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‘ Summary |

e Our algorithm is communication optimal

— matches the recently proved communication lower bounds [1]
— moves asymptotically less data than all existing algorithms

e Our implementation is faster

—than any classical algorithm can be
—than any Strassen implementation we are aware of

e With our algorithm, Strassen’s matrix multiplication is faster than classical

—not just computation, but also communication
—not just in theory, but also in practice
— not just sequentially, but also in parallel

‘ Asymptotics: Lower Bounds and Algorithms |

Classical Flops  Bandwidth Latency
Lower Bound [4] n?f max {p]?jl/% ];122/3} max {#33/2, 1}
Cannon [2] n P”%/Q pL/2
2.5D [6] ”?f max {P]?;l/z, ];222/3} #33/2 + log P
Strassen Flops Bandwidth Latency
Lower Bound [1] . max { ST P”;w} max { s 1}
Cannon-Strassen [5] P(ﬁ) = P”+2/2 pl/?
Strassen-Cannon [3, 5] (g) : L (g) : P% 7 p1/2
New Algorithm n??) max {P]\?:/Ql’ P@iw} max {#ww/z log P, log P}

n Matrix dimension P = Number of processors
M = Local memory size ¢ = Number of Strassen steps taken
w = Exponent of matrix multiplication. log, 7 = 2.81 for Strassen

e Architectural implications

— Strassen reduces both computation and communication
— To remain compute bound: 8 < vM¥/2~Lvs. 8 < vM1/? for classical
¢ [ is the inverse bandwidth, ~ is time per flop

Strassen-Winograd Algorithm |

e Requires 7 multiplies and 15 additions for 2 x 2 matrix multiplication

e Requires O(n%) flops for n x n matrix multiplication

e Hidden constant is better than Strassen’s original algorithm
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‘ The Parallel Algorithm |

e Key parallelization decision is to choose how to compute 7 subproblems
— breadth first search ordering or depth first search ordering
¢ Independent decision can be made at each level of recursion tree

Breadth First Search (BFS) Step
A-B
e Runs all 7 multiplies in parallel
—each uses P/7 processors
e Requires 7/4 as much extra memory

e Requires communication
e Reduces future communication
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Depth First Search (DFS) Step
A-B
e Runs all 7 multiplies sequentially
—each uses all P processors
e Requires 1/4 as much extra memory
e No immediate communication
e Increases future communication
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Global Schemes

e Unlimited memory: do k£ = log- P BFS steps, then local computation

— requires O (P@iw) local memory footprint

e Limited memory: do ¢ = logy 2% DFS steps, then & BFS steps, then
local computation

—requires O(M) local memory footprint
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Perfect Strong Scaling Range
¢ Within range, both flops and communication scale linearly with P
e For largest problem that fits on P, processors, ranges up to Pg" /2 processors

2 L
e For P > Pg"/ , communication can no longer scale perfectly

‘ Implementation Details |

e Interleaving BFS and DFS e Runningon P =m - 7%
e Data Layout e Hybrid BFS steps for m > 1
e Local shared memory Strassen e Hiding communication

‘ Open Problems |

e Analyze contention and optimize for it

¢ An efficient algorithm for arbitrary number of processors
e Fast parallel dense linear algebra: LU, QR, etc.

e Other practical fast matrix multiplication algorithms
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