm. The reader is encouraged to keep this in
mind so as not to confuse the two.

4.1. Computational cost. Our goal in this subsection is to show that the new
block algorithm performs the same number of arithmetic operations as the elementwise
one, up to low-order terms.

In order to determine the arithmetic complexity of the algorithm, we consider only
(AA1)–(AA5) (the computational cost of pivoting is negligible). Letting J denote
the index of the outermost loop of the algorithm, and letting b be the block size,
the arithmetic cost of (AA1)–(AA3) is O(Jb3) flops. This is because each equation
involves O(J) block multiplications of b-by-b blocks (some of which are triangular).
Note that in (AA2), the dominant cost is in computing the product of the block row
of L with the block column of W ; the arithmetic cost of the two-sided symmetric
solve is O(b3). Similarly, (AA5) is a triangular solve involving one block and has
an arithmetic cost of O(b3). The dominant arithmetic cost for the overall algorithm
comes from (AA4), which consists of two subcomputations: a matrix multiplication
involving L and H and an LU decomposition of a block column. The arithmetic
cost of the LU decomposition is O(Jb3). The matrix multiplication step multiplies
an (N − J)b-by-Jb submatrix of L by a Jb-by-b submatrix of H . At the Jth step of
the algorithm, this arithmetic cost is 2(N − J)Jb3 flops, ignoring lower-order terms.
Summing over the outermost loop and using the fact that N = n/b, we have a total
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arithmetic cost of

N∑
J=2

(
2(N − J)Jb3 +O(Jb3)

)
=

1

3
n3 + o(n3).

4.2. Communication costs. To determine the communication complexity of
the algorithm, we must consider (AA1)–(AA5) as well as the cost of applying symmet-
ric permutations to the trailing matrix. We analyze the three parts of the algorithm
separately: block operations (all of the computations described in (AA1)–(AA5) with
the exception of the LU decomposition), LU decomposition of block columns, and
application of the permutations to the trailing matrix. We assume the matrix is
stored in block-contiguous format with block size b, the same as the algorithmic block
size. In block-contiguous format, b-by-b blocks are stored contiguously in memory.
The ordering of elements within blocks and the ordering of the blocks do not affect
communication costs; we use column-major ordering. In the following analysis, we
assume b ≤ √

M/3, where M is the size of fast memory, so that three blocks fit
simultaneously in fast memory.

4.2.1. Block operations. By excluding the LU decomposition, all the other
computations in (AA1)–(AA5) involve block operations—either block multiplication
(sometimes involving triangular or symmetric matrices), block triangular solve, or
block two-sided symmetric triangular solve. For example, in (AA3), we compute
HI,J as TI,I−1(LJ,I−1)

T +TI,I(LJ,I)
T +(TI+1,,I)

T (LI+1,J)
T (assuming only the lower

halves of T and L are stored). Each of the three multiplications involve b-by-b blocks,
so by the assumption that b ≤ √

M/3, the operations can be performed by reading
contiguous input blocks of size b2 words into fast memory, performing O(b3) floating-
point operations, and then writing the output block back to slow memory. This
implies that the number of messages is proportional to the number of block operations,
which is O((computational cost)/b3) = O(n3/b3) and the number of words moved is
O((computational cost)/b) = O(n3/b).

4.2.2. Panel decomposition. We now consider algorithms for the LU decom-
position of the column panel. Note that the O(N) LU factorizations, each involving
O(Nb3) flops, contribute altogether only an O(n2b) term to the arithmetic complex-
ity of the overall algorithm, a lower-order term. Thus, attaining the communication
lower bound for the overall algorithm does not require minimizing communication
within panel factorizations. For example, using a naive algorithm and achieving only
constant reuse of data during the LU factorization translates to a total of O(n2b)
words moved during LU factorizations, which is dominated by the communication
complexity of the block operations, O(n3/b) words, in the case where n � b2. How-
ever, to ensure that both bandwidth and latency costs of the LU factorizations do
not asymptotically exceed the costs of the rest of the overall algorithm for all matrix
dimensions, we need algorithms that achieve better than constant reuse (though the
algorithms need not be asymptotically optimal). The bandwidth and latency costs of
the naive algorithm are summarized in the first row of Table 1.

We choose to use the recursive algorithm (RLU) of [15, 33] for panel factoriza-
tions, updated slightly to match the block-contiguous data layout. The algorithm
works by splitting the matrix into left and right halves, factoring the left half recur-
sively, updating the right half, and then factoring the trailing matrix in the right half
recursively. In order to match the block-contiguous layout, the update of the right half
(consisting of a triangular solve and matrix multiplication) should be performed block
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Table 1

Communication costs of LU decomposition algorithms applied to an n-by-b matrix stored in
b-by-b block-contiguous storage, assuming b ≤ √

M/3.

Algorithm Words Messages

Naive O
(
nb2

)
O (n)

RLU O
(

nb2√
M

+ nb log b
)

O
(
min

(
n, n2

M

))

SMLU [7] O
(

nb2√
M

+ nb log b log nb
M

)
O

(
nb2

M3/2 + nb
M

log b log nb
M

)

TSLU [14] O
(

nb2√
M

)
O

(
nb2

M3/2

)

by block. The bandwidth cost of this algorithm for n-by-b matrices is analyzed in [33],
and the latency cost can be bounded by the recurrence L(n, b) ≤ 2L(n, b/2) +O(N).
The O(N) term comes from the update of the right half of the matrix, which involves
reading contiguous chunks of each of the O(N) blocks in the panel. The base case
occurs either when the subpanel fits in memory (nb < M) or when b = 1. The cost
of the recursive algorithm is dominated by its leaves, each of which requires O(N)
messages. Depending on the relative sizes of n and M , there are either nb/M or b
leaves starting with an n-by-b matrix. The latency cost becomes the minimum of two
terms: O(n) or O(n2/M). The communication costs are given in the second row of
Table 1.

In order to determine the contribution of LU factorizations to the costs of the
overall algorithm, we must multiply the cost of the n-by-b factorization by N , the
number of panel factorizations. Using the RLU algorithm, this yields a bandwidth
cost of O(n2b/

√
M + n2 log b) words and a latency cost of O(min(n2/b, n3/(bM)))

messages. With the exception of the O(n2 log b) term in the bandwidth cost, these
costs are always asymptotically dominated by the costs of the block operations.

While the RLU algorithm is sufficient for minimizing communication in the over-
all algorithm, there are algorithms which require fewer messages communicated. The
shape-morphing LU algorithm (SMLU) [7] is an adaptation of RLU that changes the
matrix layout on the fly to reduce latency cost. The algorithm and its analysis are
provided in [7], and the communication costs are given in the third row of Table 1.
SMLU uses partial pivoting and incurs a slight bandwidth cost overhead compared
to RLU (an extra logarithmic factor). Another algorithm which reduces latency cost
even further is the communication-avoiding TSLU [14]. The algorithm can be ap-
plied to general matrices, but the main innovation focuses on tall-skinny matrices.
TSLU uses tournament pivoting, a different scheme than partial pivoting, which has
slightly weaker theoretical numerical stability properties. The algorithm and analysis
are provided in [14], and the communication costs are given in the bottom row of
Table 1. The communication costs of TSLU are optimal with respect to each panel
factorization.

4.2.3. Applying symmetric permutations. After each LU decomposition of
a block column, we apply the internal permutation to the rest of the matrix. This
permutation involves back-pivoting, or swapping rows of the already factored L ma-
trix, and forward-pivoting of the trailing symmetric matrix. Applying the symmetric
permutations to the trailing matrix includes swapping elements within a given set of
rows and columns, as shown in Figure 12. For example, applying the transposition
(k, l) implies that the L-shaped set of elements in the kth row and kth column (to the
left and below the diagonal) is swapped with the L-shaped set of elements in the lth
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forward-pivoting

ba
ck
-p
iv
ot
in
g

k l

Fig. 12. Exchanging rows and columns k and l. The second (dark) block column is the block
column of the reduced matrix whose LU factorization was just computed. The first block column
is a block column of L; the algorithm applies back-pivoting to it. Block columns 3 to 6 are part of
the trailing submatrix; the algorithm applies forward-pivoting to them. The trailing submatrix is
square and symmetric, but only its lower triangle is stored, so a row that needs to be exchanged is
represented as a partial row (up to the diagonal) and a partial column, as shown here.

row and lth column, such that element akk is swapped with element all and element
akl stays in place.

Since there are at most b swaps that must be performed for a given LU decompo-
sition, and each swap consists of O(n) data, the direct approach of swapping L-shaped
sets of elements one at a time has a bandwidth cost of O(nb) words. However, no
matter how individual elements within blocks are stored, because the permutations
involve accessing both rows and columns, at least half of the elements will be accessed
noncontiguously, so the latency cost of the direct approach is also O(nb) messages.
Since there are N = n/b symmetric permutations to be applied, these costs amount to
a total of O(n2) words and O(n2) messages. While the bandwidth cost is a lower-order
term with respect to the rest of the algorithm, the latency cost of the permutations
exceeds the rest of the algorithm, except when n � M3/2. This approach is the
symmetric analogue of Variant 1 in [14], which is a direct method for applying row
permutations to the trailing matrix in a nonsymmetric LU factorization.

In order to reduce the latency cost, we use a block approach which will require a
greater bandwidth cost than the direct approach but will not increase the asymptotic
bandwidth cost of the overall algorithm. The block approach accesses contiguous
b-by-b blocks, but it may permute only a few rows or columns of the blocks. This
approach is the symmetric analogue of Variant 2 in [14], which is a block method for
applying row permutations to the trailing matrix in a nonsymmetric LU factorization.

The algorithm works as follows: for each block in the LU factorization panel
that includes a permuted row, we update the N pairs of blocks shown in Figure 13.
The updates include back-pivoting (updating parts of the L matrix that have already
been computed) and forward-pivoting (updating the trailing matrix). Nearly all the
updates involve pairs of blocks, which fit in fast memory simultaneously. Pairs of
blocks involved in back-pivoting are not affected by column permutations and swap
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1

1

2 2

3

3

4

4 4

Fig. 13. Exchanging a pair of rows in the block approach. Numbers indicate sets of blocks
that are held simultaneously in fast memory: all the blocks marked “1” are held in fast memory
simultaneously, later all the blocks marked “2”, and so on.

Table 2

Communication costs of schemes for applying symmetric permutations.

Algorithm Words Messages

Direct O(nb) O(nb)

Block O(n2) O
(

n2

b2

)

only rows. Some pairs of blocks involved in forward-pivoting are not affected by row
permutations and swap only columns. Because only half of the matrix is stored,
some pairs of blocks in the trailing matrix will swap columns for rows. The more
complicated updates involve blocks which are affected by both row and column per-
mutations: the two diagonal blocks and the corresponding off-diagonal block, shown
in Figure 13. In order to apply the two-sided permutation to these blocks, all three
blocks are read into fast memory and updated at once. Since there are O(N) blocks in
each LU factorization panel, and each block with a permuted row requires accessing
O(N) blocks to apply the symmetric permutation, for a given LU factorization, the
number of words moved in applying the associated permutation is O(N2b2) = O(n2),
and the total number of messages moved is O(N2) = O(n2/b2).

The communication costs of the two approaches are summarized in Table 2.

5. A communication lower bound. To claim that our algorithm is commu-
nication optimal, we need to show a lower bound on the number of cache misses that
any schedule for executing the algorithm must generate. We will appeal to the main
results of [4, 6], which we repeat for completeness in Appendix A.

Inspecting the algorithm, we note that all the elements of L are computed using
the following expressions:

lii = 1 for 1 ≤ i ≤ n ,

lij = 0 for 1 ≤ j ≤ b, i > j ,

lij = 1
hj,j−b

(
ai,j−b −

∑j−b
k=b+1 likhk,j−b

)
for b < j < i ≤ n .
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COMMUNICATION-AVOIDING INDEFINITE FACTORIZATION 1397

The lower bound assumes that elements of L are computed using these expres-
sions, and that elements of L and H are computed only once. The bound does not
depend on how elements ofH and T are computed and it does not depend on the order
of summations in the computation of lij . Similar assumptions are made in virtually all
the communication lower bounds for matrix algorithms [6, 19, 21]. These assumptions
admit a wide range of algorithms and schedules, but they do not admit completely
different ways of computing the factorization, such as Strassen-like algorithms. We
now state and prove this lower bound formally as a corollary of Theorem A.3.

Theorem 5.1. Any algorithm that computes the symmetric banded factoriza-
tion A = LTLT while computing L using the expressions above and while computing
elements of L and H at most once must transfer at least

n3

48
√
M
−M − n2

2
− nb

words between slow and fast memory. The number of cache misses must be at least

this bound divided by M . For large n, this lower bound is Ω
(

n3√
M

)
.

Proof. We first verify that computing the factorization LTLT is a 3NL compu-
tation, as defined in Definition A.1, though with temporary operands. We follow the
notation in that definition: let fij be the function defined above for lij , b < j < i ≤ n,
and let gijk be the scalar multiplication of lik and hk,j−b. Then we make the corre-
spondences that lij is stored at location c(i, j) = a(i, j) and hi,j−b is stored at location
b(i, j). Since L is an input stored in slow/global memory, the mappings a and c are
one-to-one into slow/global memory. Further, functions fij (involving a summation of
gijk outputs) and gijk (scalar multiplication) depend nontrivially on their arguments.
Thus, the computation is 3NL, with the exception that b is not necessarily a mapping
into slow/global memory, and the number of temporary operands is the number of
nonzeros in the matrix H = TLT .

Since the factorization LTLT is a 3NL computation with temporary operands,
we can apply Theorem A.3. Thus, we need only determine the values of G and t in
the statement of the theorem. In the case of an n-by-n matrix, the number of scalar
multiplications is G = n3/6+O(n2b) and the number of nonzeros in H is n2/2+O(nb).
When n ≥ √M , the n3/

√
M term asymptotically dominates the (negative) M and

O(n2) terms.

6. Numerical experiments. Next we describe a set of numerical experiments
that provide further insight into the numerical behavior of the algorithm.

We carried out three sets of experiments with both random matrices and matrices
from the University of Florida Sparse Matrix Collection [11]. We factored each matrix
twice, once using the block Aasen algorithm and once, for comparison, using the
LAPACK subroutine sysv that implements the Bunch–Kaufman algorithm. In our
algorithm we used a block size b = 256 as in the companion paper [5] and factorized
panels using GEPP (corresponding to panel factorization strategies RLU and SMLU
in Table 1).

6.1. Experiments with random matrices. In the first set of experiments we
generated a sequence of random square symmetric matrices of order n for 100 distinct
values of n, linearly spaced in the interval 500 ≤ n ≤ 5,000. The elements of these
matrices are distributed normally and independently (preserving symmetry, of course)
with mean 0 and standard deviation 1.

We used three parameters to evaluate the factorizations: the growth factor, the

D
ow

nl
oa

de
d 

06
/1

9/
16

 to
 1

32
.6

4.
31

.1
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1398 BALLARD ET AL.

error of the factorization, and the normwise backward error in the solution of a linear
system of equations Ax = f . The right-hand side f in this system was generated by
postmultiplying A with a random vector whose elements were produced in the same
way as the elements of A. Solving Ax = f using our algorithm requires a solver for
banded systems involving the factor T ; this role was played in our experiments by
the LAPACK subroutine gbtrf that implements the banded LU factorization with
partial pivoting. To solve Ax = f using the Bunch–Kaufman factorization, we used
sysv, the LAPACK subroutine that we also used to compute the factorization. sysv
solves a linear system using the Bunch–Kaufman factors directly and does not require
their further factorization. We computed the backward error using the formula

(6.1)
‖f −Ax̂‖∞
‖A‖∞ ‖x̂‖∞

,

where x̂ is the computed solution. This formula produces the norm of the matrix Δ
in Theorem 3.13 (see [18, Theorem 7.1]). We also computed the two growth factors

(6.2) ρ1 =
‖T ‖M
‖A‖M

, ρ2 =
‖U1‖M
‖A‖M

,

where ‖X‖M = maxi,j |Xi,j | denotes the max-norm of a matrix X , and U1 denotes
the upper-triangular factor of the LU factorization with partial pivoting of T . Theo-
rem 3.13 provides us with a componentwise bound on the backward error from which
we can derive a normwise bound of the form

(6.3) ‖Δ‖M ≤ u · p (n, b) (‖T ‖M + ‖U1‖M ) ,

where p (n, b) is a polynomial. This means that ρ1 and ρ2 indicate the size of the
backward error, and for this reason we consider them as the growth factors of the
factorization. In our experiments we found that the two are always of the same order
of magnitude, and therefore we only show ρ1 in the figures in this section. For the
Bunch–Kaufman factorization we computed growth using the analogous definition

‖D‖M
‖A‖M

,

where D is the block-diagonal factor computed by the algorithm. Here we do not re-
quire two growth factors as we do with our algorithm (compare Theorem 3.13 with [16,
Theorem 4.1]). Finally, we define the factorization error as

max
i,j

∣∣A− LTLT
∣∣
i,j(

|L| |T | |L|T
)
i,j

,

with the convention that 0/0 = 0. In this formula we divide the elements of the
matrix on the left-hand side of the bound of Theorem 3.10 by the elements of the
matrix on its right-hand side, which allows us to determine how sharp the analysis
in that theorem is. The factorization error should not be considered as the backward
error of the factorization (for that, the denominator in the definition would need to
be |Ai,j |).

For the random matrices, the stability of solutions to linear systems and the
growth factors are shown in Figure 14. The backward errors are moderate, varying
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Fig. 14. Results for random matrices. The top plot shows the backward error in the solution
of Ax = f as defined by (6.1), and the bottom one shows the growth factor ρ1 in the factorization
of A as defined by (6.2).

between 9.4 × 10−15 and 7.6 × 10−14 with a median of 4.9 × 10−14. The backward
error is increasing with n but at a rate that is slower than linear. The growth factor is
strongly correlated with the error, which agrees with the bound in Theorem 3.13 and
indicates that the polynomial p (n, b) in (6.3) does not have a significant dependence
on n. The factorization errors are small, between 2.3u and 4.9u with a median of
3.8u, and do not seem to depend on n, in contrast with the bound in Theorem 3.10.

The solutions produced by sysv are consistently more stable, with backward
errors that are smaller by up to two orders of magnitude. In our experiments we found
that this difference is largely explained by the block size in our algorithm. When we
decrease the block size, backward errors and growth factors decrease accordingly until
they ultimately reach the same level as that of Bunch–Kaufman. Section 6.3 explores
this question in more detail.

6.2. Experiments with real-world matrices. The second set of experiments
factored 143 matrices from the University of Florida Sparse Matrix Collection. We
chose for this experiment all of the symmetric, real, nonpattern matrices of order
512 ≤ n ≤ 16,386, with the exception of matrices with bandwidth b or less. Matrices
with low bandwidth were omitted because they are their own T factors and therefore
do not require factorization. This set of matrices is further described in Table 3; a list
of the matrices is included as supplementary material to this paper. The experiment
was conducted according to the same scheme as the experiment involving the random
matrices.

For the 131 matrices on which the algorithm produced good results, the stability
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1400 BALLARD ET AL.

Table 3

The University of Florida matrix set. The table shows the statistics of the dimension of the
matrix n; of the average number of nonzero elements in each column nnz/n, where nnz is the number
of nonzero elements in the whole matrix; and of the 2-norm condition number κ.

n nnz/n κ

minimum 662.0 0.5 1.8× 101

1st quartile 2,000.0 6.9 1.2× 104

median 5,041.0 11.7 2.6× 107

3rd quartile 9,899.3 23.2 7.5× 1011

maximum 16,146.0 1,260.0 inf
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Fig. 15. Results for matrices from the University of Florida Sparse Matrix Collection. The
top plot shows the backward error in the solution of Ax = f as defined by (6.1), and the bottom one
shows the growth factor ρ1 in the factorization of A as defined by (6.2). The matrices are shown in
increasing order of n.

of the linear solver and the growth factor are shown in Figure 15. The linear-solver
backward errors are between 3.6×10−21 and 3.7×10−13, with a median of 1.2×10−15.
The backward errors that we obtain from our algorithm are moderate and comparable
to those of sysv, although in a few cases the difference can be as high as three digits
of accuracy. The factorization errors were small in all but 3 of the matrices, reaching
at most a level of 34u. In three matrices we found large factorization errors, which
were caused by underflow and by subnormal numbers that were obtained during the
factorization. This turned out to be harmless because the large relative errors that
we obtained in individual arithmetic operations on tiny numbers translated to tiny
normwise backward errors.

On 12 matrices, our linear solver failed to produce a solution. In these matrices,
the LU factorization with partial pivoting of T produced a U factor, some of whose
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Fig. 16. Results for random matrices, factorized using various values of the block size. The
top plot shows the backward error in the solution of Ax = f as defined by (6.1), and the bottom one
shows the growth factor ρ1 in the factorization of A as defined by (6.2). When plotted on linear-
linear scales, our algorithm’s backward error is close to linear. We computed only one factorization
using sysv because in that algorithm changing the block size does not affect the factors.

diagonal elements were equal to zero. Because such a U factor cannot be used to
solve linear systems by substitution, this caused the banded solver to indicate an
error. In all 12 matrices the root cause was structural or numerical rank deficiency ofA
(MATLAB reported condition numbers larger than 1018). Our factorization algorithm
produced stable factorizations, with factorization errors of order u, well-conditioned
L’s, and typical growth, never greater than 100. We note that the Bunch–Kaufman
algorithm also failed to produce a solution for these matrices.

6.3. The effect of the block size on numerical stability. All of the experi-
ments we have described so far were conducted with a block size b = 256. Additional
experimentation shows that the backward error depends on b. Figure 16 shows this
phenomenon on a random matrix of dimension 5,000 that we factored with various
values of b. The results show that the linear-solver backward error increases propor-
tionally to the block size, growing by roughly two orders of magnitude as b is increased
from 10 to 1,000.

The growth factor does not increase as quickly, growing by only one order of
magnitude and failing to fully reflect the dependence on b. The reason for the linear
dependence on b is the polynomial in (6.3), which also increases with b. The cause of

this is the growth of the elements of the matrices |L| |T | |L|T and |L|PT
1 |L1| |U1| |L|T ,

which feature in our bound on the backward error in Theorem 3.13. The elements of
these matrices appear to increase proportionally with the number of nonzero elements
in |T | and PT

1 |L1| |U1|, and this number is typically proportional to b and equals Θ(nb)
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Table 4

The memory hierarchy structure of our machine. The machine consists of eight 6-core AMD
Opteron 8439SE processors.

every core
L1 data cache 64 KB 2-way associative
L1 instruction cache 64 KB 2-way associative
L2 cache 512 KB 16-way associative

every six cores
L3 cache 6 MB 48-way associative

all cores
main memory 126 GB

if T is full within its band and there is no numerical cancellation in its LU factorization
with partial pivoting.

Nevertheless, it appears that this effect is not universal in all matrices. When
we tried varying the block size in the factorization of sparse matrices, we found that
the correlation between the backward errors and b is as likely to be negative as it
is to be positive. The reason for this is that increasing the block size can make |L|
sparser, which compensates for the increase in the number of nonzero elements in |T |
and PT

1 |L1| |U1|.
Furthermore, we also found that the effect of increasing the block size can usually

be reversed using working-precision iterative refinement. In all of the nonsingular
matrices in our experiments, one step of iterative refinement was sufficient to reduce
the backward error below a level of 10u.

6.4. The effect of the block size on performance. Our analysis of commu-
nication costs in sections 4 and 5 shows that the algorithm is optimal if the block size
is Θ(

√
M), where M is the size of fast memory. This indicates that, similarly to other

communication-avoiding algorithms, obtaining top performance from our algorithm
requires that we tailor b to the machine on which the algorithm runs. Our experience
indicates that using a larger b allows BLAS to take better advantage of the memory
hierarchy, but making b smaller allows the algorithm to scale on a larger number of
cores. To explore this, we computed the factorization of a matrix of order 42,000
on a machine of eight 6-core processors, described in detail in Table 4. We allowed
the block size and the number of threads to vary and recorded the flop rates that we
obtained. The results are shown in Table 5.

The optimal value of b that we found in the experiment was 200 for 24 threads
and 300 for 48 threads. Choosing a different nearby value, such as b = 300 for 24
threads or b = 200 for 48 threads does not make a significant difference, decreasing
performance by 2% and 5%, respectively. If b is far from the optimum, the difference
becomes dramatic; for b = 100, performance is down by 49% and 63%, respectively.

The data confirm that b must be chosen from a specific range and indicate that
the range is quite large. Although performance is not extremely sensitive within that
range, this represents a constraint on the value of b that we can choose. If the machine
has a large fast memory and a small number of cores, we may be forced to make b
large, which can have a detrimental effect on numerical stability, although, as we
mention in section 6.3, iterative refinement can often reverse this effect.
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Table 5

The gigaflops per second rate in the factorization of a matrix of order 42,000. Only the reduction
of A to T (phase 1 of the algorithm) was computed. The rate is shown as a function of the block
size and the number of threads.

block size
threads 100 200 300 400 500 600

24 67.21 132.30 130.13 113.73 118.47 113.59

48 65.89 168.46 177.35 147.69 157.62 149.61

7. Conclusions. We have shown that a block variant of Aasen’s factorization
algorithm can reduce a symmetric matrix into a symmetric banded form in a com-
munication-avoiding way. A companion conference paper [5] showed that the algo-
rithm performs well in practice on a multicore machine; here we focused on complete
analyses of the algorithm’s communication costs, arithmetic costs, and numerical sta-
bility. No prior symmetric reduction algorithm achieves similar efficiency bounds.

Appendix A. General lower bounds. For completeness, we state here the
communication lower bounds proved in [6] for a general set of linear algebraic com-
putations. We use terminology introduced in [4, section 4], but the main content
(including the proofs of the theorems) is nearly identical to [6].

We first define our model of computation formally and illustrate it on the case
of matrix multiplication: C = C + A · B. Let Sa ⊆ {1, 2, . . . , n} × {1, 2, . . . , n},
corresponding in matrix multiplication to the subset of entries of the indices of the
input matrix A that are accessed by the algorithm (e.g., the indices of the nonzero
entries of a sparse matrix). LetM be the set of locations in slow/global memory (on
a parallel machineM refers to a location in some processor’s memory; the processor
number is implicit). Let a : Sa �→ M be a mapping from the indices to memory, and
similarly define Sb, Sc and b(·, ·), c(·, ·), corresponding to the matrices B and C. The
value of a memory location l ∈ M is denoted by Mem(l). We assume that the values
are independent—i.e., determining any value requires accessing the memory location.

Definition A.1 (3NL computation). A computation is considered to be three
nested loops (3NL) if it includes computing, for all (i, j) ∈ Sc with Sij ⊆ {1, 2, . . . , n},

Mem(c(i, j)) = fij

(
{gijk(Mem(a(i, k)),Mem(b(k, j)))}k∈Sij

)
,

where
(a) mappings a, b, and c are all one-to-one into slow/global memory, and
(b) functions fij and gijk depend nontrivially on their arguments.

Further, define a 3NL operation as an evaluation of a gijk function, and let G be the
number of unique 3NL operations performed:

G =
∑

(i,j)∈Sc

|Sij |.

Note that while each mapping a, b, and c must be one-to-one, the ranges are not
required to be disjoint. By requiring that the functions fij and gijk depend “non-
trivially” on their arguments, we mean the following: we need at least one word of
space to compute fij (which may or may not be Mem(c(i, j))) to act as “accumulator”
of the value of fij , and we need the values Mem(a(i, k)) and Mem(b(k, j)) to be in fast
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or local memory before evaluating gijk. Note that fij and gijk may depend on other
arguments, but we do not require that the functions depend nontrivially on them.
Note also that we may not know until after the computation what Sc, fij , Sij , or gijk
were, since they may be determined on the fly.

We now state the communication lower bound for 3NL computation, also appear-
ing as [6, Theorem 2.2] and [4, Theorem 4.2].

Theorem A.2. The bandwidth cost lower bound of a 3NL computation (Defini-
tion A.1) is

W ≥ G

8
√
M
−M ,

where M is the size of the fast/local memory.
Many linear algebraic computations are nearly 3NL but fail to satisfy the assump-

tion that a, b, and c are one-to-one mappings into slow/global memory. The following
result asserts that, under certain assumptions, we can still prove meaningful lower
bounds.

First, we define a temporary value as any value involved in a computation that
is not an original input or final output. In particular, a temporary value need not
be mapped to a location in slow memory. Next, we distinguish a particular set of
temporary values: we define the temporary inputs to gijk functions and temporary
outputs of fij functions as temporary operands. While there may be other temporary
values involved in the computation (e.g., outputs of gijk functions), we do not consider
them temporary operands.3 A temporary input a(i, k) may be an input to multiple
gijk functions (gijk and gij′k for j 	= j′), but we consider it a single temporary operand.
There may also be multiple accumulators for one output of an fij function, but we
consider only the final computed output as a temporary operand.

We now state the result more formally, which also appears as [4, Theorem 4.10]
and corresponds to [6, section 3.4].

Theorem A.3. Suppose a computation is 3NL except that some of its operands
(i.e., inputs to gijk operations or outputs of fij functions) are temporary and are not
necessarily mapped to slow/global memory. Then if the number of temporary operands
is t, and if each (input or output) temporary operand is computed exactly once, then
the bandwidth cost lower bound is given by

W ≥ G

8
√
M
−M − t ,

where M is the size of the fast/local memory.
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