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ABSTRACT
Network topologies can have significant effect on the ex-
ecution costs of parallel algorithms due to inter-processor
communication. For particular combinations of computa-
tions and network topologies, costly network contention may
inevitably become a bottleneck, even if algorithms are opti-
mally designed so that each processor communicates as little
as possible. We obtain novel contention lower bounds that
are functions of the network and the computation graph pa-
rameters. For several combinations of fundamental compu-
tations and common network topologies, our new analysis
improves upon previous per-processor lower bounds which
only specify the number of words communicated by the busi-
est individual processor. We consider torus and mesh topolo-
gies, universal fat-trees, and hypercubes; algorithms covered
include classical matrix multiplication and direct numerical
linear algebra, fast matrix multiplication algorithms, pro-
grams that reference arrays, N -body computations, and the
FFT. For example, we show that fast matrix multiplication
algorithms (e.g., Strassen’s) running on a 3D torus will suffer
from contention bottlenecks. On the other hand, this net-
work is likely sufficient for a classical matrix multiplication
algorithm. Our new lower bounds are matched by existing
algorithms only in very few cases, leaving many open prob-
lems for network and algorithmic design.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on matrices
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1. INTRODUCTION
Good connectivity of the inter-processor network is nec-

essary for fast execution of parallel algorithms. Insufficient
connectivity provably slows down specific parallel algorithms
that are communication intensive. Parallel algorithms that
ignore network topology can suffer from congestion along
network links, and for particular combinations of compu-
tations and network topologies, costly network contention
may be inevitable even for optimally designed algorithms.
In this paper we obtain novel lower bounds on such con-
tention costs, and point out cases where this cost is a per-
formance bottleneck for certain, ubiquitous algorithms and
network topologies.

In our model a 〈P,M,GNet〉-machine has P identical pro-
cessors, each with local memory of size M , connected with
interprocessor network GNet.

1 The network GNet may have
P vertices where each vertex is both a processor and a router
(direct networks like tori and hypercubes) or may have more
than P vertices, where some vertices represent routers (in-
direct networks like fat-trees).

Edges of GNet are network links with weights correspond-
ing to bandwidth. All weights are typically the same in a
torus or hypercube, but not in a fat-tree. We ignore proces-
sor injection rates in this model, assuming processors can
communicate data as fast as their network links allow.

Most previous communication cost lower bounds for par-
allel algorithms utilize per-processor analysis. That is, the
lower bounds establish that some processor must communi-
cate a given amount of data. These include classical ma-
trix multiply, direct and iterative linear algebra algorithms,

1This model is a variant of the distributed-memory commu-
nication model (cf, [7, 14, 17]), where all-to-all connectiv-
ity is assumed, and the bandwidth-cost of an algorithm is
proportional to the number of words communicated by the
worst processor.
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FFT, Strassen and Strassen-like fast algorithms, graph re-
lated algorithms, N -body, sorting, programs that reference
arrays and others (cf. [1, 4, 5, 7, 13, 19, 24, 26, 29, 32, 40]).

We demonstrate the usefulness of our novel analysis by
applying it to a spectrum of algorithm and network com-
binations, including many of the algorithms above, with
networks such as meshes and tori of any dimension, uni-
versal fat-trees, and hypercubes. We note that nine out of
the twenty fastest supercomputers in the world have either
torus or fat-tree network topologies (as of June 2016) [36].
By considering the network graphs, we introduce communi-
cation lower bounds for certain computations and networks
that are tighter than what was previously known. We also
show that often, but not always, the worst contention is ex-
pected across the network bisection, supporting a trend that
appears in various network designs for decades, namely the
importance of considering a network’s bisection.

By analyzing the network graphs, we introduce communi-
cation lower bounds for certain computations and networks
that are tighter than what was previously known. In this
work, we bound from below the number of words commu-
nicated between a subset of processors and the rest of the
processors for a given parallel algorithm (defined by a com-
putation graph and work assignment to the processors), and
divide it by the number of links connecting that subset to
the rest of the graph. This relates to the contention cost of
the algorithm, which we specify in Definition 2.2.

Applying the main theorem, we improve (i.e., increase)
communication cost lower bounds for several combinations
of fundamental computations on common network topolo-
gies. Note that we inherit any assumptions made in the
original per-processor lower bounds, e.g., assuming no re-
computation. Our new lower bounds are matched by exist-
ing algorithms only in very few cases, leaving many open
problems for network and algorithmic design such as effi-
cient scheduling of heavily utilized computation kernels on
(a subset of) a supercomputer.

2. CONTENTION LOWER BOUNDS
In this section we state our main result, which trans-

lates per-processor communication cost lower bounds to con-
tention cost lower bounds. The following definitions differ-
entiate these costs.

Definition 2.1. Let a parallel algorithm be run on a dist-
ributed-memory machine with P processors. The per-processor
bandwidth cost Wproc is the maximum over processors 1 ≤
p ≤ P of the number of words sent/received by processor p.

For ease of notation in the above definition (and the next
one) the algorithm in question is omitted, and understood
from context. Observe that for many algorithms, there exist
two types of per-processor lower bounds: memory-independent
Wproc(P,N) (cf. [5]) and memory-dependentWproc(P,M,N)
(cf. [6, 7, 8, 19, 29]) where N is the input and output size.

Definition 2.2. Consider a 〈P,M,GNet〉-machine run-
ning an algorithm. The contention cost Wlink is the maxi-
mum over edges e ∈ E(GNet) of the number of words com-
municated along e during the execution of the algorithm.

Recall that the small set expansion hs(G) of a D-regular
graph G = (V,E) is the minimum ratio of edges leaving a

set of vertices of size at most s [27]. Formally, for s ≤ |V |/2,
we have

hs(G) = min
S⊆V,|S|≤s

|E(S, V \ S)|
|E(S, V \ S)|+ |E(S, S)|

where E(S, S) is the set of edges that have both endpoints
in vertex subset S and E(S, V \ S) is the set of edges with
one endpoint in S and one endpoint in V \ S.

We present contention lower bounds for two cases: one
where GNet admits an equi-partition such that each part in-
duces a minimal cut, and another where each processor com-
municates at least Wproc(P,M,N) and Wproc(P,N) words.

Theorem 2.3 (main theorem). Consider some com-
putation with combined input and output data size of N and
per-processor communication lower bounds Wproc(P,M,N)
and Wproc(P,N) being performed by a 〈P,M,GNet〉-machine.
Consider the following conditions:

1. Every p ∈ P performs a fraction of Ω(1/P ) of the flops.

2. Every p ∈ P stores O(N/P ) of the input and output.

3. For any t that divides |V |, GNet admits an equi-partition
Π of V such that |Π| = P

t
and ∀A ∈ Π, |E(A, V \A)| =

minS∈V
|S|=t

|E(S, V \ S)|.

If at least two of the above conditions are met, then for any

1 ≤ t ≤ |V |
2

that maintains |V |
t
∈ N, the contention cost is

bounded below by:

Wlink(P,M,N) ≥ max
S⊂V
|S|=t

Wproc(P/t,M ·t,N)

|E (S, V \ S) |

and

Wlink(P,N) ≥ max
S⊂V
|S|=t

Wproc(P/t,N)

|E (S, V \ S) | .

Figure 1: Computation of t = 4 processors on a
16-processor machine can be emulated as the com-
putation of one processor on a 4-processor machine.

Proof. Given some graph G and a partition Π of V (G),
define GΠ to be the result of contracting each part of Π into
a single vertex. The proof idea is as follows: given some
〈P,M,GNet〉-machine, identify a partition Π such that at
least one vertex u ∈ V (GNet) is connected to the rest of
the graph by minS⊂P

|S|=t
(|E(S, V \ S)|) vertices. Then, em-

ulate the computation of the 〈P,M,GNet〉-machine using
such a 〈P/t,M ·t, GΠ〉-machine (see Figure 1), and iden-
tify some meta-processor p′ of the emulating machine so
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its corresponding processors perform at least Ω (t/P ) of the
flops and store a fraction O(t/P ) of the input and output.
By definition of the per-processor communication bounds,
the number of words communicated by p′ is bounded be-
low by Wproc(P/t,M ·t,N) and Wproc(P/t,N). Therefore,
if the meta-processor p′ corresponds to the processor u, the
contention lower bounds are obtained by dividing the total
words communicated by the minS⊂P

|S|=t
(|E(S, V \ S)|) edges

connecting p′ to the rest of the graph.
Recall the three conditions: asymptotic load balance of

input and output storage, asymptotic load balance of flops,
and the existence of a sparse equi-partition of the network
graph. If two of the above are maintained for every meta-
processor participating in the computation, then there ex-
ists a meta-processor that also maintains the third con-
dition. Therefore, the contention bound will apply to a
〈P/t,M ·t, GΠ〉-machine that emulates the computation.

(i) Suppose 1 and 2 hold. Let S ⊂ V be a subset with
|S| = t and |E(S, V \ S)| = minA⊂V

|A|=t
|(E(A, V \A)|.

By assumption, S performs a fraction Ω (t/P ) of the
flops and stores O (N/P ) of the input and output. Let
Π be a partition of GNet into subsets of size t such that
S ∈ Π. Then, it is possible to emulate the computa-
tion using a 〈P

t
,M ·t, GΠ〉-machine. Let u ∈ V (GΠ) be

the vertex corresponding to S. Then u has a total of
M ·t local memory, performs a ratio of Ω(t/P ) of the
computation and has local access to a ratio of O(t/P )
of the input and output. Therefore, u must commu-
nicate a total of Wproc (P/t,M ·t,N) words. Since u
is connected to the rest of Gt by exactly |E(S, V \ S)|
edges, at least one edge must communicate at least
Wproc(P/t,M·t,N)

|E(S,V \S)| words.

(ii) Suppose 2 and 3 hold. Then, there exists a partition
Π such that each part of Π is connected to the rest
of the graph by exactly minS∈V

|S|=t
|E(S, V \ S)| edges.

Emulate the computation by a 〈P
t
,M ·t, GΠ〉-machine.

Since 2 holds, every vertex in GΠ has stores a fraction
O(t/P ) of the input and output data. Additionally,
∃v ∈ V (GΠ) such that the processors corresponding
to v perform at least a ratio of Ω(t/P ) of the com-
putation. Therefore v must perform communication
of Wproc(P/t,M ·t,N) words with the other proces-
sors, and at least one edge must communicate at least
Wproc(P/t,M·t,N)

|E(S,V \S)| words.

(iii) Suppose 1 and 3 hold. The proof is analogous to that
of (ii); an averaging argument implies the existence of
some subset S of size t that stores at most O(N/P )
of the input and output, and therefore the contention
bound applies to some 〈P

t
,M ·t, GΠ〉-machine.

The proof for the memory-independent boundWlink(P,N)
is analogous.

We thus obtain a tool for combining per-processor com-
munication lower bounds and network topologies into a con-
tention lower bound.

Corollary 2.4. If in addition to the conditions of The-
orem 2.3 GNet is also D-regular, then the contention cost is

bounded below by:

Wlink(P,M,N) ≥ max
t∈T

Wproc(P/t,M ·t,N)

D · t · ht(GNet)

and

Wlink(P,N) ≥ max
t∈T

Wproc(P/t,N)

D · t · ht(GNet)
,

where

T = {t | 1 ≤ t ≤ P/2, ∃S ⊆ V such that |S| = t and

ht(G) =
|E(S, V \ S)|

|E(S, S)|+ |E(S, V \ S)| }

Proof. Recall that forD-regular graphs, D|S| = 2|E(S, S)|+
|E(S, V \ S)| for any S ⊂ V with |S| ≤ |V |

2
. Therefore,

a subset S ⊂ V minimizes |E(S, V \ S)| if and only if it

minimizes |E(S,V \S)|
|E(S,S)|+|E(S,V \S)| . Therefore, T is the set of

processor-subset sizes for which sparse equi-partitions (as
needed by Theorem 2.3) exist in G.

3. PRELIMINARIES

3.1 Per-Processor Lower Bounds
Before deriving the lower bounds on link contention, we

review the per-processor communication bounds for several
classes of algorithms.

Classical Linear Algebra.
Most classical direct linear algebra computations can be

specified by three nested loops, and for dense n×n matrices,
the number of flops performed is Θ(n3).2 Informally, such
computations, which include matrix multiplication, Cholesky
and LU decompositions, and many others, can be defined by

Cij = fij({gijk(Aik, Bkj)}1≤k≤n) for 1 ≤ i, j ≤ n (1)

where f and g are sets of functions particular to the compu-
tation. For example, in the case of classical matrix multipli-
cation, fij is a summation and gijk is a scalar multiplication
for all i, j, k. For a more formal definition, see [3, Definition
4.1]. In such a case, we have the following lower bound:

Theorem 3.1 ([7],[29]). Consider an algorithm perform-
ing a computation of the form given by equation (1) on P
processors, each with local memory of size M , and assume
one copy of the input data is initially distributed across pro-
cessors and the computation is load balanced. Then the num-
ber of words some processor must communicate is at least

Wproc(P,M,N) = Ω

(
n3

PM1/2

)
= Ω

(
N3/2

PM1/2

)
.

Note that the local memory size M appears in the denom-
inator of the expression above, which is why we refer to it
as the memory-dependent bound. Additionally, such com-
putations also inherit a memory-independent lower bound:

Theorem 3.2 ([5]). Consider an algorithm performing
a computation of the form given by equation (1) on P pro-
cessors, and assume just one copy of the input data is ini-
tially distributed across processors and the computation is

2For matrix computations, we denote the size of the in-
put/output to be N = Θ(n2).
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load balanced. Then the number of words some processor
must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/3

)
= Ω

(
N

P 2/3

)
.

Strassen-like Fast Matrix Multiplication.
Similar lower bounds exist for Strassen’s matrix multipli-

cation and similar algorithms, though the proof techniques
differ substantially. Informally, we use the term “Strassen-
like” to refer to algorithms that recursively multiply matri-
ces according to a base-case computation. For square algo-
rithms, this corresponds to multiplying n0×n0 matrices with
m0 scalar multiplications, where n0 and m0 are constants.
Using recursion, this results in a square matrix multiplica-
tion flop count of Θ(nω0) where ω0 = logn0

m0. Note that
additional technical assumptions are required for the com-
munication lower bounds to apply and that Strassen-like
algorithms may have a rectangular base case; see [8, Section
5.1] for more details. The memory-dependent communica-
tion lower bound for Strassen-like algorithms is:

Theorem 3.3 ([8, Corollary 1.5]). Consider a
Strassen-like matrix multiplication algorithm that requires
Θ(nω0) total flops. Suppose a parallel algorithm performs
the computation using P processors (each with local mem-
ory of size M) load balances the flops. Then the number of
words some processor must communicate is at least

Wproc(P,M,N) = Ω

(
nω0

PMω0/2−1

)
= Ω

(
Nω0/2

PMω0/2−1

)
.

Additionally, such computations also inherit a memory-
independent lower bound:

Theorem 3.4. Suppose a parallel algorithm performs a
Strassen-like matrix multiplication algorithm requiring Θ(nω0)
flops load balances the computation across P processors. Then
under some technical assumptions (see [8]) the number of
words some processor must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/ω0

)
= Ω

(
N

P 2/ω0

)
.

The proof is identical to [5, Theorem 2.1], with ω0 replac-
ing log2 7.

Recently, the per-processor communication lower bounds
have been shown also for Strassen’s matrix multiplication
even if recomputation is used [11]. In the more general case
of Strassen-like algorithms, the previously-known bounds
have been extended for any algorithm that does not recom-
pute nontrivial linear combinations [39].

Programs Referencing Arrays.
The model defined in Equation (1) encompasses most di-

rect linear algebra computations, but lower bounds can be
obtained for a considerably more general set of computa-
tions. In particular, Christ et al. [19] consider programs of
the following form:

for all I ∈ Z ⊆ Zd, in some order,

inner loop(I, (A1, . . . , Am), (φ1, . . . , φm))
(2)

where Zd is the d-dimensional space of integers and inner loop()
represents a computation involving arrays A1, ..., Am of di-
mensions d1, ..., dm that are referenced by the correspond-
ing subscripts φ1(I), ..., φm(I) where φi are affine maps φj :

Zd → Zdj for iteration I = (i1, ..., id). For example, matrix-
matrix multiplication has (A1, A2, A3) = (A,B,C), φ1(I) =
φ1(i1, i2, i3) = (i1, i3), φ2(I) = φ2(i1, i2, i3) = (i3, i2), φ3(I) =
φ3(i1, i2, i3) = (i1, i2) and the function inner loop() is de-
fined as A3(φ3(I)) = A3(φ3(I)) +A1(φ1(I)) ∗A2(φ2(I)).

Because the work inside the loop is currently defined as
a general function, the space of potential executions of in-
ner loop() must be restricted in a manageable manner, or
to “legal parallel executions” as defined in [19]. To express
the lower bounds, we define a set of linear constraints on a
vector of unknown scalars (s1, ..., sm)

rank(H) ≤
m∑
j=1

sjrank(φj(H)), (3)

for all subgroups H of Zd, where rank(H) is the cardinality
of any maximal subset of Abelian group H that is linearly
independent.3 For such computations we have the following
lower bound:

Theorem 3.5 ([19]). Consider an algorithm perform-
ing a computation of the form given by (2) on P processors,
each with local memory of size M , and assume the input
data is initially evenly distributed across processors. Then
for any legal parallel execution and sufficiently large |Z|/P ,
the number of words some processor must communicate is at
least

Wproc(P,M,N) = Ω

(
|Z|

PMsHBL−1

)
,

where sHBL is the minimum value of
∑m
i=1 si subject to In-

equality (3), assuming that this linear program is feasible
(see [19]).

We restate the memory-independent bound from [19] for
such computations (note that the formal proof has not yet
appeared). For legal parallel executions of computations of
the form (2) on P processors, some processor must move

Wproc(P,N) = Ω

((
|Z|
P

)1/sHBL
)

(4)

words where sHBL is defined as in Theorem 3.5.
Note that Theorem 3.5 generalizes Theorem 3.1. For ex-

ample, matrix multiplication satisfies both forms (1) and
(2), where in the latter case |Z| = n3 and sHBL = 3/2.

Theorem 3.5 also applies to, for example, N -body com-
putations where all pairs of interactions are computed [22].
In the this case, |Z| = Θ(N2) and sHBL = 2, yielding lower
bounds ofWproc(P,M,N) = Ω(N2/(PM)) andWproc(P,N) =

Ω(N/P 1/2). We also note that Theorem 3.5 applies to N -
body computations that use a distance cutoff to reduce the
number of neighbor interactions, i.e. |Z| � N2.

FFT/Sorting.
We next discuss per-processor communication cost bounds

for the FFT and comparison sorts.
A sequential communication cost lower bound of Ω(n logn/ logM)

was given by Hong and Kung [26]. A parallel memory-
independent per-processor bound has been proven for the
LPRAM model [1] and the BSP model [13].

3The rank of an Abelian group is analogous to the concept
of the dimension of a vector space.
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Theorem 3.6 ([1, 13]). The per-processor communica-
tion cost of FFT algorithm on input of size N , run on a
〈P,M,GNet〉-machine with no recomputation is bounded be-
low by

Wproc(P,N) = Ω

(
N logN

P log(N/P )

)
.

We are unaware of a previous memory-dependent per-
processor bound for FFT, although this is a straightforward
extension of the existing sequential lower bounds in [26] or
the one in [37] for memory hierarchy model. We provide it
here for completeness.

Theorem 3.7. The per-processor communication cost of
FFT algorithm on input of size N , run on a 〈P,M,GNet〉-
machine with no recomputation is

Wproc(P,M,N) = Ω

(
N logN

P logM
−M

)
.

Proof. The bound follows from the same logic as the
partitioning argument in Hong-Kung [26], applied to one of
the processors that performs Θ((N logN)/P ) of the com-
putations. Since (as in [26]) each M -partition may have no
more than M logM vertices, the number of M -partitions is
at least N logN/(PM logM). Thus, the total per-processor
bandwidth is Ω(Mb((N logN)/(PM logM)c), and the the-
orem follows.

Note that this memory dependent bound is dominated by
the memory independent one, since we assume MP ≥ N .

3.2 Torus, Mesh and Hypercube Networks

3.2.1 Torus Networks

Definition 3.8. A D-torus graph G = 〈V,E〉 is the Carte-
sian product of D cycle graphs C1, . . . , CD. That is, V =
Z|C1|× . . .×Z|CD| and (u, v) ∈ E if and only if u, v disagree
on a single index i and |ui − vi| = 1 mod Ci. A D-torus is
said to be of the form [n]D if C1 = . . . = CD = Cn.

Torus networks are common topologies among current su-
percomputers (six of the current top twenty [36], for exam-
ple). Cray’s XK7 [20] and IBM’s Blue Gene/P [28] machines
utilize 3D tori, Blue Gene/Q a 5-dimensional torus [18], and
the K computer in Japan has a 6-dimensional network topol-
ogy [2]. Intel Xeon Phi coprocessors rely on a ring-based
(a 1-dimensional torus) on-chip communication network be-
tween cores [30]. In this section, we derive a tight bound on
the network small set expansion for this class of networks.

From [15], if G is a torus graph of the form [n]D then for
any S ⊂ V with |S| = t ≤ |V |/2 we have the tight inequality:

E(S, V \ S) ≥ min
r∈[D]

{2rt1−1/rn(D/r)−1}

Lemma 3.9. For a torus graph G of the form [n]D and

any t ∈ {1, . . . , n
D

2
}, the small set expansion is

ht(G) =


2

t
1
D +1

t ≤
(
n
e

)D
2 ln nD

t
Dn
e

+ln nD

t

t >
(
n
e

)D
Proof. As a D-dimensional torus is 2D regular, any sub-

set S also maintains 2D|S| = 2|E(S, S)|+|E(S, V \S)|. From
this follows that minimizing |E(S′, V \ S′)| is equivalent to

minimizing |E(S′,V \S′)|
|E(S′,V \S′)|+|E(S′,S′)| .

Given some t that divides nD, we next describe an equi-
partition Πt of G such that every part A ∈ Πt maintains
|E(A, V \A)| = minr∈[D]{2r|A|1−1/rn(D/r)−1}.

Equi-Partitions of Torus Networks.
The construction of an expanding equi-partition Π for

tori is straightforward. Consider t that divides |V |. Par-

tition G into sub-tori of the form [n]D−r × [a]r where a =
t1/r

nD/r−1 and r ∈ [D]. Intuitively, r denotes the dimensions
of G that are not wholly contained by the sub-torus, and
these partially-filled dimensions are r-dimensional cubes on
t

nD−r
vertices.

If t ≤
(
n
e

)D
then the minimum cut is attained by the sub-

torus with r = D, and as t divides nD, t1/D divides n.

Therefore, |E(S,V \S)|
|E(S,S)|+|E(S,V \S)| = 2

t
1
D +1

for any S ∈ Π. Oth-

erwise, the minimum cut is attained by a sub-torus with

r = ln
(
nD

t

)
and a = n

e
. In this case, every part S of Π

maintains |E(S,V \S)|
|E(S,S)|+|E(S,V \S)| =

2 ln

(
nD

t

)
Dn
e

+ln
(
nD

t

) .

It is assumed above that t1/D ∈ N. If not, we define a
nearly-equal partition Π into sub-tori of the form [n]D− r×
[a1]r − k × [a2]k where a1 = dae and a2 = bac. Different
parts of Π may have different values of k; this only affects
the analysis by at most a constant factor.

3.2.2 Mesh Networks

Definition 3.10. A D-dimensional mesh graph G = 〈V,E〉
is the Cartesian product of D path graphs P 1, . . . , PD. That
is, V = Z|P1| × . . . × Z|PD| and (u, v) ∈ E if and only if
u, v disagree on a single index i and |ui − vi| = 1. A D-
dimensional mesh is said to be of the form [n]D if P 1 =
. . . = PD = Pn.

Unlike other direct topologies discussed in this paper, meshes
are not D-regular. However, all degrees in a D-dimensional
mesh are between D

2
and D. In that case, we refer in-

stead to the metric |E(S,V \S)|
D|S| . Observe that for a D-torus,

|E(S,V \S)|
D|S| ≤ hs(G) ≤ 2·|E(S,V \S)|

D|S| . Therefore the results for

grid mesh networks are within factor 2 of the results for torus
networks, with the minor caveat that a sparse equi-partition
Π in a mesh grid can have maxS1∈Π(|E(S1, V \ S1|) = 2 ·
minS2∈Π(|E(S2, V \ S2|) instead of being exactly equal for
any S ∈ Π.

3.2.3 Hypercube Networks

Definition 3.11. A hypercube graph on 2n vertices G =
〈V,E〉 is the Cartesian product of n path graphs of length 2.
That is, V = [C2]× . . .× [C2]︸ ︷︷ ︸

n times

and (u, v) ∈ E if and only if

u, v have Hamming distance of 1.

Lemma 3.12. The small-set expansion of a hypercube graph

G on 2k vertices is ht(G) = 2(k−log t)
2k−log t

Proof. Given a hypercube graph G = 〈V,E〉 on 2k ver-
tices and t divides 2k, consider a sub-hypercubeGt = 〈Vt, Et〉
on t = 2m vertices, m < k. As a sub-hypercube attains the
sparsest cut in a hypercube [34], and therefore characteriz-
ing its expansion is sufficient. Selecting a 2m sub-hypercube
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is equivalent to fixing m coordinates of the vertices, (enu-
merating them in standard binary fashion), and then each
vertex in Gt contributes exactly (k −m) edges to the cut.
Therefore |E(Vt, V \Vt)| = 2m·(k−m). Since an n-hypercube
has n · 2n−1 edges, |E(Vt, Vt)| = m · 2m−1. Therefore:

ht(G) =
2m(k −m)

2m(k −m) +m · 2m−1
=

2(k − log t)

2k − log t

Equi-Partitions of Hypercube Networks.
To construct an equi-partition of a hypercube G on 2k

vertices into subsets of size t = 2m, we decompose G into
disjoint sub-hypercubes on t vertices each.

3.3 Universal Fat-Tree Networks
We also consider universal fat-trees [33], which are indirect

networks consisting of processors connected by a binary tree
of router nodes. As of June 2016 [36], three of the world’s
top twenty fastest supercomputers have this topology. Also,
the world’s second fastest supercomputer is China’s National
University of Defense Technology Tianhe-2, which has a cus-
tom interconnect with a fat-tree topology [21]. In a fat-tree
network, the bandwidth capacity of links between routers
varies, increasing from links connecting the processor leaves
to the “fattest” links connected to the root node. Univer-
sal fat-trees are parametrized by the root links’ capacity: w
words of data per unit time, where the capacity of the leaf
links (to processors) is normalized to 1. Given the parame-
ter w, the capacity of each link at level 0 ≤ i ≤ logP in the
tree is min{P/2i,w/22i/3}. This implies that the capacities
of the links between subsequent levels of the tree differs by
either a factor of 2 or 22/3. Because the fat-tree network
graph consists of both processor and router nodes (an indi-
rect network) and link capacities are variable, we may not be
able to straightforwardly define meaningful equi-partitions
of GNet’s vertices for Theorem 2.3 and will instead apply
stronger load-balancing requirements to the computations.

4. APPLICATIONS
In this section, we apply the general contention lower

bounds of Theorem 2.3 to pairs of computations and network
topologies. That is, we combine the previously known per-
processor bounds of a computation with properties of the
network topology to obtain novel contention bounds that are
tighter in some scenarios. We first derive contention lower
bounds for all the computations on D-dimensional tori (or
meshes) in Section 4.1, and then in Section 4.2 we com-
pare the bounds to determine in which scenarios each lower
bound dominates. We also derive contention bounds for the
computations on fat-tree topologies in Section 4.4; we dis-
cuss the comparisons among bounds for that topology more
briefly, as the relationships are qualitatively similar. Table
1 presents the communication lower bounds for each of the
computations on both D-dimensional tori and fat-trees with
root capacity w.

4.1 Contention Lower Bounds for Tori
In this section, we derive contention lower bounds by plug-

ging the memory-dependent and memory-independent per-
processor lower bounds [5, 8, 19, 29] into Theorem 2.3 and
using the properties of D-dimensional tori. Table 1 summa-
rizes these results.

Direct Linear Algebra, Strassen-like, and N-body.
We apply Theorem 2.3 to the relevant per-processor bounds

given in Section 3.1. Let F denote the number of work op-
erations (e.g. flops or loop iterations) of the different com-
putations. The per-processor memory-dependent bound is
thus:

Wproc(P,M,N) = Ω

(
F

PMα−1

)
(5)

where α = 3/2 for direct dense linear algebra, α = ω0/2
for Strassen-like matrix multiplication, α = 2 for the O(N2)
N-body problem. By Lemma 3.9, the memory-dependent
contention bound is:

W tor
link(P,M,N) = max

t∈T
Ω

(
F ·D
PMα−1

· t1−α+1/D

)
.

Note that t1−α+1/D is monotonic (in the given range), but
that the exponent can be positive, negative or zero. If the
exponent of t is negative or zero, then the expression is max-
imized at t = 1, reproducing the per-processor bound (up
to a constant factor). If the exponent is positive, namely
D ≤ D1 = 1/(α − 1), then the expression is maximized at
t = P/2,4 and we obtain a new and tighter bound:

W tor
link(P,M,N) = Ω

(
F ·D

Pα−1/DMα−1

)
.

The per-processor memory-independent bound is

Wproc(P,N) = Ω

(
N

P 1/α

)
, (6)

and we can apply Theorem 2.3 to obtain:

W tor
link(P,N) = max

t∈T
Ω

(
N ·D
P 1/α

· t1/α−1+1/D

)
.

Again, t1/α−1+1/D is monotonic and may be positive, neg-
ative or zero. If the exponent of t is negative or zero, then
the expression is maximized at t = 1, reproducing the per-
processor bound (up to a constant factor). If the exponent
is positive, e.g. D ≤ D2 = α/(α− 1), then the expression is
maximized at t = P/2, and we obtain a tighter new bound:

W tor
link(P,N) = Ω

(
N ·D
P 1−1/D

)
.

Programs that Reference Arrays.
According to Theorem 3.5, the memory-dependent per-

processor bandwidth lower bound for programs defined by
(2) is Wproc(P,M,N) = Ω(|Z|/(PMsHBL−1)). Similar to
the derivation for the previous problems (albeit with α =
sHBL), the contention bound becomes

W tor
link(P,M,N) = max

1≤t≤P/2
Ω

(
|Z|

PMsHBL−1
· t1−sHBL+1/D

)
which is maximized at either t = 1 (the per-processor bound),
or t = P/2 (see Footnote 4). So, we obtain

W tor
link(P,M,N) = Ω

(
|Z|

P sHBL−1/DMsHBL−1

)
4 Note that there may not be a subset of the vertices of GNet
that attains the small set expansion ht(GNet) of size exactly
P/2. However, the small set expansion of tori and meshes is
attained for small sets of size P/c for some constant c ≥ 2
(e.g. consider a sub-torus), hence the following contention
analysis holds up to a constant factor.
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as a memory-dependent lower bound on contention. In a
similar manner, we can derive a memory-independent con-
tention lower bound from Equation (4). Observing that the
contention bound is maximized at either t = 1 or t = P/2,
we derive the memory-independent lower bound on con-
tention at t = P/2: W tor

link(P,N) = Ω(|Z|1/sHBL/(P 1−1/D)).

FFT/Sorting.
As with the previous algorithms, we apply Theorem 2.3

to the relevant per-processor bounds given in Section 3.1. As
we mentioned earlier, the memory-independent per-processor
bound always dominates the memory-dependent bound be-
cause we assume that M ≥ N/P .

The per-processor memory-independent bound is

Wproc(P,N) = Ω

(
N log(N)

P log(N/P )

)
,

and we can apply this bound to Theorem 2.3 to obtain:

W tor
link(P,N) = max

t∈T
Ω

(
N log(N) ·D

P log(Nt/P )t−1/D

)
=
N log(N) ·D

P
max
t∈T

Ω

(
t1/D

log(Nt/P )

)
. (7)

Again, when t = 1 we obtain the original per-processor
bound. Equation (7) has a stationary point at t = P2D/N ,
but via consideration of the second derivative with respect
to t, it can be shown that this point is a minimum for all
relevant values of N , P , and D. Thus, we can derive a
memory-independent contention bound by setting t = P/2:

W tor
link(P,N) = Ω

(
N ·D
P 1−1/D

)
.

4.2 Analysis and Interpretation for Tori

Which bound dominates?
Our first observation is that, for these computations, the
memory-independent contention bound dominates the memory-
dependent contention bound for many algorithms. In the
cases of direct linear algebra, Strassen and Strassen-like, and
the O(N2) N-body problem we prove this by contradiction:
if the memory-dependent contention bound dominates, then
the problem is too large to be distributed across all the pro-
cessors’ local memories. Thus, if

F

Pα−1/DMα−1
>

N

P 1−1/D

then, as F = θ(Nα), we have Nα−1 > Pα−1Mα−1 which is
a contradiction as we assumed that N ≤ PM . For programs
that reference arrays, the proof requires a bit more of the
theoretical apparatus from [19] and is proven in Appendix A.
We note that in practice the value of constants may result in
the memory-dependent contention bound being dominant,
despite the asymptotic result.

For direct linear algebra, Strassen, Strassen-like andO(N2)
N -body algorithms, Figure 2 illustrates the relationships be-
tween the four types of communication lower bounds for a
fixed computation, fixed problem size N , and fixed local
memory size M , varying the number of processors P and
the torus dimension D. See Appendix B for the derivation
of the expressions used in Figure 2.

Memory Memory

Dependent Independent

Wproc Ω

(
N

3
2

PM
1
2

)
Ω

(
N

P
2
3

)
Direct

Linear W tor
link Ω

(
N

3
2 ·D

P
3
2
− 1
DM

1
2

)
Ω

(
N·D

P
1− 1

D

)
Algebra

W f-t
link Ω

(
N

3
2

w(MP )
1
2

)
Ω
(
N
w

)
Wproc Ω

(
N
ω0
2

PM
ω0
2
−1

)
Ω

(
N

P
2
ω0

)
Strassen

and W tor
link Ω

(
N
ω0
2 ·D

P
ω0
2
− 1
DM

ω0
2
−1

)
Ω

(
N·D

P
1− 1

D

)
Strassen-like

W f-t
link Ω

(
N
ω0
2

w(MP )
ω0
2
−1

)
Ω
(
N
w

)
Wproc Ω

(
N2

PM

)
Ω
(

N

P1/2

)
N -body W tor

link Ω

(
N2·D

P
2− 1

DM

)
Ω

(
N·D

P
1− 1

D

)
W f-t

link Ω
(

N2

wMP

)
Ω
(
N
w

)
Wproc Ω

(
F

PM s̃−1

)
Ω
((

F
P

) 1
s̃

)
Programs

Referencing W tor
link Ω

(
D·F

P
s̃− 1

DM s̃−1

)
Ω

(
D·F

1
s̃

P
1− 1

D

)
Arrays

W f-t
link Ω

(
F

w(MP )s̃−1

)
Ω

(
F

1
s̃

w

)
Wproc Ω

(
N log(N)
P log(M)

)
Ω

(
N log(N)

P log(NP )

)
FFT W tor

link Ω

(
N log(N)·D

P
1− 1

D log(MP )

)
Ω

(
N·D

P
1− 1

D

)
W f-t

link Ω
(

N logN
w log(MP )

)
Ω
(
N
w

)
Table 1: Per-processor bounds (Wproc) vs. the
new contention bounds (Wlink) on a D-dimensional
torus and fat-trees with root capacity w for classi-
cal (dense) linear algebra, fast matrix multiplication,
O(N2) N-body, a general set of programs that refer-
ence arrays, and Fast Fourier Transform (FFT). For
readability, we denote s̃ = sHBL.

P =
(

F
NMα−1

)α/(α−1)

P =
(

F
NMα−1

)D

P =
(

F
NMα−1

)1/(α−1)D1 = 1
α−1

D2 = α
α−1

Figure 2: Relationship between the per-processor
and contention communication lower bounds for di-
rect linear algebra, Strassen/Strassen-like and the
O(N2) N-body problems.
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Depending on the dimension of the torus and number of
processors, the tightest bound may be one of the previously
known per-processor bounds or the memory-independent con-
tention bound. We first consider subdividing the vertical
axis of Figure 2, which corresponds to the torus dimension
D. Intuitively speaking, the smaller D is, the more likely
contention will dominate communication costs. For a given
algorithm, we let D = b1/(α − 1)c = bD1c is the maxi-
mum torus dimension such that the communication cost is
dominated by contention for all input and machine param-
eters. Similarly, we let D = dα/(α− 1)e= dD2e be the min-
imum torus dimension so that the communication cost is
not dominated by the contention (at least not by the bound
proved here). Note that for a combination of an algorithm
and a D-dimensional torus such that D1 < D < D2, either
the per-processor memory-dependent bound or the memory-
independent contention bound may dominate. See Table 2
for values of D1 and D2 for various matrix multiplication
algorithms. In particular, note that for the classical algo-
rithm, a 2D torus is not sufficient to avoid contention. While
Cannon’s algorithm [16] does not suffer from contention on
a 2D torus network, it is also not communication-optimal.
The more communication-efficient “3D” algorithms [10, 1,
35, 41], which utilize extra memory and have the ability
to strong scale perfectly, require a 3D torus to attain the
per-processor lower bounds. For matrix multiplication algo-
rithms with smaller exponents, the torus dimension require-
ments for remaining contention-free are even larger.

Range of perfect strong scaling
We next consider subdividing the horizontal axis of Figure 2,
which corresponds to the number of processors P . Because
Figure 2 shows a fixed problem size, increasing P (moving
to the right) corresponds to “strong scaling.” We differenti-
ate between whether or not the computation has the possi-
bility of strong scaling perfectly: that is, for a fixed prob-
lem size, increasing the number of processors by a constant
factor reduces the communication costs (and running time)
by the same constant factor. Note that of the bounds, the
memory-dependent per-processor bound (see Equation (5)
for example) exhibits this possibility of perfect strong scal-
ing, as P appears in the denominator with an exponent of
1. However, as P increases, one of the memory-independent
bounds eventually dominates and perfect strong scaling is
no longer possible. See [5] for a discussion of this behavior
given only per-processor bounds.

For direct linear algebra, Strassen-like algorithms and the

O(N2)N -body problem, ifD ≥ D2 and P ≤ (F/NMα−1)
α
α−1 ,

then the memory-dependent per-processor bound dominates.
When this happens, we have a perfect strong scaling range.
For values of P beyond this range, the communication cost is
dominated by the memory-independent per-processor bound
(see [5] for further discussion). When D1 < D < D2, a
smaller strong-scaling ranges exists for P ≤ (F/NMα−1)D;
for values of P beyond this range, the communication cost
bound is dominated by contention. If D ≤ D1, then the
contention bounds always dominate and there is no strong-
scaling range. A similar analysis can demonstrate such a
region of perfect strong scaling in runtime for programs that
reference arrays.

Figure 3 shows this behavior for Strassen’s matrix multi-
plication (where α = (log2 7)/2) given the relevant torus di-
mensions. For Strassen, F/NMα−1 = (N/M)α−1 = Pα−1

min ,

where Pmin is the minimum number of processors required
to store the problem as F = O(nα). Note that the lower
subfigure in Figure 3 is a log-log scale, while the upper
subfigure’s y-axis is linear. For a sufficiently good network
(D ≥ 4), the perfect strong scaling range is Pmin < P <

P
(log2 7)/2
min ≈ P 1.40

min . For a 3D torus, the perfect strong scal-

ing range shrinks to Pmin < P < P
3(log2 7−2)/2
min ≈ P 1.21

min .
On 2D torus, perfect strong scaling is impossible. These
three regions of network dimension (D ≥ D2, D ≤ D1 and
D1 < D < D2) are illustrated in Figure 2 as being the points
of transition between dominance of the various bounds. The
upper portion of Figure 3 demonstrates the regions of dom-
inance for the various network dimensions in the case of
Strassen’s algorithm.

Algorithm ω0 bD1c dD2e
Classical 3 2 3
Strassen (1969) [42] ≈ 2.81 2 4
Schönhage (1981) [38] ≈ 2.55 3 5
Strassen (1987) [43] ≈ 2.48 4 6
Le Gall (2014) [23] ≈ 2.3729 5 7

Table 2: Torus dimensions so that communication
cost is either always (D ≤ bD1c) or never (D ≥ dD2e)
contention-bound, for several matrix multiplication
algorithms. Assertions for the last three algorithms
are under some technical assumptions, see [8].

4.3 Contention Lower Bounds for Hypercubes
On hypercubes our analysis does not show meaningful

contention bounds for the algorithms discussed in this pa-
per. It is easy to verify that the per-processor communi-
cation lower bounds always dominate the contention lower
bounds by plugging them into Theorem 2.3 and comparing
the resulting bounds to the respective per-processor bounds.
For a complete analysis, see Appendix C.

4.4 Contention Lower Bounds for Fat-Trees
To obtain contention bounds for fat-trees, we define a set

of partitions {Pi} and compute the corresponding aggregate
bandwidths {Li}. We consider partitioning the processors
into complete subtrees of sizes ranging from one processor
to P/2 processors. Then, each subset of processors has one
external link from its root node to the next level in the tree.
Let Pi be a partition of the processors into 2i subsets, where
each subset consists of a complete binary subtree of P/2i

processors. The minimum aggregate bandwidth is given by
the capacity of the link connected to the root of the subtree:

Li = min

{
P

2i
,

w

22i/3

}
. (8)

Direct Linear Algebra, Strassen-like, and N-body.
We first consider direct linear algebra, Strassen-like ma-

trix multiplication, and O(N2) N -body algorithms with per-
processor lower bounds given by Equations (5) and (6) where
1 < α ≤ 2, depending on the algorithm. The aggregate
bandwidth of a complete subtree of size P/2i is given by
Equation (8), so by Theorem 2.3 our memory-dependent

8



Figure 3: Communication bounds for Strassen’s al-
gorithm on D-dimensional tori. The lower plot is
log-log, while the upper is linear on the y-axis. Hor-
izontal lines in the lower plot correspond to perfect
strong scaling.

contention bound is

W f-t
link(P,M,N) = max

1≤i≤logP
Ω

(
F

2i(MP/2i)α−1

min{P/2i,w/22i/3}

)

= max
1≤i≤logP

Ω

(
F · 2i(α−1)

PαMα−1
+
F · 2i(α−4/3)

w(MP )α−1

)
.

The first term is an increasing function of i because α >
1. The second term can be either increasing or decreasing
(it will be decreasing for a fast matrix multiplication algo-
rithm with exponent ω0 < 2.66). The maximum is therefore
achieved at either i = 1 or i = logP , so in order to obtain a
new lower bound we evaluate the expression at i = 1 to ob-
tain W f-t

link(P,M,N) = Ω
(
F/
(
w(MP )α−1

))
. Likewise, the

memory-independent contention bound is

W f-t
link(P,N) = max

1≤i≤logP
Ω

(
N/(2i)1/α

min{P/2i,w/22i/3}

)
= max

1≤i≤logP
Ω

(
N

P
· 2i(1−1/α)+

N

w
· 2i(2/3−1/α)

)
.

As before, the first term is always increasing but the second
term can be decreasing (this time for fast matrix multipli-
cation with exponent ω0 < 3), so the maximum could be
achieved at either endpoint. By plugging in i = 1 we obtain
a new bound of W f-t

link(P,N) = Ω(N/w).
As in the case of torus networks, of the two contention

bounds, the memory-independent one dominates the memory-
dependent one assuming N < MP , or that the data fits

across all processors’ memories. Relationships among the
two per-processor bounds and memory-independent contention
bound can be derived as in Section 4.2 for torus networks
(see Figures 2 and 3). We note that the memory-independent
contention bound is the tightest bound for Strassen-like ma-
trix multiplication when, for example, the fat-tree param-
eter w falls in the range P 2/3 ≤ w < P 2/ω0 = P 1/α and
P = Ω((N/M)ω0/2). That is, the bound w > P 1/α for a fat-
tree is analogous to the value D > D2 = dα/(α − 1)e for a
torus. We do not obtain any tighter bounds for direct linear
algebra or the N -body problem. This analysis suggests that
for those computations, a fat-tree with the cheapest choice
of w = P 2/3 is sufficient to avoid contention becoming the
communication bottleneck, though we point out that tighter
contention bounds may exist that contradict this conjecture.

Programs Referencing Arrays.
The analysis for programs referencing arrays follows that

of direct linear algebra, matrix-multiplication, and N -body
computations. Replacing F with |Z|, N with |Z|1/sHBL , and
α with sHBL, we obtain the contention boundsW f-t

link(P,M,N) =

Ω
(
|Z|/

(
w(MP )sHBL−1

))
andW f-t

link(P,N) = Ω(|Z|1/sHBL/w).
The dominance of the memory-independent bound follows
from Claim A.1, and we can also conclude that choosing
w > P 1/sHBL guarantees that these contention bounds do
not dominate the per-processor bounds.

FFT/Sorting.
To obtain a contention bound for the FFT on a fat-tree, we

combine (via Theorem 2.3) the per-processor bounds given
in Theorems 3.6 and 3.7 with the aggregate bandwidth de-
fined by Equation (8). This yields a memory-independent
contention bound of

W f-t
link(P,N) = max

1≤i≤logP
Ω

( N logN
2i log(N/2i)

min{P/2i,w/22i/3}

)

= max
1≤i≤logP

Ω

(
N logN

P log(N/2i)
+

N logN

w log(N/2i)2i/3

)
.

Again, this function is maximized at either endpoint, so to
obtain a new bound we choose i = 1, which evaluates to
W f-t

link(P,N) = Ω(N/w). The memory-dependent contention
bound can be derived similarly, evaluating to

W f-t
link(P,M,N) = Ω(N logN/(w log(MP ))).

As in the per-processor case, the memory-independent
contention bound dominates the memory-dependent con-
tention bound due to the assumption of N < MP . However,
either of the two memory-independent bounds may dom-
inate; the contention bound dominates when w < P (1 −
(logP/ logN)). That is, for sufficiently small N (N close to
P ), contention is not a bottleneck even for w = P 2/3; for
sufficiently large N (N = PC for some constant C), then
contention will bottleneck the computation unless w is cho-
sen to be Ω(P ).

5. DISCUSSION AND FUTURE RESEARCH

Is it always about the bisection bandwidth?
For the algorithms discussed in this paper on torus and fat-
tree networks, the contention lower bound, when it differs
from the per-processor bound, is maximized for t = P/2;

9



that is, the contention bound corresponds to a network bi-
section cut. Is this always the case, or do we expect to have
combinations of algorithms and machines where contention
bounds dominate, but the constricting cut is not balanced?
An example might be when hs(GNet) is minimized by some

2 < s0 <
|GNet|

2
; for example, two networks of processors, a

large and a small one, where each of them is well connected,
but the connection between the large and the small one is
narrow (e.g., two racks with one router each, connected with
a narrow link one to the other, where the racks contain dif-
ferent numbers of processors).

Applicability
Immediate applications of the technique include combina-
tions of other networks (e.g. dragonfly networks [31]) and
other classes of algorithms for which per-processor lower
bounds are known. A network may have expansion suffi-
ciently large to preclude the use of our contention bound on
a given computation, yet the contention may still dominate
the communication cost. This calls for further study on how
well computations and networks match each other. Similar
questions have been addressed by Leiserson and others [9,
25, 33], and had a large impact on the design of supercom-
puter networks. In particular, a parallel computer that uses
a fat tree communication network can simulate any other
routing network, at the cost of at most polylogarithmic slow-
down. [12] considers similar issues from a VLSI view.

Contention-Efficient Algorithms
Some parallel algorithms attaining per-processor commu-
nication lower bounds have also been tuned to particular
topologies (cf. [41] for classical matrix multiplication on
3D torus). Algorithmic analysis of the contention costs will
likely show that the contention bounds for these and re-
lated computations are attainable. Many other algorithms
are communication optimal when all-to-all connectivity is
assumed, but their performance on other topologies has not
yet been studied. Additionally, a parallel algorithm can have

limited knowledge of the physical layout of the processors it
runs on. Even with such knowledge, node failure or mi-
gration may replace a well-positioned node with a poorly-
positioned one. Are there algorithms that attain the com-
munication lower bounds for any realistic network graph,
either by automatic tuning or topology-oblivious tools?
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APPENDIX
A. DOMINANCE OF MEMORY-INDEPENDENT

CONTENTION BOUND

Claim A.1. Let Alg be an algorithm performing a com-
putation of the form given by (2) on P processors, each with
local memory of size M , and assume the input data is ini-
tially evenly distributed across processors. Then,

|Z|1/sHBL

M
≤

m∑
j=1

|φj(Z)|
M

.

As the minimum number of processors required to hold the
problem is the right-hand side of this inequality, we conclude
that the memory-independent contention bound dominates
the memory-dependent contention bound as the two bounds
are equivalent when P = |Z|1/sHBL/M .

Proof. To begin a proof, the HBL bound discussed in
Christ et al. [19], states (with certain assumptions) that

|Z| ≤
m∏
j=1

|φj(Z)|sj .

To detail an argument from Section 2 of [19], we present
several greater upper bounds on |Z| that will allow us to
demonstrate the desired result:

|Z| ≤
m∏
j=1

|φj(Z)|sj ≤
m∏
j=1

(
m

max
j=1
|φj(Z)|

)sj

=

(
m

max
j=1
|φj(Z)|

)∑m
j=1 sj

=

(
m

max
j=1
|φj(Z)|

)sHBL

As maxmj=1 xj ≤
∑m
j=1 xj if all xj ≥ 0,

|Z| ≤
(

m
max
j=1
|φj(Z)|

)sHBL

≤

(
m∑
j=1

|φj(Z)|

)sHBL

which proves the desired inequality if we take sHBLth root
of both sides and divide by M .

B. DERIVATION OF EXPRESSIONS IN
FIGURE 2

• Equivalence point for per-processor bounds

We set the per-processor bounds equal to each other,
and solve for P :

F

PMα−1
= Θ

(
N

P 1/α

)

P = Θ

(
F

NMα−1

)α/(α−1)

• Equivalence point for contention bounds

We set the contention bounds equal to each other, and
solve for P :

F

Pα−1/DMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)1/(α−1)

• Equivalence point for the memory-dependent per-
processor and memory-independent contention
bounds

We set the memory-dependent per-processor and memory-
independent contention bounds equal to each other,
and solve for P as a function of D:

F

PMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)D
C. HYPERCUBE NETWORK CONTENTION

LOWER BOUNDS
Our analysis reveals no meaningful new bounds for direct

linear algebra, fast matrix multiplication, O(N2)N -body and
the FFT. We show this here in detail.

Linear algebra, fast matrix multiplication and N-body.
We show the results for direct linear algebra only. For
fast matrix multiplication and N -body, the analysis is es-
sentially the same. Recall that for direct linear algebra,

Wproc(P,M,N) = Ω

(
N

3
2

PM
1
2

)
and Wproc(P,N) = Ω

(
N

P
2
3

)
.

Assigning these per-processor lower bounds into Theorem
2.3, we have the following contention bounds:

Wlink(P,M,N) ≥ Ω

(
max
t∈T

N
3
2

PM
1
2 t

1
2 (logP − log t)

)

Wlink(P,N) ≥ Ω

(
max
t∈T

N

P
2
3 t

1
3 (logP − log t)

)
Deriving both expressions by t shows that Wlink(P,M,N)
and Wlink(P,N) are maximized by t = 1. It is therefore
impossible for our contention lower bounds to dominate over
the per-processor lower bounds.

FFT and sorting. Recall thatWproc(P,M,N) = Ω
(
N logN
P logM

)
and Wproc(P,N) = Ω

(
N logN

P log N
P

)
. As above, using Theorem

2.3 to obtain the following contention lower bounds:

Wlink(P,M,N) ≥ Ω

(
max
t∈T

(
N logN

P (logM + log t)(logP − log t)

))

Wlink(P,N) ≥ Ω

(
max
t∈T

(
N logN

P (logN + log t− logP )(logP − log t)

))
For the memory-dependent bound, considering the deriva-
tive by t of the bounds for Wlink(P,M,N) reveals the max-
imal contention bound is at t = P

2
. That is:

Wlink(P,M,N) ≥ Ω

(
N logN

P log(MP )

)
and so the memory-dependent per-processor communication
bound dominates over the memory-dependent contention
bound.

13



Similarly for the memory-independent bound, considering
the derivative by t of the bounds for Wlink(P,N) reveals the
maximal contention bound is at either t = 1 or at t = P

2
. For

t = 1, the maximal bound is Ω
(

N logN
P logP (logN−logP )

)
. For t =

P
2

, the maximal bound is Ω
(
N
P

)
. The memory-independent

per-processor communication bound dominates over both
potential memory-independent contention bounds.

Therefore, our analysis reveals no meaningful new bounds
for FFT when computed over a hypercube network.
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