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Summary

• Our algorithm is communication optimal

– matches the recently proved communication lower bounds [1]
– moves asymptotically less data than all existing algorithms

• Our implementation is faster

– than any classical algorithm can be
– than any Strassen implementation we are aware of

• With our algorithm, Strassen’s matrix multiplication is faster than classical

– not just computation, but also communication
– not just in theory, but also in practice
– not just sequentially, but also in parallel

Asymptotics: Lower Bounds and Algorithms

Classical Flops Bandwidth Latency

Lower Bound [4] n3

P max
{

n3

PM 1/2,
n2

P 2/3

}
max

{
n3

PM 3/2, 1
}

Cannon [2] n3

P
n2

P 1/2 P 1/2

2.5D [6] n3

P max
{

n3

PM 1/2,
n2

P 2/3

}
n3

PM 3/2 + logP

Strassen Flops Bandwidth Latency

Lower Bound [1] nω

P max
{

nω

PMω/2−1,
n2

P 2/ω

}
max

{
nω

PMω/2, 1
}

Cannon-Strassen [5] nω

P (ω−1)/2
n2

P 1/2 P 1/2

Strassen-Cannon [3, 5]
(
7
8

)`
n3

P

(
7
4

)`
n2

P 1/2 7`P 1/2

New Algorithm nω

P max
{

nω

PMω/2−1,
n2

P 2/ω

}
max

{
nω

PMω/2 logP, logP
}

n = Matrix dimension P = Number of processors
M = Local memory size ` = Number of Strassen steps taken
ω = Exponent of matrix multiplication. log2 7 ≈ 2.81 for Strassen

• Architectural implications

– Strassen reduces both computation and communication
– To remain compute bound: β ≤ γMω/2−1 vs. β ≤ γM1/2 for classical
� β is the inverse bandwidth, γ is time per flop

Strassen-Winograd Algorithm

• Requires 7 multiplies and 15 additions for 2× 2 matrix multiplication

• Requires O(nω) flops for n× n matrix multiplication

• Hidden constant is better than Strassen’s original algorithm

A =

[
A11 A12
A21 A22

]
B =

[
B11 B12
B21 B22

]
C = A ·B =

[
C11 C12
C21 C22

]
.

T0 = A11 S0 = B11 Q0 = T0 · S0 U1 = Q0 +Q3
T1 = A12 S1 = B21 Q1 = T1 · S1 U2 = U1 +Q4
T2 = A21 + A22 S2 = B12 +B11 Q2 = T2 · S2 U3 = U1 +Q2
T3 = T2 − A12 S3 = B22 − S2 Q3 = T3 · S3 C11 = Q0 +Q1
T4 = A11 − A21 S4 = B22 −B12 Q4 = T4 · S4 C12 = U3 +Q5
T5 = A12 + T3 S5 = B22 Q5 = T5 · S5 C21 = U2 −Q6
T6 = A22 S6 = S3 −B21 Q6 = T6 · S6 C22 = U2 +Q2

The Parallel Algorithm

• Key parallelization decision is to choose how to compute 7 subproblems
– breadth first search ordering or depth first search ordering

• Independent decision can be made at each level of recursion tree

Breadth First Search (BFS) Step

A BFS level of the recursion tree

• Runs all 7 multiplies in parallel
– each uses P/7 processors

• Requires 7/4 as much extra memory
• Requires communication
• Reduces future communication

Depth First Search (DFS) Step

A DFS level of the recursion tree

• Runs all 7 multiplies sequentially
– each uses all P processors

• Requires 1/4 as much extra memory
• No immediate communication
• Increases future communication

Global Schemes

• Unlimited memory: do k = log7P BFS steps, then local computation

– requires O
(
n2

P 2/ω

)
local memory footprint

• Limited memory: do ` = log2
3n

P 1/ωM 1/2 DFS steps, then k BFS steps, then
local computation
– requires O(M) local memory footprint

Performance Data

Performance on Franklin (Cray XT4)
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strong scaling range

local multiplications
communication
local additions
re-arrangement
other
perfect scaling

Perfect Strong Scaling Range
• Within range, both flops and communication scale linearly with P

• For largest problem that fits on P0 processors, ranges up to Pω/20 processors

• For P > P
ω/2
0 , communication can no longer scale perfectly

Implementation Details

• Interleaving BFS and DFS
• Data Layout
• Local shared memory Strassen

• Running on P = m · 7k

• Hybrid BFS steps for m > 1

• Hiding communication

Open Problems

• Analyze contention and optimize for it
• An efficient algorithm for arbitrary number of processors
• Fast parallel dense linear algebra: LU, QR, etc.
• Other practical fast matrix multiplication algorithms
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