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General-purpose hard-error resiliency solutions such as checkpoint-restart severely degrade performance.

For numerical linear algebra, more e�cient solutions incur lower overhead. Current solutions require a

signi�cant increase in the number of processors. Further, they are based on distributed algorithms that

guarantee good performance only when the matrices are large enough to �ll all the local memories. Otherwise,

their inter-processor communication costs are asymptotically larger than the lower bounds dictate.

We obtain fault tolerant parallel matrix multiplication algorithms that reduce the resource overhead by

minimizing both the number of additional processors and the communication costs. In particular, we reduce

the number of additional processors from Θ(
√
P) to 1 (or from Θ(h

√
P) to h, where h is the maximum number

of simultaneous faults), and we save a Θ(log P) factor of the latency costs. Further, for local memories larger

then the minimum required to store the input and output, we obtain fault tolerant adaptations of the 2.5D

algorithm that signi�cantly reduce the communication costs, with very few additional processors.

1 INTRODUCTION
Errors are a serious concern in high performance computing. Given the increase in machine size

and decrease in operating voltage, hard errors (component failure) and so� errors (bit �ip) are likely

to become more frequent. Hardware trends predict two errors per minute up to two per second

on exascale machines [2, 10, 23]. Here we address resiliency for hard errors. General-purpose

hard-error resiliency solutions such as checkpoint-restart [21], and diskless-checkpoints [21]

successfully meet this challenge but are costly and severely degrade performance. Our methods

enable e�cient resource utilization and high performance for error-resilient algorithms that are

close to the e�ciency and performance of non-resilient algorithms.

For numerical linear algebra computations, certain e�cient solutions incur considerably lower

overhead by combining error correcting codes with matrix computations. �ese solutions are

based on distributed 2D algorithms, and can guarantee high performance only when matrices �ll

all local memories. Otherwise, their inter-processor communication costs become asymptotically

larger than the lower bounds, which degrades performance. Moreover, current solutions require a

signi�cant increase in the number of the processors.

Here we present new fault tolerant algorithms for matrix multiplication that reduce the number

of additional processors and guarantee good inter processors communication costs. Speci�cally,

for the 2D case, we decrease the number of additional processors from Θ(
√
P) to 1 (or from Θ(h

√
P)

to h, where h is the maximum number of simultaneous faults), and we save a log P factor of the

latency cost. We a�ain the bandwidth lower bound when f = O
(√

P
)
, where f is the total number

of faults. When local memories are larger than the minimum needed to store inputs and outputs, we

reduce the communication costs using 2.5D technique, with no (or very few) additional processors,

a�aining the bandwidth lower bound for f = O
(√

P/c
)
.

∗
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.



The model: computation, communication, and faults.
Our computation model is a distributed machine with P processors, each having a local memory

of size M words. �e processors communicate via message passing. We assume that the cost of

sending a message is proportional to its length and does not depend on the identity of the sender or

receiver as in [18], and in the context of fault tolerance [11, 12]. �is assumption can be alleviated

with predictable impact on communication cost, cf. [3]. �e number of arithmetic operations is

denoted by F . �e bandwidth cost of the algorithm is given by the words count and is denoted by

BW . �e latency cost is given by the message count and is denoted by L. We count the number

of words, messages and arithmetic operations along the critical path as de�ned in [29]. �e total

runtime is modeled by γ · F + β · BW + α · L, where α , β ,γ are machine-dependent parameters.

We denote by h the maximum number of faults that can occur simultaneously; i.e., the maximum

number of faults in one step or iteration of the algorithm, and by f the total number of faults

throughout the execution. When comparing an algorithm to a fault tolerant adaptation, we use

(P ,M, F ,BW ,L) to denote the resources used by the original algorithm and (P ′,M ′, F ′,BW ′,L′) to

denote the resources used by the fault tolerant adaptation. We express the la�er as a function of

the former, of h, f , and the input size n. When a fault occurs, the faulty processor loses all its data,

and the machine allocates a new processor to replace the faulty one. For simplicity, we assume

no faults occur during recovery phases. Note that faults during the recovery phase of any of the

algorithms we present may introduce at most a constant factor overhead to the recovery phase,

and thus do not a�ect our analysis.

1.1 Previous work
Communication costs of (non-resilient) matrix multiplication.
Cannon [9], Van De Geijn and Wa�s [26], and Fox et al. [14] proposed matrix multiplication

algorithms that minimize communication when the memory is the minimum needed to store

input and output, namely M = Θ
(
n2

P

)
. �e communication costs of these algorithms (also known

as 2D algorithms) are (BW ,L) =
(
O

(
n2

√
P

)
,O

(√
P
))

. Agarwal et al. [1] put forward a 3D algo-

rithm that uses less communication when additional memory is available: For M = Θ
(
n2

p2/3

)
,

they obtained (BW ,L) =
(
O

(
n2

P 3/2

)
,O (log P)

)
. McColl and Tiskin [19], and Solomonik and

Demmel [24] generalized these algorithms to cover the entire relevant range of memory size,

namely Θ
(

3n2

P

)
≤ M ≤ Θ

(
n2

p2/3

)
. �e communication costs of their 2.5D algorithm are (BW ,L) =(

O
(

n3

P ·
√
M

)
,O

(
n3

P ·M3/2 + log c
))

where c is the memory redundant factor, namely c = Θ
(
P ·M
n2

)
. For

M > Θ
(
n2

P 2/3

)
, the communication costs are bounded below by the memory independent lower

bound of Ω
(
n2

P 2/3

)
[4], therefore increasing c beyond

3

√
P cannot help reduce communication costs.

McColl and Tiskin [19], Ballard et al. [5], and Demmel et al. [13] used an alternative parallelization

technique for recursive algorithms, such as classical and fast matrix multiplication. �e communica-

tion costs of the 2.5D algorithm and the BFS-DFS scheme applied to classical matrix multiplication

are both optimal (up to an O (log P) factor), since they a�ain both the lower bound in Irony, Toledo

and Tiskin [18], in the range Θ
(
n2

P

)
≤ M ≤ Θ

(
n2

P 2/3

)
, and the lower bound in Ballard et al. [4] for

larger M values.



Checkpoints-restart.
One general approach to handling faults is checkpoint-restart; all the data and states of the proces-

sors are periodically saved to disk. Upon a fault, the machine loads the most recent checkpoint.

�is solution requires disks, which are expensive, for storing the checkpoints and incurs many I/O

operations, which are time consuming.

Plank, Li, and Puening [21] suggested using a local memory for checkpoints instead of disks.

�is solution does not require additional hardware, and the writing and reading of checkpoints

are faster. Still, the periodic write operations, as well as the restart operations signi�cantly slow

down the algorithms. Furthermore, this solution takes up some of the available memory from the

algorithm. For many algorithms, matrix multiplication included, less memory implies a signi�cant

increase in communication cost, hence a slowdown.

Algorithm-based fault tolerance.
Huang and Abraham [17] suggested algorithm-based fault tolerancy for classic matrix multiplication.

�e main idea was to add a row to A which is the sum of rows, and a column to B which is the

sum of columns. �e product of the two resulting matrices is the matrix A · B with an additional

row containing the sum of its rows and an additional column containing the sum of its columns.

�ey addresses so� errors, and showed that by using the sum of rows and columns it is possible to

locate and �x one faulty element of C .

Huang and Abraham [17] used a technique that allows recovery from a single fault throughout

the entire execution. Gunnels et al. [15] presented fault tolerant matrix multiplication that can

detect errors in the input, and distinct between so� errors and round-o� errors. Chen and Dongarra

showed that by using the technique of [17], combined with matrix multiplication as in Cannon [9]

and Fox [14] does not allow for fault recovery in the middle of the run, but only at the end. �is

severely restricts the number of faults an algorithm can withstand. Chen and Dongarra [11, 12]

adapted the approach described by Huang and Abraham for hard error resiliency, using the outer-
product [27] multiplication as a building block. �eir algorithm keeps the partially computed matrix

C encoded correctly, in the inner steps of the algorithm, not only at the end. By so doing, they were

able to recover from faults occurring in the middle of a run without recomputing all the lost data.

In [12] they analyzed the overhead when at most one fault occurs at any given time. In [11] they

suggested an elegant multiple faults recovery generalization of this algorithm. For this purpose

they introduced a new class of useful erasure correcting codes. �ere algorithm requires 2h ·
√
P

additional processors to be able to deal with up to h simultaneous faults. Further, they analyzed its

numerical stability. Wu [28] et al. used outer product for so� error resiliency.

Hakkarinen and Chen [16] presented a fault tolerant algorithm for 2D Cholesky factorization.

Bouteiller et al. [8] expanded this approach and obtained hard error fault tolerant 2D algorithms for

matrix factorization computations. Moldaschl et al. [20] extended the Huang and Abraham scheme

to the case of so� errors with memory redundancy. �ey considered bit �ips in arbitrary segments

of the mantissa and the exponent, and showed how to tolerate such errors with small overhead.

1.2 Our contribution.
We introduce a new coding technique as well as ways to apply it to both 2D and 2.5D matrix

multiplication algorithms. By doing so we obtain fault tolerant algorithms for matrix multiplication.

Speci�cally in the 2D case we use only h additional processors, the minimum possible, and we use

even fewer processors for the 2.5D algorithm. �e run-time overhead is low, and the algorithms

can utilize additional memory for communication minimizing. �ese algorithms can also handle



multiple simultaneous faults. We also obtain a new e�cient way for pipelining broadcast and

reduce operations.

1.3 Paper organization.
In section 2 we provide preliminaries including a new e�cient pipelined reduce operation. In

Section 3 we focus on the minimum memory case, with resiliency for a single fault (see Table 1). In

Section 4 we show how to extend this approach to tolerate multiple faults (see Table 2). In Section 5

we show how to combine our algorithms with methods that utilize additional memory (see Table 3).

In Section 6 we compare the algorithms and discuss some open questions.

2 PRELIMINARIES
2.1 Pipeline reduce operations.
We use broadcast and reduce operations in our algorithms. Sanders and Sibeyn [22] showed an

e�cient algorithm for performing broadcast and reduce.

Lemma 2.1 ([22]). Let P be the number of processors, and W the data size of each processor.
It is possible to compute a weighed sums of the data of the P processors, using: (F ,BW ,L) =
(O (W ) ,O (W ) ,O (log P))

We introduce an e�cient way to perform l reduce operation in a row. �e naı̈ve implementation

uses the algorithm above l times and requires (F ,BW ,L) = (O (l ·W ) ,O (l ·W ) ,O (l · log P)). We

pipeline the reduce operations and save latency.

Lemma 2.2 (Efficient multiple weighed sum). Let P + l be the number of processors, andW the
data size on P of them. It is possible to compute l weighed sums of the data of the P processors on the l
other processors with resources: (F ,BW ,L) = (O (l ·W ) ,O (l ·W ) ,O (log P + l))

Proof. We �rst describe an alternative algorithm for a single weighted sum, then explain how it

pipelines e�ciently. �e algorithm for one weighted sum has two phases. For ease of presentation,

assume P is an integer power of 2 (the generalization is straightforward). �e �rst phase reduces the

weighed sum but the data remains distributed. �e second phase gathers the data to the destination

processor. �e reduce works as follows. It divides the processors into two sets. Each set performs

half of the task. �e division involves communicating half of the data. Each set recursively calls

the reduce. �e base case is when each set contains only one processor. �en each processor

holds
1

P fraction of the results. Next we gather the data to the additional processor. �e reduction

phase costs F =
log 2P∑
i=0

W
2
i = O (W ), BW =

log 2P∑
i=1

W
2
i = O (W ), and L = log

2
P . �e gathering costs

BW =
∑log

2
P

i=1

W
2
i = O (W ), and L = log

2
P . �us the total cost of the single wighted sum algorithm

is:(F ,BW ,L) = (O (W ) ,O (W ) ,O (log P)).
�is algorithm can be e�ciently pipelined since the messages size decreases exponentially. Let the

names of the processors be a binary string of length log
2
P . In the �rst phase the communication is

between pairs of processors that agree on all the digits aside from the �rst digit. �ey communicate

the �rst weighted sum. In the second step the communication is between processors that agree

on all digits aside from the second and they send the second step of the �rst reduce the �rst

step of the second reduce, and so on. Each weighted sum takes at most O (log P) steps and

then the data are sent to one of the l new processors. �erefore at any time at most O (log P)
weighted sums are being computed. �e memory required for all the reduces that can occur

in parallel is at most

∑
log P
i=1

W
2
i ≤ 2W , and the memory required for all the gathering is at most∑

log P
i=1

W
2
i ≤ 2W . �erefore the memory footprint of this algorithm is M ≤ 4W . In summary,



performing l reduce operations in a row with this algorithm uses local memories of size 4W costs:

(F ,BW ,L) = (O (l ·W ) ,O (l ·W ) ,O (log P + l)) �

2.2 Linear erasure code
We use linear erasure code for recovering faults.

Definition 1. (n,k,d)-code is a linear transformation T : Rk → Rn with distance d , where
distance d means that for every x , y ∈ Rk , T (x),T (y) have at least d coordinates with di�erent
values. �e generator matrix of T is an n × k matrix G such that T (x) = G · x .

�e erasures code we use preserve the original word and add redundant le�ers. Formally we code

a word x of lengthk to a wordy of lengthn usingn−k additional le�ers such thatyk+i =
∑n

j=1
Ei, j ·x j

for some (n − k) × k matrix E. �at is, the code generating matrix is of the form G =

(
Ik

En−k,k

)
.

3 MINIMUMMEMORY, SINGLE FAULT

Table 1. Fault tolerant algorithms for 2D algorithms, namelyM = θ
(
n2

P

)
with at most one simultaneous fault. n is the matrix

dimension, P is the number of processors, and f is the total number of faults occurring throughout the run of the algorithm.

Algorithm

F ′

(�ops per processor)

BW ′

(bandwidth per processor)

L′

(latency per processors)

Additional

processors

Cannon [9],

SUMMA [26]

(No fault)

F = 2n3

P BW = O
(
n2

√
P

)
L = O

(√
P
)

-

Previous algorithm

[11, 12]
F · (1 + o (f )) BW ·O (log P + o (f )) L ·O (log P) 2

√
P + 1

Slice-coded

[here, �eorems 3.2]
F · (1 + o (f )) BW ·O (1 + o (f )) L ·O (log P) 1

Posterior-recovery

[here, �eorems 3.3]
F · (1 + o (f )) BW · (1 + o (f )) L +O (f · log P) 1

In this section we discuss previous and new fault tolerant algorithms, for M = Θ
(
n2/P

)
.

3.1 Previous algorithms.
Chen and Dongarra [11, 12] used the Huang and Abraham scheme [17] to tolerate hard errors.

Speci�cally, they added one row of processors that store the sum of the rows
1

of A and similarly for

C , and one column of processors that store the sum of the columns of B and similarly for C . �ey

called these rows and columns the check-sum; a matrix that has both is called a fully check-sum
matrix.

Checksum row

A

C
h
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k

s
u

m
c
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l
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n

B C

C
h
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o
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m
n

Checksum row

Fig. 1. The Huang and Abraham scheme [17]. The green parts are the check-sums.

1
From here on we write rows to refer to block rows, and columns to refer to block columns.



Chen and Dongarra showed that this approach, applied to 2D algorithms (e.g., Cannon [9] and

Fox [14]), allows for the recovery of C at the end of the matrix multiplication. However these

2D algorithms do not preserve the check-sum during the inner steps of the algorithm. To deal

with higher fault rate, that requires recovery of faults during the run of the algorithm, Chen and

Dongarra used the outer product as the building block of their algorithm. �us their algorithm can

recover faults throughout the run of the algorithm at the end of each outer product iteration. Lost

data of A and C of a faulty processor can be recovered at the end of every outer product step, from

the processors of the same column from the processor in the check-sum row. Similarly, the data

from B and C can be recovered using the check-sum column.

Checksum row

A
C

h
e
c
k

s
u

m
c
o

l
u

m
n

B C

Theorem 3.1 ([11, 12]). Consider a 2D communication optimal matrix multiplication algorithm
with resources (P , F ,BW ,L). Let (P ′, F ′,BW ′,L′) be the resources required for the fault tolerant 2D
matrix multiplication algorithm of Chen and Dongarra that can withstand a single fault at any given
time. Let n be the matrix dimension and let f be the total number of faults. �en: (P ′, F ′,BW ′,L′) =

(P + 2

√
P + 1, F ·

(
1 +O

(
f
n

))
,BW ·O

(
log P +

f
√
P

)
,L ·O (log P) +O (f · log P)).

Proof. For completeness we provide a proof based on that of Chen and Dongarra [11, 12]. �e

algorithm uses an additional row and column of processors, thus P ′ = 2 ·
√
P + 1. Next are the time

of the code creation (CC), matrix multiplication (MM), and the recovery (Re). F ′ = FCC + FMM + FRe,

similarly BW ′ = BWCC + BWMM + BWRe, and L′ = LCC + LMM + LRe.

Code creation and recovery. �e code creation and the recovery are reduce operations. �ey used

fractional tree [22] for this end, thus

(FCC,BWCC,LCC) =

(
O

(
n2

P

)
,O

(
n2

P

)
,O (log P)

)
(1)

(FRe,BWRe,LRe) =

(
O

(
f ·

n2

P

)
,O

(
f ·

n2

P

)
,O (f · log P)

)
(2)

Matrix multiplication. Matrix multiplication is computed using the outer product in each iteration.

�e outer product broadcasts one row and one column of blocks at the beginning of each iteration.

To do so they used a (simple) broadcast instead of a ”fractional tree” [22] thus

(FMM,BWMM,LMM) =

(
2n3

P
,O

(
n2

√
P
· log P

)
,O (log P)

)
(3)

Total costs. Summing up Equations 1, 2, and 3:

F ′ = FCC + FMM + FRe

= O

(
n2

P
+

2n3

P
+ f ·

n2

P

)
= F ·

(
1 +O

(
f

n

))



BW ′ = BWCC + BWMM + BWRe

= O

(
n2

P
+

n2

√
P
· log P + f ·

n2

P

)
= BW ·O

(
log P +

f
√
P

)
L′ = LCC + LMM + LRe

= L ·O (log P)

�

Our algorithms.
Since matrices A and B are not modi�ed by the algorithm, lost input data can be easily handled

using an erasure code of length P + 1. �e main challenge involves recovering C . To this end, we

introduce two alternatives: the �rst algorithm uses the outer product and encoding of the blocks of

C with additional processors. �is is similar to the approach by Chen and Donagarra. However we

use a new coding scheme that decreases the additional processor count from Θ
(√

P
)

to one. We

denote this algorithm by slice-coded algorithm. �e second algorithm recovers the lost data of C
by recomputing at the end of the run. We denote this the posterior-recovery algorithm.

Theorem 3.2 (Slice-coded). Consider a 2D communication cost optimal matrix multiplication
algorithm with resources (P , F ,BW ,L). �en there exists a fault tolerant 2D matrix multiplication
algorithm that can withstand a single fault at any given time, where n is the matrix dimension and f
is the total number of faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P + 1, F ·

(
1 +O

(
f
n

))
,BW ·O

(
1 +

f
√
P

)
,O (L · log P)

)
.

Theorem 3.3 (Posterior-recovery). Consider a 2D communication cost optimal matrix multipli-
cation algorithmwith resources (P , F ,BW ,L). �en there exists a fault tolerant 2Dmatrixmultiplication
algorithm that can withstand a single fault at any given time, where n is the matrix dimension and f
is the total number of faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P + 1, F ·

(
1 +O

(
1√
P

))
,BW ·

(
1 +O

(
f
√
P

))
,L +O (f · log P)

)
.

3.2 Slice-coded algorithm.
We follow the approach in [11, 12], and use the outer product matrix multiplication as the basis for

the algorithm. However, where they used 2 ·
√
P + 1 additional processors, for the coded data, we

only use one. �e additional processor contains the sum of the others. �is processor acts similarly

to the corner processor in Chen and Dongarra’s algorithm (corresponding to the red processor in

Figure 2). It contains the sum of the blocks of A,B, and C . In the s iteration of the algorithm, it

multiplies the sum of the current row with the sum of the current column. �us it keeps the sum

of the blocks of C updated. In each outer-product iteration the algorithm computes the sum of the

current outer product. We show in Equation 4 that the sum of the blocks of C can be computed by

multiplying two sums of blocks.

n∑
i, j=1

(A (:, s) · B (s, :))i, j =
n∑

i, j=1

Ai,s · Bs, j (4)

=

(
n∑
i=1

Ai,s

)
·

(
n∑
j=1

Bs, j

)



Procedure C = SliceCoded(P ,A,B)
initialization

A,B = square n × n matrices distributed so that pi, j owns
n√
P
× n√

p blocks Ai, j and Bi, j

for each i, j

end
allocate an additional processor Pc .

Pc ← Reduce Ac =
∑

i,1∈[
√
P]Ai, j

Pc ← Reduce Bc =
∑

i,1∈[
√
P] Bi, j

for s = 1 to
√
P do

forall j ∈
[√

P
]
do in parallel

Ps , j Broadcasts As, j to P1, j , . . . , P√P, j
Pj , s Broadcasts Bj,s to Pj,1, . . . , Pj,

√
P

end
forall j ∈

[√
P
]
do in parallel

Pj,1, . . . , Pj,
√
P compute

1√
P

of the block Ca

Pc ← Reduce Ca
∑

i ∈
√
P As,i

and
1√
P

of the block Cb

Pc ← Reduce Cb =
∑

i ∈
√
P Bi,s

end
Ci, j = Ci, j +Ai,s · Bs, j\\locally

Pc computes Cc = Cc +Ca ·Cb

\\Fix faults if needed

end
return C

end
Procedure �xFault(P , i)
\\i is the faulty processor

if i , P + 1 then
Pi ← Reduce PP+1 −

∑
j ∈[P ]\{i } Pj

else
Pi ← Reduce

∑
j ∈[P ] Pj

end
end

Algorithm 1: Slice-coded

Proof of Theorem 3.2. �e algorithm allocates one additional processor for the code, thus P ′ =
P + 1. �e algorithm is composed of three steps. In the �rst step, code creation (CC) the algorithm

creates codes for A and B and stores them in the additional processor. �e second step is the matrix

multiplication (MM). Upon a fault, a recovery (Re) step is performed. �erefore F ′ is composed of

three components, namely, F ′ = FCC + FMM + FRe. Similarly BW ′ = BWCC + BWMM + BWRe, and

L′ = LCC + LMM + LRe.



Code

A (:, s)

C
o

d
eB (s, :) A (:, s) · B (s, :)

Fig. 2. An iteration of Chen and Dongarra’s algorithm. Each column of A and row of B contains a check-sum
processor.

Code

A (:, s)
C

o
d

eB (s, :) A (:, s) · B (s, :)

Fig. 3. An iteration of our slice-coded algorithm. The algorithm computes the green parts and sends them to
the additional processors (red).

Code creation. In this step, the algorithm computes the sum of the blocks of A and of B, and

stores them in the additional processor,using a reduce operation. By Lemma 2.1 this takes:

(FCC,BWCC,LCC) =

(
O

(
n2

P

)
,O

(
n2

P

)
,O (log P)

)
(5)

Matrix multiplication. �e matrix multiplication phase is performed as in an outer-product

algorithm with a small change: every processor computes its share of the code. To be more precise,

in the sth iteration (of

√
P iterations) the processors compute the outer product A (:, s) · B (s, :).

�e processors of the current block column of A and the processors of the current block row of B
broadcast them. �e processors compute the sum of the current block column of A; speci�cally

each column of processors computes 1/
√
P of this sum. Similarly, the processors compute the sum

of the current block row of B. �e processors send these two sums to the additional processor. �en

each processor multiplies the two blocks.

By �eorem 2.2 the broadcasting (B) takes (FB,BWB,LB) =
(
0,O

(
n2

P

)
,O (log P)

)
.�e reduce

operation is distributed among the rows and the columns, where each row and column of processors

performs a reduce operation with an
n2

P 3/2 block size. �erefore this reduce operation (R) takes:

(FR,BWR,LR) =

(
O

(
n2

P3/2

)
,O

(
n2

P3/2

)
,O (log P)

)
.

�e multiplication of two blocks in time is
2n3

P 3/2 . �ere are

√
P iterations; thus the multiplications

takes:

(FMM,BWMM,LMM) = (
2n3

P
+O

(
n2

P3/2
·
√
P

)
,O

(
n2

√
P

)
,O

(√
P log P

)
) (6)

Recovery. Each recovery is a reduce operation. By Lemma 2.1 f recoveries take:

(FRe,BWRe,LRe) =

(
f ·O

(
n2

P

)
, f ·O

(
n2

P

)
, f ·O (log P)

)
(7)



Total costs. Summing up Equations 5, 6, and 7 we have

F ′ = FCC + FMM + FRe

=
2n3

P
+O

(
n2

P
+
n2

P
+

f · n2

P

)
= F ·

(
1 +O

(
f

n

))
BW ′ = BWCC + BWMM + BWRe

= BW ·O

(
1 +

f
√
P

)
L′ = LCC + LMM + LRe

= L · log P

�

3.3 Posterior-recovery.
In this algorithm we recover output by re-computation. �at is, A and B input matrices are coded,

but C is not. A faulty processor incurs the restoration of its share of A and B. But recomputing its

lost share of the workload is performed at the end of the algorithm, using all processors. When a

fault occurs, the algorithm recovers the lost data of A and B using their code, initializes the lost

block of C to zeros, and resumes computations.

Definition 2. We denote by a cube the set of scalar multiplications de�ned by the two blocks
(sub-matrices) multiplication.

Proof of Theorem 3.3. We assume that at each iteration, at most one fault occurs. �erefore

the algorithm needs only one additional processor to encode A and B, namely, P ′ = P + 1.

F ′ = FCC + FMM + FReIn + FReOut, where CC stands for code creation, MM for the matrix multi-

plication, ReIn for the recovery of the input A and B, and ReOut for the recomputation. Similarly

BW ′ = BWCC + BWMM + BWReIn + BWReOut, and L′ = LCC + LMM + LReIn + LReOut.

Code creation. �e costs of this phase are as in the Slice-coded algorithm see Section 3.2.

Matrix multiplication. �e algorithm performs 2D matrix multiplication (e.g., Cannon’s [9]), thus

(FMM,BWMM,LMM) = (F ,BW ,L) . (8)

Input recovery. By Lemma 2.1 the costs of f recoveries are:

(FReIn,BWReIn,LReIn) =

(
O

(
f ·

n2

P

)
,O

(
f ·

n2

P

)
,O (f · log P)

)
(9)

Output recovery. �is stage involves communication, multiplication, and reducing the data. We

assume that the maximum number of faults in an iteration is 1. Each processor computes

√
P cubes.

�erefore there are at most P cubes to compute again, as there are

√
P iterations. �e algorithm

distributes the workload of the lost cubes. Each processor gets at most one cube. Since computing

a cube is multiplying two blocks of size
n2

P it takes FReOut = O
(
n3

P 3/2

)
�ops. �e communication

cost is due to moving two input blocks and the reduce of C . �us it takes BWReOut = O
(
n2

P

)
, and



LReOut = O (log P). We have

(FReOut,BWReOut,LReOut) =

(
O

(
n3

P3/2

)
,O

(
n2

P

)
,O (log P)

)
(10)

Total costs. Summing up Equations 5, 8, 9, and 10 we have

F ′ = FCC + FMM + FReIn + FReOut

= F +O

(
n3

P3/2

)
= F ·

(
1 +O

(
1

√
P

))
BW ′ = BWCC + BWMM + BWReIn + BWReOut

= BW ·

(
1 +O

(
f
√
P

))
L′ = LCC + LMM + LReIn + LReOut

= O (log P) + L +O (f log P) +O (log P)

= L +O (f log P)

�

4 MULTIPLE FAULTS
In this section we extend our algorithms to a number of simultaneous faults.

Table 2. Fault Tolerant 2D algorithms, namely,M = Θ
(
n2

P

)
with at most h simultaneous faults. n is the matrix dimension, P is the

number of processors, and f is the total number of faults occurring throughout the run of the algorithm.

Algorithm

F ′

(�ops per processor)

BW ′

(bandwidth per processor)

L′

(latency per processors)

Additional

processors

Cannon [9],

SUMMA [26]

(No fault)

F = 2n3

P BW = O
(
n2

√
P

)
L = O

(√
P
)

−

Previous algorithm

[11]
F ·

(
1 +O

(
h+f
n

))
BW ·O

(
1 +

h+f
√
P

)
O (L · log P + f · log P + h) 2h

√
P + h2

Slice-coded

[here, �eorem 4.3]
F ·

(
1 +O

(
h+f
n

))
BW ·O

(
1 +

h+f
√
P

)
O (L · log P + h + f ) h

Posterior-recovery

[here, �eorem 4.4]
F ·

(
1 +O

(
h
n +

f
P

))
BW ·

(
1 +O

(
h+f
√
P

))
L +O (f · log P + h) h

4.1 Previous algorithm.
Theorem 4.1 ([11]). Consider a 2D communication cost optimal matrix multiplication algorithm

with resources (P , F ,BW ,L). Let n be the matrix dimension. �en there exists a fault tolerant 2D
matrix multiplication algorithm that can withstand h simultaneous faults at any given time, and f
total faults, with resources:
(P , F ,BW ,L) =

(
P + 2 · h ·

√
P + h2, F ·

(
1 +O

(
h+f
n

))
,BW ·O

(
log P +

h+f
√
P

)
,O

((
f +
√
P
)

log P + h
))
.

�e algorithm adds h rows of processors to A and C and h columns of processors to B and C . It

stores weighted sums of the original processors in the additional processors. �eir algorithm uses
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Fig. 4. Previous algorithm for dealing with h simultaneous faults[11].
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Fig. 5. An iteration of the slice-coded algorithm.

a

(√
P ,
√
P + h,h + 1

)
-code, with a generating matrix G =

(
Ik

En−k,k

)
, such that every minor of E is

invertible. It can therefore recover h simultaneous faults, even if they occur in the same row or

column of processors.

Proof. Chen and Dongarra algorithm has h processors for each row and column of the original

processors (see Figure 4); hence 2h ·
√
P + h2

additional processors. F ′ = FCC + FMM + FRe,

where CC is the code creation, MM is the matrix multiplication, and Re is the recovery. Likewise

BW ′ = BWCC + BWMM + BWRe, and L′ = LCC + LMM + LRe.

Code creation. �e code creation is done by h reduce operations, performed by each row and

column of processors. �us by �eorem 2.2:

(FCC,BWCC,LCC) =

(
h ·

n2

P
,h ·

n2

P
,O

(
log

2

√
P + h

))
(11)

Matrix multiplication. �e second phase of the Chen and Dongarra’s algorithm is the matrix

multiplication. �ey used the outer product algorithm. �is algorithm includes broadcasting to a

slightly larger set of processors, h +
√
P instead of

√
P and it runs the same number of iterations.

�erefore it takes
2
:

(FMM,BWMM,LMM) =

(
O

(
n3

P

)
,O

(
n2

P
·
√
P

)
,O

(√
P · log

2

(√
P + h

)))
(12)

Recovery. When a fault occurs the processors in same column recover the block of A, the proces-

sors in the same column recover the block of B, and the same for C . By �eorem 2.2 for f faults

2
In Chen and Dongarra’s original analysis [11, 12] they use a naı̈ve broadcast which takesO

(
n2

P · log P
)
. However applying

the fractional tree method [22] here, which they use for the recovery, yields be�er performance.



this takes

(FRe,BWRe,LRe) =

(
O

(
f ·

n2

P

)
,O

(
f ·

n2

P

)
,O (f · log P)

)
(13)

Total costs. Summing up Equations 11,12 and 13:

F ′ = FCC + FMM + FRe

= F +O

(
h ·

n2

P
+ f ·

n2

P

)
= F ·

(
1 +O

(
h + f

n

))
BW ′ = BWCC + BWMM + BWRe

= BW ·O

(
1 +

h + f
√
P

)
L′ = LCC + LMM + LRe

= O
(
log

√
P + h +

√
P

(
log

(√
P + h

))
+ f · log P

)
= O

((
f +
√
P
)

log P + h
)

�

4.2 Erasure correcting code.
For multiple faults we use erasure code ()recall the de�nition in Section 2.2). To withstand h
simultaneous faults we require a (P , P + h,h + 1)-code. In other words, any P le�ers su�ce to

recover the data. �is is possible if and only if every minor of size P of the generating matrix

G =

(
IP

Eh×P

)
is invertible. In other words, every minor of E is invertible.

Similar to the single fault case, each code processor multiplies a weighed sum of the current

block column ofA with a weighed sum of the current block row of B, and adds it to the accumulated

sum. �us the weighed sum is of the form:(
n∑
i=1

ui · Ai,k

)
·

(
n∑
j=1

vj · Bk, j

)
(14)

=

n∑
i, j=1

vi · uj · Ai,k · Bk, j

=

n∑
i, j=1

(
wi, j · A (:,k) · B (k, :)

)
i, j

where wi, j = vi · uj for some vectors v and u. �e code used in [11] does not have the above

property, and therefore cannot be used for our purpose. We show that there exists a code with the

required properties.

Lemma 4.2. �ere exists (P + h, P ,h + 1) code, such that the generating matrix G =
(
I
E

)
has the

following property. For every row i of E there exists two vectors vi ,ui ∈ R
√
P such that Ei = vi ⊗ ui .

Namely Ei,a+(
√
P−1)b = v

i
a · u

i
b .



Proof. Consider an erasure code with generating matrix

(
I
E

)
, where I = IP , and E is an h × P

Vandermonde matrix. Every minor of the Vandermonde matrix is invertible. �e ith row of the

Vandermonde matrix is of the form r i =
(
α0

i ,α
1

i , . . . ,α
P−1

i
)
. By taking vi =

(
α0

i , . . . ,α
√
P−1

i

)
and

ui =
(
α0

i ,α
n
i , . . . ,α

P−
√
P

i

)
, we obtain that Ei,a+(

√
P−1)b is vi · uj = r

i
a+(
√
P−1)b

. �

4.3 Slice-coded.
Theorem 4.3 (Slice-coded algorithm). Consider a 2D communication cost optimal matrix

multiplication algorithm with resources (P , F ,BW ,L). Let n be the matrix dimension. �en there exists
a fault tolerant 2D matrix multiplication algorithm that can withstand h simultaneous faults at any
given time, and f total faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P + h, F ·

(
1 +O

(
h+f
n

))
,BW ·O

(
1 +

h+f
√
P

)
,O (L · log P + (h + f ) · log P)

)
Proof. We showed in Section 4.2 how to use h additional processors to obtain a code with

distance h + 1; thus P ′ = P + h. �e rest of the analysis is similar to the single fault case in the

proof of �eorem 3.2. We have F ′ = FCC + FMM + FRe, and similarly for BW ′
and L′.

Code creation. �e algorithm �rst creates an erasure code for A and B. By �eorem 2.2 asW = n2

P
and l = h this takes:

(FCC,BWCC,LCC) =

(
O

(
h ·

n2

P

)
,O

(
h ·

n2

P

)
,O (log P + h)

)
(15)

Matrix multiplication. �e multiplication involves broadcasting and reduction of h weighted

sums. Each column of processors computes
h√
P

weighted sums of the blocks of A and each row of

processors computes
h√
P

weighted sums of the blocks of B. �e broadcasting and reduction (BR)
takes:

(FBR,BWBR,LBR) =

(
O

(
h
√
P
·
n2

P

)
,O

((
1 +

h
√
P

)
·
n2

P

)
,O

(
log P +

h
√
P

))
�e multiplication of two blocks takes O

(
n3

p3/2

)
�ops. �ere are

√
P iterations. �erefore,

(FMM,BWMM,LMM) =

(
O

(
n3 + h · n2

P2

)
,O

(
n2

√
P

(
1 +

h
√
P

))
,O

(√
P · log P + h

))
(16)

Recovery. When faults occur, the portion of A,B, and C of the faulty processor are recovered at

the end of the iteration, using the erasure code. Assume that at iteration i that the number of faults

is fi . By �eorem 2.2, asW = n2/P and l = fi > 0 the recovery takes:(
FRei ,BWRei ,LRei

)
=

(
O

(
fi ·

n2

P

)
,O

(
fi ·

n2

P

)
, log P + fi

)
(17)

Recall that f =

√
P∑

i=1

fi . �erefore,

(FRe,BWRe,LRe) =

(
O

(
f ·

n2

P

)
,O

(
f ·

n2

P

)
,O

(
min

(
f ,
√
P
)

log P + f
))

(18)



Total costs. Summing up Equations 15, 16, and 18 we have,

F ′ = FCC + FMM + FRe

= F ·

(
1 +O

(
h + f

n

))
BW ′ = O

(
h ·

n2

P
+

n2

√
P

(
1 +

d
√
P

)
+ f ·

n2

P

)
= BW ·O

(
1 +

h + f
√
P

)
L′ = O

(√
P · log P + h + f

)
�

4.4 Posterior-recovery.
�is algorithm allocates h processors for encoding A and B. It runs a 2D matrix multiplication (e.g.,

Cannon [9] not just outer product ones). When a processor faults, the algorithm recovers A and B
and proceeds. A�er the multiplication the algorithm re-computes the lost portion of C .

Theorem 4.4 (Posterior-recovery). Consider a 2D communication cost optimal matrix multipli-
cation algorithm with resources (P , F ,BW ,L). Let n be the matrix dimension. �en there exists a fault
tolerant 2D matrix multiplication algorithm that can withstand h simultaneous faults at any given
time, and f total faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P + h, F +O

(
h n2

P + f n3

P 2

)
,BW +O

(
(h + f ) · n

2

P

)
,L +O

(√
P · log P + f + h

))

A

Code for A

B

C
o

d
e

f
o

r
B

h h

Fig. 6. Coding A and B

Proof. �e algorithm requires code with distance h + 1, and uses h additional processors

P ′ = P+h. �e analysis is similar to the single fault case, speci�cally, F ′ = FCC+FMM+FReIn+FReOut,

and the same for BW ′
and L′.

Code creation. By �eorem 2.2 the code creation costs are:

(FCC,BWCC,LCC) =

(
O

(
h ·

n2

P

)
,O

(
h ·

n2

P

)
,O (log P + h)

)
(19)

Matrix multiplication. �e algorithm runs a 2D matrix multiplication, thus

(FMM,BWMM,LMM) = (F ,BW ,L) (20)



Input recovery. Assume that at iteration i the number of fault is fi . By �eorem 2.2, asW = n2

P
and l = fi , the recovery of the input at iteration i takes:(

FReIni ,BWReIni ,LReIni

)
=

(
O

(
fi ·

n2

P

)
,O

(
fi ·

n2

P

)
, log P + fi

)
(21)

if fi > 0. Since f =

√
P∑

i=1

fi summing up the recoveries of each iteration costs:

(FReIn,BWReIn,LReIn) =

(
O

(
f ·

n2

P

)
,O

(
f ·

n2

P

)
,O

(
min

(
f ,
√
P
)
· log P + f

))
(22)

Output recovery. When a processor faults, it loses at most

√
P cubes of computations. �erefore, if

f faults occur during the multiplication step, at the end of the multiplication the algorithm performs

O
(
f ·
√
P
)

cube re-computations. Each cube computation involves three steps: receiving the input

blocks, multiplying the matrices, and reducing the results. �e receiving costs are as follows:

bandwidth = O
(

2n2

P

)
. �e multiplication costs O

(
n3

P 3/2

)
�ops. Since processors may fault quite late,

there is a reduce of O
(√

P
)

blocks that increases the latency to O (log P). �ees multiplications can

done in parallel. �ere are O
(
f
√
P
)

blocks to multiply and P processors. �erefore each processor

performs O
(
f
√
P

)
multiplications. Hence

(FReOut,BWReOut,LReOut) =

(
O

(
f ·

n3

P2

)
,O

(
f n2

P3/2

)
,O

(
f
√
P
+ log P

))
(23)

Total costs. Summing up Equations 19, 20, 22, and 23

F ′ = FCC + FMM + FReIn + FReOut

= O

(
h ·

n2

P

)
F +O

(
f ·

n2

P

)
+O

(
f ·

n3

P2

)
= F +O

(
h ·

n2

P
+ f ·

n3

P2

)
BW ′ = BWCC + BWMM + BWReIn + BWReOut

= O

(
h ·

n2

P

)
+ BW +O

(
f ·

n2

P

)
+O

(
f n2

P3/2

)
= BW +O

(
(h + f ) ·

n2

P

)
L′ = LCC + LMM + LReIn + LReOut

= O (log P + h) +O
(
min

(
f ,
√
P
)
· log P + f

)
+ L +O

(
f
√
P
+ log P

)
= O

(
min

(
f ,
√
P
)
· log P + f + h

)
�



5 MEMORY REDUNDANCY
We next present the extension of our two algorithms to the case where redundant memory is

available, namely M = Θ
(
cn2

P

)
for some 1 < c < 3

√
P .

Table 3. Fault tolerant 2.5D algorithms, c copies of the input and the output fit into the memory; namely c = Θ
(
M ·P
n2

)
, where n

is the matrix dimension, and P is the number of processors. f is the total number of faults occurring throughout the run of the
algorithm. h is the maximum number of simultaneous faults.

Algorithm

F ′

(�ops per processor)

BW ′

(bandwidth per processor)

L′

(latency per processors)

Additional

processors

2.5D

[19, 24]
F = 2n3

P BW = O
(

n3

P ·
√
M

)
L = O

(
n3

P ·M3/2

)
+ log c −

Previous algorithm
∗

[11]
F +O

(
f ·n2

P

)
O

(
BW ·

√
c +

(h+f )·n2

P

)
O

(
L · c3/2 · log P + h

)
2h
√
P + h2

Slice-coded

[here, �eorem 5.1]
F +O

(
h+f
c ·M

)
O

(
BW +

h+f
c ·M

)
O

(
L · log P +

h+f
c

)
c · h

Posterior-recovery
†

[here, �eorem 5.2]

F +O
(
f ·n3

P 2

)
O (BW ) O (L · log c + log P) 0

*
�is algorithm does not utilize additional memory; hence its communication costs are larger. We do not include the algorithm

suggested in Moldashcl et al. [20] as they handle so� errors only.

†
We analyze this algorithm only when h < c .

Fault distribution. Recall that a 2.5D algorithm splits the processors into c sets, where each set

performs
1

c of the iteration of 2D algorithm. When h is the maximum number of simultaneous

faults, each set of processors has to be able to tolerate h simultaneous faults. For ease of analysis

we assume that the faults are distributed uniformly among the c sets. If this is not the case the

algorithm can divide the computations di�erently, and assign more computation to a set that has

fewer faults. �is is possible since each set of processors has su�cient data to perform all these

computations.

5.1 Slice-coded.
Theorem 5.1 (Slice-coded). Consider a 2.5D communication-cost optimal matrix multiplication

algorithm with resources (P , F ,BW ,L). Let n be the matrix dimension and letM be the local memories
size. Let c be the memory redundancy factor, namely c = Θ

(
P ·M
n2

)
. �en there exists a fault tolerant

2.5D matrix multiplication algorithm that can withstand h simultaneous faults at any given time, and
f total faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P + c · h, F +O

(
h+f
c ·M

)
,O

(
BW +

h+f
c ·M

)
,O

(
L · log P +

h+f
c

))
.

Proof. �e algorithm splits the processors into c sets (where c = Θ
(
P ·M/n2

)
), each set performs√

P/c3
iterations of outer product. For each set of processors the algorithm allocates h processors

for redundant code. �erefore P ′ = P + c · h. �e analysis is similar to the minimum memory case,

particularly F ′ = FCC + FMM + FRe, and the same for BW ′
and L′.

Code creation. First, the algorithm duplicates A and B and then it creates the code. Each set of

processors computes the code of
h
c processor, and the code processors duplicate themselves. By

�eorem 2.2 it takes:

(FCC,BWCC,LCC) =

(
O

(
h

c
·M

)
,O

(
h

c
·M

)
, log (P/c) +

h

c

)
(24)



Matrixmultiplication. In each iteration (iter) of the outer product in the 2.5D matrix multiplication,

one column of processors broadcasts the current blocks of A and one row of processors broadcasts

the current blocks of B. �en the processors compute h weighted sums of those blocks, each row

or column computes
h√
P/c

sums, and sends them to the code-processors. �en each processor

multiplies 2 blocks of

√
c ·n
√
P
×
√
c ·n
√
P

. Summing up, the iteration costs are

Fiter = O

(
h√
P/c
·M +

c3/2 · n3

P3/2

)
BWiter = O

((
h√
P/c
+ 1

)
·M

)
Liter = O

(
log

(√
P/c

)
+

h√
P/c

)
�ere are

√
P/c3

iterations, thus

FMM = O

(
h

c
·M +

n3

P

)
(25)

BWMM = O

((
h

c
+

√
P/c3

)
·M

)
LMM = O

(√
P/c3 · log P +

h

c

)
Recovery. Recovering faults is done by computing a weighted sum of

√
P/c processors. At the

end of each iteration the algorithm recovers faults by pipelining the reduce operations. According

to �eorem 2.2, asW = M , this costs:

(FRe,BWRe,LRe) =

(
O

(
f

c
·M

)
,O

(
f

c
·M

)
,O

(√
P/c3 · log P +

f

c

))
(26)

Total costs. Summing up Equations 24, 25, and 26:

F ′ = FCC + FMM + FRe

= O

(
h

c
·M +

h

c
·M + F +

f

c
·M

)
= F +O

(
h + f

c
·M

)
BW ′ = BWCC + BWMM + BWRe

= O

(
h

c
·M +

h

c
·M + BW +

f

c
·M

)
= O

(
BW +

h + f

c
·M

)
L′ = LCC + LMM + LRe

= O

(√
P/c3 · log P +

h + f

c

)
�



5.2 Posterior-recovery.
�e 2.5D adaptation of the posterior-recovery algorithm is similar to the 2D case, with one main

exception: there is an inherent redundancy in the replications of A and B in the 2.5D algorithm that

we utilize to decreases the length of the code, hence reduces the number of additional processors

required. If h < c , the algorithm does not require additional processors at all.

�e algorithm splits the processors into c sets where c = Θ
(
P ·M
n2

)
. Each set performs

1

c of the

iterations of a 2D algorithm (not necessarily the outer product algorithm). When a fault occurs, the

processors in the set of the faulty processor wait for the recovery of that processor. �e lost data of

A and B are recovered from the next set of processors.

Theorem 5.2 (posterior-recovery). Consider a 2.5D algorithm with resources (P , F ,BW ,L). Let
n be the matrix dimension and let M be the local memories size. Let c be the memory redundant
factor, namely c = Θ

(
P ·M
n2

)
. �en there exists a fault tolerant 2.5D matrix multiplication algorithm

that can withstand h simultaneous faults at any given time, and f total faults, with resources:
(P ′, F ′,BW ′,L′) =

(
P , F ·

(
1 +O

(
f
P

))
,O (BW ) ,O (L · log c + log P)

)
.

Proof. As explained above P ′ = P . �e algorithm does not create code, and similar to the 2D

case it recovers the input immediately and re-computes the lost output data a�er the multiplication

ends. �erefore F ′ = FMM + FReIn + Fre out . Likewise BW ′ = BWMM + BWReIn + BWre out , and

L′ = LMM + LReIn + Lre out .

Matrix multiplication. �e algorithm performs a 2.5D matrix multiplication therefore,

(FMM,BWMM,LMM) = (F ,BW ,L) (27)

Input recovery. �e algorithm recovers faults at the end of each iteration. Since c > h there is

at least one copy of each block even when h processors fault simultaneously. If k processors that

hold the same block of A (or B) fault simultaneously, the algorithm broadcasts this block. �erefore

in the worst case, this recovery requires O (logk) messages. Recall that in the ith iteration fi < c
processors fault. By Lemma 2.1 it costs:(

FReIni ,BWReIni ,LReIni

)
= (O (M) ,O (M) ,O (log c))

thus the total recovery costs are:

(FReIn,BWReIn,LReIn) =
(
O

(√
P/c3 ·M

)
,O

(√
P/c3 ·M

)
,O

(√
p/c3 · log c

))
(28)

=

(
O

(
n3

P ·
√
M

)
,O (BW ) ,O (L · log c)

)
Output recovery. A�er the 2.5D matrix multiplication is completed, the algorithm computes

the lost cubes (recall De�nition 2). When a processor faults it loses O
(√

P/c3

)
such cubes. Each

processor gets O

(
f ·
√
P/c3

P

)
= O

(
f
√
P ·c3

)
such cubes for recomputing, and multiplies pairs of them.

�e block size is
n√
P/c
× n√

P/c
; therefore multiplying two blocks costs

(
n√
P

)
3

�ops. �us the costs

are:

FReOut = O

(
f

√
P · c3

·
c3/2 · n3

P3/2

)
(29)



= O

(
f · n3

P2

)
BWReOut = O

(
f

√
P · c3

·M

)
LReOut = O

(
f

√
P · c3

+ log P

)
We add log P to the latency because the output recovery may include the broadcast operation of

the blocks and the reduce operation of the results.

Total costs. Summing up Equations 27, 28, and 29:

F ′ = FMM + FReIn + FReOut

= F +
n3

P ·
√
M
+

f · n3

P2

= F ·

(
1 +O

(
f

P

))
BW ′ = BWMM + BWReIn + BWReOut

= O (BW )

L′ = LMM + LReIn + LReOut

= O (L · log c + log P)

�

6 DISCUSSION
In this paper we presented two methods for obtaining fault tolerance at lower costs: the slice-coded

algorithm and the posterior-recovery algorithm. Both can handle multiple simultaneous faults.

When the memory is minimal both algorithms use as few processors as possible; namely h, where h
is the maximum number of faults that may occur in one iteration. We showed how to combine these

methods with a 2.5D algorithm that utilizes redundant memory, to reduce the communication costs.

When the number of fault is not too large our algorithms only marginally increase the number of

arithmetic operations and the bandwidth costs. �e slice-coded algorithm increases the latency by

a factor of log P . If faults occur in every iteration of the posterior recovery algorithm, its latency

increases by a factor of log P as well.

�e slice-coded algorithm uses the outer-product in each iteration and keeps the code processors

updated. �e outer product uses up to a constant factor more words, and up toO (log P) factor more

messages. �erefore, the slice-coded algorithm communicates a li�le more, but it can recover faults

quickly at each iteration. In contrast, the posterior recovery communicates less in this phase, but

performs more operations to recover faults. �erefore the slice-coded algorithm is more e�cient

when many faults occur, and useful when quick recovery is needed. For fewer faults, the posterior

recovery is more e�cient.

�e posterior recovery with redundant memory uses the input replication of the 2.5D algorithm.

It utilize the redundant memory to reduce communication costs and to reduce the number of

required additional processors. We analyzed the case of h < c , where the maximum number of

simultaneous faults is smaller than the number of copies of the input. In this case the algorithm

does not need to allocate additional processors but rather recovers the input using the existing

replication. We do not analyze here the case of h ≥ c , where h − c + 1 additional processors are



required, and the recovery run-time depends on the faults distribution. Brie�y, in this case, if a

code processor faults, the recovery requires computations, whereas when an original processor

faults, the recovery uses the input replication, and is very fast.

For Strassen’s [25] and other fast matrix multiplication, Ballard et al. [5] described a communica-

tion optimal parallelization that matches the communication costs lower bound [6]. However, this

parallelization technique does not allow for a direct application of either methods introduced in

this paper.
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