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Abstract

General-purpose hard-error resiliency solutions such as
checkpoint-restart severely degrade performance. For
numerical linear algebra, more efficient solutions incur
lower overhead. Current solutions require a significant
increase in the number of processors. Further, they
are based on distributed algorithms that guarantee
good performance only when the matrices are large
enough to fill all the local memories. Otherwise, their
inter-processor communication costs are asymptotically
larger than the lower bounds dictate.

We obtain fault tolerant parallel matrix multiplica-
tion algorithms that reduce the resource overhead by
minimizing both the number of additional processors
and the communication costs. In particular, we reduce
the number of additional processors from Θ(

√
P ) to 1

(or from Θ(h
√
P ) to h, where h is the maximum number

of simultaneous faults), and we save a Θ(logP ) factor
of the latency costs. Further, for local memories larger
then the minimum required to store the input and out-
put, we obtain fault tolerant adaptations of the 2.5D
algorithm that significantly reduce the communication
costs, with very few additional processors.

1 Introduction

Errors are a serious concern in high performance com-
puting. Given the increase in machine size and de-
crease in operating voltage, hard errors (component
failure) and soft errors (bit flip) are likely to become
more frequent. Hardware trends predict two errors
per minute up to two per second on exascale ma-
chines [2, 24, 11]. Here we address resiliency for
hard errors. General-purpose hard-error resiliency so-
lutions such as checkpoint-restart [22], and diskless-
checkpoints [22] successfully meet this challenge but are
costly and severely degrade performance. Our meth-
ods enable efficient resource utilization and high perfor-
mance for error-resilient algorithms that are close to the
efficiency and performance of non-resilient algorithms.

For numerical linear algebra computations, certain
efficient solutions incur considerably lower overhead by
combining error correcting codes with matrix computa-

tions. These solutions are based on distributed 2D algo-
rithms, and can guarantee high performance only when
matrices fill all local memories. Otherwise, their inter-
processor communication costs become asymptotically
larger than the lower bounds, which degrades perfor-
mance. Moreover, current solutions require a significant
increase in the number of the processors.

Here we present new fault tolerant algorithms for
matrix multiplication that reduce the number of ad-
ditional processors and guarantee good inter proces-
sors communication costs. Specifically, for the 2D case,
we decrease the number of additional processors from
Θ(
√
P ) to 1 (or from Θ(h

√
P ) to h, where h is the max-

imum number of simultaneous faults), and we save a
logP factor of the latency cost. We attain the band-

width lower bound when f = O
(√

P
)

, where f is the

total number of faults. When local memories are larger
than the minimum needed to store inputs and outputs,
we reduce the communication costs using 2.5D tech-
nique, with no (or very few) additional processors, at-

taining the bandwidth lower bound for f = O
(√

P/c
)

.

The model: computation, communication, and
faults. Our computation model is a distributed ma-
chine with P processors, each having a local memory
of size M words. The processors communicate via mes-
sage passing. We assume that the cost of sending a
message is proportional to its length and does not de-
pend on the identity of the sender or receiver as in [19],
and in the context of fault tolerance [12, 13]. This as-
sumption can be alleviated with predictable impact on
communication cost, cf. [3]. The number of arithmetic
operations is denoted by F . The bandwidth cost of the
algorithm is given by the words count and is denoted
by BW . The latency cost is given by the message count
and is denoted by L. We count the number of words,
messages and arithmetic operations along the critical
path as defined in [30]. The total runtime is modeled by
γ·F+β·BW+α·L, where α, β, γ are machine-dependent
parameters.

We denote by h the maximum number of faults that



can occur simultaneously; i.e., the maximum number of
faults in one step or iteration of the algorithm, and by
f the total number of faults throughout the execution.
When comparing an algorithm to a fault tolerant adap-
tation, we use (P,M,F,BW,L) to denote the resources
used by the original algorithm and (P ′,M ′, F ′, BW ′, L′)
to denote the resources used by the fault tolerant adap-
tation. We express the latter as a function of the former,
of h, f , and the input size n. When a fault occurs, the
faulty processor loses all its data, and the machine al-
locates a new processor to replace the faulty one. For
simplicity, we assume no faults occur during recovery
phases. Note that faults during the recovery phase of
any of the algorithms we present may introduce at most
a constant factor overhead to the recovery phase, and
thus do not affect our analysis.

1.1 Previous work

Communication costs of (non-resilient) matrix
multiplication. Cannon [10], Van De Geijn and
Watts [27], and Fox et al. [15] proposed matrix multipli-
cation algorithms that minimize communication when
the memory is the minimum needed to store input

and output, namely M = Θ
(

n2

P

)
. The communica-

tion costs of these algorithms (also known as 2D al-

gorithms) are (BW,L) =
(
O
(

n2
√
P

)
, O
(√

P
))

. Agar-

wal et al. [1] put forward a 3D algorithm that uses
less communication when additional memory is avail-

able: For M = Θ
(

n2

p2/3

)
, they obtained (BW,L) =(

O
(

n2

P 3/2

)
, O (logP )

)
. McColl and Tiskin [20], and

Solomonik and Demmel [25] generalized these algo-
rithms to cover the entire relevant range of memory

size, namely Θ
(

3n2

P

)
≤ M ≤ Θ

(
n2

p2/3

)
. The commu-

nication costs of their 2.5D algorithm are (BW,L) =(
O
(

n3

P ·
√
M

)
, O
(

n3

P ·M3/2 + log c
))

where c is the mem-

ory redundant factor, namely c = Θ
(
P ·M
n2

)
. For

M > Θ
(

n2

P 2/3

)
, the communication costs are bounded

below by the memory independent lower bound of

Ω
(

n2

P 2/3

)
[4], therefore increasing c beyond 3

√
P can-

not help reduce communication costs. McColl and
Tiskin [20], Ballard et al. [5], and Demmel et al. [14]
used an alternative parallelization technique for recur-
sive algorithms, such as classical and fast matrix mul-
tiplication. The communication costs of the 2.5D algo-
rithm and the BFS-DFS scheme applied to classical ma-
trix multiplication are both optimal (up to an O (logP )
factor), since they attain both the lower bound in Irony,

Toledo and Tiskin [19], in the range Θ
(

n2

P

)
≤ M ≤

Θ
(

n2

P 2/3

)
, and the lower bound in Ballard et al. [4] for

larger M values.

Checkpoints-restart. One general approach to han-
dling faults is checkpoint-restart; all the data and states
of the processors are periodically saved to disk. Upon
a fault, the machine loads the most recent checkpoint.
This solution requires disks, which are expensive, for
storing the checkpoints and incurs many I/O operations,
which are time consuming.

Plank, Li, and Puening [22] suggested using a local
memory for checkpoints instead of disks. This solution
does not require additional hardware, and the writing
and reading of checkpoints are faster. Still, the periodic
write operations, as well as the restart operations sig-
nificantly slow down the algorithms. Furthermore, this
solution takes up some of the available memory from the
algorithm. For many algorithms, matrix multiplication
included, less memory implies a significant increase in
communication cost, hence a slowdown.

Algorithm-based fault tolerance. Huang and Abra-
ham [18] suggested algorithm-based fault tolerancy for
classic matrix multiplication. The main idea was to add
a row to A which is the sum of rows, and a column to B
which is the sum of columns. The product of the two re-
sulting matrices is the matrix A · B with an additional
row containing the sum of its rows and an additional
column containing the sum of its columns. They ad-
dresses soft errors, and showed that by using the sum
of rows and columns it is possible to locate and fix one
faulty element of C.

Huang and Abraham [18] used a technique that al-
lows recovery from a single fault throughout the entire
execution. Gunnels et al. [16] presented fault tolerant
matrix multiplication that can detect errors in the in-
put, and distinct between soft errors and round-off er-
rors. Chen and Dongarra showed that by using the tech-
nique of [18], combined with matrix multiplication as in
Cannon [10] and Fox [15] does not allow for fault recov-
ery in the middle of the run, but only at the end. This
severely restricts the number of faults an algorithm can
withstand. Chen and Dongarra [12, 13] adapted the
approach described by Huang and Abraham for hard
error resiliency, using the outer-product [28] multipli-
cation as a building block. Their algorithm keeps the
partially computed matrix C encoded correctly, in the
inner steps of the algorithm, not only at the end. By
so doing, they were able to recover from faults occur-
ring in the middle of a run without recomputing all the
lost data. In [13] they analyzed the overhead when at
most one fault occurs at any given time. In [12] they
suggested an elegant multiple faults recovery generaliza-



tion of this algorithm. For this purpose they introduced
a new class of useful erasure correcting codes. There al-
gorithm requires 2h·

√
P additional processors to be able

to deal with up to h simultaneous faults. Further, they
analyzed its numerical stability. Wu [29] et al. used
outer product for soft error resiliency.

Hakkarinen and Chen [17] presented a fault tolerant
algorithm for 2D Cholesky factorization. Bouteiller et
al. [9] expanded this approach and obtained hard error
fault tolerant 2D algorithms for matrix factorization
computations. Moldaschl et al. [21] extended the Huang
and Abraham scheme to the case of soft errors with
memory redundancy. They considered bit flips in
arbitrary segments of the mantissa and the exponent,
and showed how to tolerate such errors with small
overhead.

1.2 Our contribution. We introduce a new coding
technique as well as ways to apply it to both 2D and
2.5D matrix multiplication algorithms. By doing so we
obtain fault tolerant algorithms for matrix multiplica-
tion. Specifically in the 2D case we use only h addi-
tional processors, the minimum possible, and we use
even fewer processors for the 2.5D algorithm. The run-
time overhead is low, and the algorithms can utilize ad-
ditional memory for communication minimizing. These
algorithms can also handle multiple simultaneous faults.
We also obtain a new efficient way for pipelining broad-
cast and reduce operations.

1.3 Paper organization. In section 2 we provide
preliminaries including a new efficient pipelined reduce
operation. In Section 3 we focus on the minimum
memory case, with resiliency for a single fault (see
Table 1). In Section 4 we show how to extend this
approach to tolerate multiple faults (see Table 2). In
Section 5 we show how to combine our algorithms with
methods that utilize additional memory (see Table 3).
In Section 6 we compare the algorithms and discuss
some open questions.

2 Preliminaries

2.1 Pipeline reduce operations. We use broadcast
and reduce operations in our algorithms. Sanders and
Sibeyn [23] showed an efficient algorithm for performing
broadcast and reduce.

Lemma 2.1. ([23]) Let P be the number of processors,
and W the data size of each processor. It is possible to
compute a weighed sums of the data of the P processors,
using: (F,BW,L) = (O (W ) , O (W ) , O (logP ))

We introduce an efficient way to perform l reduce op-
eration in a row. The näıve implementation uses the

algorithm above l times and requires (F,BW,L) =
(O (l ·W ) , O (l ·W ) , O (l · logP )). We pipeline the re-
duce operations and save latency.

Lemma 2.2. (Efficient multiple weighed sum)
Let P + l be the number of processors, and W
the data size on P of them. It is possible to
compute l weighed sums of the data of the P pro-
cessors on the l other processors with resources:
(F,BW,L) = (O (l ·W ) , O (l ·W ) , O (logP + l))

Proof. We first describe an alternative algorithm for
a single weighted sum, then explain how it pipelines
efficiently. The algorithm for one weighted sum has two
phases. For ease of presentation, assume P is an integer
power of 2 (the generalization is straightforward). The
first phase reduces the weighed sum but the data
remains distributed. The second phase gathers the
data to the destination processor. The reduce works as
follows. It divides the processors into two sets. Each
set performs half of the task. The division involves
communicating half of the data. Each set recursively
calls the reduce. The base case is when each set
contains only one processor. Then each processor holds
1
P fraction of the results. Next we gather the data to
the additional processor. The reduction phase costs

F =
log 2P∑
i=0

W
2i = O (W ), BW =

log 2P∑
i=1

W
2i = O (W ), and

L = log2 P . The gathering costs BW =
∑log2 P

i=1
W
2i =

O (W ), and L = log2 P . Thus the total cost of the single
wighted sum algorithm is:
(F,BW,L) = (O (W ) , O (W ) , O (logP ))

This algorithm can be efficiently pipelined since the
messages size decreases exponentially. Let the names
of the processors be a binary string of length log2 P .
In the first phase the communication is between pairs
of processors that agree on all the digits aside from
the first digit. They communicate the first weighted
sum. In the second step the communication is be-
tween processors that agree on all digits aside from the
second and they send the second step of the first re-
duce the first step of the second reduce, and so on.
Each weighted sum takes at most O (logP ) steps and
then the data are sent to one of the l new proces-
sors. Therefore at any time at most O (logP ) weighted
sums are being computed. The memory required for
all the reduces that can occur in parallel is at most∑logP

i=1
W
2i ≤ 2W , and the memory required for all the

gathering is at most
∑logP

i=1
W
2i ≤ 2W . Therefore the

memory footprint of this algorithm is M ≤ 4W . In
summary, performing l reduce operations in a row with
this algorithm uses local memories of size 4W costs:
(F,BW,L) = (O (l ·W ) , O (l ·W ) , O (logP + l))



2.2 Linear erasure code We use linear erasure
code for recovering faults.

Definition 2.1. (n, k, d)-code is a linear transforma-
tion T : Rk → Rn with distance d, where distance d
means that for every x 6= y ∈ Rk, T (x), T (y) have at
least d coordinates with different values. The generator
matrix of T is an n×k matrix G such that T (x) = G ·x.

The erasures code we use preserve the original word
and add redundant letters. Formally we code a word
x of length k to a word y of length n using n − k
additional letters such that yk+i =

∑n
j=1Ei,j · xj for

some (n− k)×k matrix E. That is, the code generating

matrix is of the form G =

(
Ik

En−k,k

)
.

3 Minimum memory, single fault

In this section we discuss previous and new fault toler-
ant algorithms, for M = Θ

(
n2/P

)
.

3.1 Previous algorithms. Chen and Dongarra [12,
13] used the Huang and Abraham scheme [18] to tol-
erate hard errors. Specifically, they added one row of
processors that store the sum of the rows1 of A and sim-
ilarly for C , and one column of processors that store
the sum of the columns of B and similarly for C. They
called these rows and columns the check-sum; a matrix
that has both is called a fully check-sum matrix.

Chen and Dongarra showed that this approach, ap-
plied to 2D algorithms (e.g., Cannon [10] and Fox [15]),
allows for the recovery of C at the end of the matrix
multiplication. However these 2D algorithms do not
preserve the check-sum during the inner steps of the al-
gorithm. To deal with higher fault rate, that requires
recovery of faults during the run of the algorithm, Chen
and Dongarra used the outer product as the building
block of their algorithm. Thus their algorithm can re-
cover faults throughout the run of the algorithm at the
end of each outer product iteration. Lost data of A
and C of a faulty processor can be recovered at the end
of every outer product step, from the processors of the
same column from the processor in the check-sum row.
Similarly, the data from B and C can be recovered using
the check-sum column.

Theorem 3.1. ([12, 13]) Consider a 2D communica-
tion optimal matrix multiplication algorithm with re-
sources (P, F,BW,L). Let (P ′, F ′, BW ′, L′) be the re-
sources required for the fault tolerant 2D matrix multi-
plication algorithm of Chen and Dongarra that can with-

1From here on we write rows to refer to block rows, and
columns to refer to block columns.

stand a single fault at any given time. Let n be the ma-
trix dimension and let f be the total number of faults.
Then:

(P ′, F ′, BW ′, L′) = (P+2
√
P+1, F ·

(
1 +O

(
f
n

))
,

BW ·O
(

logP + f√
P

)
, L ·O (logP ) +O (f · logP )).

A proof can be found in [8].

Our algorithms. Since matrices A and B are not
modified by the algorithm, lost input data can be easily
handled using an erasure code of length P + 1. The
main challenge involves recovering C. To this end, we
introduce two alternatives: the first algorithm uses the
outer product and encoding of the blocks of C with
additional processors. This is similar to the approach
by Chen and Donagarra. However we use a new coding
scheme that decreases the additional processor count

from Θ
(√

P
)

to one. We denote this algorithm by

slice-coded algorithm. The second algorithm recovers
the lost data of C by recomputing at the end of the
run. We denote this the posterior-recovery algorithm.

Theorem 3.2. (Slice-coded) Consider a 2D com-
munication cost optimal matrix multiplication algorithm
with resources (P, F,BW,L). Then there exists a fault
tolerant 2D matrix multiplication algorithm that can
withstand a single fault at any given time, where n
is the matrix dimension and f is the total number of
faults, with resources: (P ′, F ′, BW ′, L′) = (P + 1, F ·(

1 +O
(

f
n

))
, BW ·O

(
1 + f√

P

)
, O (L · logP )).

Theorem 3.3. (Posterior-recovery) Consider
a 2D communication cost optimal matrix multiplica-
tion algorithm with resources (P, F,BW,L). Then
there exists a fault tolerant 2D matrix multiplica-
tion algorithm that can withstand a single fault at
any given time, where n is the matrix dimension
and f is the total number of faults, with resources

(P ′, F ′, BW ′, L′) = (P + 1, F ·
(

1 +O
(

1√
P

))
,

BW ·
(

1 +O
(

f√
P

))
, L+O (f · logP )).

3.2 Slice-coded algorithm. We follow the ap-
proach in [12, 13], and use the outer product matrix
multiplication as the basis for the algorithm. However,
where they used 2 ·

√
P + 1 additional processors, for

the coded data, we only use one. The additional pro-
cessor contains the sum of the others. This processor
acts similarly to the corner processor in Chen and Don-
garra’s algorithm (corresponding to the red processor
in Figure 1). It contains the sum of the blocks of A,B,
and C. In the s iteration of the algorithm, it multiplies



Table 1: Fault tolerant algorithms for 2D algorithms, namely M = θ
(

n2

P

)
with at most one simultaneous fault. n is

the matrix dimension, P is the number of processors, and f is the total number of faults occurring throughout the
run of the algorithm.

Algorithm
F ′

(flops per processor)
BW ′

(bandwidth per processor)
L′

(latency per processors)
Additional
processors

Cannon [10],
SUMMA [27]
(No fault)

F = 2n3

P BW = O
(

n2
√
P

)
L = O

(√
P
)

-

Previous algorithm
[12, 13]

F · (1 + o (f)) BW ·O (logP + o (f)) O (L · logP ) 2
√
P + 1

Slice-coded
[here, Theorems 3.2]

F · (1 + o (f)) BW ·O (1 + o (f)) O (L · logP ) 1

Posterior-recovery
[here, Theorems 3.3]

F · (1 + o (f)) BW · (1 + o (f)) L+O (f · logP ) 1

the sum of the current row with the sum of the cur-
rent column. Thus it keeps the sum of the blocks of C
updated. In each outer-product iteration the algorithm
computes the sum of the current outer product. We
show in Equation 3.1 that the sum of the blocks of C
can be computed by multiplying two sums of blocks.

(3.1)
n∑

i,j=1

(A (:, s) ·B (s, :))i,j =

n∑
i,j=1

Ai,s ·Bs,j

=

(
n∑

i=1

Ai,s

)
·

 n∑
j=1

Bs,j



Code

A (:, s)

C
o
d
eB (s, :) A (:, s) · B (s, :)

Figure 1: An iteration of Chen and Dongarra’s algo-
rithm. Each column of A and row of B contains a
check-sum processor.

Code

A (:, s)

C
o
d
eB (s, :) A (:, s) · B (s, :)

Figure 2: An iteration of our slice-coded algorithm. The
algorithm computes the green parts and sends them to
the additional processors (red).

Proof. [Proof of Theorem 3.2] The algorithm allocates
one additional processor for the code, thus P ′ = P + 1.
The algorithm is composed of three steps. In the
first step, code creation (CC) the algorithm creates
codes for A and B and stores them in the additional
processor. The second step is the matrix multiplication
(MM). Upon a fault, a recovery (Re) step is performed.
Therefore F ′ is composed of three components, namely,
F ′ = FCC + FMM + FRe. Similarly BW ′ = BWCC +
BWMM +BWRe, and L′ = LCC + LMM + LRe.

Code creation. In this step, the algorithm com-
putes the sum of the blocks of A and of B, and stores
them in the additional processor,using a reduce opera-
tion. By Lemma 2.1 this takes:
(3.2)

(FCC, BWCC, LCC) =

(
O

(
n2

P

)
, O

(
n2

P

)
, O (logP )

)
Matrix multiplication. The matrix multiplica-

tion phase is performed as in an outer-product algo-
rithm with a small change: every processor computes
its share of the code. To be more precise, in the sth

iteration (of
√
P iterations) the processors compute the

outer product A (:, s) · B (s, :). The processors of the
current block column of A and the processors of the
current block row of B broadcast them. The proces-
sors compute the sum of the current block column of A;
specifically each column of processors computes 1/

√
P

of this sum. Similarly, the processors compute the sum
of the current block row of B. The processors send
these two sums to the additional processor. Then each
processor multiplies the two blocks.

By Theorem 2.2 the broadcasting (B) takes

(FB, BWB, LB) =
(

0, O
(

n2

P

)
, O (logP )

)
. The re-

duce operation is distributed among the rows and the
columns, where each row and column of processors per-

forms a reduce operation with an n2

P 3/2 block size. There-



fore this reduce operation (R) takes:

(FR, BWR, LR) =

(
O

(
n2

P 3/2

)
, O

(
n2

P 3/2

)
, O (logP )

)
.

The multiplication of two blocks in time is 2n3

P 3/2 . There

are
√
P iterations; thus the multiplications takes:

(3.3)

(FMM, BWMM, LMM) = (
2n3

P
+O

(
n2

P 3/2
·
√
P

)
,

O

(
n2√
P

)
, O
(√

P logP
)

)

Recovery. Each recovery is a reduce operation.
By Lemma 2.1 f recoveries take:

(FRe, BWRe, LRe)(3.4)

=

(
f ·O

(
n2

P

)
, f ·O

(
n2

P

)
, f ·O (logP )

)
Total costs. Summing up Equations 3.2, 3.3, and

3.4 we have

F ′ = FCC + FMM + FRe

=
2n3

P
+O

(
n2

P
+
n2

P
+
f · n2

P

)
= F ·

(
1 +O

(
f

n

))
BW ′ = BWCC +BWMM +BWRe

= BW ·O
(

1 +
f√
P

)
L′ = LCC + LMM + LRe

= L · logP

3.3 Posterior-recovery. In this algorithm we re-
cover output by re-computation. That is, A and B in-
put matrices are coded, but C is not. A faulty processor
incurs the restoration of its share of A and B. But re-
computing its lost share of the workload is performed
at the end of the algorithm, using all processors. When
a fault occurs, the algorithm recovers the lost data of A
and B using their code, initializes the lost block of C to
zeros, and resumes computations.

Definition 3.1. We denote by a cube the set of scalar
multiplications defined by the two blocks (sub-matrices)
multiplication.

Proof. [Proof of Theorem 3.3] We assume that at each
iteration, at most one fault occurs. Therefore the
algorithm needs only one additional processor to encode
A and B, namely, P ′ = P + 1.

F ′ = FCC+FMM+FReIn+FReOut, where CC stands
for code creation, MM for the matrix multiplication,
ReIn for the recovery of the input A and B, and ReOut
for the recomputation. Similarly BW ′ = BWCC +
BWMM +BWReIn +BWReOut, and L′ = LCC +LMM +
LReIn + LReOut.

Code creation. The costs of this phase are as in
the Slice-coded algorithm see Section 3.2.

Matrix multiplication. The algorithm performs
2D matrix multiplication (e.g., Cannon’s [10]), thus

(3.5) (FMM, BWMM, LMM) = (F,BW,L) .

Input recovery. By Lemma 2.1 the costs of f
recoveries are:

(FReIn, BWReIn, LReIn) =(3.6)(
O

(
f · n

2

P

)
, O

(
f · n

2

P

)
, O (f · logP )

)
Output recovery. This stage involves communi-

cation, multiplication, and reducing the data. We as-
sume that the maximum number of faults in an iteration
is 1. Each processor computes

√
P cubes. Therefore

there are at most P cubes to compute again, as there
are
√
P iterations. The algorithm distributes the work-

load of the lost cubes. Each processor gets at most one
cube. Since computing a cube is multiplying two blocks

of size n2

P it takes FReOut = O
(

n3

P 3/2

)
flops. The com-

munication cost is due to moving two input blocks and

the reduce of C. Thus it takes BWReOut = O
(

n2

P

)
, and

LReOut = O (logP ). We have

(FReOut, BWReOut, LReOut) =(3.7) (
O

(
n3

P 3/2

)
, O

(
n2

P

)
, O (logP )

)
Total costs. Summing up Equations 3.2, 3.5, 3.6,

and 3.7 we have

F ′ = FCC + FMM + FReIn + FReOut

= F +O

(
n3

P 3/2

)
= F ·

(
1 +O

(
1√
P

))
BW ′ = BWCC +BWMM +BWReIn +BWReOut

= BW ·
(

1 +O

(
f√
P

))
L′ = LCC + LMM + LReIn + LReOut

= O (logP ) + L+O (f logP ) +O (logP )

= L+O (f logP )



Table 2: Fault Tolerant 2D algorithms, namely, M = Θ
(

n2

P

)
with at most h simultaneous faults. n is the matrix dimension,

P is the number of processors, and f is the total number of faults occurring throughout the run of the algorithm.

Algorithm
F ′

(flops per processor)
BW ′

(bandwidth per processor)
L′

(latency per processors)
Additional
processors

Cannon [10],
SUMMA [27]
(No fault)

F = 2n3

P BW = O
(

n2
√
P

)
L = O

(√
P
)

−

Previous algorithm
[12]

F ·
(

1 +O
(

h+f
n

))
BW ·O

(
1 + h+f√

P

)
O (L · logP + f · logP + h) 2h

√
P + h2

Slice-coded
[here, Theorem 4.2]

F ·
(

1 +O
(

h+f
n

))
BW ·O

(
1 + h+f√

P

)
O (L · logP + h+ f) h

Posterior-recovery
[here, Theorem 4.3]

F ·
(

1 +O
(

h
n + f

P

))
BW ·

(
1 +O

(
h+f√

P

))
L+O (f · logP + h) h

4 Multiple faults

In this section we extend our algorithms to a number of
simultaneous faults.

4.1 Previous algorithm.

Theorem 4.1. ([12]) Consider a 2D communication
cost optimal matrix multiplication algorithm with re-
sources (P, F,BW,L). Let n be the matrix dimension.
Then there exists a fault tolerant 2D matrix multiplica-
tion algorithm that can withstand h simultaneous faults
at any given time, and f total faults, with resources

(P, F,BW,L) = (P +2 ·h ·
√
P +h2, F ·

(
1 +O

(
h+f
n

))
,

BW ·O
(

logP + h+f√
P

)
, O
((
f +
√
P
)

logP + h
)

).
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Figure 3: Previous algorithm for dealing with h simul-
taneous faults[12].
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Figure 4: An iteration of the slice-coded algorithm.

The algorithm adds h rows of processors to A
and C and h columns of processors to B and C.

It stores weighted sums of the original processors
in the additional processors. Their algorithm uses(√

P ,
√
P + h, h+ 1

)
-code, with a generating matrix

G =

(
Ik

En−k,k

)
such that every minor of E is invert-

ible. It can therefore recover h simultaneous faults, even
if they occur in the same row or column of processors.
We provide a proof for Theorem 4.1 in [8].

4.2 Erasure correcting code. For multiple faults
we use erasure code ()recall the definition in Sec-
tion 2.2). To withstand h simultaneous faults we re-
quire a (P, P + h, h+ 1)-code. In other words, any P
letters suffice to recover the data. This is possible if
and only if every minor of size P of the generating ma-

trix G =

(
IP

Eh×P

)
is invertible. In other words, every

minor of E is invertible.
Similar to the single fault case, each code processor

multiplies a weighed sum of the current block column
of A with a weighed sum of the current block row of B,
and adds it to the accumulated sum. Thus the weighed
sum is of the form:(

n∑
i=1

ui ·Ai,k

)
·

 n∑
j=1

vj ·Bk,j

(4.8)

=

n∑
i,j=1

vi · uj ·Ai,k ·Bk,j

=

n∑
i,j=1

(wi,j ·A (:, k) ·B (k, :))i,j

where wi,j = vi · uj for some vectors v and u. The
code used in [12] does not have the above property, and
therefore cannot be used for our purpose. We show that
there exists a code with the required properties.



Lemma 4.1. There exists (P + h, P, h+ 1) code, such

that the generating matrix G =

(
I
E

)
has the follow-

ing property. For every row i of E there exists two

vectors vi, ui ∈ R
√
P such that Ei = vi ⊗ ui. Namely

Ei,a+(
√
P−1)b = via · uib.

Proof. Consider an erasure code with generating matrix(
I
E

)
, where I = IP , and E is an h × P Vandermonde

matrix. Every minor of the Vandermonde matrix is
invertible. The ith row of the Vandermonde matrix
is of the form ri =

(
α0
i , α

1
i , . . . , α

P−1
i

)
. By taking

vi =
(
α0
i , . . . , α

√
P−1

i

)
and ui =

(
α0
i , α

n
i , . . . , α

P−
√
P

i

)
,

we obtain that Ei,a+(
√
P−1)b is vi · uj = ri

a+(
√
P−1)b

.

4.3 Slice-coded.

Theorem 4.2. (Slice-coded algorithm) Consider
a 2D communication cost optimal matrix multi-
plication algorithm with resources (P, F,BW,L).
Let n be the matrix dimension. Then there exists
a fault tolerant 2D matrix multiplication algo-
rithm that can withstand h simultaneous faults at
any given time, and f total faults, with resources

(P ′, F ′, BW ′, L′) = (P + h, F ·
(

1 +O
(

h+f
n

))
,

BW ·O
(

1 + h+f√
P

)
, L · logP +O ((h+ f) · logP ))

Proof. We showed in Section 4.2 how to use h additional
processors to obtain a code with distance h + 1; thus
P ′ = P + h. The rest of the analysis is similar to the
single fault case in the proof of Theorem 3.2. We have
F ′ = FCC +FMM +FRe, and similarly for BW ′ and L′.

Code creation. The algorithm first creates an

erasure code for A and B. By Theorem 2.2 as W = n2

P
and l = h this takes:

(FCC, BWCC, LCC) =(4.9) (
O

(
h · n

2

P

)
, O

(
h · n

2

P

)
, O (logP + h)

)
Matrix multiplication. The multiplication in-

volves broadcasting and reduction of h weighted sums.
Each column of processors computes h√

P
weighted sums

of the blocks of A and each row of processors computes
h√
P

weighted sums of the blocks of B. The broadcasting

and reduction (BR) takes:

(FBR, BWBR, LBR) = (O

(
h√
P
· n

2

P

)
,

O

((
1 +

h√
P

)
· n

2

P

)
, O

(
logP +

h√
P

)
)

The multiplication of two blocks takes O
(

n3

p3/2

)
flops.

There are
√
P iterations. Therefore,

(FMM, BWMM, LMM) = (O

(
n3 + h · n2

P 2

)
,(4.10)

O

(
n2√
P

(
1 +

h√
P

))
, O
(√

P · logP + h
)

)

Recovery. When faults occur, the portion of A,B,
and C of the faulty processor are recovered at the end
of the iteration, using the erasure code. Assume that
at iteration i that the number of faults is fi. By
Theorem 2.2, as W = n2/P and l = fi > 0 the recovery
takes:

(FRei , BWRei , LRei) =(4.11) (
O

(
fi ·

n2

P

)
, O

(
fi ·

n2

P

)
, logP + fi

)

Recall that f =

√
P∑

i=1

fi. Therefore,

(FRe, BWRe, LRe) = (O

(
f · n

2

P

)
,(4.12)

O

(
f · n

2

P

)
, O
(

min
(
f,
√
P
)

logP + f
)

)

Total costs. Summing up Equations 4.9, 4.10,
and 4.12 we have,

F ′ = FCC + FMM + FRe

= F ·
(

1 +O

(
h+ f

n

))
BW ′ = O

(
h · n

2

P
+

n2√
P

(
1 +

d√
P

)
+ f · n

2

P

)
= BW ·O

(
1 +

h+ f√
P

)
L′ = O

(√
P · logP + h+ f

)
4.4 Posterior-recovery. This algorithm allocates h
processors for encoding A and B. It runs a 2D matrix
multiplication (e.g., Cannon [10] not just outer product
ones). When a processor faults, the algorithm recovers
A and B and proceeds. After the multiplication the
algorithm re-computes the lost portion of C.

Theorem 4.3. (Posterior-recovery) Consider
a 2D communication cost optimal matrix multi-
plication algorithm with resources (P, F,BW,L).
Let n be the matrix dimension. Then there exists
a fault tolerant 2D matrix multiplication algo-
rithm that can withstand h simultaneous faults at



any given time, and f total faults, with resources

(P ′, F ′, BW ′, L′) = (P + h, F +O
(
hn2

P + f n3

P 2

)
,

BW +O
(

(h+ f) · n
2

P

)
, L+O

(√
P · logP + f + h

)
The analysis of this algorithm is very similar to the

single fault case. We provide a proof for Theorem 4.3
in [8].

5 Memory redundancy

We next present the extension of our two algorithms to
the case where redundant memory is available, namely

M = Θ
(

cn2

P

)
for some 1 < c < 3

√
P .

Fault distribution. Recall that a 2.5D algorithm
splits the processors into c sets, where each set per-
forms 1

c of the iteration of 2D algorithm. When h is
the maximum number of simultaneous faults, each set
of processors has to be able to tolerate h simultaneous
faults. For ease of analysis we assume that the faults
are distributed uniformly among the c sets. If this is not
the case the algorithm can divide the computations dif-
ferently, and assign more computation to a set that has
fewer faults. This is possible since each set of processors
has sufficient data to perform all these computations.

5.1 Slice-coded.

Theorem 5.1. (Slice-coded) Consider a 2.5D
communication-cost optimal matrix multiplication algo-
rithm with resources (P, F,BW,L). Let n be the matrix
dimension and let M be the local memories size. Let c
be the memory redundancy factor, namely c = Θ

(
P ·M
n2

)
.

Then there exists a fault tolerant 2.5D matrix multiplica-
tion algorithm that can withstand h simultaneous faults
at any given time, and f total faults, with resources:

(P ′, F ′, BW ′, L′) = (P + c · h, F +O
(

h+f
c ·M

)
,

O
(
BW + h+f

c ·M
)
, O
(
L · logP + h+f

c

)
).

The proof of Theorem 5.1 is similar to the proof of
Theorem 4.2 and is provided in [8]. Roughly speaking
the fault tolerant 2.5D algorithm splits the processor
into c sets (c = Θ

(
P ·M
n2

)
). Each set allocates h

processors for code, and then creates code for A and
B. The matrix multiplication is divided equally among
the sets, and each set performs 1

c iteration of the outer
product. During the run, the weighed sums in the
code processors are kept updated. When faults occur
in processors ith set (i ∈ [c]), all processors in the ith

set (and only them) participate in the recovery phase.

5.2 Posterior-recovery. The 2.5D adaptation of
the posterior-recovery algorithm is similar to the 2D
case, with one main exception: there is an inherent re-

dundancy in the replications of A and B in the 2.5D
algorithm that we utilize to decreases the length of the
code, hence reduces the number of additional proces-
sors required. If h < c, the algorithm does not require
additional processors at all.

The algorithm splits the processors into c sets where
c = Θ

(
P ·M
n2

)
. Each set performs 1

c of the iterations
of a 2D algorithm (not necessarily the outer product
algorithm). When a fault occurs, the processors in the
set of the faulty processor wait for the recovery of that
processor. The lost data of A and B are recovered from
the next set of processors.

Theorem 5.2. (posterior-recovery) Consider a
2.5D algorithm with resources (P, F,BW,L). Let
n be the matrix dimension and let M be the local
memories size. Let c be the memory redundant
factor, namely c = Θ

(
P ·M
n2

)
. Then there exists

a fault tolerant 2.5D matrix multiplication algo-
rithm that can withstand h simultaneous faults at
any given time, and f total faults, with resources:

(P ′, F ′, BW ′, L′) = (P, F ·
(

1 +O
(

f
P

))
, O (BW ) ,

O (L · log c+ logP )).

Proof. As explained above P ′ = P . The algorithm
does not create code, and similar to the 2D case it
recovers the input immediately and re-computes the lost
output data after the multiplication ends. Therefore
F ′ = FMM+FReIn+Fre out . Likewise BW ′ = BWMM+
BWReIn +BWre out , and L′ = LMM + LReIn + Lre out .

Matrix multiplication. The algorithm performs
a 2.5D matrix multiplication therefore,

(5.13) (FMM, BWMM, LMM) = (F,BW,L)

Input recovery. The algorithm recovers faults at
the end of each iteration. Since c > h there is at
least one copy of each block even when h processors
fault simultaneously. If k processors that hold the same
block of A (or B) fault simultaneously, the algorithm
broadcasts this block. Therefore in the worst case, this
recovery requires O (log k) messages. Recall that in the
ith iteration fi < c processors fault. By Lemma 2.1 it
costs:

(FReIni
, BWReIni

, LReIni
) = (O (M) , O (M) , O (log c))

thus the total recovery costs are:

(FReIn, BWReIn, LReIn) = (O
(√

P/c3 ·M
)
,(5.14)

O
(√

P/c3 ·M
)
, O
(√

p/c3 · log c
)

)

=

(
O

(
n3

P ·
√
M

)
, O (BW ) , O (L · log c)

)



Table 3: Fault tolerant 2.5D algorithms, c copies of the input and the output fit into the memory; namely c = Θ
(
M ·P
n2

)
,

where n is the matrix dimension, and P is the number of processors. f is the total number of faults occurring
throughout the run of the algorithm. h is the maximum number of simultaneous faults.

Algorithm
F ′

(flops per processor)
BW ′

(bandwidth per processor)
L′

(latency per processors)
Additional
processors

2.5D
[20, 25]

F = 2n3

P BW = O
(

n3

P ·
√
M

)
L = O

(
n3

P ·M3/2

)
+ log c −

Previous algorithm∗

[12]
F +O

(
f ·n2

P

)
O
(
BW ·

√
c+ (h+f)·n2

P

)
O
(
L · c3/2 · logP + h

)
2h
√
P + h2

Slice-coded
[here, Theorem 5.1]

F +O
(

h+f
c ·M

)
O
(
BW + h+f

c ·M
)

O
(
L · logP + h+f

c

)
c · h

Posterior-recovery†

[here, Theorem 5.2]
F +O

(
f ·n3

P 2

)
O (BW ) O (L · log c+ logP ) 0

* This algorithm does not utilize additional memory; hence its communication costs are larger. We do not include the
algorithm suggested in Moldashcl et al. [21] as they handle soft errors only.

† We analyze this algorithm only when h < c.

Output recovery. After the 2.5D matrix multi-
plication is completed, the algorithm computes the lost
cubes (recall Definition 3.1). When a processor faults

it loses O
(√

P/c3
)

such cubes. Each processor gets

O

(
f ·
√

P/c3

P

)
= O

(
f√
P ·c3

)
such cubes for recomput-

ing, and multiplies pairs of them. The block size is
n√
P/c
× n√

P/c
; therefore multiplying two blocks costs(

n√
P

)3
flops. Thus the costs are:

FReOut = O

(
f√
P · c3

· c
3/2 · n3

P 3/2

)
(5.15)

= O

(
f · n3

P 2

)
BWReOut = O

(
f√
P · c3

·M
)

LReOut = O

(
f√
P · c3

+ logP

)
We add logP to the latency because the output recovery
may include the broadcast operation of the blocks and
the reduce operation of the results.

Total costs. Summing up Equations 5.13, 5.14,
and 5.15:

F ′ = FMM + FReIn + FReOut

= F +
n3

P ·
√
M

+
f · n3

P 2

= F ·
(

1 +O

(
f

P

))
BW ′ = BWMM +BWReIn +BWReOut

= O (BW )

L′ = LMM + LReIn + LReOut

= O (L · log c+ logP )

6 Discussion

In this paper we presented two methods for obtaining
fault tolerance at lower costs: the slice-coded algorithm
and the posterior-recovery algorithm. Both can han-
dle multiple simultaneous faults. When the memory is
minimal both algorithms use as few processors as pos-
sible; namely h, where h is the maximum number of
faults that may occur in one iteration. We showed how
to combine these methods with a 2.5D algorithm that
utilizes redundant memory, to reduce the communica-
tion costs. When the number of fault is not too large
our algorithms only marginally increase the number of
arithmetic operations and the bandwidth costs. The
slice-coded algorithm increases the latency by a factor
of logP . If faults occur in every iteration of the poste-
rior recovery algorithm, its latency increases by a factor
of logP as well.

The slice-coded algorithm uses the outer-product
in each iteration and keeps the code processors up-
dated. The outer product uses up to a constant factor
more words, and up to O (logP ) factor more messages.
Therefore, the slice-coded algorithm communicates a lit-
tle more, but it can recover faults quickly at each itera-
tion. In contrast, the posterior recovery communicates
less in this phase, but performs more operations to re-
cover faults. Therefore the slice-coded algorithm is more
efficient when many faults occur, and useful when quick
recovery is needed. For fewer faults, the posterior re-
covery is more efficient.

The posterior recovery with redundant memory
uses the input replication of the 2.5D algorithm. It
utilize the redundant memory to reduce communication



costs and to reduce the number of required additional
processors. We analyzed the case of h < c, where
the maximum number of simultaneous faults is smaller
than the number of copies of the input. In this case
the algorithm does not need to allocate additional
processors but rather recovers the input using the
existing replication. We do not analyze here the case
of h ≥ c, where h − c + 1 additional processors are
required, and the recovery run-time depends on the
faults distribution. Briefly, in this case, if a code
processor faults, the recovery requires computations,
whereas when an original processor faults, the recovery
uses the input replication, and is very fast.

For Strassen’s [26] and other fast matrix multipli-
cation, Ballard et al. [5] described a communication
optimal parallelization that matches the communica-
tion costs lower bound [6]. However, this paralleliza-
tion technique does not allow for a direct application of
either methods introduced in this paper. Recently, we
designed a new method that enables fault tolerancy fast
matrix multiplication algorithms at low overhead [7].
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