
Received: 5 July 2016 Revised: 15 October 2017 Accepted: 8 November 2017

DOI: 10.1002/nla.2139

R E S E A R C H A R T I C L E

High-performance direct algorithms for computing the sign
function of triangular matrices

Vadim Stotland1 Oded Schwartz2 Sivan Toledo1

1Blavatnik School of Computer Science,
Tel Aviv University, Tel Aviv, Israel
2The Benin School of Computer Science
and Engineering, Hebrew University,
Jerusalem, Israel

Correspondence
Sivan Toledo, Blavatnik School of
Computer Science, Tel Aviv University, Tel
Aviv, Israel.
Email: sivan.toledo@gmail.com

Funding information
Israel Science Foundation, Grant/Award
Number: 863/15, 1878/14, 1901/14;
Ministry of Science and Technology,
Grant/Award Number: 3-10891; Einstein
Foundation and the Minerva Foundation;
Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI);
United States-Israel Binational Science
Foundation (BSF); HUJI Cyber Security
Research Center

Summary

Algorithms and implementations for computing the sign function of a triangu-
lar matrix are fundamental building blocks for computing the sign of arbitrary
square real or complex matrices. We present novel recursive and cache-efficient
algorithms that are based on Higham's stabilized specialization of Parlett's sub-
stitution algorithm for computing the sign of a triangular matrix. We show that
the new recursive algorithms are asymptotically optimal in terms of the num-
ber of cache misses that they generate. One algorithm that we present performs
more arithmetic than the nonrecursive version, but this allows it to benefit from
calling highly optimized matrix multiplication routines; the other performs the
same number of operations as the nonrecursive version, suing custom com-
putational kernels instead. We present implementations of both, as well as a
cache-efficient implementation of a block version of Parlett's algorithm. Our
experiments demonstrate that the blocked and recursive versions are much
faster than the previous algorithms and that the inertia strongly influences their
relative performance, as predicted by our analysis.

KEYWORDS

blocked matrix algorithms, cache-efficient algorithms, communication-efficient algorithms, matrix
functions, partitioned matrix algorithms

1 INTRODUCTION

The sign of a square complex matrix A is defined by extending the following scalar function:

sign(z) = sign(x + i𝑦) =

{
1 x > 0

−1 x < 0

to matrices. For a diagonalizable matrix A = ZDZ−1, the sign can be defined by applying sign(z) to the eigenvalues of A,
as follows:

sign(A) = Z
⎡⎢⎢⎢⎣

sign(d11)
sign(d22)

⋱
sign(dnn)

⎤⎥⎥⎥⎦Z−1 .

The definition can be extended to the nondiagonalizable case in a variety of equivalent ways (see section 1.2 in the work of
Higham et al.1). From here on, we use the term function to refer to a mapping that satisfies these equivalent definitions. The

Numer Linear Algebra Appl. 2017;e2139. wileyonlinelibrary.com/journal/nla Copyright © 2017 John Wiley & Sons, Ltd. 1 of 17
https://doi.org/10.1002/nla.2139

https://doi.org/10.1002/nla.2139
http://orcid.org/0000-0002-9524-7115

2 of 17 STOTLAND ET AL.

matrix sign function is not defined when A has purely imaginary eigenvalues (and is clearly ill conditioned on matrices
with eigenvalues whose real part is close to zero).

Originally, the interest in the sign function arose because it can be used to solve algebraic equations in control
theory, including the Riccati,2 Sylvester, and Lyapunov equations. Another application that arose soon after is in
divide-and-conquer eigensolvers.3–5

For many years, the only algorithms for computing the sign function were iterative ones, variants of Newton and
Padé iterations (for example, see other works1,2,5). Some of these, such as the beautifully simple Newton iteration due to
Roberts,2 which repeatedly averages the matrix and its inverse, have been found to experience slow initial convergence.
These algorithms perform between 2n3 and 4n3 arithmetic operations per iteration, where n is the dimension of A.

More recently, Higham discovered a direct way to compute the sign function (see chapter 5 in the work of
Higham et al.1). This approach is based on a much older and much more general technique due to Parlett, which is unsta-
ble when used in its original form.6 In this approach, we first compute a Schur decomposition of A = QTQ∗, where T is
upper triangular and Q is unitary, then compute U = sign(T), and finally form sign(A) = QUQ∗.

In this study, we focus on direct (as opposed to iterative) algorithms for computing the sign function of a triangular
matrix, which can be used as a building block in algorithms for general matrices. Parlett's substitution-type algorithm can
compute many functions of triangualr matrices.6 The algorithm exploits the equation UT = TU that any function U of T
satisfies and the fact that if T is triangular, so is U. Parlett's technique breaks down when T has repeated eigenvalues (and
becomes unstable when it has clustered eigenvalues).

Higham's improved version, which we refer to as the Parlett–Higham algorithm, applies only to the sign function and
avoids repeated-eigenvalue breakdowns (see algorithm 5.5 in the work of Higham et al.1). An implementation of this
algorithm, called signm, is part of the Matrix Function Toolbox in Matlab. A more generic way to avoid breakdowns
and instability in Parlett's algorithm is to reorder the Schur form so that eigenvalues are clustered along the diagonal
of T and to apply a block version of Parlett's substitution.7 This approach requires some other way to compute the sign
of diagonal blocks of T; the off-diagonal blocks are computed by solving Sylvester equations. We refer to this method
as the Parlett–Sylvester technique. The algorithm that computes the sign of diagonal blocks that must be able to cope
with a clustered spectrum (up to the case of repeated eigenvalues); Parlett's method cannot usually be applied to these
blocks. However, in the case of the sign function, clustering the eigenvalues according to their sign provides a trivial
way to construct the two diagonal blocks of U: one is identity I and the other a negated identity −I, typically of different
dimensions.

We also note that the iterative Newton and Padé approximations can also be combined with the Schur decomposition. In
this hybrid approach, one computes the Schur decomposition and then iterates on T to obtain U; the potential advantage of
this approach lies in the fact that the main ingredients of these iterations, matrix multiplication and matrix inversion, are
considerably cheaper on triangular matrices than on general square ones and that the iterations preserve the triangular
structure.*

Our Contributions This paper presents high-performance direct algorithms for computing the sign of a triangular
matrix. To obtain high performance, we take two measures. First, we choose whether to use the Parlett–Higham substi-
tution algorithm or the Parlett–Sylvester algorithm, by estimating the amount of work each of them would require. We
show that their complexity may differ asymptotically; hence, choosing the right one is essential. Second, we reorder the
operations that our algorithms perform, so as to reduce cache misses and interprocessor communication. The reordering
techniques apply both to the Parlett–Higham and to the Parlett–Sylvester algorithms. The reordering that we apply to the
Parlett–Higham algorithm closely resembles the reordering proposed by Deadman et al. for a variant of Parlett's method
that computes the matrix square root.8

The description and implementation of the algorithms in this study apply to both triangular real and complex matrices,
as well as to quasitriangular real matrices, which are used in the so-called real Schur form (a real factorization for real
matrices with complex eigenvalues; see Section 2.1 below).

Paper Organization The rest of the paper is organized as follows. Section 2 presents the basic Parlett recurrence
for functions of triangular matrices and Higham's stabilized version for the sign function and the Parlett–Sylvester
approach. Section 2.1 analyzes the number of arithmetic operations that the two approaches perform and shows that
the Parlett–Sylvester is less efficient when the inertia is balanced but much more efficient when it is not. Section 3
presents lower bounds on the asymptotic number of cache misses that these algorithms generate. Section 4 presents recur-
sive cache-efficient variants of the Parlett–Higham algorithm, which are asymptotically optimal by the previous section.

*This algorithmic approach was discovered by one of the reviewers of this article, not by the authors.

STOTLAND ET AL. 3 of 17

Section 5 shows that the new algorithms and our implementation of the Parlett–Sylvester algorithm are indeed fast and
that their performance in practice matches our theoretical predictions. We presents our conclusions in Section 6.

2 BACKGROUND

Any matrix function F = 𝜙(A) commutes with its argument, AF = FA. The function F = 𝜙(T) of an upper triangular
matrix T is also upper triangular. Parlett used these facts to construct a substitution-type algorithm to compute F = 𝜙(T).
By rearranging the expression for the i, j element in the product TF = FT as follows:

𝑗∑
k=i

tik𝑓k𝑗 =
𝑗∑

k=i
𝑓iktk𝑗 ,

where tik is the i, k element of T and so on, we can almost isolate fij as follows:

(tii − t𝑗𝑗)𝑓i𝑗 = 𝑓iiti𝑗 − 𝑓𝑗𝑗 ti𝑗 +
𝑗−1∑

k=i+1

(
𝑓iktk𝑗 − tik𝑓k𝑗

)
. (1)

This allows us to obtain the value of fij as a function of fik for k < j and fkj for k < j. These equations do not constrain the
diagonal elements of F (the equations are tii fii = fiitii), but it is easy to see that they must satisfy fii = 𝜙(tii). The complete
algorithm is shown in Algorithm 1.

Clearly, the algorithm breaks down if T has repeated eigenvalues (tii = tjj for some i and j). Pairs of nearby but unequal
eigenvalues (small |tii−tjj|) tend to cause growth in F because of divisions by small quantities. In some cases, this is related
to the ill conditioning of F, but not always. In some cases, the growth is associated with an instability in the algorithm
rather than with poor conditioning.

One way to address this issue, at least partially, is to partition F and T into blocks and write the corresponding
block-matrix multiplication equations that TF = FT defines (see the work of Parlett,9 cited by Higham et al.1). The par-
titioning is into square diagonal blocks and possibly rectangular off-diagonal blocks. In this version, we cannot isolate
off-diagonal blocks Fij because they do not necessarily commute with diagonal blocks of T, so the equations that define
Fij are not simple substitution-type equations, but rather, they form Sylvester equations, as shown in Algorithm 2.

Here too, the equations that drive the algorithm say nothing about diagonal blocks Fii, so they must be computed in
some other way; we discuss this later. The Sylvester equation for Fij is singular if Tii and Tjj have common eigenvalues and
are ill conditioned if they have nearby eigenvalues. Hence, for this method to work well, the partitioning of F and T needs
to be such that different diagonal blocks of T share no common eigenvalues and ideally do not have nearby eigenvalues.

Davies et al. proposed a framework that uses this approach for essentially any function 𝜙.7 Their framework begins
by clustering the eigenvalues of T. The clusters are made as small as possible under the condition that they are well
separated. Note that if eigenvalues are highly clustered, the framework may end up with a single large cluster. This is
undesirable from the computational complexity perspective but avoids numerical problems. The framework then uses

4 of 17 STOTLAND ET AL.

an algorithm by Bai et al.10 to reorder T unitarily so as to make the eigenvalues in each cluster adjacent, T = QT̃Q∗. The
Parlett–Sylvester algorithm then computes the function F̃ = 𝜙(T̃), which is transformed back into the function F of T,
F = QF̃Q∗. The diagonal blocks of F̃ cannot be computed by a Parlett recurrence because the diagonal blocks of T̃ have
clustered or repeated eigenvalues. Davies et al.7 proposed that a Padé approximation be used to compute these blocks.
The Padé approach is very general but becomes very expensive if diagonal blocks are large.

However, in the special case of the sign function, we can partition the eigenvalues by the sign of their real part. In this
case, the functions of the two resulting diagonal blocks of T̃ are trivial: the identity is the sign of the block with the positive
eigenvalues (right half of the complex plane), and a negated identity is the sign of the block with the negative eigenvalues
(left half of the plane); see section 5.2 in the work of Higham et al.1

Higham et al. also proposed another specialization of Parlett's method to the sign function (see algorithm 5.5 in the
work of Higham et al.1). The matrix sign U = sign(T) satisfies another matrix equation, U2 = I. We can again rearrange
the expression for the i, j element of I in this expression (i < j), as follows:

𝑗∑
k=i

uikuk 𝑗 = 0

so as to isolate the following:

ui𝑗 = −
∑𝑗−1

k=i+1 uikuk 𝑗

uii + u𝑗𝑗

. (2)

If uii and ujj have the opposite sign (a 1 and a −1), this expression breaks down. However, in this case, the signs of tii and
tjj are also different, so the plain Parlett recurrence (Equation 1) can be safely used. When both uii +ujj ≠ 0 and tii − tjj ≠ 0,
we prefer to compute uij using Equation 2 rather than using Equation 1 because |uii + ujj| = 2, whereas |tii − tjj| can be
small (even if both tii and tjj are far from zero). Algorithm 3 shows the details of this approach.

2.1 Applying the algorithms to the real Schur form
So far, we assumed that T is upper triangular. If the underlying problem is to compute the sign of a general (i.e., non-
triangular) real matrix A with complex eigenvalues, it is more efficient to compute the so-called real Schur form than to
work with the complex Schur form. The real Schur form is A = QT̂Q∗ with both T̃ and Q being real, Q is unitary, and
T̂ is quasitriangular with both 1-by-1 and 2-by-2 blocks on the diagonal. In the real Schur form, 2-by-2 diagonal blocks
correspond to a conjugate pair of eigenvalues z = x + iy and z̄ = x − i𝑦 with the same sign, 1 if the eigenvalues are in the
right half-plane and −1 if they are in the left half-plane.

Algorithm 2 can be applied directly to the real Schur form. Algorithm 3 can be adapted easily to the real Schur form:
replace line 2 by a code that sets uii = sign(tii) if uii is a 1-by-1 block, and set uii = sign(z) if uii is part of a 2-by-2 diagonal
block with eigenvalues z and z̄. To prove that this modification is correct, note that the FT = TF equation that implies
that the 2-by-2 block in U that corresponds to a 2-by-2 block in T must be an identity or a minus identity (again relying
on section 5.2 in the work of Higham et al.,1 for example). This establishes the correctness of uii. It may seem that if tii
and ti+1,i+1 are parts of a 2-by-2 block, we also need to set ui,i+1 = 0, but this will happen automatically, as in this case,
uii = ui+1,i+1 and the summation in line 7 of Algorithm 3 is empty. The correctness of the remainder of the algorithm
follows from the same considerations as in the triangular real and complex cases.

STOTLAND ET AL. 5 of 17

2.2 Arithmetic efficiency
Interestingly, the arithmetic efficiency of the two algorithms can vary considerably (and asymptotically). To design a
high-performance algorithm, we need to choose the most efficient approach for a given matrix.

The arithmetic complexity of the Parlett–Higham recurrence varies between n3∕3 + o(n3) and 2n3∕3 + o(n3)
floating-point operations (flops). The actual number of operations depends on which uijs are computed from the equation
U2 = I (bottom choice in Algorithm 3) and which are computed from UT = TU (top choice), because in the first case, the
algorithm computes one inner product on indexes ranging from i+1 to j−1, and in the second the algorithm, it computes
two such inner products.

The arithmetic complexity of the Parlett–Sylvester algorithm for the sign function depends on how the eigenvalues of T
are initially ordered along its diagonal. The Schur reordering step (the Bai–Demmel algorithm or its partitioned variant by
Kressner11) moves eigenvalues along the diagonal of a triangular matrix by swapping adjacent eigenvalues using Givens
rotations. The number k of swaps required to group together positive and negative eigenvalues varies between 0 and n2

4
.12

The Schur reordering algorithm performs 12nk operations (ignoring low-order terms; see section 7.6.2 in the work of
Golub et al.13), so the cost of this step varies between nothing (if the eigenvalues are already grouped by sign) and 3n3.
The 12nk operations include those required to transform Q, the orthonormal matrix of Schur vectors.

Once this algorithm reorders the Schur form, it needs to solve a Sylvester equation for an n− by n+ off-diagonal block,
where n− and n+ are the numbers of negative and positive eigenvalues, respectively. The number of arithmetic operations
required to solve such a Sylvester equation is as follows:

n2 − n ≤ n−n+(n− + n+) ≤ n3∕4,

(it is easy to see that the extreme cases are n− = 1 and n− = n∕2). We ignore in this analysis the trivial case where all
the eigenvalues are positive or negative, in which the sign is I or −I. As in the first step, the algorithm tends to get more
expensive when the numbers of positive and negative eigenvalues are roughly balanced.

Finally, the algorithm needs to transform the sign of the reordered matrix to the sign of the input matrix. If this is
done by applying the Givens rotations again, the cost depends on the number of swaps that were performed during the
reordering step. In the best case, we need not transform at all, and in the worst case, the cost is cubic.

2.3 Algorithm selection
The critical observation is that in easy cases that require few or noswaps to reorder the Schur form, the Parlett–Sylvester
approach performs only a quadratic number of flops, whereas in the worst case, it performs more than 3n3 operations.
This means that this approach can be much more efficient than the Parlett–Higham approach (if the former performs a
quadratic number of operations and the latter a cubic number) or up to nine times less efficient.

The number of swaps in the Schur reordering algorithms is the number of swaps that bubble sort performs when it sorts
the diagonal of the Schur form.10 In our application, the Schur form only needs to order the diagonal of T up to the sign
of diagonal elements, not according to the actual numerical values; this can reduce the number of swaps dramatically.
To determine the number of swaps required to reorder the Schur form, we run bubble sort twice on the vector of signs of
eigenvalues, once in the natural order (−1 < 1) and once in the reverse order. The bubble sort is modified so that it counts
the number of swaps that it performs; this number is the only output we need. We first limit our attention to the sorting
order that yields the smallest number of swaps, denoted by k.

The overall algorithm uses the Parlett–Sylvester algorithm when 12nk < c × 0.66n3, for some constant, c, that should
be determined experimentally, ideally in an architecture similar to the one that will be used to run the algorithms. The
12nk and 0.66n3 are approximations to the number of arithmetic operations that the two algorithms will perform, and
the constant c should approximate the ratio between the operations-per-second rates of the two algorithms, which could
be different. This approach of choosing between algorithms using a performance model that is partially theoretical and
partially based on empirical estimation of parameters (here c) is common in other algorithmic problems as well.

Operation counts are not the only determinants of running time, so the actual performance differences may not be as
dramatic, but operation counts do matter. We address another determinant of performancenext.

3 COMMUNICATION LOWER BOUNDS

We next obtain a communication cost lower bound for Algorithm 3. The bound is an application of the work of
Ballard et al.,14 which extends a technique developed to bound communication in matrix multiplication15 to many other

6 of 17 STOTLAND ET AL.

computations in linear algebra. The technique embeds the iteration space of three-nested loop computations into a
three-dimensional cube and utilizes the Loomis–Whitney16 inequality to relate operation counts (the volume that the
iterations fill in the cube) to communication requirements (the projections of the iterations on the input and output
matrices).

The lower bound is derived from the computations performed in the inner loop, lines 5–7. It ignores the computations
in line 2 (which can only increase the total communication cost). Note that either half or more of the executions of line 5
take the “then” branch (line 6) or half or more take the “else” branch on line 7.

We analyze first the second case, in which at least half the time, we have uii +ujj ≠ 0. We map the computation in line 7
to equation 2.1 in the work of Ballard et al.14 In particular, we map uik here to a(i, k) there, ukj to b(k, j), and uij to c(i, j). We
map the scalar multiplication of uik by ukj to the abstract function gi, j,k(·, ·) in equation 2.1 in the work of Ballard et al.,14

and the summation and scaling of the sum by (uii + ujj)−1 to the abstract function fi, j. We note that all computed uij are
part of the algorithm's output, so none of them is discarded; this implies, in the terminology of Ballard et al.,14 that there
are no R2∕D2 intermediate results. By applying theorem 2.2 in the work of Ballard et al.,14 we have the following:

Corollary 1. Let G1 be the number of arithmetic operations computed in line 7 of Algorithm 3. Let M be the cache size.
Then, the communication cost (the number of words transferred between the cache and the main memory) in Algorithm 3
is at least G1∕(8

√
M) − M.

We now analyze the communication required to perform the operations in line 6 of the algorithm, when uii + ujj = 0.
We again apply equation 2.1 and theorem 2.2 in the work of Ballard et al.14 Let a(i, k) there be our ui,k, let b(k, j) there be
our tk, j, and let c(i, j) there be our ui, j. Further, let gi, j,k(·, ·) function be scalar multiplication uik · tk, j, and fi, j function be
the computation of uij, which calls to gijk. Again, we note that all computed uij are part of the algorithm's output, so none
of them is discarded. We also note that we can impose writes on the the n2 elements of T (see section 3.4 in the work of
Ballard et al.14), losing at most, Θ(n2) of the lower bound. Thus, using the terminology of Ballard et al.,14 there are no
R2∕D2 arguments.

By applying theorem 2.2 in the work of Ballard et al.,14 we have the following:

Corollary 2. Let G2 be the number of arithmetic operations performed in line 6 of Algorithm 3. Let M be the cache size.
Then, the communication cost of the algorithm is at least Ω(G2∕

√
M − M − Θ(n2)).

Let G be the total number of arithmetic operations performed in the doubly nested loop of Algorithm 3. Recall that
max{G1,G2} ≥ G∕2. Combining Corollary 1 and Corollary 2, we conclude the following:

Theorem 1. Let G = Θ(n3) be the number of arithmetic operations computed in lines 5–7 of Algorithm 3, and let M be
the size of the cache. The communication cost of Algorithm 3 is Ω(G∕

√
M − M − Θ(n2)). Assuming M < n2, the cost is

Ω(G∕
√

M) = Ω(n3∕
√

M).

The Parlett–Higham algorithm does not attain this lower bound. It is easy to show that for n = o(
√

M) (that is,
the fast memory can hold less than a small constant fraction of the input matrix), the communication cost of this
algorithm is Θ(n3). The analysis is similar to the analysis of communication in matrix multiplication algorithms imple-
mented using three nested loops. We omit the details. In Section 4.3, we present a communication-efficient version of the
Parlett–Higham algorithm that does attain the lower bound.

4 COMMUNICATION-EFFICIENT ALGORITHMS

We now propose communication-efficient variants of both algorithmic approaches. We begin with the Parlett–Sylvester
approach, which is more straightforward.

4.1 Communication-efficient Parlett–Sylvester solver
This approach calls two subroutines: a Schur reordering subroutine and a Sylverster equation solver. For-
tunately, communication-efficient variants of both algorithms have been developed. Kressner11 developed a
communication-efficient variant of the Bai–Demmel reordering algorithm. Jonsson et al.17 developed RECSY, a recursive
communication-efficient Sylvester solver.

STOTLAND ET AL. 7 of 17

We have implemented this algorithmic approach in two ways. One calls xTRSEN, LAPACK's implementation of the
Bai and Demmel algorithm that operates on rows and columns and ignores communication efficiency, and xTRSYL,
LAPACK's Sylvester solver, which is similarly not communication efficient. The other calls communication-efficient
codes by Kressner and by Jonsson et al. We use the first LAPACK-based implementation to evaluate the performance
improvement achieved by the new communication-efficient approach.

Krassner's analysis of his communication-efficient Schur reordering algorithm does not include a formal communica-
tion upper bound. Therefore, we only analyze this algorithm experimentally.

4.2 Communication-efficient Parlett–Higham solvers
The communication-efficient algorithm is a recursion that is based on a nested partitioning of the index set {1, 2, … ,n}.
The recursion is somewhat more complex than the recursion for simpler matrix algorithms (e.g., Cholesky). To present it
and to prove its correctness, we introduce a notation for the nested partitioning and for sums over subsets of a partition.

Definition 1. A nested partitioning of {1, 2, … ,n} is a collection of index sets p = {P(0),P(1), … P(L)} such that
P(0) = {1}, and if P(𝓁) = {i1, i2 … , im}, then 1 ≤ i1 < i2 < · · · < im ≤ n and P(𝓁−1) = {i1, i3, i5, … im} or P(𝓁−1) =
{i1, i3, i5, … im−1}.

Note that the definition implies that i1 = 1. The indexes in a partition represent the beginnings of a block of
row/column indexes. For example, P(𝓁) = {i1, i2 … , im} represent the partitioning of the range 1 ∶ n (in Matlab
notation) into i1 ∶ i2 − 1 = 1 ∶ i2 − 1, i2 ∶ i3 − 1, etc.

For example, let n = 1000 and let

P(0) = {1}
P(1) = {1, 500}
P(2) = {1, 250, 500, 750}
P(3) = {1, 125, 250, 375, 500, 625, 750, 875} .

We use nested partitions to denote blocks of vectors and matrices. Using the example above, we can denote blocks of
a vector v and a matrix A by the following:

v(3)250 = v250∶374

v(2)250 = v250∶499

A(3)
250,625 = A250∶374,625∶749

and so on. In this notation, a block of indexes at level 𝓁 must start at some ij ∈ P(𝓁), and it ends at ij+1 − 1. We now
define a function that allows us to iterate over ranges in a given partition.

Definition 2. Let P be a nested partitioning and let P(𝓁) = {i1, i2 … , im}. The function 𝜂 ∶ P(𝓁) → P(𝓁) ∪ {n + 1}
returns the start index of the next range in a given partition as follows:

𝜂(𝓁)(i 𝑗) = i 𝑗+1
(
in P(𝓁)) .

For completeness, we define the following:
𝜂(𝓁)(im) = n + 1 ,

so that subtracting 1 from the next range always gives the last element in the current range. We also define the function
𝜋 that returns the previous range, as follows:

𝜋(𝓁)(i 𝑗) = i𝑗−1

and
𝜋(𝓁)(n + 1) = im .

We can now define how vectors and matrices are partitioned, as well as sum over ranges in a partition.

Definition 3. Let P be a nested partition of {1, 2, … ,n}, let v be an n vector, and let A be an n-by-n matrix. Let
i, j ∈ P(𝓁). We denote the following:

v(𝓁)i =

[vi
⋮

v𝜂(𝓁)(i)−1

]

8 of 17 STOTLAND ET AL.

and

A(𝓁)
i, 𝑗 =

⎡⎢⎢⎣
Ai, 𝑗 · · · Ai,𝜂(𝓁)(𝑗)−1

⋮
A𝜂(𝓁)(i)−1, 𝑗 · · · A𝜂(𝓁)(i)−1,𝜂(𝓁)(𝑗)−1

⎤⎥⎥⎦ .

Clearly, v(𝓁)i =
[

v(𝓁+1)
i v(𝓁+1)

𝜂(𝓁+1)(i)

]T
and similarly for matrices. We also need the reverse notation, which maps v(𝓁)i → v(𝓁+1)

i

(the first part of v(𝓁)i) and v(𝓁)i → v(𝓁+1)
𝜂(𝓁+1)(i) (the second part of the vector in the next level of the nested partition). We

denote these by the following: (
v(𝓁)i

)(𝓁+1)

i
= v(𝓁+1)

i(
v(𝓁)i

)(𝓁+1)

𝜂(𝓁+1)(i)
= v(𝓁+1)

𝜂(𝓁+1)(i)

and similarly for matrices.

Definition 4. Let P be a nested partitioning and let P(𝓁) = {i1, i2 … , im}, let s ∈ P(𝓁), and let e ∈ P(𝓁) or e = n+ 1. We
define the following:

e−1∑
𝑗=s

v(𝓁)
𝑗

=

{
0 s > e∑𝜂(𝓁)(s)−1

𝑗=s v𝑗 +
∑e−1

𝑗=𝜂(𝓁)(s) v(𝓁)
𝑗

otherwise.

The sum consists of all the elements of v starting at the beginning of a range in P(k) and ending just before another
range in P(k) starts. Note that the first sum on the right-hand side is a sum over scalars that iterates over consecutive
integer indexes, whereas the second sum is defined (recursively) over sums of ranges. The superscript (𝓁) on the
argument v (or the lack of superscript) indicates the type of the sum.

The following lemma relates sums over ranges in adjacent partitions in a nest.

Lemma 1. Let P be a nested partitioning and let P(𝓁) = {i1, i2 … , im}, let s ∈ P(𝓁), and let e ∈ P(𝓁) or e = n + 1. The
following relation holds:

e−1∑
𝑗(k)=s

v(𝓁)
𝑗(k)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e−1
𝑗=s v(𝓁−1)

𝑗
if s is odd and e is even

v(𝓁)s +
∑e−1

𝑗=𝜂(𝓁)(s) v(𝓁−1)
𝑗

if s is even and e is even∑e−1
𝑗=s v(𝓁−1)

𝑗
+ v(𝓁)

𝜋(𝓁)(e) if s is odd and e is odd

v(𝓁)is
+
∑𝜋(k)(ie)−1

𝑗=𝜂(𝓁)(is)
v(𝓁−1)
𝑗

+ v(𝓁)
𝜋(𝓁)(ie)

if s is even and e is odd.

The Higham–Parlett recurrence is based on the observation that the sign U of T satisfies both TU = UT and U2 = I.
Neither of these equations alone define all the elements of U, but together, they do. We partition U and T into block
matrices with square diagonal blocks using a nested partition P. The blocks also satisfy the equations, so for any 𝓁 in the
nest,

(TU)(𝓁)i 𝑗 = (UT)(𝓁)i 𝑗

(UU)(𝓁)i 𝑗 = I(𝓁)i 𝑗 ,

which expands into the following:

T(𝓁)
ii U (𝓁)

i 𝑗 − U (𝓁)
i𝑗 T(𝓁)

𝑗𝑗
= U (𝓁)

ii T(𝓁)
i 𝑗 − T(𝓁)

i 𝑗 U (𝓁)
𝑗𝑗

+
𝑗−1∑

k=𝜂(𝓁)(i)

(
U (𝓁)

ik T(𝓁)
k 𝑗 − T(𝓁)

ik U (𝓁)
k 𝑗

)
U (𝓁)

ii U (𝓁)
i 𝑗 + U (𝓁)

i𝑗 U (𝓁)
𝑗𝑗

= I(𝓁)i 𝑗 −
𝑗−1∑

k=𝜂(𝓁)(i)
U (𝓁)

ik U (𝓁)
k 𝑗 .

We denote the sums on the right by the following:

X (𝓁)
i𝑗 =

𝑗−1∑
k=𝜂(𝓁)(i)

(
U (𝓁)

ik T(𝓁)
k 𝑗 − T(𝓁)

ik U (𝓁)
k 𝑗

)

STOTLAND ET AL. 9 of 17

and

Y (𝓁)
i𝑗 =

𝑗−1∑
k=𝜂(𝓁)(i)

U (𝓁)
ik U (𝓁)

k 𝑗 .

We now relate the blocks of X and Y at level 𝓁 to those at level 𝓁 + 1. The easiest one is the (2, 1) block, as follows:

Y (𝓁+1)
𝜂(𝓁+1)(i), 𝑗 =

𝑗−1∑
k=𝜂(𝓁+1)(𝜂(𝓁+1)(i))

U (𝓁+1)
ik U (𝓁+1)

k 𝑗

=
𝑗−1∑

k=𝜂(𝓁)(i)
U (𝓁+1)

ik U (𝓁+1)
k 𝑗

=

(
𝑗−1∑

k=𝜂(𝓁)(i)
U (𝓁)

ik U (𝓁)
k 𝑗

)(𝓁+1)

𝜂(𝓁+1)(i), 𝑗

=
(

Y (𝓁)
i, 𝑗

)(𝓁+1)

𝜂(𝓁+1)(i), 𝑗
.

In the (2, 1) and (2, 2) blocks, we need to add a contribution at the 𝓁 + 1 level, as follows:

Y (𝓁+1)
i,𝑗 =

𝑗−1∑
k=𝜂(𝓁+1)(i)

U (𝓁+1)
ik U (𝓁+1)

k 𝑗

= U (𝓁+1)
i,𝜂(𝓁+1)(i)U

(𝓁+1)
𝜂(𝓁+1)(i), 𝑗 +

𝑗−1∑
k=𝜂(𝓁+1)(𝜂(𝓁+1)(i))

U (𝓁+1)
ik U (𝓁+1)

k 𝑗

= U (𝓁+1)
i,𝜂(𝓁+1)(i)U

(𝓁+1)
𝜂(𝓁+1)(i), 𝑗 +

𝑗−1∑
k=𝜂(𝓁)(i)

U (𝓁+1)
ik U (𝓁+1)

k 𝑗

= U (𝓁+1)
i,𝜂(𝓁+1)(i)U

(𝓁+1)
𝜂(𝓁+1)(i), 𝑗 +

(
𝑗−1∑

k=𝜂(𝓁)(i)
U (𝓁)

ik U (𝓁)
k 𝑗

)(𝓁+1)

i, 𝑗

= U (𝓁+1)
i,𝜂(𝓁+1)(i)U

(𝓁+1)
𝜂(𝓁+1)(i), 𝑗 +

(
Y (𝓁)

i, 𝑗

)(𝓁+1)

i, 𝑗
,

and

Y (𝓁+1)
𝜂(𝓁+1)(i),𝜂(𝓁+1)(𝑗) =

(
Y (𝓁)

i, 𝑗

)(𝓁+1)

𝜂(𝓁+1)(i),𝜂(𝓁+1)(𝑗)
+ U (𝓁+1)

𝜂(𝓁+1)(i), 𝑗U
(𝓁+1)
𝑗,𝜂(𝓁+1)(𝑗) .

The (1, 2) block requires two contributions from level 𝓁 + 1, as follows:

Y (𝓁+1)
i,𝜂(𝓁+1)(𝑗) = U (𝓁+1)

i,𝜂(𝓁+1)(i)U
(𝓁+1)
𝜂(𝓁+1)(i),𝜂(𝓁+1)(𝑗) +

(
Y (𝓁)

i, 𝑗

)(𝓁+1)

i,𝜂(𝓁+1)(𝑗)
+ U (𝓁+1)

i, 𝑗 U (𝓁+1)
𝑗,𝜂(𝓁+1)(𝑗) .

The expressions for the blocks of X at level 𝓁 + 1 are similar.
We can now present the algorithm, which we split into three procedures. The top-level procedure sign (Algorithm 4)

allocates U, X, and Y and zeros X and Y. It calls a recursive procedure that computes a diagonal block of U at level 𝓁 = 0
called sign-diagonal (Algorithm 5). Sign-diagonal calls itself recursively to compute the two diagonal blocks at level 𝓁+ 1
and a third procedure, sign-off-diagonal (Algorithm 6), which computes an off-diagonal block of U. Sign-off-diagonal
works by calling itself four times on the four subblocks at the next level and uses them to compute its output using matrix
multiply–add routines.

10 of 17 STOTLAND ET AL.

We now show that Algorithm 4 is communication optimal.

Theorem 2. Algorithm 4 performs O(n2+n3∕
√

M) communication, attaining the asymptotic lower bound in Theorem 1.

Proof. The top-level algorithm performs Θ(n2) work on Θ(n2) data: it allocates three n-by-n upper triangular matrices
and initializes two of them to zero. The sign-diagonal makes Θ(n) function calls and computes the diagonal of the
output sign matrix from the diagonal of the input matrix. It performs Θ(n) work on Θ(n) data. Most of the work and
most of the communication in the algorithm are performed by invocations of sign-off-diagonal. Let level 𝓁0 be the first
level, at the dimension n0, satisfying 4n2

0 ≤ M. That is, the inputs fit into fast memory. In the recursive function calls
and the matrix multiply–add operations at levels 1 through 𝓁0 − 1, computation-to-communication ratio is Θ(

√
M),

because all of it consists of calls to a matrix multiply–add routine on matrices with dimensions that are
√

M∕4 or
larger. The computation-to-communication ratio in levels n0 and on is also Θ(

√
M) because calls to sign-off-diagonal

on inputs of dimension n0 perform Θ(n3
0) work and only Θ(n2

0) communication (to bring the inputs to fast memory
and to write back the outputs), with the ratio being Θ(n0) = Θ(

√
M).

4.3 Improving the arithmetic complexity
Algorithm 4 performs n3 arithmetic operations, more than the n3∕3 to 2n3∕3 operations that the Parlett–Higham
recurrence performs. This happens because extended-sign computes both the following:

𝑗−1∑
k=i+1

uikuk 𝑗 and
𝑗−1∑

k=i+1

(
uiktk 𝑗 − tikuk 𝑗

)

STOTLAND ET AL. 11 of 17

for every i < j, whereas Algorithm 3 only computes one of the two for a particular i, j. In other words, the algorithm
computes all the entries of both X and Y, but it does not actually use all of them later. For a given position i, j, only one of
xij and yij is needed, the one that the sign-off-diagonal function needs. If uii + ujj = 0, we need xij; otherwise, it is yij.

We can improve the arithmetic complexity of the algorithm by computing only one of xij and yij. More specifically, when
calculating the contributions to X and Y in between the recursive calls in sign-off-diagonal, we only compute elements of
the X argument that are actually needed and only elements of Y that are actually needed. In practice, we can only keep
one matrix Z and decide on the method of calculating zij based on the values uii and ujj.

This approach performs fewer arithmetic operations (by a factor of 2 to 3), but it prevents us from using existing matrix
multiplication codes (e.g., xGEMM), so it is unlikely to be fast in practice. We have implemented this algorithm, but the
experiments below demonstrate that it is indeed slow.

5 EXPERIMENTAL RESULTS

We evaluated several different algorithms experimentally. We implemented the algorithms in C and called them from
Matlab for testing, and we used the BLAS and LAPACK libraries that are bundled with Matlab. We used Matlab R2013A,
which uses Intel's Math Kernel Library Version 10.3.11 for the BLAS and LAPACK and is based on LAPACK version 3.4.1.

We conducted the experiments on a quad-core desktop computer running Linux. The computer had 16 GB of
RAM and an Intel i7-4770 CPU processor running at 3.40 GHz. Some of the experiments used only one core (using
maxNumCompThreads(1) in Matlab), and some used all four (same function with argument 4) but only in BLAS
routines. Runs that used four cores are labeled MT in the graphs below.

5.1 Experiments on triangular matrices
We tested all the algorithms on random triangular matrices with a prescribed inertia. We generated the matrices by cre-
ating random real square matrices with elements that are distributed uniformly in [−50, 50], computing their complex
Schur form and taking the real part of the Schur form. This generates matrices with roughly balanced inertia. In the exper-
iments reported below, the fraction of negative eigenvalues ranged from 48% to 54% on the smallest matrices (dimension
50), from 49% to 51% on the next smallest dimension (657), and even narrower on larger matrices. In some of the experi-
ments, we forced the number of negative eigenvalues to a prescribed number k. We did this by keeping the absolute values
of the diagonal elements of the random triangular matrix, but forcing their sign to positive in all but random k positions.

We tested the following algorithms:

• The Parlett–Higham algorithm (Algorithm 3). We refer to this algorithm as Higham in the graphs below.
• Two implementations of the Parlett–Sylvester algorithm (specialized to the sign function). The first implementation

uses LAPACK's built-in routines for reordering the Schur form and for solving the Sylvester equations. Neither routine
is blocked in LAPACK 3.4.1. We refer to this implementation as LAPACK Sylvester.

• The second implementation of the Parlett–Sylvester algorithm used RECSY, a recursive Sylvester solver by Jonsson et
al.,17 as well as a blocked Schur reordering code by Kressner.11

• Our recursive implementation of the Parlett–Higham algorithm (Algorithms 4–6). This implementation calls the BLAS
to multiply blocks. Recursion was used only on blocks with dimension larger than 16; smaller diagonal blocks were
processed by our element-by-element Parlett–Higham implementation. We refer to this implementation as Recursive
Higham MM.

• A recursive implementation of the arithmetic-efficient Parlett–Higham algorithm described in Section 4.3. This imple-
mentation does not use the BLAS (as its operations do not reduce to matrix multiplications). We refer to it as Recursive
Higham.

The running times on matrices with roughly balanced inertia are shown in Figure 1. Our recursive algorithm is
the fastest one, both with and without multithreaded BLAS. The next-best algorithm is the recursive Parlett–Sylvester
algorithm. Like our recursive algorithm, it uses the BLAS extensively so it benefits from multithreading. Our recur-
sive but arithmetic-efficient algorithm is fairly slow, because it does not use the BLAS. The slowest algorithms are the
Parlett–Sylvester implementation that uses LAPACK for Schur reordering and for solving Sylvester equations and the
element-by-element Parlett–Higham algorithm.

Figure 2 puts the same results in a somewhat more familiar quantitative context. By measuring performance in terms
of normalized floating-point arithmetic rates, the performance of the algorithms can be directly compared with the

12 of 17 STOTLAND ET AL.

0 1000 2000 3000 4000 5000 6000
10−4

10−3

10−2

10−1

100

101

102

103

matrix dimension n

se
co

nd
s

Recursive Higham MM−MT
Recursive Sylvester MT
LAPACK Sylvester MT
Recursive Higham MM
Recursive Sylvester
LAPACK Sylvester
Recursive Higham
Higham

FIGURE 1 Running times on matrices with roughly balanced inertia. The performance of the LAPACK Sylvester-based solver is
essentially the same on one core and on four cores, because this code apparently uses no multithreaded BLAS routines that could have
benefited from multiple cores. This is also the case in the next graphs

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16
x 10

9

matrix dimension n

(n
3 /3

)
/ s

ec
on

ds

Recursive Higham MM−MT
Recursive Sylvester MT
LAPACK Sylvester MT
Recursive Higham MM
Recursive Sylvester
LAPACK Sylvester
Recursive Higham
Higham

FIGURE 2 Normalized computational rates on matrices with roughly balanced inertia. The number n3∕3 is used for normalization
because the number of arithmetic operations in Higham's algorithm is between n3∕3 + o(n3) and 2n3∕3 + o(n3); the number of operations in
some of the other algorithms is different

performance of other algorithms (e.g., matrix multiplication) on the same computer. The rates are normalized relative
to n3∕3 because the number of arithmetic operations in Higham's algorithm is between n3∕3 + o(n3) and 2n3∕3 + o(n3);
other algorithms may perform more or less arithmetic.

Our recursive algorithm always performs 2n3∕3 + o(n3); on large matrices, it runs single threaded at a rate of about
12 Gflop/s (not normalized). Multithreading on the quad-core computer speeds up the algorithm by more than a factor

STOTLAND ET AL. 13 of 17

of 2 on large matrices (the speedup is around 2 rather than 4 because only matrix multiplications exploit more than one
core). The recursive Parlett–Sylvester is about three times slower. The performance of the nonrecursive algorithms (and
of our recursive algorithm that does not use the BLAS) is quite dismal.

When inertia is highly imbalanced, the picture changes. Figure 3 shows that Parlett–Sylvester algorithms are the fastest
on such matrices. This makes sense, as they only perform Θ(n2) operations, not Θ(n3) like all the other algorithms. The
differences are quite dramatic. The best single-threaded Parlett–Sylvester algorithm (Recursive Sylvester) runs in 0.35 s on
matrices of dimension 6120, whereas the fastest single-threaded recursive Higham algorithm takes 10.9 s (more than 30
times slower). Figure 4 shows the corresponding normalized rates for completeness, but they are less interesting because
the normalization factor is way off for the Parlett–Sylvester algorithms.

0 1000 2000 3000 4000 5000 6000
10−4

10−3

10−2

10−1

100

101

102

103

matrix dimension n

se
co

nd
s

Recursive Higham MM−MT
Recursive Sylvester MT
LAPACK Sylvester MT
Recursive Higham MM
Recursive Sylvester
LAPACK Sylvester
Recursive Higham
Higham

FIGURE 3 Running times on matrices with exactly 3 negative eigenvalues and n − 3 positive eigenvalues

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

11

matrix dimension n

(n
3 /3

)
/ s

ec
on

ds

Recursive Higham MM−MT
Recursive Sylvester MT
LAPACK Sylvester MT
Recursive Higham MM
Recursive Sylvester
LAPACK Sylvester
Recursive Higham
Higham

FIGURE 4 Normalized computational rates on matrices with exactly 3 negative eigenvalues and n − 3 positive eigenvalues

14 of 17 STOTLAND ET AL.

5.2 Further experiments for a wider context
We now discuss a second set of experiments that were designed and performed to put the algorithms that compute the
sign of triangular matrices in a wider context. In particular, these experiments compare the performance of two families
of algorithms that compute the sign of general (nontriangular) matrices. One family reduces the matrix to triangular form
(Schur decomposition) and then applies one of the algorithms discussed in this study. Algorithms in the second family
use a Newton iteration to compute the sign of the matrix directly. In general, Newton-type iterations repeatedly average
the matrix and its inverse, sometimes scaling the matrix before averaging. Various Newton-type iterations differ mainly
in the scaling that is applied and in the stopping criterion that is used.

The computationally expensive part of a Newton iteration is the inversion of the current iterate. The inversion is typ-
ically done using an LU decomposition and thus costs Θ(n3) operations. The computation of the scaling factor and the
evaluation of the stopping criterion are lower order terms (Θ(n) or Θ(n2) and negligible on large matrices). Thus, in order
to compare the expected performance of Newton-type algorithms with the performance of Schur-based algorithms, we
need to compare the cost of inversions with the cost of the building blocks in Schur-based algorithms and also to assess
the number of iterations that Newton-type algorithms perform. The two building blocks in Schur-based algorithms are
the Schur decomposition itself and the computation of the sign of the triangular factor.

We begin by assessing of the number of iterations that Newton-type algorithms perform when computing the sign
function in real-world applications. We used the CAREX benchmark collection by Benner et al.18 to produce a set of con-
tinuous algebraic Ricatti equations. This class of matrix equations can be solved by computing the sign of the Hamiltonian
matrix of the equations and then by solving a set of linear equations that are constructed from blocks of the sign matrix.19

The benchmark collection consists of 20 such instances that arise in a range of applications; some of the instances are
fixed and some parameterized; default values are provided for all parameters. We evaluated a Newton algorithm on all 20
problems with their default parameters and on larger instances of one of the parameterized problems, number 17.

We used a well-engineered state-of-the art Newton-type algorithm in the evaluation, which is algorithm 5.14 in the
work of Higham et al.1 We used determinantal scaling, using the expression in page 120 in the work of Higham et al.,1

TABLE 1 The number of Newton iterations required to solve the continuous algebraic Ricatti
equations in the CAREX collection18 with their default parameters (table on the left) and with a
parameter that changes the size of the Hamiltonian matrix

Index n Iteration count Index n Iteration count

1 4 2 17 200 53
2 4 4 17 400 66
3 8 599 17 600 59
4 16 18 17 800 95
5 18 61 17 1,000 76
6 60 15 17 1,200 73
7 4 3 17 1,400 67
8 4 8
9 4 8

10 4 9
11 4 782,644
12 6 53
13 8 7
14 8 12
15 78 9
16 128 43
17 42 23
18 200 23
19 120 15
20 842 70

Note. For each instance, the table shows the index of the instance from the work of Benner et al.,18 the
dimension of the Hamiltonian, and the number of iterations required for the algorithm to converge

STOTLAND ET AL. 15 of 17

0 1000 2000 3000 4000 5000 6000
matrix dimension n

0

5

10

15

20

25

30

35

40

R
at

io

Tschur/Tinv
Tschur/Tinv MT

Tschur/Trec-Higham-MM
Tschur/Trec-Higham-MM MT

FIGURE 5 The relative running times of Schur decomposition, matrix inversions, and computation of the sign of triangular matrices. The
solid lines marked MT shows ratios of runs on all four cores of the computer, whereas dotted lines show ratios of runs on one core

to avoid overflows and underflows. The parameter tol_scale that tells the algorithm when to stop scaling was set to 10−2,
and the parameter tol_cgce that controls termination was set to 5 × 10−14; both are suggested in page 125 in the work of
Higham et al.1

The results are shown in Table 1. First, we observe that it often takes a few dozen iterations for Newton methods to
converge, even on small instances. In almost all cases, convergence occurred in less than 100 iterations, but sometimes
not much less. Second, the experiment on instance 11 shows that Newton for the sign function methods sometimes fails
to converge in a reasonable number of iterations; this is known and is not very surprising, considering the use of explicit
inverses.

We next compare the cost of matrix inversions, the dominant building block in Newton methods, with the cost of the
Schur decomposition and with the cost of the computation of the sign of the triangular factor. Figure 5 shows the results.
The performance Schur decompositions and matrix inversions were estimated by applying the schur and inv functions in
Matlab to five random real matrices of each dimension and by taking the average of the three fastest runs. The performance
of the algorithm to compute the sign of the triangular factor is the data from Figure 1 (using the Recursive Higham method
with calls to the BLAS, denoted Recursive Higham MM in Figures 1 and 5, which is the fastest on large matrices). The figure
shows the running time ratios using both one core and all four cores. On one core, computing the Schur decomposition
is about as expensive as 10 inversions and about as expensive as 10 computations of the sign of the triangular factor.

We conclude that the break-even point between Newton-type methods and Schur–Parlett methods is at the point where
the Newton method performs about 11 iterations. For many of the CAREX problems, the Schur–Parlett approach is prefer-
able. When using all 4 cores, the break-even point is around 20 Newton iterations, probably due to the not-so-effective
parallelization of the Schur decomposition in Matlab.

6 CONCLUSIONS

The reader may have been somewhat surprised by some aspects of this work. They also surprised us.
The first surprise is that arithmetic performance (the number of operations) can differ so dramatically between the

Parlett–Higham recurrence and its block variant that we refer to as Parlett–Sylvester. The striking efficiency of the
Parlett–Sylvester approach on matrices with highly imbalanced inertia is the result of three contributing factors: (a) The
performance of the Schur reordering algorithm depends strongly on the number of eigenvalue swaps required to order
the matrix. (b) Solving Sylvester equations on high-aspect ratio matrices is very inexpensive. (c) Computing the diagonal
blocks in the Parlett–Sylvester algorithm for the sign function is trivial.

16 of 17 STOTLAND ET AL.

This finding implies that a production code for the sign function should choose between these two algorithms, ideally
through an auto-tuning and/or performance-prediction framework, possibly based on inertia estimation.

Second was the difficulty of expressing clearly the recursive variant of the Higham–Parlett algorithm. We have tried
a number of approaches based on conventional notational schemes and failed. We resorted to develop the somewhat
complex notation that we present and use in Section 4; it may seem overly complex, but we found it impossible to present
the algorithm without it.

The third (and relatively minor) surprise is the benefit of performing more arithmetic in order to use matrix multi-
plication. The arithmetic-efficient variant of the recursive Parlett–Higham algorithm (Section 4.3) is slower in practice,
although it is cache efficient. Rather than using existing matrix multiplication routines (xGEMM), it uses a custom kernel
with a condition in the next-to-inner loop. This demonstrated the performance penalty for trying to do less arithmetic in
an algorithm using a conditional, thus making performance optimization difficult.

We have also carried out a set of experiments to provide a wider perspective on the performance of algorithms to com-
pute the sign function. These experiments show that Schur–Parlett methods are expected to be faster than Newton-type
methods on many problems.

ACKNOWLEDGEMENTS

This research was supported in part by grants 863/15, 1878/14, and 1901/14 from the Israel Science Foundation (founded
by the Israel Academy of Sciences and Humanities) and by grant 3-10891 from the Ministry of Science and Technology,
Israel. Research is also supported by the Einstein Foundation and the Minerva Foundation. This paper was supported
by the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) and by a grant from the United
States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. This work was also supported by the HUJI Cyber
Security Research Center in conjunction with the Israel National Cyber Bureau in the prime minister's office.

ORCID

Sivan Toledo http://orcid.org/0000-0002-9524-7115

REFERENCES
1. Higham NJ. Functions of matrices: Theory and algorithm. Philadelphia, USA: SIAM; 2008.
2. Roberts JD. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat J Control.

1980;32(4):677–687. First issued as report CUED/B-Control/TR13, Department of Engineering, University of Cambridge, 1971.
3. Benner P, Quintana-Ortí ES. Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algorithms.

1999;20(1):75–100.
4. Benner P, Quintana-Ortí ES, Quintana-Ortí G. Solving stable Sylvester equations via rational iterative schemes. J Sci Comput.

2006;28:51–83.
5. Kenney CS, Laub AJ. The matrix sign function. IEEE Trans Automat Control. 1995;40(8):1330–1348.
6. Parlett BN. A recurrence among the elements of functions of triangular matrices. Linear Algebra Appl. 1976;14:117–121.
7. Davies PI, Higham NJ. A Schur–Parlett algorithm for computing matrix functions. SIAM J Matrix Anal Appl. 2003;25(2):464–485.
8. Deadman E, Higham NJ, Ralha R. Blocked Schur algorithms for computing the matrix square root. In: Manninen P, Öster P, editors.

Revised papers from the 11th International Conference on Applied Parallel and Scientific Computing (PARA 2012). Berlin Heidelberg:
Springer; 2013.

9. Parlett BN. Computation of functions of triangular matrices. Memorandum ERL-M481. Berkeley: Electronics Research Laboratory, College
of Engineering, University of California; 1974.

10. Bai Z, Demmel JW. On swapping diagonal blocks in real Schur form. Linear Algebra Appl. 1993;186:73–95.
11. Kressner D. Block algorithms for reordering standard and generalized Schur forms. ACM Trans Math Softw. 2006;32:521–532.
12. Choi Ng K. Contributions to the computation of the matrix exponential. Berkeley: University of California; 1984. Center for Pure and

Applied Mathematics. PhD thesis. Technical Report PAM-212.
13. Golub G, Van Loan C. Matrix computations. 4th ed. Baltimore, MD: The Johns Hopkins University Press; 2013.
14. Ballard G, Demmel J, Holtz O, Schwartz O. Minimizing communication in linear algebra. SIAM J Matrix Anal Appl. 2011;32:866–901.
15. Irony D, Toledo S, Tiskin A. Communication lower bounds for distributed-memory matrix multiplication. J Parallel Distrib Comput.

2004;64:1017–1026.
16. Loomis LH, Whitney H. An inequality related to the isoperimetric inequality. Bull Am Math Soc. 1949;55:961–962.

http://orcid.org/0000-0002-9524-7115
http://orcid.org/0000-0002-9524-7115

STOTLAND ET AL. 17 of 17

17. Jonsson I, Kågström B. Recursive blocked algorithms for solving triangular systems: Part II: Two-sided and generalized Sylvester and
Lyapunov matrix equations. ACM Trans Math Softw. 2002;28(4):416–435. Available from: http://www8.cs.umu.se/~isak/recsy

18. Benner P, Laub AJ, Mehrmann V. Benchmarks for the numerical solution of algebraic Ricatti equations. IEEE Control Syst. 1997;17:18–28.
19. Kenney CS, Laub AJ, Papadopoulos PM. Matrix-sign algorithms for Riccati equations. IMA J Math Control Inf. 1992;9:331–344.

How to cite this article: Stotland V, Schwartz O, Toledo S. High-performance direct algorithms for computing
the sign function of triangular matrices. Numer Linear Algebra Appl. 2017;e2139. https://doi.org/10.1002/nla.2139

http://www8.cs.umu.se/~isak/recsy
https://doi.org/10.1002/nla.2139

	High-performance direct algorithms for computing the sign function of triangular matrices
	Abstract
	Introduction
	Background
	Applying the algorithms to the real Schur form
	Arithmetic efficiency
	Algorithm selection

	Communication Lower Bounds
	Communication-Efficient Algorithms
	Communication-efficient Parlett–Sylvester solver
	Communication-efficient Parlett–Higham solvers
	Improving the arithmetic complexity

	Experimental Results
	Experiments on triangular matrices
	Further experiments for a wider context

	Conclusions
	References

