v

‘ Summary |

e Our algorithm is communication optimal

— matches the recently proved communication lower bounds [1]
— moves asymptotically less data than all existing algorithms

e Our implementation is faster

—than any classical algorithm can be
—than any Strassen implementation we are aware of

e With our algorithm, Strassen’s matrix multiplication is faster than classical

—not just computation, but also communication
—not just in theory, but also in practice
— not just sequentially, but also in parallel

‘ Asymptotics: Lower Bounds and Algorithms |

Classical Flops Bandwidth Latency
Lower Bound [4] n?f max {p]?jl/%];122/3} max {#33/2, 1}
Cannon [2] n P”%/Q pL/2
2.5D [6] ”?f max {P]?;l/z,];222/3} #33/2 + log P
Strassen Flops Bandwidth Latency
Lower Bound [1] . max { ST P”;w} max { s 1}
Cannon-Strassen [5] P(ﬁ) = P”+2/2 pl/?
Strassen-Cannon [3, 5] (g) : L (g) : P% 7 p1/2
New Algorithm n??) max {P]\?:/Ql’ P@iw} max {#ww/z log P, log P}

n Matrix dimension P = Number of processors
M = Local memory size ¢ = Number of Strassen steps taken
w = Exponent of matrix multiplication. log, 7 = 2.81 for Strassen

e Architectural implications

— Strassen reduces both computation and communication
— To remain compute bound: 8 < vM¥/2~Lvs. 8 < vM1/? for classical
¢ [is the inverse bandwidth, ~ is time per flop

Strassen-Winograd Algorithm |

e Requires 7 multiplies and 15 additions for 2 x 2 matrix multiplication

e Requires O(n%) flops for n x n matrix multiplication

e Hidden constant is better than Strassen’s original algorithm

A_[An A12] B_[Bn 312] C—A-B—[CH 012].

Aoy A9 Bo1 By Co1 O
Ty = Ay S0 = B Qo =Tp - So Uy = Qo+ Q3
11 = Apo 51 = By Q=115 Uy =Uj+Qq
Ty = Aoy + Ao S9 = Bio + B1j Q2 =15+ 59 U3 =U;+ Qs
T3 =Ty — Ay 53 = By — 59 Q3 =1T3-53 C11= Qo+ @1
Ty= A1 — Ay Sy = Boy — By Q4 =Ty S5y Cro =Us+ Q5
T = A9+ 13 S5 = By Q5 =15 - 55 Co1 = Uy — Qg
T = Ao S¢ = 53 — By Qe = 1 - S¢ Cog = Uy + Q)2

Par Lab Winter Retreat 2012

Communication-Optimal Parallel Algorithm
for Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Ben Lipshitz, Oded Schwariz

‘ The Parallel Algorithm |

e Key parallelization decision is to choose how to compute 7 subproblems
— breadth first search ordering or depth first search ordering
¢ Independent decision can be made at each level of recursion tree

Breadth First Search (BFS) Step
A-B
e Runs all 7 multiplies in parallel
—each uses P/7 processors
e Requires 7/4 as much extra memory

e Requires communication
e Reduces future communication

T:S T:S T:S T:S T:S, T:S, T:S

oo 11 22 33 44 55 6 6

A BFS level of the recursion tree

commuhnication

X

local additions

N

TO TO
A
T1 T1 HHHH

Depth First Search (DFS) Step
A-B
e Runs all 7 multiplies sequentially
—each uses all P processors
e Requires 1/4 as much extra memory
e No immediate communication
e Increases future communication

T:S T:S T:S T:S T:S, T:S. T:S

oo 11 22 373 44 5°5 6 6

A DFS level of the recursion tree

local additions

N

TO

T1

Global Schemes

e Unlimited memory: do k£ = log- P BFS steps, then local computation

— requires O (P@iw) local memory footprint

e Limited memory: do ¢ = logy 2% DFS steps, then & BFS steps, then
local computation

—requires O(M) local memory footprint

Performance Data

Performance on Franklin (Cray XT4)
n = 94080

— ; ;
New parallel algorithm ——
50 Combined algorithm [3,5,6] —»— -

y Previous parallel Strassen [5] ---e---
Previous parallel Strassen [3] ---&---
CA Classical (2.5D) [6] —=— -
ScalLAPACK ---e---

;
if
e

Effective GFlop/s per node
S
|

10

N

O]]]]]]]]]]]]]
P=49 P=343 P=2401

Breakdown of time

1000 f T T
[—+— local multiplications

—¥— communication
—¢— |ocal additions
—&—_re-arrangement
—a— other

perfect scaling

100 |

strong scaling range

Wall time (seconds)
o
\ ///

0.1 ' '
P=49 P=343 P=2401

Perfect Strong Scaling Range
¢ Within range, both flops and communication scale linearly with P
e For largest problem that fits on P, processors, ranges up to Pg" /2 processors

2 L
e For P > Pg"/ , communication can no longer scale perfectly

‘ Implementation Details |

e Interleaving BFS and DFS e Runningon P =m - 7%
e Data Layout e Hybrid BFS steps for m > 1
e Local shared memory Strassen e Hiding communication

‘ Open Problems |

e Analyze contention and optimize for it

¢ An efficient algorithm for arbitrary number of processors
e Fast parallel dense linear algebra: LU, QR, etc.

e Other practical fast matrix multiplication algorithms

‘ References I

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication costs of fast matrix multiplication. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA *11, pages 1-12, New York, NY, USA, 2011. ACM.

[2] L. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis, Montana State University, Bozeman, MN, 1969.

[3] B. Grayson, A. Shah, and R. van de Geijn. A high performance parallel Strassen implementation. In Parallel Processing Letters, Vol 6, pages 3—12, 1995.
[4] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix multiplication. J. Par. Dist. Comp., 64(9):1017-1026, 2004.

[5] Q. Luo and J. Drake. A scalable parallel strassen’s matrix multiplication algorithm for distributed-memory computers. In Proceedings of the 1995 ACM
Symposium on Applied Computing, SAC *95, pages 221-226, New York, NY, USA, 1995. ACM.

[6] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms. In Euro-Par 2011, Part Il, volume
6853 of Lecture Notes in Computer Science, pages 90—109. Springer, 2011.

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.

