
Communication-Optimal Parallel Algorithm
for Strassen’s Matrix Multiplication

Grey Ballard, James Demmel, Ben Lipshitz, Oded Schwartz

Summary

• Our algorithm is communication optimal

– matches the recently proved communication lower bounds [1]
– moves asymptotically less data than all existing algorithms

• Our implementation is faster

– than any classical algorithm can be
– than any Strassen implementation we are aware of

• With our algorithm, Strassen’s matrix multiplication is faster than classical

– not just computation, but also communication
– not just in theory, but also in practice
– not just sequentially, but also in parallel

Asymptotics: Lower Bounds and Algorithms

Classical Flops Bandwidth Latency

Lower Bound [4] n3

P max
{

n3

PM 1/2,
n2

P 2/3

}
max

{
n3

PM 3/2, 1
}

Cannon [2] n3

P
n2

P 1/2 P 1/2

2.5D [6] n3

P max
{

n3

PM 1/2,
n2

P 2/3

}
n3

PM 3/2 + logP

Strassen Flops Bandwidth Latency

Lower Bound [1] nω

P max
{

nω

PMω/2−1,
n2

P 2/ω

}
max

{
nω

PMω/2, 1
}

Cannon-Strassen [5] nω

P (ω−1)/2
n2

P 1/2 P 1/2

Strassen-Cannon [3, 5]
(
7
8

)`
n3

P

(
7
4

)`
n2

P 1/2 7`P 1/2

New Algorithm nω

P max
{

nω

PMω/2−1,
n2

P 2/ω

}
max

{
nω

PMω/2 logP, logP
}

n = Matrix dimension P = Number of processors
M = Local memory size ` = Number of Strassen steps taken
ω = Exponent of matrix multiplication. log2 7 ≈ 2.81 for Strassen

• Architectural implications

– Strassen reduces both computation and communication
– To remain compute bound: β ≤ γMω/2−1 vs. β ≤ γM1/2 for classical
� β is the inverse bandwidth, γ is time per flop

Strassen-Winograd Algorithm

• Requires 7 multiplies and 15 additions for 2× 2 matrix multiplication

• Requires O(nω) flops for n× n matrix multiplication

• Hidden constant is better than Strassen’s original algorithm

A =

[
A11 A12
A21 A22

]
B =

[
B11 B12
B21 B22

]
C = A ·B =

[
C11 C12
C21 C22

]
.

T0 = A11 S0 = B11 Q0 = T0 · S0 U1 = Q0 +Q3
T1 = A12 S1 = B21 Q1 = T1 · S1 U2 = U1 +Q4
T2 = A21 + A22 S2 = B12 +B11 Q2 = T2 · S2 U3 = U1 +Q2
T3 = T2 − A12 S3 = B22 − S2 Q3 = T3 · S3 C11 = Q0 +Q1
T4 = A11 − A21 S4 = B22 −B12 Q4 = T4 · S4 C12 = U3 +Q5
T5 = A12 + T3 S5 = B22 Q5 = T5 · S5 C21 = U2 −Q6
T6 = A22 S6 = S3 −B21 Q6 = T6 · S6 C22 = U2 +Q2

The Parallel Algorithm

• Key parallelization decision is to choose how to compute 7 subproblems
– breadth first search ordering or depth first search ordering

• Independent decision can be made at each level of recursion tree

Breadth First Search (BFS) Step

A BFS level of the recursion tree

• Runs all 7 multiplies in parallel
– each uses P/7 processors

• Requires 7/4 as much extra memory
• Requires communication
• Reduces future communication

Depth First Search (DFS) Step

A DFS level of the recursion tree

• Runs all 7 multiplies sequentially
– each uses all P processors

• Requires 1/4 as much extra memory
• No immediate communication
• Increases future communication

Global Schemes

• Unlimited memory: do k = log7P BFS steps, then local computation

– requires O
(
n2

P 2/ω

)
local memory footprint

• Limited memory: do ` = log2
3n

P 1/ωM 1/2 DFS steps, then k BFS steps, then
local computation
– requires O(M) local memory footprint

Performance Data

Performance on Franklin (Cray XT4)
n = 94080

0

10

20

30

40

50

P=49 P=343 P=2401

Ef
fe

ct
iv

e 
G

Fl
op

/s
 p

er
 n

od
e absolute maximum for all classical algorithms

New parallel algorithm
Combined algorithm [3,5,6]

Previous parallel Strassen [5]
Previous parallel Strassen [3]

CA Classical (2.5D) [6]
ScaLAPACK

Breakdown of time

 0.1

 1

 10

 100

 1000

P=49 P=343 P=2401

W
al

l t
im

e 
(s

ec
on

ds
)

strong scaling range

local multiplications
communication
local additions
re-arrangement
other
perfect scaling

Perfect Strong Scaling Range
• Within range, both flops and communication scale linearly with P

• For largest problem that fits on P0 processors, ranges up to Pω/20 processors

• For P > P
ω/2
0 , communication can no longer scale perfectly

Implementation Details

• Interleaving BFS and DFS
• Data Layout
• Local shared memory Strassen

• Running on P = m · 7k

• Hybrid BFS steps for m > 1

• Hiding communication

Open Problems

• Analyze contention and optimize for it
• An efficient algorithm for arbitrary number of processors
• Fast parallel dense linear algebra: LU, QR, etc.
• Other practical fast matrix multiplication algorithms

References

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication costs of fast matrix multiplication. In Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 1–12, New York, NY, USA, 2011. ACM.

[2] L. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis, Montana State University, Bozeman, MN, 1969.

[3] B. Grayson, A. Shah, and R. van de Geijn. A high performance parallel Strassen implementation. In Parallel Processing Letters, Vol 6, pages 3–12, 1995.

[4] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix multiplication. J. Par. Dist. Comp., 64(9):1017–1026, 2004.

[5] Q. Luo and J. Drake. A scalable parallel strassen’s matrix multiplication algorithm for distributed-memory computers. In Proceedings of the 1995 ACM
Symposium on Applied Computing, SAC ’95, pages 221–226, New York, NY, USA, 1995. ACM.

[6] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms. In Euro-Par 2011, Part II, volume
6853 of Lecture Notes in Computer Science, pages 90–109. Springer, 2011.

Par Lab Winter Retreat 2012 Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, and Samsung.


