
Perfect Strong Scaling Using No Additional Energy

James Demmel, Andrew Gearhart, Benjamin Lipshitz, and Oded Schwartz
Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, USA

{demmel,agearh,lipshitz,odedsc}@cs.berkeley.edu

Abstract—Energy efficiency of computing devices has
become a dominant area of research interest in recent
years. Most previous work has focused on architectural
techniques to improve power and energy efficiency; only
a few consider saving energy at the algorithmic level. We
prove that a region of perfect strong scaling in energy
exists for matrix multiplication (classical and Strassen)
and the direct n-body problem via the use of algorithms
that use all available memory to replicate data. This means
that we can increase the number of processors by some
factor and decrease the runtime (both computation and
communication) by the same factor, without changing the
total energy use.

Keywords-Energy lower bounds, Communication-
avoiding algorithms, Energy efficient algorithms, Power
efficiency

I. Introduction and Motivation
In recent years, energy efficiency of computing de-

vices has become a dominant area of research interest.
While a large body of work has focused upon architec-
tural techniques to improve power and energy efficiency
(see [1] for a survey through 2008), few publications
consider the energy efficiency at the algorithmic level.
In this work, we model algorithm runtime T and execu-
tion energy E via a small set of architectural parameters
and extend previous work on communication-avoidance
to derive lower bounds on the amount of energy that
must be consumed during runtime. From these bounds,
we prove that a realm of perfect strong scaling in
energy exists (i.e. for a given problem size n, the
energy consumption remains constant as the number
of processors p increases and the runtime decreases
proportionally to p) for matrix multiplication (classical
and Strassen) and the direct (O(n2)) n-body problem.
In addition to these results, the bounds on energy allow
us to discuss a number of problems as we vary the
number of processors and memory size (assuming a
fixed process technology). For example:

1) What is the minimum energy required for a com-
putation?

2) Given a maximum allowed runtime T , what is the
minimum energy E needed to achieve it?

3) Given a maximum energy budget E, what is the

minimum runtime T that we can attain?
4) The ratio P = E/T gives us the average power

required to run the algorithm. Given a bound
on average power, can we minimize energy or
runtime?

5) Given an algorithm, problem size, number of pro-
cessors and target energy efficiency (GFLOPS/W),
can we determine a set of architectural parameters
to describe a conforming computer architecture?

To conclude, we apply the energy model to the
physical parameters of an actual machine and evaluate
accuracy. We scale the model parameters in an attempt
to gain insight into the future technology trends required
to achieve a desired level of energy efficiency.

II. Deriving Lower Bounds on Algorithm
Energy Consumption

Machine model

In this work and as in [2], we consider the same
abstract model of a distributed machine shown in Figure
1(b). In this model, each processing node is homoge-
neous and linked within an abstract network topology.
To communicate, words are packed into contiguous
messages before being communicated to another proces-
sor. Synchronization is handled through messages; thus
synchronization costs are part of the message count.
Furthermore, as the number of processors within the
distributed machine scales we assume that the link
parameters (per-message and per-word costs) remain
constant (more on this to be discussed later). The link
transmissions define communication between the local
memories of two individual processing elements. This
model can be applied to any physical machine that
involves a communication network; i.e. large clusters
or System on Chip (SoC) designs with an on-board
communication network between processing cores.

We note that the algebraic model derived here for
the distributed machine can be extended or modified to
suit the desired future machine environment with greater
accuracy. This can aid in utilizing the lower bounds on
algorithm characteristics to aid hardware development.
As an example, in the cases of the n-body problem and

2.5D matrix multiplication we also will present energy
models for a machine of the type presented in Figure
2.

SLOW

FAST

(a) Sequential model

LOCAL LOCAL LOCAL

LOCAL LOCAL LOCAL

LOCAL LOCAL LOCAL

(b) Distributed parallel model

Figure 1: Abstract machine models

This more complicated model allows for a greater
degree of parametrization by modeling two levels of
machine communication (as opposed to the one-level
distributed machine model primarily discussed).

Timing model

In order to obtain bounds on energy, we first represent
the runtime of an algorithm by adding the time for
computation and communication on a given processor.
This assumes no overlap; overlap could reduce the time
by at most a factor of 2 or 3, a constant factor omitted
for simplicity1. The time to send one message consisting
of k words from one processor to another is modeled as
αt+kβt, where αt is the latency (seconds per message),
βt is the reciprocal bandwidth (seconds per word), and
k ≤ m, where m is the maximum size of a message.
We also assume m ≤ M , where M is the (maximum)
memory used. The total runtime T of a processor is
then

T = γtF + βtW + αtS. (1)

where γt is the seconds per flop, F is the number of
flops, W is the total number of words sent, and S is
the total number of messages sent.

1The model is flexible, and overlapping could be represented by a
max operation over the runtime components.

Figure 2: Two level machine model with 4 nodes and 4 cores
per node

Energy model

To model the total energy cost E of executing an
algorithm, we sum the energy costs of computation
(proportional to the number of flops F), communication
(proportional to the number of words W and messages
S sent), memory (proportional to the memory used
M times the runtime T) and “leakage” (proportional
to runtime T) for each processor and multiply by the
number of processors p. This results in the expression

E = p(γeF + βeW + αeS + δeMT + εeT). (2)

Here γe, βe and αe are the energy costs (in joules) per
flop, per word transferred and per message, respectively.
δe is the energy cost per stored word per second.
The term δeMT assumes that we only pay for energy
on memory that we are utilizing for the duration of
the algorithm (a strong architectural assumption, but
suitable for a lower bound). εe is the energy leakage per
second in the system outside the memory. Note that εe
may encompass the static leakage energy from circuits
as well as the energy of other devices not defined within
the model such as disk behavior or fan activity.

We choose to represent runtime and system energy
via linear models. This is for simplicity, and reflects
our goal of attempting to capture general trends in algo-
rithm behavior to guide design efforts. Thus, extremely
high model accuracy is not required to extract useful
results. Interestingly, a recent paper by McCullough et
al. [3] found that measuring total system power with
linear models resulted in a 2-6% error for multi-core
benchmarks (the paper warns about using such models
for subsystem power, however). This level of accuracy
is far greater than that required for this body of work. As
energy consumption parameters could be influenced by
more complicated processes (ex. processor heating and
cooling cycles), we may consider higher-order models
in future work.

III. Background on Communication Avoid-
ing Algorithms

Communication lower and upper bounds

If one considers the execution of an algorithm as a
combination of computational and communication op-
erations, it is natural to attempt to derive lower bounds
on the amount of communication required to compute a
given problem. In [2], we extend the work of Hong and
Kung [4] and Irony, Toledo and Tiskin [5] to prove a
general lower bound on the amount of data moved (i.e.,
bandwidth-cost) by a general class of linear algebra al-
gorithms. This result holds for most direct linear algebra
algorithms including Basic Linear Algebra Subroutine
(BLAS) [6] operations (e.g. matrix-vector multiplica-
tion, matrix multiplication, and triangular solve with

one or multiple right hand sides) and computing LU,
Cholesky, LDLT , and QR decompositions, as well as
many eigenvalue/SVD computations. The result holds
whether the matrices are dense or sparse, and whether
the machine fits a two-level (Figure 1(a)) or distributed
memory model (Figure 1(b)).

In the sequential model, if a processor does F floating
point operations (flops) that satisfy the requirements
described in [2] and utilizes M words of fast memory,
then the total number of words W sent and received by
the processor satisfies

W = Ω

(
max

(
I +O,

F

M
1
2

))
. (3)

where I and O are the number of input and output
words, respectively2. Following [2], we obtain a lower
bound on the number of messages S a processor sends
and receives by dividing the lower bound on the number
of words given in (3) by the size of the largest possible
message m. Thus, if a processor executes F flops as
before, we have

S = Ω

(
max

(
I +O

m
,

F

mM
1
2

))
. (4)

A similar expression to Equation 3 bounds word traffic
in the parallel model

W = Ω

(
max

(
0,

F

M
1
2

− (I +O)

))
. (5)

with the parallel message bound derived in a similar
manner to Equation 4. In the parallel situation, if the
I +O term is larger than the amount of data needed to
do the flops, it is conceivable that there exists a parallel
algorithm with no communication assuming the correct
data layout.

In the case of dense matrix-matrix operations (LU
factorization, etc.), we have F = O(n3) and I + O =
O(n2), so the second term of the above bounds usually
dominates. On the other hand, for matrix-vector and
vector-vector operations (BLAS2 and BLAS1 functions,
respectively) the size of the input and output data is
the maximal term. These lower bound results have
been utilized to prove the communication optimality
of several new linear algebra algorithms, (reviewed
in [2]), and have also been extended to a model of
heterogeneous processing [7].

Reducing communication by using extra memory

In the case of parallel matrix multiplication where
data is distributed in blocks on a p

1
2 -by-p

1
2 grid, each

processor performs F = O(n3/p) flops and utilizes

2If the original input data does not reside in fast memory at the
start of the algorithm and the final output data must be written out of
fast memory at the end of the algorithm, then there is a trivial lower
bound based on the sum I +O of input and output words.

M = Ω(n2/p) words of memory. This is the situation
when considering well-known methods such as Can-
non’s algorithm [8] or SUMMA [9]. For reasons that
will soon become clear, we refer to these algorithms
as ”2D”. In Agarwal et al. [10], a matrix multiplication
algorithm for utilizing redundant copies of the input ma-
trices is presented. Here, the input data is distributed on
a p

1
3 -by-p

1
3 -by-p

1
3 cube of processors and we hereafter

refer to this algorithm as a ”3D” matrix multiplication
algorithm. In 3D matrix multiplication, the amount of
local data increases to M = Θ(n2/p

2
3) and results in

a factor p
1
6 reduction in words communicated, and an

even larger savings in the number of messages (see [11]
for more details).

In [11], Solomonik and Demmel propose an algo-
rithm for matrix multiplication that utilizes redundant
copies of input matrices in a range between that of
the 2D and 3D algorithms. In other words, the ”2.5D”
matrix multiplication algorithm can use any amount of
local memory in a range

n2

p
≤M ≤ n2

p2/3
(6)

and distributes data on a (p/c)
1
2 -by-(p/c)

1
2 -by-c cuboid

of processors where c is a data replication factor. This
algorithm has optimal communication costs of

W = O

(
n2

(cp)
1
2

)
, S = O

((p
c3

) 1
2

+ log c

)
. (7)

Note that when c = 1 (M = n2/p), the algorithm
reduces to the classical 2D algorithm and when c = p

1
3

(M = n2/p
2
3) it reduces to 3D matrix multiplication.

A key observation regarding 2.5D matrix multipli-
cation is that the algorithm achieves perfect strong
scaling modulo log(P) factors (i.e. for the same prob-
lem size and twice the processors, we can halve the
algorithm’s runtime) within the range of n2/p ≤
M ≤ n2/p

2
3 . To see this, we consider pmin to be

the smallest number of processors that can fit a given
problem size. In this situation, we must use a 2D
algorithm (M = Θ(n2/pmin)) as we are unable to
replicate the input data to reduce communication. Thus,
Wpmin

= O(n2/p
1
2
min) and Spmin

= O(p
1
2
min). If we

scale the problem to p = cpmin processors, we can
utilize the 2.5D algorithm with a bandwidth cost of
O(n2/(c2pmin)

1
2) = Wpmin/c and message cost of

O((pmin/c
2)

1
2) = Spmin

/c. Thus, by utilizing c more
processors to solve the problem we can create redundant
copies of the input data to keep the communication
volume constant 3. Solomonik and Demmel [11] also
propose an algorithm for 2.5D LU factorization that

3For this to be true, the log c term in the expression for S in
Equation 7 does not dominate.

pmin pmin
t0/2 pmin

3/2

(B
an

dw
id

th
 c

os
t)

x
p

p

Classical
Strassen-like

Figure 3: Limits of communication strong scaling for matrix
multiplication. Figure adapted from [12], [13]. Note that the
right portion of each line is not straight, but slightly concave.

is bandwidth optimal (W2.5DLU = O(n2/(cp)
1
2)) but

requires a larger S2.5DLU = Ω((cp)
1
2) messages (which

attains a different lower bound that applies to LU but
not matrix multiplication).

Unfortunately, as proved by Ballard et al. in [12], the
tactic of utilizing more memory to preserve strong scal-
ing properties does not work indefinitely. In fact, this
perfect strong scaling for matrix multiplication cannot
continue past p = Ω(n3/M

3
2) (or p = Ω(nwo/M

w0
2)

for fast matrix multiplication algorithms that multiply
two n × n matrices in Θ(nω0) time, like Strassen),
where there is no way to use more memory to reduce
communication cost. These trends can be seen in Figure
3, where communication costs scale at a rate of 1/P

2
3

and 1/P
2

w0 once the ability to utilize additional memory
has saturated.

IV. Time and Energy Lower and Upper
Bounds for Various Algorithms

Classical matrix multiplication (O(n3) algorithm)

In the case of linear algebra algorithms (including
matrix-matrix multiplication) that perform O(n3) flops,
we know the following expressions for F , W and S in
Equation 1 from the results in [5], [2]:

F =
n3

p
, W =

n3

pM
1
2

, S =
W

m
. (8)

As before, M is the memory used per processor
(which cannot exceed the physical memory per pro-
cessor), m is the size of the largest message we can
send (m ≤M), and p is the number of processors. We
assume that we use at least enough memory to store one
copy of the data across all the processors, so M ≥ n2/p
(we again omit constant factors for simplicity).

From prior work on 2.5D matrix multiplication [11],
we know that we can utilize redundant copies of ma-

trices (increase M) to decrease the amount of required
communication (i.e. decrease W and S). In standard
”2D” algorithms for matrix multiplication, each proces-
sor is given a local of problem of size M = Θ(n2/p)
on which to work, i.e. one copy of the data is evenly
spread across the processors.

If equations (1), (2) and (8) are combined, we obtain
the following lower bounds on the amount of time and
energy required to run O(n3) parallel matrix multipli-
cation, which are attained by the 2.5D algorithm4:

T2.5DMM (n, p,M) =
γtn

3

p
+

βtn
3

M1/2p
+

αtn
3

mM1/2p
(9)

E2.5DMM (n, p,M) = (γe + γtεe)n
3

+
(

(βe + βtεe) + (αe+αtεe)
m

)
n3

M
1
2

+ δeγtMn3

+
(
δeβt + δeαt

m

)
M

1
2n3. (10)

In our above discussion of 2.5D matrix multiplication,
we observed that for pmin = n2/M ≤ p ≤ n3/M

3
2 ,

communication costs scale perfectly with increasing p.
Thus, each term of the runtime expression T2.5DMM de-
creases proportionately to p in this range. Because each
term of the energy expression E2.5DMM is independent
of p, the energy stays constant as we increase the num-
ber of processors with a constant amount of memory
per processor. At the 3D limit where p = n3/M

3
2 , the

total energy is

E3DMM (n, p) = (γe + γtεe)n
3

+
(

(βe + βtεe) + (αe+αtεe)
m

)
n2p1/3

+ δeγtn
5 1
p2/3

+
(
δeβt + δeαt

m

)
n4 1

p1/3
. (11)

Increasing p in the 3D case reduces the energy costs
due to memory usage, but increases the energy costs
due to communication.

It is reasonable to ask whether our model of constant
communication costs in time (βt and αt) and energy
(βe and αe) makes sense as p grows, since this makes
implicit assumptions about the interconnection network.
Our prior work shows that a 3D torus network is a
perfect match to this algorithm [14], and scales in total
size proportionally to p, so the pεeT term in E should
capture its energy usage. As a side note, if we consider

4Recall: n2/M ≤M ≤ n2/p2/3. Note that choosing M,m equal
to their maximum values n2/p2/3 causes a log p term to appear in
the latency component. We omit this for simplicity.

the two level machine model of Figure 2 we obtain these
expressions for runtime and energy

T =
γtn

2

p
+

βnt n
3

pn
√
Mn

+
β`tn

3

p
√
M`

E =n3
[
γe + γtεe +

βn
e +βn

t εep`√
Mn

+
β`
e+β

`
t εe√

M`

+ γt

(
δne

Mn

p`
+ δ`eM`

)
+

(
δne

Mn

p`
+ δ`eM`

)(
βn
t p`√
Mn

+
β`
t√
M`

)]
, (12)

where pn,βn,αn,Mn and δn are the number of nodes,
internode link word cost, internode message cost, node
memory size and node memory storage cost, respec-
tively. Similar parameters for the intra-node character-
istics are defined with a superscript l 5 and p = pnpl.
In the above expressions, the latency portion of the
communication has been eliminated for simplicity. It
can be added by substituting β = βm + α (with the
appropriate mn or ml).

Strassen’s matrix multiplication
Fast matrix multiplication algorithms multiply two

n× n matrices in Θ(nω0) time, for some 2 < ω0 < 3.
For example, Strassen’s algorithm has exponent ω0 =
log2 7 ≈ 2.81. Using the Communication-Avoiding
Parallel Strassen (CAPS) algorithm [15], it is possible to
perform fast matrix multiplication with less communica-
tion than classical matrix multiplication. The asymptotic
costs are

F =
nω0

p
, W =

nω0

pM
ω0
2 −1

, S =
W

m
.

These match the communication lower bounds proved
in [13]. Repeating the analysis from above, we find that
the total energy is:

EFLM (n, p,M) = (γe + γtεe)n
ω0

+
(

(βe + βtεe) + (αe+αtεe)
m

)
nω0

Mω0/2−1

+ δeγtMnω0

+
(
δeβt + δeαt

m

)
M2−ω0/2nω0 (13)

in the case that n2/p ≤ M ≤ n2/p2/ω0 (here FLM
means “Fast matrix multiplication using Limited Mem-
ory.”). When M = n2/p2/ω0

EFUM (n, p) = (γe + γtεe)n
ω0

+
(

(βe + βtεe) + (αe+αtεe)
m

)
n2p1−2/ω0

+ δeγtn
5p−2/ω0

+
(
δeβt + δeαt

m

)
n4p1−4/ω0 (14)

5With the exception of pl and Ml which represent the number of
cores per node and size of core local memory.

where FUM means “Fast matrix multiplication using
Unlimited Memory.” As in the case of classical matrix
multiplication, the energy does not depend on p inside
a perfect strong scaling range, so scaling p by some
factor while holding M constant reduces the execution
time by that factor without affecting the total energy.
We can use this model to answer the same optimization
questions as in the introduction, but analytic solutions
are harder to obtain because ω0 appears in the powers
of M .

LU factorization

For dense LU decomposition, the 2.5D algorithm has
asymptotic costs

F =
n3

p
, W =

n3

pM
1
2

, S =
n2

W
.

It does strongly scale in the bandwidth term (which is
identical, modulo constant factors, to the term in 2.5D
matrix multiplication). However, it does not scale in
the latency term because of the critical path. Whether
this latency term is important depends on the machine
constants. This is an interesting area of exploration, as
the structure of LU has a critical path very similar to
that of many other linear algebra problems.

Direct n-body problem

Another example where perfect strong scaling is
possible is the direct (O(n2)) implementation of the n-
body algorithm, where each particle (or “object”) has
to directly interact with every other particle (this is not
limited to gravity or electrostatics, any interaction where
we can associatively combine the results of individual
interactions works). Like the cases of 2D and 3D linear
algebra algorithms, an n-body algorithm exists that
replicates data upon processors to reduce the amount
of required communication [16]. The computation and
communication costs for this algorithm are

F =
fn2

p
, W =

n2

pM
, S =

W

m

where n/p ≤ M ≤ n/p
1
2 and f that represents the

number of flops necessary to compute the interaction
of a pair of particles. Thus

Tnbody(n, p,M) =
γtfn

2

p
+
βtn

2

Mp
+

αtn
2

mMp
(15)

Enbody(n,M) =(f(γe + γtεe) + δe(βt + αt/m))n2

+
(
(βe + βtεe) + αe+αtεe

m

)
n2

M

+ δeγtfMn2. (16)

Via a similar argument to that of matrix multipli-
cation, we can see that the data-replicating n-body
algorithm achieves perfect energy scaling within the
range of n/p ≤ M ≤ n/p

1
2 . Again, we also note the

expressions for a two level model of the form presented
in Figure 2:

T =
fn2γt
p

+
βnt n

2

Mnpn
+
β`tn

2

M`p

E =n2
[
(fγe + fγtεe + δne β

n
t + δ`eβ

`
t)

+ (p`β
n
e + εep`β

n
t)M−1n

+ (β`e + εeβ
`
t)M

−1
` +

δ`e
p`
fγtMn

+ δefγtM` +
δne β

`
tMn

p`M`
+

δep`β
n
t M`

Mn

]
. (17)

The parameters in these expressions are defined as in
the two level equations for matrix multiplication, above.
As before, the latency component to the equations can
be added by substituting β = βm+ α.

Fast Fourier transform (FFT)

A Fast Fourier Transform (FFT) with input size n
performs n log n flops in log n steps. In the sequential
case, a tight communication lower bound is known [4]:

W = Θ

(
n log n

logM

)
.

In the parallel case, the standard algorithm divides
the data between the p processors in a cyclic fashion,
allowing the first log(n/p) steps to be performed with-
out communication. Then an all-to-all communication
of all the data is needed, after which this pattern repeats.
Note that if p ≤ nc for some constant c < 1, then only
a constant number of communication steps are needed.
Using a naive implementation of the all-to-all, the costs
are

F =
n log n

p
, W =

n

p
, S = p.

Alternately, the message count can be reduced at the
cost of a higher word count, using a tree-based all-to-
all, giving

F =
n log n

p
, W =

n log p

p
, S = log p.

This algorithm has recently been shown to be
communication-optimal in the BSP model [17]. In either
case, there is no perfect strong scaling range, since the
message count does not scale. Additionally, there is no
use for extra memory, so we always take M = n/p.
Using the second choice of communication costs, the
time is

TFFT (n, p) =
γtn log n

p
+
βtn log p

p
+ αt log p

and the energy is

EFFT =(γe + εeγt)n log n+ (αe + εeαt)p log p

+(βe + εeβt + δeαt)n log p+ δeγtn
2 logn
p

+ δeβtn
2 log p
p .

Because of the log p factors, we won’t be able to
optimize these in closed form.

V. Applications of Energy Bounds to the
Direct n-body Problem

We use our model to answer several optimization
questions related to energy, time, and power. In this
section we show how to answer these questions for
the direct n-body problem. The same techniques give
qualitatively similar, but more complicated, answers in
the case of classical matrix multiplication and Strassen’s
matrix multiplication (see details in the technical report
[18]).

A. Minimizing runtime or energy

The runtime of the algorithm decreases as p or M
increases (see Equation 15). The minimum runtime is
when p is set as large as possible, and M is set to be
its maximum value M = n√

p .
For fixed n, total energy is minimized (see Equa-

tion 16) by using memory

M0 =

(
βe + βtεe + (αe + αtεe)/m

δeγtf

) 1
2

.

Note that this expression is independent of p. Using
more memory than M0 is less energy efficient because
of the energy cost of keeping the memory on, whereas
using less memory is less energy efficient because of the
increased communication cost. The minimum energy is

E∗nbody(n) =Enbody(n,M0)

=n2
(
f(γe + γtεe) + δe(βt + αt/m)

+ 2 (δeγtf (βe + βtεe + (αe + αtεe)/m))
1
2

)
.

(18)

It is possible to use memory M0 and hence attain the
minimum energy use for p in the range

n

M0
≤ p ≤ n2

M2
0

.

In Figure 4(c) these runs are those along the green
line. Using more memory than M0 uses more energy
because the memory uses energy, whereas using less
memory than M0 uses more energy because the extra
communication uses more energy.

Note that minimizing energy and minimizing time
select different values of M and p. That is, in our model

M0

 6 20 40 60 80 100

M

p

Energy
constant time contours
minimum energy runs

E
n
e
rg

y

decreasing time

(a)

M0

 6 20 40 60 80 100

M

p

runs within an energy budget
runs within a per-processor power budget

minimum energy runs

minimum runtime
given energy limit

(b)

M0

 6 20 40 60 80 100

M

p

runs within a maximum time
runs within a total power budget

minimum energy runs

minimum energy
given runtime limit

minimum energy and runtime
given total power limit

(c)

Figure 4: Possible executions of the data-replicating n-body
algorithm for a fixed n. The thick red lines represent the
1D and 2D limits, and the algorithm can only be run for
values of p and M that lie in this range. The top graph (4(a))
shows the energy, which is independent of p, minimized at
M = M0, and increases if M is increased or decreased
from that value. It also shows lines of equally spaced constant
runtime. Runtime is decreased by moving to the right or up.
The middle graph (4(b)) shows which runs are possible within
a given energy budget or per-processor power budget. The
bottom graph (4(c)) shows which runs are possible given a
maximum running time or a total power budget. The size
of these regions depends on the budget. Note that these
graphs are for illustrative purposes only, and use contrived
parameters.

“race to halt” is not always the guiding principle for
saving energy.

B. Minimizing energy given an upper bound on the
run time

An upper bound Tmax on the run time restricts us
to a region as shown in the crosshatched region in
Figure 4(c). Depending on the value of Tmax, this region
may or may not intersect the line of optimal energy
runs. If it does, it is possible to attain the minimum
possible energy E∗nbody within the time Tmax, otherwise
the lowest energy available is at the top-left corner of
the region allowed by Tmax.

Algebraically, if

Tmax ≥ γtfM2
0 + (βt + (αt/m))M0

then it is possible to achieve the absolute minimum
energy E∗nbody(n) within time Tmax, for example by
setting M = M0, p = n2/M2

0 .
Otherwise, it is necessary to use less memory than

M0 to be able to use enough processors to achieve the
running-time bound. To be precise, it is necessary to
use at least

pmin =

(
(βt + αt/m)n

2Tmax
+

+

(
(βt + αt/m)2n2 + 4Tmaxγtfn

2
) 1

2

2Tmax

2

processors. The minimum energy to run in time at most
Tmax is attained by setting

p = pmin,

and running in the 2D limit M = n/
√
p.

C. Minimizing runtime given an upper bound on
energy

Conversely, suppose we fix the maximum allowed
energy Emax and want to minimize the running time.
Since E depends only on M , not on p, this corresponds
to a restriction to the dark blue shaded region in
Figure 4(b), and the minimum time run is at the bottom-
right corner of that region.

Algebraically, minimizing T will always select a 2D
run, since increasing p from a data-replicating run until
it hits the 2D boundary decreases T without affecting
E. Further, the 2D runtime is a decreasing function of p,
so we only need to determine the maximum p such that
the 2D algorithm fits in the energy bound. This value
of p is given by.

p ≤

(
Emax −An2

2nB

+

((
−Emax +An2

)2 − 4Bn4δeγtf
) 1

2

2nB

2

where

A = f(γe + γtεe) + δe(βt + αt/m)

B = βe + βtεe + (αe + αtεe)/m.

Note that this expression is has an imaginary component
if the energy bound Emax is not attainable.

D. Minimizing runtime or energy given a bound on
total power

By considering that average power consumed is P =
E
T , we can use our previous expressions for E and T
to obtain an expression for power P :

Pnbody = p

(
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe

)
.

An upper bound on total power P totmax thus translates
into an upper bound on the number of processors:

p ≤ P totmax

(
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe

)−1
.

(19)
The fastest run will correspond to using the maximum
number of processors. The most energy efficient runs
correspond to using M = M0 and any number of pro-
cessors in the range of n/M0 ≤ p and inequality (19).
This case corresponds to the magenta shaded region in
Figure 4(c).

E. Minimizing runtime or energy given a bound on
power per processor

Alternately we may want to minimize the runtime
given a bound on the power per processor. The bound
is

Pmax ≥
γef + βe/M + αe/(mM)

γtf + βt/M + αt/(mM)
+ δeM + εe,

which we may solve for M to get

M ≤
C +

(
C2 − 4γeγtfD

) 1
2

2δeγtf
(20)

where

C = γtfPmax − γef − εeγtf − δe(βt + αt/m)

D = βe + αe/m− (βt + αt/m)Pmax − εe(βt + αt/m).

This corresponds to the cyan shaded region in Fig-
ure 4(b). To minimize T , we would use as many
processors as possible, and as much memory as possible
subject to inequality (20) and M ≤ n/√p.

If M0 is in the range allowed by Pmax, then the global
minimum energy can be attained within a per-processor
power budget Pmax. If not, since E is a decreasing func-
tion of M for M < M0, the minimum energy is when
M takes its maximum value allowed by inequality 20
and p is anywhere in the range n

M < p < n2

M2 .

F. Fix target GFLOPS/W, determine machine pa-
rameters

If we fix a target number of GFLOPS/W that we wish
to achieve, that is fixing the ratio

fn2

E∗nbody
,

where E∗nbody is given by equation (18). This ratio is
independent of p, M , or n, so we get a constraint on
the machine parameters αt, βt, γe, αe, βe, γe, δe, εe,
m.

VI. Case Study: NUMA nodes on a dual-
socket server

As an example of possible uses for the energy
model, we consider the physical machine configu-
ration as presented in Figure 5. This machine has
two Intel Sandy Bridge server processors (code-name
Jaketown) joined via Intel’s Quick Path Interconnect
(QPI) [19]. Each of these processor sockets has 4
separate channels to memory, representing two Non-
Uniform Memory Access (NUMA) domains. Each
memory channel has 2 8Gb DIMMs for a total of 128Gb
of main memory (2 NUMA nodes*4 channels/node*2
DIMMs/channel*8Gb/DIMM). Each processor has 8
physical cores running at 3.1Ghz for a total of 16
physical cores. Parameters used to seed the model are
described in Table I. To obtain γe, we consider the
machine’s peak single-precision floating point capability
divided by the Thermal Design Power (TDP) of the die.
This is a perhaps overly-simplistic way to model γe,
but has the advantage of being easily calculable and
represents a worst-case energy consumption scenario.
Unfortunately, such a choice of parameter does not
give insight into on-die sources of efficiency as on this
Jaketown chip all 8 cores and caches are categorized
via a single number.

In addition to the assumptions made for γe, we
calculate γt based upon the peak single precision per-
formance of the chip. Also, we assume the leakage term
εe = 0 (a large assumption that needs to be investigated
further) and that the energy cost per message is zero.
The energy cost per word was calculated as the time to

Figure 5: Dual-socket 8-core Intel Jaketown machine modeled
within this case study.

send a message multiplied by the link power and then
divided by the message length.

To gain an initial impression of the effect from
scaling γe, βe and αe, for 2.5D matrix multiplication,
we hold the time parameters constant as well as the
number of processors in the model (p=2, as sockets
are considered processors in this case) and problem
size (n=35000). Unfortunately, for such a large problem
size and small number of processors we are outside
the theoretical region of strong scaling in p. However,
from Figure 6 we can see that halving either γe, βe
or αe independently results in a limited amount of
efficiency improvement when considering the metric of
GFLOPS/W. In particular, scaling βe has almost no ef-
fect while the benefits of scaling γe saturate after about
5 generations (assuming parameters reduce by half with
each generation). On the other hand, we obtain a desired
efficiency of 75 GFLOPS/W after 5 generations if we
are able to improve all three parameters together.

Of course, it is highly unlikely that energy efficiency
parameters will scale without any change in the time
parameters of the model. If time-dependent parameters
are also scaled, the desired level of efficiency should
arrive much faster. Despite the inaccurate assumptions
of the model, it does show that it benefits to target
energy efficiency improvements to components that
benefit the system as a whole. In the above example,
overall improvements can be gained by targeting on-die
energy or DRAM but not the efficiency of the QPI link.

In the near future, we intend to run the 2.5D matrix
multiplication and data-replicating n-body codes on the
actual machine modeled above to evaluate the predicted
energy consumption via a wall power meter and on-
chip energy counters (see [20] for more information).
We also would like to obtain parameters for the SoC
environment in hope of gaining insight into technology
scaling within the embedded space. If we consider the
problem of finding optimal machine parameters within
a given energy efficiency envelope and cost metrics,
we can solve the optimization problem via a steepest
descents approach to guide hardware development.

Table I: Parameters used in case study

Core Freq (Ghz) 3.1
SIMD width (Single Precision) 8
Data width (bytes) 4
Cores on Node 8
Peak FP (GFLOP/s) 396.8
M (words) 17179869184
m (words) 17179869184
Chip TDP (W) 150
Link BW (Gb/s) 25.60
Link Latency (sec) 6.000E-08
Link Active Power (W) 2.15
Link Idle Power (W) 0
DRAM DIMMS/socket 8
DRAM DIMM Power 3.1
γe (J/flop) 3.78024E-10
βe (J/word) 3.78024E-10
αe (J/msg) 0
δe (J/word/s) 5.7742E-09
εe (J/s) 0
γt (s/flop) 2.5202E-12
βt (s/word) 1.56E-10
αt (s/msg) 6.00E-08

Figure 6: Scaling γe,βe, δe independently on case study
machine

Improvement	 mul-plier	 over	 current	 technology	

Figure 7: Scaling γe,βe, δe together on case study machine

VII. Observations and Open Problems
Table II presents a set of data obtained for various

processing devices. If the efficiency of these devices
is calculated based upon peak single-precision floating
point capability and TDP, we note that none are able
to approach even 10 GFLOPS/W. Furthermore, Table
II highlights two poles of increased energy efficiency:
high-power GPUs with high throughput and low-power
slower processors. Thus, there can be a trade-off be-
tween peak power consumption (which needs to be
bounded in some environments) and computational ef-
ficiency. This data supports the idea of power-efficient
future architectures composed of large numbers of sim-
ple compute elements that allow for high parallelism
without the overhead of large pipelines and speculative
execution. Unfortunately, relying on parallelism for effi-
ciency can merely push the problem into the application
space without practically improving efficiency for the
end-user.

As mentioned briefly in an earlier section, we hope
that the simplistic energy models proposed in this work
can eventually be used to aid the hardware development
process within a specific set of efficiency goals for
a set of algorithms. Thus, the intended computational
kernels for a future platform can provide a basic level
of hardware/software co-design at initial stages of the
development process. A few more open problems in-
clude the following:

• Effect of minimizing runtime/energy given a bound
on power and determining parameters given a
target GFlops/W value for matrix multiplication

• Minimizing average power for the data-replicating
n-body algorithm

• The effect of poor latency scaling by 2.5D LU
in various processing environments (embedded,
cluster, cloud)

• Accurate measurement of model parameters (espe-
cially energy-based) and comparison to measure-
ment techniques of other researchers

• Does the model need temperature dependent terms
to accurately represent real computers?

• Best ways to take advantage of strong scaling
regions offered by data-replicating algorithms and
the implications for hardware design

• Energy benefits of communication-avoiding algo-
rithms in general (not just data-replicating)

• Exploring the effect of energy constraints on em-
bedded platforms involved in real-time critical de-
cision making and high latency communication

• With expressions for runtime and energy, can we
add a few more parameters and be able to say
something about the minimum area required for
a certain level of efficiency?

Acknowledgment
We acknowledge funding from Microsoft (Award

#024263) and Intel (Award #024894), and matching
funding by U.C. Discovery (Award #DIG07-10227).
Additional support comes from ParLab affiliates Na-
tional Instruments, Nokia, NVIDIA, Oracle and Sam-
sung, as well as MathWorks. Research is also supported
by DOE grants DE-SC0004938, DE-SC0005136, DE-
SC0003959, DE-SC0008700, and AC02-05CH11231,
and DARPA grant HR0011-12-2-0016. Approved for
public release; distribution is unlimited. The content
of this paper does not necessarily reflect the position
or the policy of the US government and no official
endorsement should be inferred.

References
[1] S. Kaxiras and M. Martonosi, Computer Architecture

Techniques for Power-Efficiency, 1st ed. Morgan and
Claypool Publishers, 2008.

[2] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Min-
imizing Communication in Numerical Linear Algebra,”
SIAM J. Matrix Analysis Applications, vol. 32, no. 3, pp.
866–901, 2011.

[3] J. C. McCullough, Y. Agarwal, J. Chandrashekar,
S. Kuppuswamy, A. C. Snoeren, and R. K. Gupta,
“Evaluating the Effectiveness of Model-based Power
Characterization,” in USENIX ATC ’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 12–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
2002181.2002193

[4] J.-W. Hong and H. T. Kung, “I/O Complexity:
The Red-Blue Pebble Game,” in Proceedings of
the Thirteenth Annual ACM Symposium on Theory
of Computing, ser. STOC ’81. New York, NY,
USA: ACM, 1981, pp. 326–333. [Online]. Available:
http://doi.acm.org/10.1145/800076.802486

[5] D. Irony, S. Toledo, and A. Tiskin, “Communication
Lower Bounds for Distributed-Memory Matrix
Multiplication,” J. Parallel Distrib. Comput., vol. 64,
no. 9, pp. 1017–1026, Sep. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2004.03.021

[6] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, M.Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and
R. C. Whaley, “An Updated Set of Basic Linear Algebra
Subroutines (BLAS),” ACM Trans. Math. Soft., vol. 28,
no. 2, June 2002.

[7] G. Ballard, J. Demmel, and A. Gearhart, “Brief An-
nouncement: Communication Bounds for Heterogeneous
Architectures,” in 23rd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2011), 2011.

[8] L. E. Cannon, “A Cellular Computer to Implement the
Kalman Filter Algorithm,” Ph.D. dissertation, Bozeman,
MT, USA, 1969.

Table II: Example machine parameters for γe and γt where TDP is Thermal Design Power, FP is Floating Point, and the SIMD
column represents the single-precision SIMD vector width. The Ivy Bridge processors include additional parameters for the
on-package GPU.

Processor Freq (Ghz) Cores SIMD TDP (W) Peak FP γt (s/flop) γe (J/flop) Gflops/W
Intel Sandy Bridge 2687W[21] 3.1 8 8 150.0 396.80 2.52E-12 3.78E-10 2.645
Intel Ivy Bridge 3770K[22], [23] 3.5 (0.65) 4(16) 8(8) 77.0 307.20 3.26E-12 2.51E-10 3.990
Intel Ivy Bridge 3770T[24], [23] 2.5 (0.65) 4(16) 8(8) 45.0 243.20 4.11E-12 1.85E-10 5.404

Intel Westmere-EX E7-8870[25] 2.4 10 4 130.0 192.00 5.21E-12 6.77E-10 1.477
Intel Beckton X7560[26] 2.26 8 4 130.0 144.64 6.91E-12 8.99E-10 1.113

Intel Atom D2500[27] 1.86 2 4 10.0 29.76 3.36E-11 3.36E-10 2.976
Intel Atom N2800[28] 1.86 2 4 6.5 29.76 3.36E-11 2.18E-10 4.578

Nvidia GTX480[29], [30] 1.401 480 1 250.0 1344.96 7.44E-13 1.86E-10 5.380
Nvidia GTX590[31], [30] 1.215 1024 1 365.0 2488.32 4.02E-13 1.47E-10 6.817

ARM Cortex A9 [32], [33] 2 2 2 1.9 8.00 1.25E-10 2.38E-10 4.211
ARM Cortex A9 [32], [33] 0.8 2 2 0.5 3.20 3.13E-10 1.56E-10 6.400

[9] R. A. van de Geijn and J. Watts, “SUMMA: Scalable
Universal Matrix Multiplication Algorithm,” Tech. Rep.,
1997.

[10] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi,
and P. Palkar, “A Three-Dimensional Approach to Paral-
lel Matrix Multiplication,” IBM Journal of Research and
Development, vol. 39, pp. 39–5, 1995.

[11] E. Solomonik and J. Demmel, “Communication-Optimal
Parallel 2.5D Matrix Multiplication and LU Factoriza-
tion Algorithms.” in Euro-Par (2), 2011, pp. 90–109.

[12] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and
O. Schwartz, “Brief Announcement: Strong Scaling
of Matrix Multiplication Algorithms and Memory-
Independent Communication Lower Bounds,” in
Proceedings of the 24th ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’12. New
York, NY, USA: ACM, 2012, pp. 77–79. [Online].
Available: http://doi.acm.org/10.1145/2312005.2312021

[13] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
“Graph Expansion and Communication Costs of Fast
Matrix Multiplication,” J. ACM, vol. 59, no. 6,
pp. 32:1–32:23, Jan. 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2395116.2395121

[14] E. Solomonik, A. Bhatele, and J. Demmel, “Improving
Communication Performance in Dense Linear Algebra
via Topology Aware Collectives,” in Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp.
77:1–77:11. [Online]. Available: http://doi.acm.org/10.
1145/2063384.2063487

[15] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz,
and O. Schwartz, “Communication-Optimal Parallel
Algorithm for Strassen’s Matrix Multiplication,” in
Proceedings of the 24th ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’12. New
York, NY, USA: ACM, 2012, pp. 193–204. [Online].
Available: http://doi.acm.org/10.1145/2312005.2312044

[16] M. Driscoll, P. Koanantakool, E. Georganas,
E. Solomonik, and K. Yelick, “A Communication-
Optimal N-Body Algorithm for Short-Range, Direct
Interactions.” 2013.

[17] G. Bilardi, M. Scquizzato, and F. Silvestri, “A Lower
Bound Technique for Communication on BSP with
Application to the FFT,” in Euro-Par 2012 Parallel
Processing, ser. Lecture Notes in Computer Science,
C. Kaklamanis, T. Papatheodorou, and P. Spirakis,
Eds. Springer Berlin Heidelberg, 2012, vol. 7484, pp.
676–687. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-32820-6 67

[18] J. Demmel, A. Gearhart, O. Schwartz, and B. Lipshitz,
“Perfect Strong Scaling Using No Additional Energy,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2012-126, May 2012. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-126.html

[19] Intel Corporation, “An Introduction to the Intel Quick-
Path Interconnect.” [Online]. Available: http://www.
intel.com/content/www/us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html

[20] ——, “Intel 64 and IA-32 Architectures
Software Developer’s Manual,” 2011.
[Online]. Available: http://www.intel.com/
content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.
html

[21] Intel Corportation, “Intel R© Xeon R©

Processor E5-2687W ,” 2012. [Online].
Available: http://ark.intel.com/products/64582/
Intel-Xeon-Processor-E5-2687W-20M-Cache-3
10-GHz-8 00-GTs-Intel-QPI

[22] ——, “Intel R© CoreTM i7-3770K Processor,” 2012.
[Online]. Available: http://ark.intel.com/products/65523

[23] ——, “Intel Processor Graphics Developer’s Guide
for 3rd Generation Intel R© CoreTMProcessor Graphics
on the Ivy Bridge microarchitecture,” 2012. [Online].
Available: http://software.intel.com/sites/default/files/m/
d/4/1/d/8/Ivy Bridge Graphics Developers Guide2.pdf

[24] ——, “Intel R© CoreTM i7-3770T Processor,” 2012.
[Online]. Available: http://ark.intel.com/products/65525

[25] ——, “Intel R© Xeon R© Processor E7-8870,” 2010.
[Online]. Available: http://ark.intel.com/products/
53580/Intel-Xeon-Processor-E7-8870-(30M-Cache-2
40-GHz-6 40-GTs-Intel-QPI)

[26] ——, “Intel R© Xeon R© Processor X7560 ,” 2010.
[Online]. Available: http://ark.intel.com/products/
46499/Intel-Xeon-Processor-X7560-(24M-Cache-2
26-GHz-6 40-GTs-Intel-QPI)

[27] ——, “Intel R© AtomTM Processor D2500,” 2011.
[Online]. Available: http://ark.intel.com/products/59682/
Intel-Atom-Processor-D2500-1M-Cache-1 86-GHz

[28] ——, “Intel R© AtomTM Processor N2800,” 2011.
[Online]. Available: http://ark.intel.com/products/58917/
Intel-Atom-Processor-N2800-1M-Cache-1 86-GHz

[29] NVIDIA Corporation, “GeForce GTX 480
Specifications,” 2012. [Online]. Avail-
able: http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-480/specifications

[30] H. Hagedoom, “GeForce GTX 590 review:
Product Architecture,” 2011. [Online]. Avail-
able: http://www.guru3d.com/articles-pages/geforce
gtx 590 review,2.html

[31] NVIDIA Corporation, “GeForce GTX 590
Specifications,” 2012. [Online]. Avail-
able: http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-590/specifications

[32] ARM Holdings, “NEON,” 2012. [Online].
Available: http://www.arm.com/products/processors/
technologies/neon.php

[33] ——, “Cortex-A9 Processor,” 2012. [Online]. Avail-
able: http://www.arm.com/products/processors/cortex-a/
cortex-a9.php

