
Acta Numerica
http://journals.cambridge.org/ANU

Additional services for Acta Numerica:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Communication lower bounds and optimal algorithms for
numerical linear algebra

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight and O. Schwartz

Acta Numerica / Volume 23 / May 2014, pp 1 - 155
DOI: 10.1017/S0962492914000038, Published online: 12 May 2014

Link to this article: http://journals.cambridge.org/abstract_S0962492914000038

How to cite this article:
G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight and O. Schwartz (2014).
Communication lower bounds and optimal algorithms for numerical linear algebra . Acta Numerica,
23, pp 1-155 doi:10.1017/S0962492914000038

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ANU, IP address: 128.32.44.185 on 28 May 2014



Acta Numerica (2014), pp. 1–155 c© Cambridge University Press, 2014

doi:10.1017/S0962492914000038 Printed in the United Kingdom

Communication lower bounds and
optimal algorithms for

numerical linear algebra∗†

G. Ballard1, E. Carson2, J. Demmel2,3,

M. Hoemmen4, N. Knight2 and O. Schwartz2

1 Sandia National Laboratories,

Livermore, CA 94551, USA

E-mail: gmballa@sandia.gov

2 EECS Department, UC Berkeley,

Berkeley, CA 94704, USA

E-mail: ecc2z@cs.berkeley.edu, knight@cs.berkeley.edu,

odedsc@cs.berkeley.edu

3 Mathematics Department, UC Berkeley,

Berkeley, CA 94704, USA

E-mail: demmel@cs.berkeley.edu

4 Sandia National Laboratories,

Albuquerque, NM 87185, USA

E-mail: mhoemme@sandia.gov

∗ We acknowledge funding from Microsoft (award 024263) and Intel (award 024894), and
matching funding by UC Discovery (award DIG07-10227). Additional support comes
from ParLab affiliates National Instruments, Nokia, NVIDIA, Oracle and Samsung, as
well as MathWorks. Research is also supported by DOE grants DE-SC0004938, DE-
SC0005136, DE-SC0003959, DE-SC0008700, DE-SC0010200, DE-FC02-06-ER25786,
AC02-05CH11231, and DARPA grant HR0011-12-2-0016. This research is supported
by grant 3-10891 from the Ministry of Science and Technology, Israel, and grant 2010231
from the US–Israel Bi-National Science Foundation. This research was supported in
part by an appointment to the Sandia National Laboratories Truman Fellowship in
National Security Science and Engineering, sponsored by Sandia Corporation (a wholly
owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National
Laboratories under its US Department of Energy Contract DE-AC04-94AL85000.

† Colour online for monochrome figures available at journals.cambridge.org/anu.



2 Ballard,Carson,Demmel,Hoemmen,Knight, Schwartz

The traditional metric for the efficiency of a numerical algorithm has been
the number of arithmetic operations it performs. Technological trends have
long been reducing the time to perform an arithmetic operation, so it is no
longer the bottleneck in many algorithms; rather, communication, or moving
data, is the bottleneck. This motivates us to seek algorithms that move as
little data as possible, either between levels of a memory hierarchy or be-
tween parallel processors over a network. In this paper we summarize recent
progress in three aspects of this problem. First we describe lower bounds on
communication. Some of these generalize known lower bounds for dense clas-
sical (O(n3)) matrix multiplication to all direct methods of linear algebra, to
sequential and parallel algorithms, and to dense and sparse matrices. We also
present lower bounds for Strassen-like algorithms, and for iterative methods,
in particular Krylov subspace methods applied to sparse matrices. Second, we
compare these lower bounds to widely used versions of these algorithms, and
note that these widely used algorithms usually communicate asymptotically
more than is necessary. Third, we identify or invent new algorithms for most
linear algebra problems that do attain these lower bounds, and demonstrate
large speed-ups in theory and practice.
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1. Introduction

1.1. Motivation

Linear algebra problems appear throughout computational science and engi-
neering, as well as the analysis of large data sets (Committee on the Analysis
of Massive Data; Committee on Applied and Theoretical Statistics; Board
on Mathematical Sciences and Their Applications; Division on Engineering
and Physical Sciences; National Research Council 2013), so it is important
to solve them as efficiently as possible. This includes solving systems of
linear equations, least-squares problems, eigenvalue problems, the singular
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value decomposition, and their many variations that can depend on the
structure of the input data.

When numerical algorithms were first developed (not just for linear alge-
bra), efficiency was measured by counting arithmetic operations. Over time,
as technological trends such as Moore’s law kept making operations faster,
the bottleneck in many algorithms shifted from arithmetic to communica-
tion, that is, moving data, either between levels of the memory hierarchy
such as DRAM and cache, or between parallel processors connected over a
network. Communication is necessary because arithmetic can only be per-
formed on two operands in the same memory at the same time, and (in the
case of a memory hierarchy) in the smallest, fastest memory at the top of the
hierarchy (e.g., cache). Indeed, a sequence of recent reports (Graham, Snir
and Patterson 2004, Fuller and Millett 2011) has documented this trend.
Today the cost of moving a word of data (measured in time or energy) can
exceed the cost of an arithmetic operation by orders of magnitude, and this
gap is growing exponentially over time.

Motivated by this trend, the numerical linear algebra community has
been revisiting all the standard algorithms, direct and iterative, for dense
and sparse matrices, and asking three questions: Are there lower bounds
on the amount of communication required by these algorithms? Do exist-
ing algorithms attain the lower bounds? If not, are there new algorithms
that do?

The answers, which we will discuss in more detail in this paper, are briefly
as follows. There are in fact communication lower bounds for most direct
and iterative (i.e., Krylov subspace) algorithms. These lower bounds apply
to dense and sparse matrices, and to sequential, parallel and more compli-
cated computer architectures. Existing algorithms in widely used libraries
often do asymptotically more communication than these lower bounds re-
quire, even for heavily studied operations such as dense matrix multiplica-
tion (matmul for short). In many cases there are new algorithms that do
attain the lower bounds, and show large speed-ups in theory and practice
(even for matmul). These new algorithms do not just require ‘loop transfor-
mations’ but sometimes have different numerical properties, different ways
to represent the answers, and different data structures.

Historically, the linear algebra community has been adapting to rising
communication costs for a long time. For example, the level-1 Basic Linear
Algebra Subroutines (BLAS1) (Lawson, Hanson, Kincaid and Krogh 1979)
were replaced by BLAS2 (Dongarra, Croz, Hammarling and Hanson 1988a,
1988b) and then BLAS3 (Dongarra, Croz, Duff and Hammarling 1990a,
1990b), and EISPACK (Smith et al. 1976) and LINPACK (Dongarra, Moler,
Bunch and Stewart 1979) were replaced by LAPACK (Anderson et al. 1992)
and ScaLAPACK (Blackford et al. 1997), to mention a few projects. So it
may be surprising that large speed-ups are still possible.
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1.2. Modelling communication costs

More precisely, we will model the cost of communication as follows. There
are two costs associated with communication. For example, when sending
n words from one processor to another over a network, the words are first
packed into a contiguous block of memory called a message, which is then
sent to the destination processor. There is a fixed overhead time (called
the latency cost or α) required for the packing and transmission over the
network, and also time proportional to n needed to transmit the words
(called the bandwidth cost or βn). In other words, we model the time to
send one message of size n by α + βn, and the time to send S messages
containing a total of W words by αS + βW .

Letting γ be the time to perform one arithmetic operation, and F the total
number of arithmetic operations, our overall performance model becomes
αS + βW + γF . The same technological trends cited above tell us that
α� β � γ. This is why it is important to count messages S and words W
separately, because either one may be the bottleneck. Later we will present
lower bounds on both S and W , because it is of interest to have algorithms
that minimize both bandwidth and latency costs.

On a sequential computer with a memory hierarchy, the model αS+βW+
γF is enough to model two levels of memory, say DRAM and cache. When
there are multiple levels of memory, there is a cost associated with moving
data between each adjacent pair of levels, so there will be an αS+βW term
associated with each level.

On a parallel computer, αS+βW + γF will initially refer to the commu-
nication and arithmetic done by one processor only. A lower bound for one
processor is (sometimes) enough for a lower bound on the overall algorithm,
but to upper-bound the time required by an entire algorithm requires us to
sum these terms along the critical path, that is, a sequence of processors that
must execute in a linear order (because of data dependences), and that also
maximizes the sum of the costs. Note that there may be different critical
paths for latency costs, bandwidth costs and arithmetic costs.

We note that this simple model may be naturally extended to other kinds
of architectures. First, when the architecture can overlap communication
and computation (i.e., perform them in parallel), we see that αS + βW +
γF may be replaced by max(αS + βW, γF ) or max(αS, βW, γF ); this can
lower the cost by at most a factor of 2 or 3, and so does not affect our
asymptotic analysis. Second, on a heterogeneous parallel computer, that is,
with different processors with different values of α, β, γ, memory sizes, etc.,
one can still use αiSi + βiWi + γiFi as the cost of processor i, and take the
maximum over i or sum over critical paths to get lower and upper bounds.
Third, on a parallel machine with local memory hierarchies (the usual case),
one can include both kinds of costs.
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We call an algorithm communication-optimal if it asymptotically attains
communication lower bounds for a particular architecture (we sometimes
allow an algorithm to exceed the lower bound by factors that are polylog-
arithmic in the problem size or machine parameters). More informally, we
call an algorithm communication-avoiding if it is communication-optimal,
or if it communicates significantly less than a conventional algorithm.

Finally, we note that this timing model may be quite simply converted
to an energy model. First, interpret αE , βE and γE as joules per message,
per word and per flop, respectively, instead of seconds per message, per
word and per flop. The same technological trends as before tell us that
αE � βE � γE and are all improving, but growing apart exponentially
over time. Second, for each memory unit we add a term δEM , where M
is the number of words of memory used and δE is the joules per word per
second to store data in that memory. Third, we add another term εET ,
where T is the run time and εE is the number of joules per second spent
in ‘leakage’, cooling and other activities. Thus a (single) processor may
be modelled as using αES + βEW + γEF + δEM + εET joules to solve a
problem. Lower and upper bounds on S,W, and T translate to energy lower
and upper bounds.

1.3. Summary of results for direct linear algebra

We first summarize previous lower bounds for direct linear algebra, and then
the new ones. Hong and Kung (1981) considered any matmul algorithm that
has the following properties.

(1) It requires the usual 2n3 multiplications and additions to multiply two
n × n matrices C = A · B on a sequential machine with a two-level
memory hierarchy.

(2) The large (but slow) memory level initially contains A and B, and also
C at the end of the algorithm.

(3) The small (but fast) memory level contains only M words, where M <
3n2, so it is too small to contain A, B and C simultaneously.

Then Hong and Kung (1981) showed that any such algorithm must move
at least W = Ω(n3/M1/2) words between fast and slow memory. This is
attained by well-known ‘blocking’ algorithms that partition A, B and C into
square sub-blocks of dimension (M/3)1/2 or a little less, so that one sub-
block each of A, B and C fit in fast memory, and that multiply sub-block
by sub-block.

This was generalized to the parallel case by Irony, Toledo and Tiskin
(2004). When each of the P processors stores the minimal M = O(n2/P )
words of data and does an equal fraction 2n3/P of the arithmetic, their lower
bound is W = Ω(#flops/M1/2) = Ω(n3/P/(n2/P )1/2) = Ω(n3/P 1/2), which
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is attained by Cannon’s algorithm (Cannon 1969) and SUMMA (van de
Geijn and Watts 1997). The paper by Irony et al. (2004) also considers
the so-called ‘3D’ case, which does less communication by replicating the
matrices P 1/3 times. This requires M = n2/P 2/3 words of fast memory per
processor. The lower bound becomes W = Ω(n3/P/M1/2) = Ω(n2/P 2/3)
and is a factor P 1/6 smaller than before, and it is attainable (Aggarwal,
Chandra and Snir 1990, Johnsson 1992, Agarwal et al. 1995).

This was eventually generalized by Ballard, Demmel, Holtz and Schwartz
(2011d) to any classical algorithm, that is, one that sufficiently resembles
the three nested loops of matrix multiplication, to W = Ω(#flops/M1/2)
(this will be formalized below). This applies to (1) matmul, all the BLAS,
Cholesky, LU decomposition, LDLT factorization, algorithms that perform
factorizations with orthogonal matrices (under certain technical conditions),
and some graph-theoretic algorithms such as Floyd–Warshall (Floyd 1962,
Warshall 1962), (2) dense or sparse matrices, where #flops may be much
less than n3, (3) some whole programs consisting of sequences of such oper-
ations, such as computing Ak by repeated matrix multiplication, no matter
how the operations are interleaved, and (4) sequential, parallel and other
architectures mentioned above. This lower bound applies for M larger than
needed to store all the data once, up to a limit (Ballard et al. 2012d).

Furthermore, this lower bound on the bandwidth cost W yields a sim-
ple lower bound on the latency cost S. If the largest message allowed
by the architecture is mmax, then clearly S ≥ W/mmax. Since no mes-
sage can be larger than than the memory, that is, mmax ≤ M , we get
S = Ω(#flops/M3/2). Combining these lower bounds on W and W with
the number of arithmetic operations yields a lower bound on the overall run
time, and this in turn yields a lower bound on the energy required to solve
the problem (Demmel, Gearhart, Lipshitz and Schwartz 2013b).

Comparing these bounds to the costs of conventional algorithms, we see
that they are frequently not attained, even for dense linear algebra. Many
new algorithms have been invented that do attain these lower bounds, which
will be summarized in Sections 3 (classical algorithms) and 5 (fast Strassen-
like algorithms).

1.4. Summary of results for iterative linear algebra

Krylov subspace methods are widely used, such as GMRES (Saad and
Schultz 1986) and conjugate gradient (CG) (Hestenes and Stiefel 1952) for
linear systems, or Lanczos (Lanczos 1950) and Arnoldi (Arnoldi 1951) for
eigenvalue problems. In their unpreconditioned variants, each iteration per-
forms 1 (or a few) sparse matrix–vector multiplications (SpMV for short)
with the input matrix A, as well as some dense linear algebra operations
such as dot products. After s iterations, the resulting vectors span an s+ 1
dimensional Krylov subspace, and the ‘best’ solution (depending on the
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algorithm) is chosen from this space. This means that the communication
costs grow in proportion to s. In the sequential case, when A is too large to
fit in the small fast memory, it is read from the large slow memory s times.
If A has nnz nonzero entries that are stored in an explicit data structure,
this means that W ≥ s · nnz. In the parallel case, with A and the vectors
distributed across processors, communication is required at each iteration.
Unless A has a simple block diagonal structure with separate blocks (and
corresponding subvectors) assigned to separate processors, at least one mes-
sage per processor is required for the SpMV. And if a dot product is needed,
at least logP messages are needed to compute the sum. Altogether, this
means S ≥ s logP .

To avoid communication, we make certain assumptions on the matrix A:
it must be ‘well-partitioned’ in a sense to be made more formal in Sec-
tion 7, but for now think of a matrix resulting from a mesh or other spa-
tial discretization, partitioned into roughly equally large submeshes with as
few edges as possible connecting one submesh to another. In other words,
the partitioning should be load-balanced and have a low ‘surface-to-volume
ratio’.

In this case, it is possible to take s steps of many Krylov subspace methods
for the communication cost of one step. In the sequential case this means
W = O(nnz) instead of s · nnz; clearly reading the matrix once from slow
memory for a cost of W = nnz is a lower bound. In the parallel case this
means S = O(log p) instead of O(s log p); clearly the latency cost of one dot
product is also a lower bound.

The idea behind these new algorithms originally appeared in the litera-
ture as s-step methods (see Section 8 for references). One first computed a
different basis of the same Krylov subspace, for example using the matrix-
powers kernel [b, Ab,A2b, . . . , Asb], and then reformulated the rest of the
algorithm to compute the same ‘best’ solution in this subspace. The origi-
nal motivation was exposing more parallelism, not avoiding communication,
which requires different ways of implementing the matrix-powers kernel. But
this research encountered a numerical stability obstacle: the matrix-powers
kernel is basically running the power method, so that the vectors Aib are be-
coming more nearly parallel to the dominant eigenvector, resulting in a very
ill-conditioned basis and failure to converge. Later research partly allevi-
ated this by using different polynomial bases [b, p1(A)b, p2(A)b, . . . , ps(A)b]
where pi(A) is a degree-i polynomial in A, chosen to make the vectors
more linearly independent (e.g., Philippe and Reichel 2012). But choosing
a good polynomial basis (still a challenge to do automatically in general)
was not enough to guarantee convergence in all cases, because two recur-
rences in the algorithm independently updating the approximate solution
and residual could become ‘decoupled’, with the residual falsely indicat-
ing continued convergence of the approximate solution. This was finally
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overcome by a generalization (Carson and Demmel 2014) of the residual re-
placement technique introduced by Van der Vorst and Ye (1999). Reliable
and communication-avoiding s-step methods have now been developed for
many Krylov methods, which offer large speed-ups in theory and practice,
though many open problems remain. These will be discussed in Section 8.

There are two directions in which this work has been extended. First,
many but not all sparse matrices are stored with explicit nonzero entries
and their explicit indices: the nonzero entries may be implicit (for example,
−1 on the offdiagonal of a graph Laplacian matrix), or the indices may be
implicit (common in matrices arising in computer vision applications, where
the locations of nonzeros are determined by the associated pixel locations),
or both may be implicit, in which case the matrix is commonly called a
stencil. In these cases intrinsically less communication is necessary. In
particular, for stencils, only the vectors need to be communicated; we discuss
this further in Section 7.

Second, one often uses preconditioned Krylov methods, e.g., MAx = Mb
instead of Ax = b, where M somehow approximates A−1. It is possible
to derive corresponding s-step methods for many such methods; see, for
instance, Hoemmen (2010). If M has a similar sparsity structure to A (or
is even sparser), then previous communication-avoiding techniques may be
used. But since A−1 is generically dense, M would also often be dense if
written out explicitly, even if it is applied using sparse techniques (e.g., solv-
ing sparse triangular systems arising from an incomplete factorization). This
means that many common preconditioners cannot be used in a straightfor-
ward way. One class that can be used is that of hierarchically semiseparable
matrices, which are represented by low-rank blocks; all of these extensions
are discussed in Section 8.

1.5. Outline of the rest of the paper

The rest of this paper is organized as follows. The first half (Sections 2–5) is
devoted to direct (mostly dense, some sparse) linear algebra, and the second
(Sections 6–8) to iterative linear algebra (mostly for sparse matrices).

We begin in Sections 2 and 3 with communication costs of classical direct
algorithms. We present lower bounds for classical computations in Section 2,
starting with the basic case of classical matrix multiplication (§ 2.1), exten-
sions using reductions (§ 2.2), generalization to three-nested-loops computa-
tions (§§ 2.3, 2.4), orthogonal transformations (§ 2.5), and further extensions
and impact of the lower bounds (§ 2.6).

In Section 3 we discuss communication costs of classical algorithms, both
conventional and communication-optimal. We summarize sequential (§ 3.1)
and parallel ones (§ 3.2), then provide some details (§ 3.3) and point to
remaining gaps and future work (§ 3.4).
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In Sections 4 and 5 we discuss communication costs of fast (Strassen-like)
linear algebra. We present lower bounds for Strassen-like computations
in Section 4, starting with the expansion analysis of computation graphs
(§§ 4.1, 4.2) applied to Strassen’s matrix multiplication (§ 4.3), and Strassen-
like multiplication (§ 4.4), and other algorithms (§ 4.5). In Section 5 we dis-
cuss communication-optimal Strassen-like algorithms that attain the lower
bounds, both sequential (§§ 5.1, 5.2), and parallel (§§ 5.3, 5.4).

In Sections 6, 7 and 8 we discuss communication costs of iterative linear
algebra. We begin with sparse matrix–vector multiplication (SpMV) in
Section 6, starting with sequential lower bounds and optimal algorithms
(§ 6.1), followed by parallel lower bounds and optimal algorithms (§ 6.2).
The main conclusion of Section 6 is that any conventional Krylov subspace
(or similar) method that performs a sequence of SpMVs will most likely be
communication-bound. This motivates Section 7, which presents commu-
nication-avoiding Krylov basis computations, starting with lower bounds
on communication costs (§ 7.1), then Akx algorithms (§ 7.2), and blocking
covers (§ 7.3). We then point to related work and future research (§ 7.4).

Based on the kernels introduced in Section 7, in Section 8 we present
communication-avoiding Krylov subspace methods for eigenvalue problems
(§ 8.2), and for linear systems (§ 8.3). We demonstrate speed-ups (§ 8.4),
and discuss numerical issues with finite precision (§ 8.5), and how to apply
preconditioning in communication-avoiding ways (§ 8.6). We conclude with
remaining gaps and future research (§ 8.7).

2. Lower bounds for classical computations

In this section we consider lower bounds for classical direct linear algebra
computations. These computations can be specified by algorithms that are
basically composed of three nested loops; see further details in Section 2.3.
For some special cases, such as dense matrix multiplication, ‘classical’ means
that the algorithm performs all n3 scalar multiplications in the definition of
n×n matrix multiplication, though the order in which the scalar multiplica-
tions are performed is arbitrary. We thus exclude from the discussion in this
section, for example, Strassen’s fast matrix multiplication (Strassen 1969).
See Sections 4 and 5 for lower bounds and upper bounds of Strassen-like
methods.

2.1. Matrix multiplication

Hong and Kung (1981) proved a lower bound on the bandwidth cost required
to perform dense matrix multiplication in the sequential two-level memory
model using a classical algorithm, where the input matrices are too large
to fit in fast memory. They obtained the following result, using what they
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called a ‘red–blue pebble game’ analysis of the computation graph of the
algorithm.

Theorem 2.1 (Hong and Kung 1981, Corollary 6.2). For classical
matrix multiplication of dense m × k and k × n matrices implemented on
a machine with fast memory of size M , the number of words transferred
between fast and slow memory is

W = Ω

(
mkn

M1/2

)
.

This result was proved using a different technique by Irony et al. (2004)
and generalized to the distributed-memory parallel case. They state the
following parallel bandwidth cost lower bound using an argument based
on the Loomis–Whitney inequality (Loomis and Whitney 1949), given as
Lemma 2.5.

Theorem 2.2 (Irony et al. 2004, Theorem 3.1). For classical matrix
multiplication of dense m× k and k × n matrices implemented on a distri-
buted-memory machine with P processors, each with a local memory of size
M , the number of words communicated by at least one processor is

W = Ω

(
mkn

PM1/2
−M

)
.

In the case where m = k = n and each processor stores the minimal
M = O(n2/P ) words of data, the lower bound on bandwidth cost becomes
Ω(n2/P 1/2). The authors also consider the case where the local memory
size is much larger, M = Θ(n2/P 2/3), in which case O(P 1/3) times as much
memory is used (compared to the minimum possible) and less communi-
cation is necessary. In this case the bandwidth cost lower bound becomes
Ω(n2/P 2/3). See Section 2.6.2 for a discussion of limits on reducing commu-
nication by using extra memory, and Section 3.3.1 for further algorithmic
discussion on utilizing extra memory for matrix multiplication.

For simplicity we will assume real matrices throughout the rest of this
section; all the results generalize to the complex case.

2.2. Extending lower bounds with reductions

It is natural to try to extend the lower bounds for matrix multiplication
to other linear algebra operation by means of reductions. Given a lower
bound for one algorithm, we can make a reduction argument to extend that
bound to another algorithm. In our case, given the matrix multiplication
bounds, if we can show how to perform matrix multiplication using another
algorithm (assuming the transformation requires no extra communication
in an asymptotic sense), then the same bound must apply to the other
algorithm, under the same assumptions.
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A reduction of matrix multiplication to LU decomposition is straightfor-
ward given the following identity:

I 0 −B
A I 0
0 0 I


 =


I
A I
0 0 I





I 0 −B

I A ·B
I


. (2.1)

That is, given two input matrices A and B, we can compute A · B by con-
structing the matrix on the left-hand side of the identity above, performing
an LU decomposition, and then extracting the (2, 3) block of the upper
triangular output matrix. Thus, given an algorithm for LU decomposition
that communicates less than the lower bound for multiplication, we have
an algorithm for matrix multiplication that communicates less than the
lower bound, a contradiction. Note that although the dimension of the LU
decomposition is three times that of the original multiplication, the same
communication bound holds in an asymptotic sense. This reduction appears
in Grigori, Demmel and Xiang (2011) and is stated formally as follows.

Theorem 2.3. Given a fast/local memory of size M , the bandwidth cost
lower bound for classical LU decomposition of a dense n× n matrix is

W = Ω

(
n3

PM1/2

)
.

A similar identity to equation (2.1) holds for Cholesky decomposition:
 I AT −B

A I +A ·AT 0
−BT 0 D


 =


 I

A I
−BT (A ·B)T X


 ·


I AT −B

I A ·B
XT


,

where X is the Cholesky factor of D′ ≡ D −BTB −BTATAB, and D can
be any symmetric matrix such that D′ is positive definite.

However, the reduction is not as straightforward as in the case of LU
because the matrix-multiplication-by-Cholesky algorithm would include the
computation of A · AT , which requires as much communication as general
matrix multiplication.1 We show in Ballard, Demmel, Holtz and Schwartz
(2010) how to change the computation so that we can avoid constructing
the I +A ·AT term and still perform Cholesky decomposition to obtain the
product A ·B.

While a reduction argument is possible for LU and Cholesky decomposi-
tion, it does not seem to work for more general linear algebra operations,
which motivated the approach in the next section.

1 To see why, take A =

(
X 0
Y T 0

)
, and then A ·AT =

(∗ XY
∗ ∗

)
.
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2.3. Three-nested-loops computations

In this section we address classical direct linear algebra numerical methods.
Recall that by ‘classical’ we mean algorithms that compute results using
the definitions of computations, performing O(n3) scalar multiplications for
dense matrices. These computations can be specified by algorithms that are
basically composed of three nested loops.

The key observation, and the basis for the arguments in this section, is
that the proof technique of Irony et al. (2004) can be applied more generally
than just to dense matrix multiplication. The geometric argument is based
on the lattice of indices (i, j, k), which corresponds to the updates Cij =
Cij + Aik ·Bkj in the innermost loop. However, the proof does not depend
on, for example, the scalar operations being multiplication and addition,
the matrices being dense, or the input and output matrices being distinct.
The important property is the relationship among the indices (i, j, k), which
allows for the embedding of the computation in three dimensions. These
observations let us state and prove a more general set of theorems and
corollaries that provide a lower bound on the number of words moved into
or out of a fast or local memory of size M : for a large class of classical linear
algebra algorithms,

W = Ω(G/M1/2),

where G is proportional to the total number of flops performed by the pro-
cessor. In the parallel case, G may be the total number of flops divided by
the number of processors (if the computation is load-balanced), or it may
be some arbitrary amount of computation performed by the processor. In
other words, a computation executed using a classical linear algebra algo-
rithm requires at least Ω(1/

√
M) memory operations for every arithmetic

operation, or conversely, the maximum amount of re-use for any word read
into fast or local memory during such a computation is O(

√
M) arithmetic

operations.
The main contributions of this section are lower bound results for dense

or sparse matrices, on sequential and parallel machines, for the following
computations:

• Basic Linear Algebra Subroutines (BLAS), including matrix multipli-
cation and solving triangular systems;

• LU, Cholesky, LDLT , LTLT factorizations, including incomplete ver-
sions;

• QR factorization, including approaches based on solving the normal
equations, Gram–Schmidt orthogonalization, or applying orthogonal
transformations;

• eigenvalue and singular value reductions via orthogonal transforma-
tions and computing eigenvectors from Schur form; and
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• all-pairs shortest paths computation based on the Floyd–Warshall ap-
proach.

Recall the simplest pseudocode for multiplying n × n matrices, as three
nested loops:

for i = 1 to n

for j = 1 to n

for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]

While the pseudocode above specifies a particular order on the n3 inner loop
iterations, any complete traversal of the index space yields a correct com-
putation (and all orderings generate equivalent results in exact arithmetic).
As we will see, nearly all of classical linear algebra can be expressed in a
similar way: with three nested loops.

Note that the matrix multiplication computation can be specified more
generally in mathematical notation:

Cij =
∑
k

AikBkj ,

where the order of summation and order of computation of output entries
are left undefined. In this section we specify computations in this general
way, but we will use the term ‘three-nested-loops’ to refer to computations
that can be expressed with pseudocode similar to that of the matrix multi-
plication above.

2.3.1. Lower bound argument
We first define our model of computation formally, and illustrate it in the
case of matrix multiplication: C = C + A · B. Let Sa ⊆ {1, 2, . . . , n} ×
{1, 2, . . . , n}, corresponding in matrix multiplication to the subset of entries
of the indices of the input matrix A that are accessed by the algorithm
(e.g., the indices of the nonzero entries of a sparse matrix). Let M be the
set of locations in slow/global memory (on a parallel machine M refers to
a location in some processor’s memory; the processor number is implicit).
Let a : Sa �→ M be a mapping from the indices to memory, and similarly
define Sb, Sc and b(·, ·), c(·, ·), corresponding to the matrices B and C. The
value of a memory location l ∈ M is denoted by Mem(l). We assume that
the values are independent: that is, determining any value requires us to
access the memory location.

Definition 2.4 (3NL computation). A computation is considered to
be three-nested-loops (3NL) if it includes computing, for all (i, j) ∈ Sc
with Sij ⊆ {1, 2, . . . , n},

Mem(c(i, j)) = fij
({
gijk(Mem(a(i, k)),Mem(b(k, j))

}
k∈Sij

)
,
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where

(a) mappings a, b, and c are all one-to-one into slow/global memory, and

(b) functions fij and gijk depend nontrivially on their arguments.

Further, define a 3NL operation as an evaluation of a gijk function, and let
G be the number of unique 3NL operations performed:

G =
∑

(i,j)∈Sc

|Sij |.

Note that while each mapping a, b and c must be one-to-one, the ranges
are not required to be disjoint. For example, if we are computing the square
of a matrix, then A = B and a = b, and the computation is still 3NL.

By requiring that the functions fij and gijk depend ‘nontrivially’ on their
arguments, we mean the following: we need at least one word of space to
compute fij (which may or may not be Mem(c(i, j))) to act as ‘accumulator’
of the value of fij , and we need the values Mem(a(i, k)) and Mem(b(k, j))
to be in fast or local memory before evaluating gijk. Note that fij and gijk
may depend on other arguments, but we do not require that the functions
depend nontrivially on them.

Note also that we may not know until after the computation what Sc, fij ,
Sij , or gijk were, since they may be determined on the fly. For example, in
the case of sparse matrix multiplication, the sparsity pattern of the output
matrix C may not be known at the start of the algorithm. There may
even be branches in the code based on random numbers, or in the case of
LU decomposition, pivoting decisions are made through the course of the
computation.

Now we illustrate the notation in Definition 2.4 for the case of sequential
dense n × n matrix multiplication C = C + A · B, where A, B and C are
stored in column-major layout in slow memory. We take Sc as all pairs
(i, j) with 1 ≤ i, j ≤ n with output entry Cij stored in location c(i, j) =
C + (i − 1) + (j − 1) · n, where C is some memory location. Input matrix
entry Aik is analogously stored at location a(i, k) = A+ (i− 1) + (k− 1) · n
and Bkj is stored at location b(k, j) = B + (k − 1) + (j − 1) · n, where
A and B are offsets chosen so that none of the matrices overlap. The set
Sij = {1, 2, . . . , n} for all (i, j). Operation gijk is scalar multiplication, and
fij computes the sum of its n arguments. Thus, G = n3. In the case of
parallel matrix multiplication, a single processor will perform only a subset
of the computation. In this case, for a given processor, the sizes of the sets
Sc and Sij may be smaller than n2 and n, respectively, and G will become
n3/P if the computation is load-balanced.

Loomis and Whitney (1949) proved a geometrical result that provides a
surface-to-volume relationship in general high-dimensional space. We need
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Figure 2.1. Intuition for Lemma 2.5: the volume of a box is equal
to the square root of the product of the areas of its projections.

only the simplest version of their result, which will prove instrumental in
our lower bound arguments.

Lemma 2.5 (Loomis and Whitney 1949). Let V be a finite set of lat-
tice points in R

3, that is, points (i, j, k) with integer coordinates. Let Vi
be the projection of V in the i-direction, that is, all points (j, k) such that
there exists an x so that (x, j, k) ∈ V . Define Vj and Vk similarly. Let | · |
denote the cardinality of a set. Then |V | ≤ √|Vi| × |Vj | × |Vk|.

An intuition for the correctness of this lemma is as follows. Think of a
box of dimensions x×y×z. Then its (rectangular) projections on the three
planes have areas x · y, y · z and x · z, and we have that its volume x · y · z is
equal to the square root of the product of the three areas. See Figure 2.1 for
a graphical representation of this idea. In this instance equality is achieved;
only the inequality applies in general.

We now state and prove the communication lower bound for 3NL com-
putations.

Theorem 2.6 (Ballard et al. 2011d). The bandwidth cost lower bound
of a 3NL computation (Definition 2.4) is

W ≥ G

8
√
M

−M,

where M is the size of the fast/local memory.

Proof. Following Irony et al. (2004), we consider any implementation of
the computation as a stream of instructions involving computations and
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memory operations: loads and stores from and to slow/global memory. The
argument is as follows.

• Break the stream of instructions executed into segments, where each
segment contains exactlyM load and store instructions (i.e., that cause
communication), where M is the fast (or local) memory size.

• Bound from above the number of 3NL operations that can be per-
formed during any given segment, calling this upper bound F .

• Bound from below the number of (complete) segments by the total
number of 3NL operations divided by F (i.e., �G/F �).

• Bound from below the total number of loads and stores, by M (num-
ber of loads and stores per segment) times the minimum number of
complete segments, �G/F �, so it is at least M · �G/F �.

Because functions fij and gijk depend nontrivially on their arguments,
an evaluation of a gijk function requires that the two input operands must
be resident in fast memory and the output operand (which may be an ac-
cumulator) must either continue to reside in fast memory or be written to
slow/global memory (it cannot be discarded).

For a given segment, we can bound the number of input and output
operands that are available in fast/local memory in terms of the memory
size M . Consider the values Mem(c(i, j)): for each (i, j), at least one ac-
cumulator must reside in fast memory during the segment; since there are
at most M words in fast memory at the end of a segment and at most
M store operations, there can be no more than 2M distinct accumulators.
Now consider the values Mem(a(i, k)): at the start of the segment, there
can be at most M distinct operands resident in fast memory since a is one-
to-one; during the segment, there can be at most M additional operands
read into fast memory since a segment contains exactly M memory oper-
ations. If the range of a overlaps with the range of c, then there may be
values Mem(a(i, k)) which were computed as Mem(c(i, j)) values during the
segment. Since there are at most 2M such operands, the total number of
Mem(a(i, k)) values available during a segment is 4M . The same argument
holds for Mem(b(k, j)) independently. Thus, the number of each type of
operand available during a given segment is at most 4M . Note that the
constant factor 4 can be improved in particular cases, for example when the
ranges of a, b, and c do not overlap.

Now we compute the upper bound F using the geometric result of Loomis
and Whitney (1949), a simpler form of which is given as Lemma 2.5. Let
the set of lattice points (i, j, k) represent each function evaluation

gijk(Mem(a(i, k)),Mem(b(k, j))).

For a given segment, let V be the set of indices (i, j, k) of the gijk operations
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performed during the segment, let Vk be the set of indices (i, j) of their
destinations c(i, j), let Vj be the set of indices (i, k) of their arguments
a(i, k), and let Vi be the set of indices (j, k) of their arguments b(j, k).
Then by Lemma 2.5,

|V | ≤
√

|Vi| · |Vj | · |Vk| ≤
√

(4M)3 ≡ F.

Hence the total number of loads and stores over all segments is bounded
by

M

⌊
G

F

⌋
= M

⌊
G√

(4M)3

⌋
≥ G

8
√
M

−M.

Note that the proof of Theorem 2.6 applies to any ordering of the gijk
operations. In the case of matrix multiplication, there are no dependences
between gijk operations, so every ordering will compute the correct answer.
However, for most other computations, there are many dependences that
must be respected for correct computation. This lower bound argument thus
applies not only to correct reorderings of the algorithm but also to incorrect
ones, as long as the computation satisfies the conditions of Definition 2.4.

In the parallel case, since some processor must compute at least 1/P th of
the 3NL operations, we can lower bound the number of words that processor
communicates and achieve the following corollary.

Corollary 2.7 (Ballard et al. 2011d). The bandwidth cost lower bound
of a 3NL computation (Definition 2.4) on a parallel machine is

W ≥ G

8P
√
M

−M,

where G is the total number of 3NL operations (performed globally), P is
the number of processors, and M is the size of the local memory.

Note that Corollary 2.7 may not be the tightest lower bound for a given
work distribution of G 3NL operations to processors. For example, if Gi is
the number of 3NL operations performed by processor i (with

∑
iGi = G),

then the tightest lower bound is given by maxiGi/(8
√
M) − M . In the

following section we will state corollaries of Theorem 2.6 in terms of G, the
number of 3NL operations performed locally by a given processor; that is,
the corollaries can be applied in either the sequential or parallel case.

In the case of dense matrix multiplication and other computations where
G = Θ(n3), we can state simplified versions of Theorem 2.6. In particular,
we can write the lower bounds for dense 3NL computations in a way that
is easily comparable with Strassen-like and other fast computations (see
Section 4). In the sequential case, assuming n � √

M , the lower bound
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becomes

W = Ω

((
n√
M

)3

·M
)
. (2.2)

In the parallel case, assuming n�M1/2P 1/3, the lower bound becomes

W = Ω

((
n√
M

)3

· M
P

)
. (2.3)

2.3.2. Applications of the lower bound

We now show how Theorem 2.6 applies to a variety of classical computations
for numerical linear algebra.

2.3.2.1. BLAS. We begin with matrix multiplication, on which we base
Definition 2.4. The proof is implicit in the illustration of the definition with
matrix multiplication in Section 2.3.1.

Corollary 2.8. The bandwidth cost lower bound for classical (dense or
sparse) matrix multiplication is G/(8

√
M) −M , where G is the number of

scalar multiplications performed. In the special case of sequentially multi-
plying a dense m× k matrix times a dense k × n matrix, this lower bound
is mkn/(8

√
M) −M .

This reproduces Theorem 2.2 from Irony et al. (2004) (with a different
constant) for the case of two distinct, dense matrices, though we need no
such assumptions. We note that this result could have been stated for
sparse A and B by Hong and Kung (1981): combine their Theorem 6.1 (their
Ω(|V |) is the number of scalar multiplications) with their Lemma 6.1 (whose
proof does not require A and B to be dense). For algorithms attaining this
bound in the dense case, see Section 3.3.1. For further discussion of this
bound in the sparse case, see Ballard et al. (2013c).

We next extend Theorem 2.6 beyond matrix multiplication. The sim-
plest extension is to the so-called level-3 BLAS (Basic Linear Algebra Sub-
routines: Blackford et al. 2002), which include related operations such as
multiplication by (conjugate) transposed matrices, by triangular matrices
and by symmetric (or Hermitian) matrices. Corollary 2.8 applies to these
operations without change (in the case of AT ·A we use the fact that The-
orem 2.6 makes no assumptions about the matrices being multiplied not
overlapping).

More interesting is the level-3 BLAS operation for solving a triangular
system with multiple right-hand sides (TRSM), computing for example C =
A−1B, where A is triangular. The classical dense computation (when A is
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upper triangular) is specified by

Cij =

(
Bij −

n∑
k=i+1

Aik · Ckj

)/
Aii, (2.4)

which can be executed in any order with respect to j but only in decreasing
order with respect to i.

Corollary 2.9. The bandwidth cost lower bound for classical (dense or
sparse) TRSM is G/(8

√
M)−M , where G is the number of scalar multiplica-

tions performed. In the special case of sequentially solving a dense triangular
n× n system with m right-hand sides, this lower bound is Ω(mn2/

√
M).

Proof. We need only verify that TRSM is a 3NL computation. We let fij
be the function defined in equation (2.4) (or similarly for lower triangular
matrices or other variants). Then we make the correspondences that Cij is
stored at location c(i, j) = b(i, j), Aik is stored at location a(i, k), and gijk
multiplies Aik · Ckj . Since A is an input stored in slow/global memory and
C is the output of the operation and must be written to slow/global mem-
ory, the mappings a, b, and c are all one-to-one into slow/global memory.
Note that c = b does not prevent the computation from being 3NL. Further,
functions fij (involving a summation of gijk outputs) and gijk (scalar mul-
tiplication) depend nontrivially on their arguments. Thus, the computation
is 3NL.

In the case of dense n× n triangular A and dense n×m B, the number
of scalar multiplications is G = Θ(mn2).

See Section 3.3.1 for discussions of algorithms attaining this bound for
dense matrices.

Given a lower bound for TRSM, we can obtain lower bounds for other
computations for which TRSM is a subroutine. For example, given an m×n
matrix A (m ≥ n), the Cholesky–QR algorithm consists of forming ATA
and computing the Cholesky decomposition of that n × n matrix. The R
factor is the upper triangular Cholesky factor and, if desired, Q is obtained
by solving the equation Q = AR−1 using TRSM. Note that entries of R and
Q are outputs of the computation, so both are mapped into slow/global
memory. The communication lower bounds for TRSM thus apply to the
Cholesky–QR algorithm (and reflect a constant fraction of the total number
of multiplications of the overall dense algorithm if m = O(n)).

We note that Theorem 2.6 also applies to the level-2 BLAS (e.g., matrix–
vector multiplication) and level-1 BLAS (e.g., dot products), though the
lower bound is not attainable. In those cases, the number of words required
to access each of the input entries once already exceeds the lower bound of
Theorem 2.6.
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2.3.2.2. LU factorization. Independent of sparsity and pivot order, the clas-
sical LU factorization (with L unit lower triangular) is specified by

Lij =

(
Aij −

∑
k<j

Lik · Ukj

)/
Ujj , for i > j,

Uij = Aij −
∑
k<i

Lik · Ukj , for i ≤ j.
(2.5)

In the sparse case, the equations may be evaluated for some subset of in-
dices (i, j) and the summations may be over some subset of the indices k.
Equation (2.5) also assumes pivoting has already been incorporated in the
interpretation of the indices i, j, and k. Note that since the set of input
and output operands overlap, there are data dependences which must be
respected for correct computation.

Corollary 2.10. The bandwidth cost lower bound for classical (dense or
sparse) LU factorization is G/(8

√
M)−M , where G is the number of scalar

multiplications performed. In the special case of sequentially factoring a
dense m× n matrix with m ≥ n, this lower bound is Ω(mn2/

√
M).

We omit the proof as it is similar to that of Corollary 2.9: see Ballard
(2013, §4.1.2.2) for full details. Note that Corollary 2.10 reproduces the
result from the reduction argument in Section 2.2 for dense and square
factorization. However, this corollary is a strict generalization, as it also
applies to sparse and rectangular factorizations. For a discussion of algo-
rithms attaining this bound for dense matrices, see Section 3.3.3.

Consider incomplete LU (ILU) factorization (Saad 2003), where some en-
tries of L and U are omitted in order to speed up the computation. In the
case of level-based incomplete factorizations (i.e., ILU(p)), Corollary 2.10
applies with G corresponding to the scalar multiplications performed. How-
ever, consider threshold-based ILU, which computes a possible nonzero entry
Lij or Uij and compares it to a threshold, storing it only if it is larger than
the threshold and discarding it otherwise. Does Corollary 2.10 apply to this
computation?

Because a computed entry Lij may be discarded, the assumption that fij
depends nontrivially on its arguments is violated. However, if we restrict the
count of scalar multiplications to the subset of Sc for which output entries
are not discarded, then all the assumptions of 3NL are met, and the lower
bound applies (with G computed based on the subset). This count may
underestimate the computation by more than a constant factor (if nearly
all computed values fall beneath the threshold), but the lower bound will
be valid nonetheless. We consider another technique to arrive at a lower
bound for threshold-based incomplete factorizations in Section 2.4.2.2.
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2.3.2.3. Cholesky factorization. Independent of sparsity and (diagonal) pivot
order, the classical Cholesky factorization is specified by

Ljj =

(
Ajj −

∑
k<j

L2
jk

)1/2

,

Lij =

(
Aij −

∑
k<j

Lik · Ljk

)/
Ljj , for i > j.

(2.6)

In the sparse case, the equations may be evaluated for some subset of in-
dices (i, j) and the summations may be over some subset of the indices k.
Equation (2.6) also assumes pivoting has already been incorporated in the
interpretation of the indices i, j, and k. As in the case of LU factorization,
there are data dependences which must be respected for correct computa-
tion.

Corollary 2.11. The bandwidth cost lower bound for classical (dense or
sparse) Cholesky factorization is G/(8

√
M)−M , where G is the number of

scalar multiplications performed. In the special case of sequentially factoring
a dense n× n matrix, this lower bound is Ω(n3/

√
M).

We omit the proof as it is similar to that of Corollary 2.9: see Ballard
(2013, §4.1.2.3) for full details. Note that Corollary 2.11 reproduces the
result from the reduction argument in Section 2.2 for dense factorization.
However, this corollary is a strict generalization, as it also applies to sparse
factorizations. For algorithms attaining this bound in the dense case, see
Section 3.3.2. As in the case of LU (Section 2.3.2.2), Corollary 2.11 is
general enough to accommodate incomplete Cholesky (IC) factorizations
(Saad 2003).

We now consider Cholesky factorization on a particular class of sparse
matrices for which computational lower bounds are known. Since these
computational bounds apply toG, Corollary 2.11 leads directly to a concrete
communication lower bound. Hoffman, Martin and Rose (1973) and George
(1973) prove that a lower bound on the number of multiplications required to
compute the sparse Cholesky factorization of an n2×n2 matrix representing
a five-point stencil on a 2D grid of n2 nodes is Ω(n3). This lower bound
applies to any matrix containing the structure of the five-point stencil. This
yields the following.

Corollary 2.12. In the case of the sparse Cholesky factorization on a
sequential machine of a matrix which includes the sparsity structure of the
matrix representing a five-point stencil on a two-dimensional grid of n2

nodes, the bandwidth cost lower bound is Ω(n3/
√
M).

George (1973) shows that this arithmetic lower bound is attainable with
a nested dissection algorithm in the case of the five-point stencil. Gilbert
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and Tarjan (1987) show that the upper bound also applies to a larger class
of structured matrices, including matrices associated with planar graphs.
Recently, Grigori, David, Demmel and Peyronnet (2010) have obtained new
algorithms for sparse cases of Cholesky decomposition that are proved to
be communication-optimal using this lower bound.

2.3.2.4. Computing eigenvectors from Schur form. The Schur decomposi-
tion of a matrix A is the decomposition A = QTQT , where Q is unitary and
T is upper triangular. Note that in the real-valued case, Q is orthogonal
and T is quasi-triangular. The eigenvalues of a triangular matrix are given
by the diagonal entries. Assuming all the eigenvalues are distinct, we can
solve the equation TX = XD for the upper triangular eigenvector matrix
X, where D is a diagonal matrix whose entries are the diagonal of T . This
implies that for i < j,

Xij =

(
TijXjj +

j−1∑
k=i+1

TikXkj

)/(
Tjj − Tii

)
(2.7)

where Xjj = 0 can be arbitrarily chosen for each j. Note that in the sparse
case, the equations may be evaluated for some subset of indices (i, j) and
the summations may be over some subset of the indices k. After computing
X, the eigenvectors of A are given by QX.

Corollary 2.13. The bandwidth cost lower bound for computing the eigen-
vectors of a (dense or sparse) triangular matrix with distinct eigenvalues is
G/(8

√
M)−M , where G is the number of scalar multiplications performed.

In the special case of a dense triangular n × n matrix on a sequential ma-
chine, this lower bound is Ω(n3/

√
M).

We omit the proof as it is similar to that of Corollary 2.9: see Ballard
(2013, §4.1.2.4) for full details.

2.3.2.5. Floyd–Warshall all-pairs shortest paths. Theorem 2.6 applies to
more general computations than strictly linear algebraic ones, where gijk
are scalar multiplications and fij are based on summations. We consider
the Floyd–Warshall method (Floyd 1962, Warshall 1962) for computing the

shortest paths between all pairs of vertices in a graph. If we define d
(k)
ij to be

the shortest distance between vertex i and vertex j using the first k vertices,
then executing the following computation for all k, i, and j determines in

D
(n)
ij the shortest path between vertex i and vertex j using the entire graph:

D
(k)
ij = min

(
D

(k−1)
ij , D

(k−1)
ik +D

(k−1)
kj

)
. (2.8)

Taking care to respect the data dependences, the computation can be done
in place, with D(0) being the original adjacency graph and each D(k) over-
writing D(k−1). The original formulation of the algorithm consists of three
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nested loops with k as the outermost loop index, but there are many other
orderings which maintain correctness.

Corollary 2.14. The bandwidth cost lower bound for computing all-pairs
shortest paths using the Floyd–Warshall method is G/(8

√
M)−M , where G

is the number of scalar additions performed. In the special case of sequen-
tially computing all-pairs shortest paths on a dense graph with n vertices,
this lower bound is Ω(n3/

√
M).

We omit the proof as it is similar to that of Corollary 2.9: see Ballard
(2013, §4.1.2.5) for full details. This result is also claimed (without proof) as
Lemma 1 of Park, Penner and Prasanna (2004); the authors also provide a
sequential algorithm attaining the bound. For a parallel algorithm attaining
this bound, see Section 3.3.8 and further details in Solomonik, Buluç and
Demmel (2013).

2.4. Three-nested-loop computation with temporary operands

2.4.1. Lower bound argument

Many linear algebraic computations are nearly 3NL but fail to satisfy the as-
sumption that a, b and c are one-to-one mappings into slow/global memory.
In this section, we show that, under certain assumptions, we can still prove
meaningful lower bounds. We will first consider two examples to provide
intuition for the proof and then make the argument rigorous.

Consider computing the Frobenius norm of a product of matrices:

‖A ·B‖2F =
∑
ij

(A ·B)2ij .

If we define fij as the square of the dot product of row i of A and column
j of B, the output of fij does not necessarily map to a location in slow
memory because entries of the product A · B are only temporary values,
not outputs of the computation (the norm is the only output). However, in
order to compute the norm correctly, every entry of A·B must be computed,
so the matrix might as well be an output of the computation (in which case
Theorem 2.6 would apply). In the proof of Theorem 2.15 below, we show
using a technique of imposing writes that the amount of communication
required for computations with temporary values like these is asymptotically
the same as those forced to output the temporary values.

While the example above illustrates temporary output operands of fij
functions, a computation may also have temporary input operands to gijk
functions. For example, if we want to compute the Frobenius norm of a
product of matrices where the entries of the input matrices are given by
formulas (e.g., Aij = i2 + j), then the computation may require very little
communication since the entries can be recomputed on the fly as needed.



24 Ballard,Carson,Demmel,Hoemmen,Knight, Schwartz

However, if we require that each temporary input operand be computed
only once, and we map each operand to a location in slow/global memory,
then if the operand has already been computed and does not reside in fast
memory, it must be read from slow/global memory. The assumption that
each temporary operand be computed only once seems overly restrictive in
the case of matrix entries given by simple formulas of their indices, but
for many other common computations (see Section 2.4.2), the temporary
values are more expensive to compute and recomputation on the fly is more
difficult.

We now make the intuition given in the examples above more rigorous.
First, we define a temporary value as any value involved in a computation
that is not an original input or final output. In particular, a temporary
value need not be mapped to a location in slow memory. Next, we dis-
tinguish a particular set of temporary values: we define the temporary
inputs to gijk functions and temporary outputs of fij functions as tem-
porary operands. While there may be other temporary values involved in
the computation (e.g., outputs of gijk functions), we do not consider them
temporary operands.2 A temporary input a(i, k) may be an input to mul-
tiple gijk functions (gijk and gij′k for j = j′), but we consider it a single
temporary operand. There may also be multiple accumulators for one out-
put of an fij function, but we consider only the final computed output as
a temporary operand. In the case of computing the Frobenius norm of a
product of matrices whose entries are given by formulas, the number of
temporary operands is 3n2, corresponding to the entries of the input and
output matrices.

We now state the result more formally.

Theorem 2.15. Suppose a computation is 3NL except that some of its
operands (i.e., inputs to gijk operations or outputs of fij functions) are
temporary and are not necessarily mapped to slow/global memory. Then
if the number of temporary operands is t, and if each (input or output)
temporary operand is computed exactly once, then the bandwidth cost lower
bound is given by

W ≥ G

8
√
M

−M − t,

where M is the size of the fast/local memory.

Proof. Let C be such a computation, and let C′ be the same computation
with the exception that for each of the three types of operands (defined by
mappings a, b, and c), every temporary operand is mapped to a distinct

2 We ignore these other temporary values because, as in the case of true 3NL computa-
tions, they typically do not require any memory traffic.
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location in slow/global memory and must be written to that location by
the end of the computation. This enforces that the mappings a, b, and c
are all one-to-one into slow/global memory, and so C′ is a 3NL computation
and Theorem 2.6 applies. Consider an algorithm that correctly performs
computation C. Modify the algorithm by imposing writes: every time a
temporary operand is computed, we impose a write to the corresponding
location in slow/global memory (a copy of the value may remain in fast
memory). After this modification, the algorithm will correctly perform the
computation C′. Thus, since every temporary operand is computed exactly
once, the bandwidth cost of the algorithm differs by at most t words from
an algorithm to which the lower bound W ≥ G/(8

√
M) −M applies, and

the result follows.

2.4.2. Applications of the lower bound
2.4.2.1. Solving the normal equations. In Section 2.3.2.1 we proved a com-
munication lower bound for the Cholesky–QR computation by applying
Theorem 2.6 to the TRSM required to compute the orthogonal matrix Q. In
some related situations, such as solving the normal equations ATAx = AT b
(by forming ATA and performing a Cholesky decomposition), the compu-
tation does not form Q explicitly. Here, we apply Theorem 2.15 to the
computation ATA, the output of which is a temporary matrix.

Corollary 2.16. The bandwidth cost lower bound for solving the normal
equations to find the solution to a least-squares problem with matrix A is
G/(8

√
M)−M−t, where G is the number of scalar multiplications involved

in the computation of ATA, t is the number of nonzeros in ATA, and we
assume the entries of ATA are computed only once. In the special case of
a dense m × n matrix A with m ≥ n on a sequential machine, this lower
bound is Ω(mn2/

√
M).

Proof. As argued in Section 2.3.2.1, computing ATA is a 3NL computation
(we ignore the Cholesky factorization and triangular solves in this proof).
That is, a(i, j) = b(j, i) and fij is the summation function defined for either
the lower (i ≥ j) or upper (i ≤ j) triangle because the output is symmetric.
Since A is an input to the normal equations, it must be stored in slow mem-
ory. However, the output of ATA need not be stored in slow memory (its
Cholesky factor will be used to solve for the final output of the computa-
tion). Thus, the number of temporary operands is the number of nonzeros
in the output of ATA, which are all outputs of fij functions. In the case of
a dense m × n matrix A with m ≥ n, the output ATA is n × n (symmet-
ric, so n2/2 terms). When m,n ≥ √

M , the mn2/
√
M term asymptotically

dominates the (negative) M and n2/2 terms.

Note that if A is sparse, R may be denser, in which case a stronger lower
bound can be derived from the Cholesky part.
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2.4.2.2. Incomplete factorizations. Section 2.3.2.2 considered lower bounds
for threshold-based incomplete LU factorizations. Because Theorem 2.6
requires that the fij functions depend nontrivially on their arguments, we
must ignore all scalar multiplications that lead to discarded outputs (due
to their values falling below the threshold). However, because the output
values must be fully computed before comparing them to the threshold
value, we may be ignoring a significant amount of the computation. Using
Theorem 2.15, we can state another (possibly tighter) lower bound which
counts all the scalar multiplications performed by imposing reads and writes
on the discarded values.

Corollary 2.17. Consider a threshold-based incomplete LU or Cholesky
factorization, and let t be the number of output values discarded due to
thresholding. Assuming each discarded value is computed exactly once, the
bandwidth cost lower bound for the computation is G/(8

√
M) − M − t,

where G is the number of scalar multiplications.

We omit the proof: see Ballard (2013, §4.2.2.2) for full details.

2.4.2.3. LDLT factorization. For the (symmetric) factorization of symmet-
ric indefinite matrices, symmetric pivoting is required for numerical stabil-
ity. Independent of sparsity and pivot order, the classical Bunch–Kaufman
LDLT factorization (Bunch and Kaufman 1977), where L is unit lower tri-
angular and D is block diagonal with 1 × 1 and 2 × 2 blocks, is specified in
the case of positive or negative definite matrices (i.e., all diagonal blocks of
D are 1 × 1) by

Djj = Ajj −
∑
k<j

L2
jkDkk,

Lij =

(
Aij −

∑
k<j

Lik · (DkkLjk)

)/
Djj , for i > j.

(2.9)

In the sparse case, the equations may be evaluated for some subset of in-
dices (i, j) and the summations may be over some subset of the indices k.
Equation (2.9) also assumes pivoting has already been incorporated in the
interpretation of the indices i, j and k.

Note that in this case, the operand (DkkLjk) is a temporary operand.
This complication is overlooked in an earlier paper (Ballard et al. 2011d),
where it is claimed that the argument for Cholesky also applies to LDLT

factorization. In the terminology used here, it is assumed that LDLT is
3NL. Here, we obtain the lower bound as a corollary of Theorem 2.15.

To specify the more general computation where D includes both 1 × 1
and 2 × 2 blocks, we define the matrix W = DLT and let S be the set of
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rows/columns corresponding to a 1 × 1 block of D. Then, for j ∈ S, the
computation of column j of L can be written similarly to equation (2.9):

Lij =

(
Aij −

∑
k<j

Lik ·Wkj

)/
Djj , for i > j. (2.10)

For pairs of columns j, j+ 1 /∈ S corresponding to 2× 2 blocks of D, we will
use colon notation to describe the computation for pairs of elements:

Li,j:j+1 =

(
Ai,j:j+1−

∑
k<j

Li,k ·Wk,j:j+1

)
D−1

j:j+1,j:j+1, for i > j+1. (2.11)

Corollary 2.18. The bandwidth cost lower bound for classical (dense or
sparse) LDLT factorization is G/(

√
8M) −M − t, where G is the number

of scalar multiplications performed in computing L, t is the number of non-
zeros in the matrix DLT , and we assume the entries of DLT are computed
only once. In the special case of sequentially factoring a dense n×n matrix,
this lower bound is Ω(n3/

√
M).

We omit the proof: see Ballard (2013, §4.2.2.3) for full details. See Sec-
tion 3.3.4 for a discussion of algorithms for this computation. No known
sequential algorithm attains this bound for all matrix dimensions and per-
forms a numerically stable pivoting scheme.

2.4.2.4. LTLT factorization. This symmetric indefinite factorization com-
putes a lower triangular matrix L and a symmetric tridiagonal matrix T
such that A = LTLT . Symmetric pivoting is required for numerical sta-
bility. Parlett and Reid (1970) developed an algorithm for computing this
factorization requiring approximately (2/3)n3 flops, the same cost as LU
factorization and twice the computational cost of Cholesky. Aasen (1971)
improved the algorithm and reduced the computational cost to (1/3)n3,
making use of a temporary upper Hessenberg matrix H = TLT . Aasen’s
algorithm works by alternately solving for unknown values in the equa-
tions A = LH and H = TLT . Because the matrix H is integral to the
computation but is a temporary matrix, we use Theorem 2.15 to obtain a
communication lower bound.

In fact, the computation can be generalized to compute a symmetric band
matrix T with bandwidth b (i.e., b is the number of nonzero diagonals both
below and above the main diagonal of T ), in which case the matrix H has
b nonzero subdiagonals. For uniqueness, the L matrix is set to have unit
diagonal and the first b columns of L are set to the first b columns of the
identity matrix. Because there are multiple ways to compute T and H,
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we specify a classical LTLT computation in terms of the lower triangular
matrix L:

Lij =

(
Ai,j−b −

j−b∑
k=b+1

LikHk,j−b

)/
Hj,j−b, for b < j < i ≤ n. (2.12)

In the sparse case, the equations may be evaluated for some subset of
indices (i, j) and the summations may be over some subset of the indices k.
Equation (2.12) also assumes pivoting has already been incorporated in the
interpretation of the indices i, j, and k.

Corollary 2.19. The bandwidth cost lower bound for classical (dense or
sparse) LTLT factorization is G/(8

√
M) −M − t, where G is the number

of scalar multiplications performed in computing L, t is the number of non-
zeros in the matrix TLT , and we assume the entries of TLT are computed
only once. In the special case of sequentially factoring a dense n×n matrix
(with T having bandwidth b� n), this lower bound is Ω(n3/

√
M).

We omit the proof: see Ballard (2013, §4.2.2.4) for full details. This
bound is attainable in the sequential case by the algorithm presented in
Ballard et al. (2013c). See Section 3.3.4 for further discussion of symmetric
indefinite algorithms.

2.4.2.5. Gram–Schmidt orthogonalization. We consider the Gram–Schmidt
process (both classical and modified versions) for orthogonalization of a set
of vectors (see, e.g., Algorithm 3.1 of Demmel 1997). Given a set of vec-
tors stored as columns of an m × n matrix A, the Gram–Schmidt process
computes a QR decomposition, though the R matrix is sometimes not con-
sidered part of the output. For generality, we assume the R matrix is not
a final output and use Theorem 2.15. Letting the columns of Q be the
computed orthonormal basis, we specify the Gram–Schmidt computation in
terms of the equation for computing entries of R. In the case of Classical
Gram–Schmidt, we have

Rij =
m∑
k=1

QkiAkj , (2.13)

and in the case of Modified Gram–Schmidt, we have

Rij =
m∑
k=1

QkiQkj , (2.14)

where Qkj is the partially computed value of the jth orthonormal vector. In
the sparse case, the equations may be evaluated for some subset of indices
(i, j) and the summations may be over some subset of the indices k.
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Corollary 2.20. The bandwidth cost lower bound for (dense or sparse)
QR factorization using Classical or Modified Gram–Schmidt orthogonaliza-
tion is G/(8

√
M) −M − t, where G is the number of scalar multiplications

performed in computing R, t is the number of nonzeros in R, and we assume
the entries of R are computed only once. In the special case of orthogonal-
izing a dense m× n matrix with m ≥ n on a sequential machine, this lower
bound is Ω(mn2/

√
M).

We omit the proof: see Ballard (2013, §4.2.2.5) for full details.

2.5. Applying orthogonal transformations

The most stable and highest-performing algorithms for QR decomposition
are based on applying orthogonal transformations. Two-sided orthogonal
transformations are used in the reduction step of the most commonly used
approaches for solving eigenvalue and singular value problems: transforming
a matrix to Hessenberg form for the nonsymmetric eigenproblem, tridiago-
nal form for the symmetric eigenproblem, and bidiagonal form for the SVD.
In this section, we state two lower bounds, first in the context of one-sided
orthogonal transformations (as in QR decomposition), and then generalized
for two-sided transformations. Each of the lower bounds requires certain
assumptions on the algorithms. We discuss in Section 2.5.3 to which algo-
rithms each of the lower bounds apply.

The case of applying orthogonal transformations is more subtle to analyse
for several reasons: (1) there is more than one way to represent the or-
thogonal factor (e.g., Householder reflections and Givens rotations), (2) the
standard ways to reorganize or ‘block’ transformations to reduce commu-
nication involve using the distributive law, not just summing terms in a
different order (Bischof and Van Loan 1987, Schreiber and Van Loan 1989,
Puglisi 1992), and (3) there may be many temporary operands that are not
mapped to slow/global memory.

2.5.1. One-sided orthogonal transformations

To be concrete, we consider Householder transformations, in which an el-
ementary real orthogonal matrix Q1 is represented as Q1 = I − τ1u1u

T
1 ,

where u1 is a column vector called a Householder vector and τ1 = 2/‖u1‖22.
When applied from the left, a single Householder reflection Q1 is chosen so
that multiplying Q1 · A annihilates selected rows in a particular column of
A, and modifies one other row in the same column (accumulating the weight
of the annihilated entries). We consider the Householder vector u1 itself to
be the output of the computation, rather than the explicit Q1 matrix. Note
that the Householder vector is nonzero only in the rows corresponding to
annihilated entries and the accumulator entry.
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Furthermore, we model the standard way of blocking Householder vectors,
writing

Q� · · ·Q1 = I − U�T�U
T
� ,

where U� = [u1, u2, . . . , u�] is n×� and T� is �×�. We specify the application
(from the left) of blocked Householder transformations to a matrix A by
inserting parentheses as follows:

(I − U� · T� · UT
� ) ·A = A− U� · (T� · UT

� ·A) = A− U� · Z�,

defining Z� = T� · UT
� · A. We also overwrite A with the output: A =

A− U� · Z�.
The application of one blocked transformation is a matrix multiplication

(which is a 3NL computation, though with some temporary operands), but
in order to show that an entire computation (e.g., QR decomposition) is
3NL, we need a global indexing scheme to define the fij and gijk func-
tions and a, b, and c mappings. To that end, we let k be the index of
the Householder vector, so that uk is the kth Householder vector of the
entire computation, and we let U = [u1, . . . , uh], where h is the total num-
ber of Householder vectors. We thus specify the application of orthogonal
transformations (from the left) to a matrix A as follows:

Aij = Aij −
h∑

k=1

UikZkj , (2.15)

where zk (the kth row of Z) is a temporary quantity computed from A, uk,
and possibly other columns of U , depending on how Householder vectors
are blocked. If A is m × n, then U is m × h and Z is h × n. Note that in
the case of QR decomposition, it may be that h � n (if one Householder
vector is used to annihilate one entry below the diagonal, for example).
The equations may be evaluated for some subset of indices (i, j) and the
summations are over some subset of the indices k (even in the dense case).
Equation (2.15) also assumes pivoting has already been incorporated in the
interpretation of the indices i and j.

We state here two lower bounds that apply to separate sets of algorithms
involving one-sided orthogonal transformations. The first lower bound as-
sumes only that the number of Householder vectors per column is a constant
(independent of the number of rows). In this case, because the computation
is 3NL with temporary operands, we can apply Theorem 2.15 and bound
the number of temporary operands. We state this result without proof: see
Ballard (2013, §4.3.1) for full details.

Corollary 2.21. The bandwidth cost lower bound for applying orthogonal
updates as specified in equation (2.15) is G/(8

√
M)−M − t, where G is the

number of scalar multiplications involved in the computation of UZ and t is
the number of nonzeros in Z. In the special case of sequentially computing



Numerical linear algebra: communication costs 31

a QR decomposition of an m × n matrix using only a constant number of
Householder vectors per column, this lower bound is Ω(mn2/

√
M).

Many efficient algorithms do not satisfy the assumptions of Corollary 2.21,
but a second, more involved lower bound argument applies to algorithms
that use many Householder vectors per column. However, two other as-
sumptions are necessary for the lower bound to apply. First, we assume
that the algorithm does not block Householder updates (i.e., all T matri-
ces are 1 × 1). Second, we assume the algorithm makes ‘forward progress’.
Informally, forward progress means that an entry which is deliberately ze-
roed out is not filled in by a later transformation: see Ballard et al. (2011d,
Definition 4.3) or Ballard (2013, Definition 4.18) for a formal definition.
Again, we omit the proof: see Ballard et al. (2011d) or Ballard (2013) for
full details.

Theorem 2.22. An algorithm that applies orthogonal transformations to
annihilate matrix entries, does not compute T matrices of dimension two
or greater for blocked updates, maintains forward progress, and performs G
flops of the form U ·Z (as defined in equation (2.15)) has a bandwidth cost
of at least Ω(G/

√
M)−M words. In the special case of a dense m×n matrix

with m ≥ n on a sequential machine, this lower bound is Ω(mn2/
√
M).

2.5.2. Two-sided orthogonal transformations

Standard algorithms for computing eigenvalues and eigenvectors, or singu-
lar values and singular vectors (the SVD), start by applying orthogonal
transformations to both sides of A to reduce it to a ‘condensed form’ (Hes-
senberg, tridiagonal or bidiagonal) with the same eigenvalues or singular
values, and simply related eigenvectors or singular vectors (Demmel 1997).
We can extend our argument for one-sided orthogonal transformations to
these computations. We can have some arbitrary interleaving of (block)
Householder transformations applied on the left,

A = (I − UL · TL · UT
L ) ·A = A− UL · (TL · UT

L ·A) = A− UL · ZL,

where we define ZL = TL · UT
L ·A, and the right,

A = A · (I − UR · TR · UT
R ) = A− (A · UR · TR) · UT

R = A− ZR · UT
R ,

where we define ZR = A · UR · TR. Combining these, we can index the
computation by Householder vector number similarly to equation (2.15):

A(i, j) = A(i, j)−
∑
kL

UL(i, kL)·ZL(kL, j)−
∑
kR

ZR(i, kR)·UR(j, kR). (2.16)

Of course, many possible dependences are ignored here, much as when we
stated a similar formula for one-sided transformations. At this point we
can apply either of the two lower bound arguments from before: we can
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either assume that (1) the number of Householder vectors is small, so that
the number of temporary ZL and ZR values are bounded, applying Theo-
rem 2.15, or (2) all T matrices are 1 × 1, and we make ‘forward progress’,
using the argument in the proof of Theorem 2.22. In case (1) we obtain a
similar result to Corollary 2.21, as follows.

Corollary 2.23. The bandwidth cost lower bound for applying two-sided
orthogonal updates is G/(8

√
M) −M − t, where G is the number of scalar

multiplications involved in the computation of ULZL and ZRUR (as specified
in equation (2.16)) and t is the number of nonzeros in ZL and ZR. In the
special case of sequentially reducing an m × n matrix to bidiagonal form
using only a constant number of Householder vectors per row and column,
this lower bound is Ω(mn2/

√
M). In the special case of reducing an n× n

matrix to tridiagonal or Hessenberg form using only a constant number of
Householder vectors per column, this lower bound is Ω(n3/

√
M).

In case (2), we have a similar result to Theorem 2.22.

Theorem 2.24. An algorithm that applies two-sided orthogonal trans-
formations to annihilate matrix entries, does not compute T matrices of
dimension two or greater for blocked updates, maintains forward progress,
and performs G flops of the form U · Z (as defined in equation (2.16)) has
a bandwidth cost of at least Ω(G/

√
M) −M words. In the special case of

sequentially reducing a dense m×n matrix to bidiagonal form with m ≥ n,
this lower bound is Ω(mn2/

√
M). In the special case of reducing an n× n

matrix to tridiagonal or Hessenberg form, this lower bound is Ω(n3/
√
M).

2.5.3. Applicability of the lower bounds
While we conjecture that all classical algorithms for applying one- or two-
sided orthogonal transformations are subject to a lower bound in the form
of Theorem 2.6, not all of those algorithms meet the assumptions of either
of the two lower bound arguments presented in this section. However, many
standard and efficient algorithms do meet the criteria.

For example, algorithms for QR decomposition that satisfy this assump-
tion of Corollary 2.21 include the blocked, right-looking algorithm (currently
implemented in (Sca)LAPACK: Anderson et al. 1992, Blackford et al. 1997)
and the recursive algorithm of Elmroth and Gustavson (1998). The sim-
plest version of Communication-Avoiding QR (i.e., one that does not block
transformations: see the last paragraph in Section 6.4 of Demmel, Grig-
ori, Hoemmen and Langou 2012) satisfies the assumptions of Theorem 2.22.
However, most practical implementations of CAQR do block transforma-
tions to increase efficiency in other levels of the memory hierarchy, and
neither proof applies to these algorithms. The recursive QR decomposition
algorithm of Frens and Wise (2003) is also communication-efficient, but
again our proofs do not apply.
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Further, Corollary 2.23 applies to the conventional blocked, right-looking
algorithms in LAPACK (Anderson et al. 1992) and ScaLAPACK (Blackford
et al. 1997) for reduction to Hessenberg, tridiagonal and bidiagonal forms.
Our lower bound also applies to the first phase of the successive band reduc-
tion algorithm of Bischof, Lang and Sun (2000a, 2000b), namely reduction to
band form, because this satisfies our requirement of forward progress. How-
ever, the second phase of successive band reduction does not satisfy our
requirement of forward progress because it involves bulge chasing, which
repeatedly creates nonzero entries outside the band and zeroes them out
again (indeed, finding a tight lower bound for this part is an open ques-
tion). But since the first phase does asymptotically more arithmetic than
the second phase, our lower bound based on just the first phase cannot be
much improved.

There are many other eigenvalue computations to which these results
may apply. For example, the lower bound applies to reduction of a matrix
pair (A,B) to upper Hessenberg and upper triangular form. This is done
by a QR decomposition of B, applying QT to A from the left, and then
reducing A to upper Hessenberg form while keeping B in upper triangular
form. Assuming that one set of assumptions applies to the algorithm used
for QR decomposition, the lower bound applies to the first two stages and
reducing A to Hessenberg form. However, since maintaining triangular form
of B in the last stage involves filling in entries of B and zeroing them out
again, our argument does not directly apply. This computation is a fraction
of the total work, and so this fact would not change the lower bound in an
asymptotic sense.

2.6. Extensions and impact of the lower bounds

2.6.1. Tensor contractions

The lower bounds extend to tensor contractions, defined below, which can
be thought of as matrix multiplications in disguise. A mode m tensor is an
m-way array (e.g., matrices have two modes). See Kolda and Bader (2009)
for a full discussion of tensor terminology and computations.

Suppose A and B are mode mA and mB tensors, respectively, with each
mode of dimension n (so that A and B are n× n× · · · × n tensors, though
with different numbers of modes), and we wish to contract over the last c
indices of A and the first c indices of B. Let a = mA − c and b = mB − c;
the contraction is defined componentwise as

C(j1, . . . , ja+b)

=

n∑
i1=1

· · ·
n∑

ic=1

A(j1, . . . , ja, i1, . . . , ic) ·B(i1, . . . , ic, ja+1, . . . , ja+b).
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We reinterpret A,B,C as matrices, in order to recast this as matrix multipli-
cation. Consider the lexicographical order on {1, . . . , n}d and the bijection
with {1, . . . , nd} it induces, for some positive integer d. Reindexing in this
manner, A becomes na × nc, B becomes nc × nb, and C becomes na × nb,
and the c summations collapse into a single summation from 1 to nc. This
is a 3NL computation, and Theorem 2.6 applies with G = na+b+c. This
argument extends to the case when the modes of A and B have variable
dimensions (as opposed to a fixed n), provided the contracted dimensions
match (so that the contraction is well defined).

2.6.2. Memory-independent lower bounds

Note that the lower bounds of Theorem 2.6 include a factor of M1/2 in the
denominator of the expression. As pointed out in Irony et al. (2004), this in-
dicates that having and using more local memory (larger M) in the parallel
case can possibly reduce the communication costs of the corresponding algo-
rithms. Indeed, many algorithms for matrix multiplication exploit this prop-
erty (Dekel, Nassimi and Sahni 1981, McColl and Tiskin 1999, Solomonik
and Demmel 2011); see Section 3.3.1.2 for more details. However, there are
limits to how much extra local memory an algorithm can trade off to reduce
communication; these limits come from a second set of lower bounds which
are independent of the local memory size M .

The lower bound arguments of Irony et al. (2004) and Theorem 2.6 for
classical algorithms and those proved in Section 4 for Strassen-like algo-
rithms can be extended to prove memory-independent lower bounds (Ballard
et al. 2012d). Theorem 2.25 states the result for classical, dense matrix mul-
tiplication, but it can be extended to 3NL computations and Strassen-like
algorithms in a straightforward way.

Theorem 2.25. Suppose a parallel algorithm performing classical dense
matrix multiplication begins with one copy of the input matrices and has
computational cost Θ(n3/P ). Then, for sufficiently large P ,3 some processor

must send or receive at least Ω
(

n2

P 2/3

)
words.

These bounds dominate the previous memory-dependent bounds once the
local memory size is sufficiently large. In particular, the memory-dependent

and memory-independent bounds coincide whenM = Θ
(

n2

P 2/3

)
. Further, the

memory-independent bounds imply that there are strict limits on the perfect
strong scaling range of matrix multiplication algorithms (both classical and
Strassen-like). That is, within the perfect strong-scaling range, for a fixed
problem size, by doubling the number of processors (and therefore doubling
the total memory available) both the computational and communication

3 The theorem applies to any P ≥ 2 with a strict enough assumption on the load balance.
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costs are halved. Beyond the perfect strong-scaling range, the reduction
in computational cost is linear, but the reduction in communication cost is
sublinear (Ballard et al. 2012d).

2.6.3. Energy bounds

In a recent work (Demmel et al. 2013b), we have modelled an algorithm’s
execution energy E via a small set of architectural parameters, to derive
lower and upper bounds on the amount of energy that is consumed during
run time. From these bounds, we prove that a realm of perfect strong scaling
in energy and time (i.e., for a given problem size n, the energy consumption
remains constant as the number of processors P increases and the run time
decreases in proportion to P ) exists for matrix multiplication (classical and
Strassen) and the direct (O(n2)) N -body problem.

We model the total energy cost E of executing a parallel algorithm by

E = P (γeF + βeW + αeS + δeMT + εeT ). (2.17)

Here γe, βe and αe are the energy costs (in joules) per flop, per word
transferred and per message, respectively; δe is the energy cost per stored
word in memory per second. The term δeMT assumes that we only pay for
energy of memory that we are utilizing for the duration of the algorithm
(a strong architectural assumption, but appropriate for a lower bound).
Here εe is the remaining energy used per second in the system outside the
memory. Note that εe encompasses the static leakage energy from circuits
as well as the energy of other devices not defined within the model, such as
disk behaviour, cooling, or transfers within the local memory hierarchy.

2.6.3.1. Example: energy costs of classical matrix multiplication. Recall that
the asymptotic run time of a communication-optimal classical matrix mul-
tiplication is

T (n, P,M) =
γtn

3

P
+

βtn
3

M1/2P
+

αtn
3

M3/2P
(2.18)

within the perfect strong scaling range of Pmin = n2/M ≤ P ≤ n3/M3/2

(recall Section 2.6.2), where γt is the seconds per flop, n3/P is the number
of flops, n3/(M1/2P ) is the total number of words sent, βt is the seconds per
word sent, n3/(M3/2P ) is the total number of messages sent, and αt is the
seconds per message sent. It scales perfectly because all terms of T (n, P,M)
are inversely proportional to P . Its energy cost is then

E(n, P,M) = (γe + γtεe)n
3 +

(
(βe + βtεe) +

(αe + αtεe)

M

)
n3

M1/2

+ δeγtMn3 +

(
δeβt +

δeαt

M

)
M1/2n3. (2.19)
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Note that E(n, P,M) is algebraically independent of P . Thus perfect scaling
costs no additional energy. If P exceeds the range of perfect strong scaling,
energy costs does depend on P , and may increase. See Demmel et al.
(2013b) for further details on scaling, and for application of energy and
power bounds to further algorithms.

We can use these formulas to ask various questions, such as: How do we
choose P and M to minimize energy needed for a computation? Given the
maximum allowed run time T , how much energy do we need to achieve it?
Given the maximum allowed energy E, what is the minimum run time T
that we can attain? Given a target energy efficiency (Gflops/Watt), what
architectural parameters (γt, γe, etc.) are needed to achieve it? See Demmel
et al. (2013b) for further details.

2.6.4. Heterogeneous machines

We can also extend these lower bounds to heterogeneous machine models.
Note that for the distributed-memory parallel machine models (where com-
putational and communication costs are homogenous among processors and
pairs of processors, respectively) the lower bound applies to each proces-
sor individually. That is, the communication required by each processor is
a function of the amount of computation that processor performs. Thus,
we can also apply the analysis to heterogenous systems, where processors
perform flops and access data at different rates. In Ballard, Demmel and
Gearhart (2011b) we present a shared-memory heterogenous parallel model,
extend the lower bounds to this model, and present optimal algorithms for
matrix multiplication. Using the lower bounds, one can formulate and solve
an optimization problem for the optimal amount of work to assign to each
processor to achieve load balance, and the work can be assigned in a way
that also minimizes communication.

2.6.5. Sparse matrix–matrix multiplication

For many sparse computations, the lower bounds for classical computations
are unattainable. While these lower bounds suggest a maximum re-use of
data of O(

√
M), many computations involving sparse matrices have inherent

limitations on re-use which are much smaller. For example, applying a dense
or sparse matrix to a dense vector yields an arithmetic intensity of only two
flops per sparse matrix entry. Similarly, the multiplication of two sparse
matrices also suffers from low arithmetic intensity. However, similar proof
techniques can be employed to establish lower bounds that are tighter than
those appearing in this paper and actually attainable. The bounds require
extra assumptions on the set of algorithms to which they apply and the
sparsity structure of the input matrices (i.e., corresponding to Erdős–Rényi
random graphs), but we establish matching lower and upper bounds in
Ballard et al. (2013f).
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2.6.6. Bandwidth–latency trade-offs

Our latency lower bounds have so far been derived in a very simple manner
from the bandwidth lower bounds: the number of messages is at least as
large as the number of words sent divided by the largest possible message
size. In fact, as we will see in Section 3, these latency lower bounds are
attainable for the parallel algorithms we have considered, when using the
least memory possible (M = n2/P ); they are also attainable for matmul
when using more memory than this (see Sections 2.6.2 and 3.3.1.2). How-
ever, for LU, QR and other algorithms with more complicated dependency
graphs than matmul, the latency lower bounds, for the case of extra mem-
ory, were unattainable. This led to new lower bounds showing that there is
a trade-off between latency and bandwidth along the critical path that must
be respected, such that both cannot be simultaneously minimized when us-
ing extra memory; indeed, latency alone is minimized by algorithms that
use the least memory. For example, in the case of LU and Cholesky fac-
torizations, the product of the bandwidth and latency costs must be Ω(n2).
The work by Solomonik, Carson, Knight and Demmel (2014) extends these
results to a variety of direct and iterative matrix computations.

2.6.7. Computations that access arrays

The lower bound approach developed by Irony et al. (2004) for matrix mul-
tiplication, and generalized above in Theorem 2.6 for 3NL computations
(Definition 2.4), has recently been extended by Christ et al. (2013) to a
larger class of computations, of the form

for i ∈ S, inner loop(i,Mem(a1(φ1(i))), . . . ,Mem(am(φm(i)))),

where S ⊂ Z
d is the non-empty and finite iteration space, indexed by d-

tuples of integers i = (i1, . . . , id), and for j ∈ {1, . . . ,m}, φj : Zd → Z
dj

is an affine map. As in 3NL computations, the functions aj : φj(S) → M
are injections into slow/global memory, and the subroutines inner loop(i, ·)
depend nontrivially on their arguments.

Recall that the proof of Theorem 2.6 hinges on obtaining an upper bound
F = F (M) on the number of 3NL operations (here, inner loop calls). The
Loomis–Whitney inequality (Loomis and Whitney 1949) can be used to
show F = O(M3/2) for 3NL computations. The main result of Christ
et al. (2013) applied a recent generalization of Loomis and Whitney (1949)
in Bennett, Carbery, Christ and Tao (2010) to show that F = O(Mσ),
where σ = min 1T s subject to ∆s ≥ 1, where {Hi} is an enumeration of
all nontrivial subgroups Hi ≤ Z

d and ∆ij = rank(φj(Hi))/rank(Hi). (The
minimum σ can be computed decidably.) Applying reasoning similar to that
of Theorem 2.6, this leads to a lower bound Ω(|S|/Mσ−1) on the number of
words moved between slow and fast memory, and this result can be extended
to bound communication in a distributed-memory parallel machine, or to
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bound the number of messages (latency cost) rather than the number of
words (bandwidth cost).

There are many open questions regarding attainability of these bounds in
Christ et al. (2013), but in the absence of inter-iteration data dependences
(i.e., no imposed order on S), and for sufficiently large and regular S, it is
attainable in the special case where each φj is a projection onto a subset of
the coordinates (e.g., classical matrix multiplication).

3. Communication-optimal classical algorithms

In this section we focus on classical direct algorithms for sequential and
parallel machines and discuss the current state of the art in terms of com-
munication costs. The main goal of this section is to provide a comprehen-
sive (though certainly not exhaustive) summary of communication-optimal
algorithms for dense linear algebra computations and provide references to
papers with algorithmic details, communication cost analyses, and demon-
strated performance improvements. We consider all the fundamental direct
numerical linear algebra computations – BLAS, Cholesky and symmetric
indefinite factorizations, LU and QR factorizations, eigenvalue and singu-
lar value factorizations – and compare the best algorithms with the lower
bounds presented in Section 2.

It is also natural to compare the lower bounds of Section 2 with the costs
of standard implementations in widely used libraries such as LAPACK and
ScaLAPACK. As we will see, these standard libraries often do not attain the
lower bounds, even for the well-studied problem of parallel matrix multipli-
cation. This observation has motivated a great deal of recent work by the
community to invent new algorithms that do attain the lower bounds (or
at least do asymptotically less communication than the standard libraries).
In fact, some of these communication-optimal algorithms have been in the
literature for a while, but their advantages from the communication cost
perspective have only recently been recognized.

We consider here both sequential and parallel algorithms. Recall the
sequential two-level memory model presented in Section 1.2: we consider
communication between a fast memory of size M and a slow memory of
unbounded size, and we track both the number of words and messages that
an algorithm moves. Because a message requires its words to be stored
contiguously in slow memory, we must specify the matrix data layout in
determining latency costs. We also consider the multiple-level memory hi-
erarchy sequential model in this section, as it more accurately reflects many
of today’s machines.

Recall also the distributed-memory parallel memory model presented in
Section 1.2: in this case we consider communication among a set of P pro-
cessors with a link between every pair of processors, and we track both words
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and messages communicated by the parallel machine along the critical path
of the algorithm. All of the algorithms discussed in this section assume a
block-cyclic data distribution, where a block size of 1 gives a cyclic distri-
bution and a block size of n/

√
P gives a blocked distribution (Blackford

et al. 1997).
In the following subsections we summarize the state of the art in communi-

cation-optimal sequential (Section 3.1) and parallel algorithms (Section 3.2)
(providing tables of references to communication-optimal algorithms in each
case), and then discuss in Section 3.3 each of the fundamental computations
in more detail. First, we highlight three key ideas that have been instru-
mental in improving the communication efficiency of algorithms for several
different computations.

• Two-dimensional blocking in the sequential case. A principal innova-
tion of the LAPACK libraries was the implementation of 1D blocking:
dividing the matrix into column panels and implementing algorithms
based on the pattern of panel factorizations and efficiently blocked
trailing matrix updates. While this approach yields high performance
in many situations, it is not always sufficient for communication op-
timality. More recent communication-optimal algorithms use a 2D
form of blocking that yields better efficiency in the panel factoriza-
tions in particular. However, these 2D innovations include fundamen-
tal changes in the computations: in the case of LU (Grigori et al. 2011),
they involve a form of pivoting that is different but as stable in practice
(see Algorithm 3.1), and in the case of QR (Demmel, Grigori, Hoem-
men and Langou 2012), they involve a different representation of the
orthogonal factor (see Algorithm 3.2).

• Recursion. Communication efficiency of blocked algorithms often in-
volves judicious choice of block sizes, based on the size of fast or local
memory. For many linear algebra computations, recursive algorithms
‘automatically’ choose the right block sizes and involve simpler and
more elegant code. In the sequential case, such algorithms are often
cache-oblivious, for which there are many examples (Frigo, Leiserson,
Prokop and Ramachandran 1999, Gustavson 1997, Toledo 1997, Frens
and Wise 2003, Ballard et al. 2013f). Such algorithms minimize com-
munication on two-level and hierarchical memory models. Recursion is
also an effective tool in the parallel case, and several communication-
optimal algorithms can be expressed succinctly in this way (McColl
and Tiskin 1999, Tiskin 2007, Demmel et al. 2013a).

• Trading off extra memory for reduced communication in the parallel
case. Conventional parallel algorithms (e.g., those in ScaLAPACK) are
designed to use little extra memory: no more than a constant factor
times the memory required to store the input and output. However,
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the communication lower bounds presented in Section 2 decrease as
the size of the local memory increases, suggesting the possibility of
trading off extra memory for reduced communication: that is, if the
local memory M = cn2/P , then the communication cost is expected
to be a decreasing function of c. Indeed, this is possible for matrix
multiplication (Berntsen 1989, Irony et al. 2004, Demmel et al. 2013a)
and other linear algebra computations (Tiskin 2007, Solomonik and
Demmel 2011). See Table 3.3 for a summary of known algorithms that
navigate this trade-off optimally.

3.1. Summary of classical sequential algorithms

In this section, we summarize the current state of the art for algorithms that
perform the classical O(n3) computations on sequential machines. For each
of the computations considered here, we compare the communication costs
of the algorithms to the lower bounds presented in Section 2. Table 3.1
summarizes the communication-optimal classical algorithms for the most
fundamental dense linear algebra computations. We differentiate between
algorithms that minimize communication only in the two-level model and
those that are optimal in a multiple-level memory hierarchy too. We also
differentiate between algorithms that minimize only bandwidth costs and
those that minimize both bandwidth and latency costs.

We say that an algorithm is communication-optimal in the sequential
model if its communication costs are within a constant factor of the cor-
responding lower bound (we sometimes relax it to a logarithmic factor)
and that it performs no more than a constant factor more computation
than alternative algorithms. Most of the algorithms have the same lead-
ing constant in computational cost as the standard algorithms, though we
note where constant factor increases occur. In some cases, there exists a
small range of matrix dimensions where the algorithm is sub-optimal: the
communication cost includes a term that is typically a low-order term, but
sometimes exceeds the lower bound. For example, the rectangular recursive
algorithms of Elmroth and Gustavson (1998), Gustavson (1997) and Toledo
(1997) are sub-optimal with respect to bandwidth cost only in the rare case
when n satisfies n/ logn� √

M � n but optimal in all other cases (Ballard
et al. 2013f). We omit these details for sufficiently small ranges.

One may imagine that sequential algorithms minimizing communication
for any number of levels of a memory hierarchy might be very complex,
possibly depending on not just the number of levels but also their sizes. In
this context, it is worth distinguishing a class of algorithms, called cache-
oblivious (Frigo et al. 1999), that can minimize communication between all
levels (at least asymptotically) independent of the number of levels and
their sizes, assuming a nested memory hierarchy (i.e., faster memory is
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Table 3.1. Sequential classical algorithms attaining communication lower bounds.
We list algorithms that attain the lower bounds for two levels and multiple levels
of memory hierarchy.

Computation
Two-level memory Multiple-level memory

Minimizes Minimizes Minimizes Minimizes
words messages words messages

BLAS-3 [1, 2] [1, 2]

Cholesky [3, 4, 5, 6] [3, 5, 6] [3, 5, 6]

LU [6, 7, 8, 9] [7, 8] [6, 7, 9] [7]

Symmetric indefinite [10] [10]

QR [7, 11, 12, 13] [7, 11, 13] [7, 12, 13] [7, 13]

Symmetric eigenproblem [14, 15] [14]

SVD [14, 15, 16] [14, 16]

Nonsymm. eigenproblem [14] [14]

[1] Ballard et al. (2013f) [9] Toledo (1997)
[2] Frigo et al. (1999) [10] Ballard et al. (2013a)
[3] Ahmed and Pingali (2000) [11] Demmel et al. (2012)
[4] Anderson et al. (1992) [12] Elmroth and Gustavson (1998)
[5] Ballard et al. (2010) [13] Frens and Wise (2003)
[6] Gustavson (1997) [14] Ballard et al. (2011a)
[7] Ballard et al. (2013f) [15] Ballard et al. (2013d)
[8] Grigori et al. (2011) [16] Haidar et al. (2013)

smaller). These algorithms are recursive, and provided that a matching
recursive layout is used, these algorithms may also minimize the number
of messages independent of the number of levels of memory hierarchy. Not
only do cache-oblivious algorithms perform well in theory but they can also
be adapted to perform well in practice; see Yotov et al. (2007), for example.

We emphasize that only a few of the communication-optimal algorithms
referenced here are included in standard libraries such as LAPACK. While
this section focuses on asymptotic complexity rather than measured per-
formance on current architectures, many of the papers referenced for al-
gorithms here also include performance data and demonstrate significant
speed-ups over asymptotically sub-optimal alternatives. Our communal
goal is to eventually make all of these algorithms available via widely used
libraries.
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Table 3.2. Parallel classical algorithms attaining communication lower bounds
assuming minimal memory is used. That is, these algorithms have computational
cost Θ(n3/P ) and use local memory of size O(n2/P ).

Computation Minimizes words Minimizes messages

BLAS-3 [1, 2, 3, 4] [1, 2, 3, 4]

Cholesky [2] [2]

LU [2, 5, 10, 11] [5, 10, 11]

Symmetric indefinite [2, 6, 9] [6, 9]

QR [2, 7] [7]

Symmetric eigenproblem and SVD [2, 8, 9] [8, 9]

Nonsymmetric eigenproblem [8] [8]

[1] Agarwal et al. (1994) [7] Demmel et al. (2012)
[2] Blackford et al. (1997) [8] Ballard et al. (2011a)
[3] Cannon (1969) [9] Ballard et al. (2013d)
[4] van de Geijn and Watts (1997) [10] Solomonik and Demmel (2011)
[5] Grigori et al. (2011) [11] Tiskin (2002)
[6] Ballard et al. (2013a)

3.2. Summary for the parallel algorithms

In this section we summarize the current state of the art for algorithms that
perform the classical O(n3) computations for dense matrices on parallel ma-
chines. We first assume that no more than a constant factor of extra local
memory is used. For each of the computations considered here, we can com-
pare the communication complexity of the algorithms to the lower bounds
presented in Section 2, where we fix the local memory size to M = Θ(n2/P ).
Table 3.2 summarizes the communication-optimal algorithms in this case for
the most fundamental dense linear algebra computations. Another term for
these minimal memory algorithms is ‘2D’, which was first used to distin-
guish minimal memory matrix multiplication algorithms from so-called ‘3D’
algorithms that do use more than a constant factor of extra memory. In
these 2D algorithms, the processors are organized in a two-dimensional grid,
with most communication occurring within processor rows or columns.

Recall the lower bounds that apply to these dense computations, where
the number of gijk operations is G = Θ(n3/P ). For these values of G
and M , the lower bound on the number of words communicated by any
processor is Ω(n2/

√
P ), and the lower bound on the number of messages is

Ω(
√
P ). In order for an algorithm to be considered communication-optimal,
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we require that its communication complexity be within a polylogarithmic
(in P ) factor of the two lower bounds and that it perform no more than
a constant factor more computation than alternative algorithms (i.e., the
parallel computational cost is Θ(n3/P )).

The asymptotic communication costs for ScaLAPACK algorithms are
given in Table 5.8 of Blackford et al. (1997). Note that the bandwidth
costs for those algorithms include a logP factor due to the assumption that
collective communication operations (e.g., reductions and broadcasts) are
performed with tree-based algorithms. Better algorithms exist for these col-
lectives that do not incur the extra factor in bandwidth cost. For example,
a broadcast can be performed with a scatter followed by an all-gather: see
Thakur, Rabenseifner and Gropp (2005) or Chan, Heimlich, Purkayastha
and van de Geijn (2007) for more details. Thus, the extra logarithmic factor
is not inherent in the algorithm, only in the way collective operations were
first implemented in ScaLAPACK.

However, we emphasize the fact that the optimality of algorithms listed
in Table 3.2 holds only if no more than O(n2/P ) local memory is used. If
we remove the assumption and let M grow larger, then the communication
lower bounds for these computations decreases, exposing a trade-off between
local memory and communication costs.

There are only a few known algorithms for linear algebra that are able to
navigate the memory–communication trade-off, but none as successfully as
in the case of matrix multiplication. For matrix multiplication, both band-
width and latency costs can be simultaneously reduced with the use of ex-
tra memory. That is, the bandwidth cost can be reduced from Θ(n2/P 1/2)
to Θ(n2/P 2/3) and the latency cost can be reduced from Θ(

√
P ) down

to Θ(logP ), if enough memory is available. In the case of linear algebra
computations that involve more dependences than matrix multiplication,
there exists a second trade-off between bandwidth and latency costs. By
the bandwidth–latency trade-off in Solomonik et al. (2014) for various al-
gorithms (presented in Section 2.6.6), bandwidth and latency are not si-
multaneously improved for M � Ω(n2/P ): decreasing the bandwidth cost
below Θ(n2/P 1/2) increases the latency cost above Θ(

√
P ). The bandwidth–

latency trade-off bound for LU and Cholesky is given by W · S = Ω(n2).

3.3. Fundamental numerical linear algebra computations

We now discuss the rows of each of Tables 3.1, 3.2, and 3.3 in more detail.
For each fundamental computation, we discuss sequential and parallel cases
separately.

3.3.1. BLAS computations
While the lower bounds given in Section 2.3.2.1 apply to all BLAS compu-
tations, only the BLAS-3 computations have algorithms that attain them.
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Table 3.3. Parallel classical algorithms attaining communication lower bounds
with no assumption on local memory use. These algorithms have computational
cost Θ(n3/P ) and may use local memory of size more than Θ(n2/P ). We list
algorithms that minimize communication relative to the tightest lower bounds
(memory-dependent or memory-independent), including the bandwidth–latency
lower bound trade-off described in Section 2.6.6, in the case of Cholesky and LU.

Computation Minimizes communication

Matmul [1, 2, 3]
Cholesky [4, 5, 6]

LU [2, 7]

[1] McColl and Tiskin (1999) [5] Georganas et al. (2012)
[2] Solomonik and Demmel (2011) [6] Lipshitz (2013)
[3] Demmel et al. (2013a) [7] Tiskin (2007)
[4] Tiskin (2002)

In the case of BLAS-2 and BLAS-1 computations, the arithmetic intensity
(i.e., the ratio of the number of arithmetic operations to the number of
inputs and outputs) is O(1), so it is impossible for the bandwidth cost to
be a factor of O(

√
M) smaller than the arithmetic cost, assuming the data

has to be read from slow memory.

3.3.1.1. Sequential case. For BLAS-3 computations, blocked versions of the
naive algorithms attain the lower bound in the two-level memory model
when the block size is chosen to be Θ(

√
M): see, for example, the Block-

Mult algorithm in Frigo et al. (1999) for matrix multiplication. In order to
attain the corresponding latency cost lower bound, a block-contiguous data
structure is necessary so that every block computation involves contiguous
chunks of memory. Furthermore, the block computations can themselves
be blocked. Using a nested level of blocking for each level of memory (and
choosing the block sizes appropriately), these algorithms can minimize com-
munication between every pair of successive levels in a memory hierarchy.
Note that a matching hierarchical block-contiguous data structure is needed
to minimize latency costs. We do not include a reference in Table 3.1, as
these blocked algorithms are generally considered folklore.

In addition to the explicitly blocked algorithms, there are recursive al-
gorithms for all of the BLAS-3 computations. As explained in Frigo et al.
(1999) for rectangular matrix multiplication, these recursive algorithms also
attain the lower bounds of Section 2.3.2.1. In order to minimize latency
costs, we use a matching recursive data layout, such as the rectangular
recursive layout of Ballard et al. (2013f) which matches the Rec-Mult
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(a) 1D (b) 2D (c) 3D

Figure 3.1. Illustrations of 1D, 2D and 3D algorithms for matrix multiplication.
The entire cube represents all the scalar multiplications (work) associated with
square matrix multiplication: (i, j, k) stands for the multiplication Aik · Bkj to be
accumulated into Cij . Lines correspond to divisions of work to processors; the
work of a particular processor is shaded. While 1D algorithms divide the cube
in only one dimension, 2D algorithms divide the cube in two dimensions, and 3D
algorithms divide the cube in all three dimensions. In particular, 3D algorithms
divide the work associated with computing a single output matrix entry among
multiple processors, which need not be the case for 1D and 2D algorithms.

algorithm of Frigo et al. (1999). For computations involving square matri-
ces, data layouts based on Morton orderings and its variants help minimize
latency costs. For recursive algorithms for triangular solve, see Algorithm 3
of Ballard et al. (2010), for example, where the right-hand sides form a
square matrix, or Algorithm 5 of Ballard et al. (2013f) for the general rect-
angular case. Similar algorithms exist for symmetric and triangular matrix
multiplications and symmetric rank-k updates. Because these algorithms
are recursive and cache-oblivious, they minimize communication costs be-
tween every pair of memory levels in a hierarchy.

3.3.1.2. Parallel case. ScaLAPACK (Blackford et al. 1997) includes the
Parallel BLAS library, or PBLAS, which has algorithms for matrix mul-
tiplication (and its variants) and triangular solve that minimize both words
and messages, assuming minimal memory is used. The history of commu-
nication-optimal matrix multiplication goes back to Cannon (1969). While
Cannon’s algorithm is asymptotically optimal, a more robust and tunable
algorithm known as SUMMA (Agarwal, Gustavson and Zubair 1994, van de
Geijn and Watts 1997) is more commonly used in practice. For a more com-
plete summary of minimal memory, or 2D, matrix multiplication algorithms,
see Irony et al. (2004, Section 4).

The first algorithms to reduce the communication cost of parallel matrix
multiplication by using extra memory were developed by Aggarwal et al.
(1990) (in the LPRAM model) and Berntsen (1989) (on a hypercube net-
work). Aside from using extra local memory, the main innovation in these
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Figure 3.2. 2.5D matrix multiplication on BG/P, 16K nodes / 64K cores.

algorithms is to divide the work for computing single entries in the output
matrix among multiple processors; in the case of Cannon’s and other 2D
algorithms, a single processor computes all of the scalar multiplications and
additions for any given output entry. See Figure 3.1 for a visual classifi-
cation of 1D, 2D, and 3D matrix multiplication algorithms based on the
assignment of work to processors.

For a more complete summary of early 3D dense matrix multiplication
algorithms, see Irony et al. (2004, Section 5). The extra memory required
for the 3D algorithms is O(n2/P 2/3), or O(P 1/3) times the minimal amount
of memory required to store the input and output matrices. The commu-
nication savings, compared to 2D algorithms, is a factor of O(P 1/6) words
and Õ(P 1/2) messages (where the latter notation hides away logarithmic
factors in P ). However, these algorithms provide only a binary alterna-
tive to 2D algorithms: only if enough memory is available can 3D algo-
rithms be employed. McColl and Tiskin (1999) showed how to navigate the
trade-off continuously (in the BSPRAM model): for example, given local
memory of size Θ(n2/P 2α+2/3), their algorithm achieves bandwidth cost of
O(n2/P 2/3−α) for 0 ≤ α ≤ 1/6. Later, Solomonik and Demmel (2011) inde-
pendently developed and implemented a practical version of the algorithm
which generalizes the 2D SUMMA algorithm, demonstrating speed-ups of
up to 12×. See Figure 3.2.

Because their approach fills the gap between 2D and 3D algorithms,
the authors coined ‘2.5D’ to describe their algorithm. Their algorithm is
topology-aware, meaning that it addresses and takes advantage of the inter-
processor network topology. It thus performs well on machines with torus
of dimension three or higher (similar to Cannon’s algorithm performing well
on 2D torus machines). A similar approach is used in the communication-
avoiding all-pairs shortest paths (APSP) algorithm, obtaining a speed-up
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of 6.2× on 24K cores of a Cray XE6 machine compared to the best pre-
vious algorithm (Solomonik et al. 2013). This approach is also used in
the communication-avoiding Cyclops Tensor Framework, gaining a speed-
up of up to 3× on 3K cores of a Cray XE6 machine, compared to previous
algorithms (Solomonik, Matthews, Hammond and Demmel 2013c). The
2.5D algorithm (Solomonik and Demmel 2011) is generalized to rectangu-
lar matrices in Schatz, Poulson and van de Geijn (2013), though it is not
communication-optimal in all cases.

A recursive algorithm, which utilizes the parallelization approach in Bal-
lard et al. (2012e) and Lipshitz, Ballard, Demmel and Schwartz (2012), also
achieves the same asymptotic communication costs for square matrices and
is generalized to rectangular matrices in Demmel et al. (2013a) and Lip-
shitz (2013), demonstrating speed-ups of up to 10× over MKL and 141×
over ScaLAPACK for some rectangular matrix dimensions.

Note that the algorithms that are able to continuously navigate the trade-
off between memory and communication can exhibit perfect strong scaling.
That is, by doubling the number of processors (and therefore doubling the
total amount of available memory), both computational and communication
costs are reduced by a factor of two, thereby cutting the run time by a factor
of two. This is possible only within a limited range, due to the existence of
the lower bound discussed in Section 2.6.2 and Ballard et al. (2012d). For
more details on perfect energy scaling, see Demmel et al. (2013b).

3.3.2. Cholesky factorization

Cholesky factorization is used primarily for solving symmetric, positive def-
inite linear systems of equations. Since pivoting is not required, making the
algorithm communication-optimal is much easier (e.g., compared to LU).
For a more complete discussion of sequential algorithms for Cholesky fac-
torization and their communication properties, see Ballard et al. (2010).

3.3.2.1. Sequential case. The reference implementation in LAPACK (Ander-
son et al. 1992) (potrf) is a blocked algorithm, and by choosing the block
size to be Θ(

√
M), the algorithm attains the lower bound of Corollary 2.11.

As in the case of the BLAS computations, a block-contiguous data struc-
ture can be used to obtain the latency cost lower bound. An algorithm
with nested levels of blocking and a matching data layout can minimize
communication for multiple levels of memory.

A recursive algorithm for Cholesky factorization was first proposed in
Gustavson (1997) and later matched with a block-recursive data structure
in Ahmed and Pingali (2000). We present the communication cost analysis
in Ballard et al. (2010), where the algorithm is shown to be communication-
optimal and cache-oblivious as long as cache-oblivious BLAS subroutines
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are used. Thus, the recursive algorithm is optimal for both two-level and
multiple-level memory models.

Note also that for the Cholesky factorization of sparse matrices whose
sparsity structures satisfy certain graph-theoretic conditions (having ‘good
separators’), the lower bound of Corollary 2.11 can also be attained (Grigori
et al. 2010). For general sparse matrices, the problem is open.

3.3.2.2. Parallel case. ScaLAPACK’s parallel Cholesky routine (pxposv)
minimizes both words and messages on distributed-memory machines with
the right choice of block size. See Ballard et al. (2010) for a description of
the algorithm and its communication analysis. Note that the bandwidth
cost in that paper includes a logP factor that can be removed with a more
efficient broadcast routine.

Tiskin presents a recursive algorithm in the BSP model (Tiskin 2002)
for LU factorization without pivoting that uses extra memory to reduce
communication, though it exhibits a trade-off between bandwidth and la-
tency costs. This algorithm can be applied to symmetric positive definite
matrices, though it uses explicit triangular matrix inversion and multiplica-
tion (ignoring stability issues) and also ignores symmetry. Georganas et al.
(2012) extend the ideas of Solomonik and Demmel (2011) to the symmetric
positive definite case, saving arithmetic by exploiting symmetry and main-
taining stability by using triangular solves. Lipshitz (2013) provides a sim-
ilar algorithm for Cholesky factorization, along with a recursive algorithm
for triangular solve, that also maintains symmetry and stability. These
Cholesky algorithms achieve a bandwidth cost of O(n2/Pα) and latency
cost of O(Pα) for 1/2 ≤ α ≤ 2/3, by using P 2α−1 times as much memory
as the minimum required. In other words, to minimize bandwidth costs, it
pays to use more memory than the minimum necessary, but to minimize
latency, the minimum memory algorithm is optimal. These communication
costs match the trade-off lower bounds proved in Solomonik et al. (2014)
for Cholesky factorization, that is, the product of bandwidth and latency
costs is Ω(n2).

3.3.3. LU factorization

For general, nonsymmetric linear systems, an LU factorization is the direct
method of choice. In order to maintain numerical stability, algorithms must
incorporate some form of pivoting. For performance reasons (and because
it is generally sufficient in practice), we consider performing only row in-
terchanges. The development of communication-optimal complete-pivoting
algorithms (those that perform both row and column interchanges) is on-
going work; see Demmel, Grigori, Gu and Xiang (2013c, Section 5) for a
possible approach.
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3.3.3.1. Sequential case. There is a long history of algorithmic innovation
to reduce communication costs for LU factorizations on sequential machines.
Table 1 in Ballard et al. (2013f) highlights several of the innovations and
compares the asymptotic communication costs of the algorithms discussed
here.

The LU factorization algorithm in LAPACK (getrf) uses partial pivot-
ing and is based on ‘blocking’ in order to cast much of the work in terms of
matrix–matrix multiplication rather than working column by column and
performing most of the work as matrix–vector operations. The algorithm
is a right-looking, blocked algorithm, and by choosing the right block size,
the algorithm asymptotically reduces the communication costs compared to
the column-by-column algorithm. In fact, for very large matrices (m × n,
with m,n > M) it can attain the communication lower bound (see Corol-
lary 2.10). However, for reasonably sized matrices (

√
M < m,n < M) the

blocked algorithm is sub-optimal with respect to its communication costs.
In the late 1990s, both Toledo (1997) and Gustavson (1997) indepen-

dently showed that using recursive algorithms can reduce communication
costs. The analysis in Toledo (1997) shows that the recursive LU (RLU)
algorithm, which also performs partial pivoting, moves asymptotically fewer
words than the algorithm in LAPACK when m < M (though latency cost
is not considered in that work). In fact, the RLU algorithm attains the
bandwidth cost lower bounds. Furthermore, RLU is cache-oblivious, so it
minimizes bandwidth cost for any fast memory size and between any pair
of successive levels of a memory hierarchy.

Motivated by the growing latency cost on both sequential and parallel ma-
chines, Grigori et al. (2011) considered bandwidth and latency cost metrics
and presented an algorithm called Communication-Avoiding LU (CALU)
that minimizes both. In order to attain the lower bound for latency cost
(proved in that paper via reduction from matrix multiplication: see equa-
tion (2.1)), the authors used the block-contiguous layout and introduced
tournament pivoting as a new and different scheme than partial pivoting.

The tournament pivoting scheme makes different pivoting choices to par-
tial pivoting, though the two schemes are equivalent in a weak sense. Grigori
et al. (2011) show that, in exact arithmetic, the Schur complement obtained
after each step of performing tournament pivoting on a matrix A is the same
as the Schur complement obtained after performing partial pivoting on a
larger matrix whose entries are the same as the entries of A (sometimes
slightly perturbed) and zeros. More generally, the entire CALU process is
equivalent to LU with partial pivoting on a large, but very sparse matrix,
formed by entries of A and zeros. Hence we expect that tournament pivot-
ing will behave similarly to partial pivoting (and thus be stable) in practice.
Indeed, Grigori et al. (2011) present extensive experiments on random ma-
trices and a set of special matrices to support this claim. The upper bound
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on the growth factor of CALU is worse than that of LU with partial pivot-
ing. However, there are Wilkinson-like matrices for which partial pivoting
leads to an exponential growth factor, but not tournament pivoting, and
vice versa. We discuss the tournament pivoting algorithm in more detail for
the parallel case in Section 3.3.3.2.

One drawback of CALU is that it requires knowledge of the fast memory
size for both algorithm and data layout (i.e., it is not cache-oblivious). Mak-
ing the cache-oblivious RLU algorithm latency optimal had been an open
problem for a few years. For example, arguments are made in Ballard et al.
(2010) and Grigori et al. (2011) that RLU is not latency optimal for several
different fixed data layouts. In Ballard et al. (2013f), using a technique
called ‘shape-morphing’, we show that attaining communication optimal-
ity, being cache-oblivious, and using partial pivoting are all simultaneously
achievable.

3.3.3.2. Parallel case. ScaLAPACK’s LU routine (pxgesv) minimizes the
number of words moved but not the number of messages. The parallel
version of the communication-avoiding LU algorithm of Grigori et al. (2011)
is able to reduce the number of messages. The use of tournament pivoting
allows the overall algorithm to reach both bandwidth and latency cost lower
bounds.

Tournament pivoting gets its name from the way it chooses pivot rows.
In conventional Gaussian elimination, one pivot row is chosen at a time
by selecting the maximum element (in absolute value) in the column. In
tournament pivoting, some number b rows are chosen at a time by selecting
the b most linearly independent rows of a column panel. The selected rows
are the winners of a tournament, which can be thought of as a reduction
with the reduction operator choosing the b most linearly independent rows
from a set of 2b rows (this selection is done using LU with partial pivoting
on a 2b× b matrix). After the b most linearly independent rows are chosen,
they are pivoted to the top of the column panel and the factorization is
repeated via Gaussian elimination with no pivoting. We present pseudocode
for parallel Tall Skinny LU (TSLU) in Algorithm 3.1.

In the sequential case, partial pivoting can be maintained while still
minimizing both words and messages using a technique known as shape-
morphing (Ballard et al. 2013f). Unfortunately, the idea of shape-morphing
is unlikely to yield the same benefits in the parallel case. Choosing pivots
for each of n columns lies on the critical path of the algorithm and there-
fore must be done in sequence. Each pivot choice either requires at least
one message or for the whole column to reside on a single processor. This
seems to require either Ω(n) messages or Ω(n2) words moved, which both
asymptotically exceed the respective lower bounds.
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Algorithm 3.1 [P, L, U ] = TSLU(A); ‘Tall Skinny LU’ with tournament
pivoting

Require: Number of processors P is a power of 2 and i is the proc. index
Require: A is m× b, distributed in block row layout; Ai is proc. i’s block
Require: GEPP is local Gaussian elimination with partial pivoting
Require: GENP is local Gaussian elimination with no pivoting
Ensure: PA = LU with Li is owned by proc. i and U is owned by proc. 0
Ensure: P is chosen so that PA(1 : b, :) = B0,logP

1: [Pi,0, Li,0, Ui,0] = GEPP(Ai)
2: Bi,0 = (Pi,0Ai)(1 : b, :) 
 extract b ‘most independent’ rows from Ai

3: for k = 1 to logP do 
 binary reduction tree for tournament
4: if i ≡ 0 mod 2k then
5: j = i+ 2k−1

6: Receive Bj,k−1 from processor j

7: C =

[
Bi,k−1

Bj,k−1

]
8: [Pi,k, Li,k, Ui,k] = GEPP (C)
9: Bi,k = (Pi,kC)(1 : b, :) 
 extract b ‘most independent’ rows from

left and right children in the tree
10: else if i ≡ 2k−1 mod 2k then
11: Send Bi,k−1 to processor i− 2k−1

12: end if
13: end for
14: if i = 0 then
15: Broadcast A0(1 : b, :) (to origins of rows of B0,logP )
16: A0(1 : b, :) = B0,logP

17: [L0, U ] = GENP(A0)
18: Broadcast U to all processors
19: else
20: If applicable, receive rows of A0 and update Ai

21: Receive U
22: Li = TRSM(Ai, U)
23: end if
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There exist other parallel algorithms for LU factorization that use extra
memory to reduce communication. Tiskin (2007) incorporates pairwise piv-
oting into a new algorithm with the same asymptotic costs as the algorithm
in Tiskin (2002), which has no pivoting. While pairwise pivoting is not as
stable as partial pivoting in theory or practice (Sorensen 1985, Trefethen
and Schreiber 1990), the approach is generic enough to apply to QR fac-
torization based on Givens rotations. However, the algorithm seems to be
of only theoretical value: for example, the constants in the computational
costs are much larger than minimal-memory algorithms. Solomonik and
Demmel (2011) devise a stable LU factorization algorithm that uses tour-
nament pivoting, is computation-efficient, and achieves the same asymptotic
costs as the algorithm of Tiskin (2002, 2007); they demonstrate significant
speed-ups compared to minimal-memory LU algorithms.

As in the case of Cholesky, an important characteristic of extra-memory
algorithms for LU factorization is a trade-off between bandwidth and latency
costs. That is, the product of the number of words and the number of
messages sent is Θ(n2); this trade-off is shown to be necessary in Solomonik
et al. (2014). We mention here only one of many speed-ups: up to 2.1× of
2.5D LU on 64K of an IBM BG/P machine compared to previous parallel
LU factorization (Georganas et al. 2012). A similar approach, applied to
the direct N -body problem, leads to speed-ups of up to 11.8× on the 32K
core IBM BG/P, compared to similarly tuned 2D algorithms (Driscoll et al.
2013).

3.3.4. Symmetric indefinite factorizations

If a linear system is symmetric but not positive definite, we can compute
a factorization with half the arithmetic of the nonsymmetric case (as is
the case with the Cholesky factorization), but pivoting is required to en-
sure numerical stability. The need for symmetric pivoting complicates the
computation, and communication-efficient algorithms are not as straight-
forward.

3.3.4.1. Sequential case. A brief history of sequential symmetric indefinite
factorizations and their communication costs is given by Ballard et al.
(2013b). The most commonly used factorization (and the one implemented
in LAPACK) is LDLT , where D is block diagonal with 2×2 and 1×1 blocks,
using either Bunch–Kaufman or rook pivoting. An alternative factorization,
due to Aasen (1971), computes a tridiagonal matrix T instead of a block
diagonal matrix D. Both factorizations use symmetric pivoting. The same
lower bound for dense matrices, given in Corollaries 2.18 and 2.19, applies
to both computations.

However, there exist no current communication-optimal algorithms that
compute these factorizations directly. The implementations of LDLT in



Numerical linear algebra: communication costs 53

LAPACK (Anderson et al. 1992) (sytrf) and of LTLT in Rozložńık, Shk-
larski and Toledo (2011) can attain the lower bound for large matrices
(where n ≥M) but fail for reasonably sized matrices (where

√
M ≤ n ≤M).

They also never attain the latency cost lower bound, and work only for
the two-level memory model. It is an open problem whether there exists a
communication-optimal algorithm that computes the factorizations directly.

The communication-optimal algorithm presented in Ballard et al. (2013a)
first computes a factorization LTLT , where T is a symmetric band matrix
(with bandwidth Θ(

√
M)), and then decomposes T in a second step. This

algorithm is a block algorithm, and with a block-contiguous data structure,
it minimizes both words and messages in the two-level memory model.

Because the subroutines in the communication-avoiding symmetric indef-
inite factorization can all be performed with blocked or recursive algorithms
themselves, it is possible to extend the algorithm (with matching data struc-
ture) to minimize communication costs in the multiple-level memory model.
Note that the Shape-Morphing LU algorithm (Ballard et al. 2013f) is nec-
essary to perform the panel factorization subroutine with optimal latency
cost for all subsequent levels of memory.

3.3.4.2. Parallel case. While the two-stage blocked version of Aasen’s al-
gorithm in Ballard et al. (2013a) does not address the parallel case, the
algorithm can be parallelized to minimize communication in the minimal
memory case. This algorithm computes the factorization in two steps, first
reducing the symmetric matrix to band form and then factoring the band
matrix. The first step requires the use of a communication-efficient Tall
Skinny LU factorization routine (as used in CALU in Section 3.3.3). The
second step can be performed naively with a nonsymmetric band LU factor-
ization (with no parallelism) with computational and communication costs
that do not asymptotically exceed the costs of the first step. We leave
the details of the parallelization of the reduction to band form and a more
complete consideration of efficient parallel methods for factoring the band
matrix to future work. No parallel algorithms are known that effectively
use extra memory to reduce computation for symmetric indefinite factor-
izations. Using an approach similar to that of Ballard et al. (2013b) leads
to a speed-up of up to 2.8× over MKL, while losing only one or two digits
in the computed residual norms.

3.3.5. QR factorization

The QR factorization is commonly used for solving least-squares problems,
but it has applications in many other computations such as eigenvalue
and singular value factorizations and many iterative methods. While there
are several approaches to computing a QR factorization, including Gram–
Schmidt orthogonalization and Cholesky–QR, we focus in this section on
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those approaches that use a sequence of orthogonal transformations (i.e.,
Householder transformations or Givens rotations) because they are the most
numerically stable.

Note that Cholesky–QR can be performed optimally with respect to com-
munication costs. It involves computing ATA, a Cholesky factorization,
and a TRSM, all of which have communication-optimal algorithms (see
Sections 3.3.1 and 3.3.2).

3.3.5.1. Sequential case. The history of reducing communication costs for
QR factorization on sequential machines is very similar to that of LU. The
algorithm in LAPACK (geqrf) is based on the Householder–QR algorithm
(see Algorithm 3.2 of Demmel 1997, for example), computes one House-
holder vector per column, and also uses blocking to cast most of the com-
putation in terms of matrix multiplication. However, this form of blocking
is more complicated than in the case of LU, and is based on the ideas of
Bischof and Van Loan (1987) and Schreiber and Van Loan (1989). While
the blocking requires extra flops, the cost is only a lower-order term. Al-
though the algorithm in LAPACK is much more communication-efficient
than the column-by-column approach, it still does not minimize bandwidth
cost for reasonably sized matrices (

√
M < n < M), and the column-major

data layout prevents latency optimality. Note that the representation of
the Q factor is compactly stored as the set of Householder vectors used to
triangularize the matrix (i.e., one Householder vector per column of the
matrix).

Shortly after the rectangular recursive algorithms for LU were developed,
a similar algorithm for QR was devised by Elmroth and Gustavson (1998).
As in the case of LU, this algorithm is cache-oblivious and minimizes words
moved (but not necessarily messages). It also computes one Householder
vector per column. However, the algorithm performs a constant factor more
flops than Householder–QR, requiring about 17% more arithmetic for tall
and skinny matrices and about 30% more for square matrices. To address
this issue, the authors present a hybrid algorithm which combines the ideas
of the algorithm in LAPACK and the rectangular recursive one. The hybrid
algorithm involves a parameter that must be chosen correctly (relative to
the fast memory size) in order to minimize communication, so it is no longer
cache-oblivious.

Later, another recursive algorithm for QR was developed by Frens and
Wise (2003). The recursive structure of the algorithm involves splitting the
matrix into quadrants instead of left and right halves, more similar to the re-
cursive Cholesky algorithm than the previous rectangular recursive LU and
QR algorithms. Because recursive calls always involve matrix quadrants, the
algorithm maps perfectly to the block-recursive data layout. Indeed, with
this data layout, the algorithm minimizes both words and messages and is
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cache-oblivious. Unfortunately, the algorithm involves forming explicit or-
thogonal matrices rather than working with their compact representations,
which ultimately results in a constant factor increase in the number of flops
of about 3×. It is an open question whether this algorithm can be modified
to reduce this computational overhead.

At nearly the same time as the development of the CALU algorithm
and tournament pivoting, a similar blocked approach for QR factorization,
called communication-avoiding QR (CAQR), was designed in Demmel et al.
(2012). CAQR maps to the block-contiguous data layout and minimizes
both words and messages in the two-level model, but because it requires
the algorithmic and data layout block size to be chosen correctly, it is not
cache-oblivious. Interestingly, it also requires a new representation of the
Q factor arising from the Tall Skinny QR (TSQR) algorithm, which we
discuss in more detail in Section 3.3.5.2. While just as compact as in the
conventional Householder–QR, the new representation varies with an inter-
nal characteristic of the algorithm. The ideas behind TSQR and CAQR first
appear in Golub, Plemmons and Sameh (1988), as well as Buttari, Langou,
Kurzak and Dongarra (2007), Gunter and van de Geijn (2005) and Elmroth
and Gustavson (1998); see Demmel et al. (2012) for a more complete list of
references. Note that the CAQR algorithm satisfies the assumptions of The-
orem 2.22 (it maintains forward progress and need not compute T matrices
of dimension two or greater) and attains both the bandwidth cost lower
bound stated in the theorem as well as the latency lower bound corollary.

As explained in Ballard et al. (2013f), the shape-morphing technique can
be applied to the rectangular recursive QR algorithm of Elmroth and Gus-
tavson (1998) to obtain similar results as in the case of LU factorization.
Shape-morphing QR is both communication-optimal and cache-oblivious,
though it suffers from the same increase in computational cost as the orig-
inal rectangular recursive algorithm. Again, a hybrid version reduces the
flops at the expense of losing cache-obliviousness.

We also note that rank-revealing QR is an important variant of QR factor-
ization that is used for solving rank-deficient least-squares problems, rank
determination, and other applications; see Gu and Eisenstat (1996) for more
discussion of algorithms and applications. While the conventional QR with
column pivoting approach suffers from high communication costs, there do
exist communication-optimal algorithms for this computation. In the case
of tall and skinny matrices, TSQR can be used as a preprocessing step, and
conventional rank-revealing QR algorithms can be applied to the resulting
triangular factor with little extra communication cost. See Demmel et al.
(2013c) for an application of the tournament pivoting idea of CALU to col-
umn pivoting within rank-revealing QR of general (not so tall and skinny)
matrices, and see Algorithm 1 of Ballard, Demmel and Dumitriu (2011a) for
a randomized rank-revealing QR algorithm that requires efficient (non-rank-
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revealing) QR factorization and matrix multiplication subroutines, and is
needed for eigenvalue problems.

3.3.5.2. Parallel case. ScaLAPACK’s QR routine (pxgeqrf) also minimizes
bandwidth cost but not latency cost. It is a parallelization of the LAPACK
algorithm, using one Householder vector per column. At nearly the same
time as the development of the CALU algorithm, Demmel et al. (2012) de-
veloped the Communication-Avoiding QR (CAQR) algorithm, which mini-
mizes both words and messages. The principal innovation of parallel CAQR
is the factorization of a tall and skinny submatrix using only one reduction,
for a cost of O(logP ) messages rather than communicating once per column
of the submatrix. The algorithm for tall and skinny matrices is called TSQR,
and it is an important subroutine not only for general QR factorization but
also many other computations: see Mohiyuddin, Hoemmen, Demmel and
Yelick (2009), for example. In order to obtain this reduction, the authors
abandoned the conventional scheme of computing one Householder vector
per column and instead use a tree of Householder transformations. This re-
sults in a different representation of the orthogonal factor, though it has the
same storage and computational requirements as the conventional scheme.

The TSQR operation is effectively a reduction operation, and in the dis-
tributed-memory parallel case, the optimal reduction tree is binary. We
present TSQR in Algorithm 3.2, where we assume the number of processors
is a power of 2. See also Figure 3.3, a sketch of the case of four processors.
Applied to an m×n matrix such that m/P > n, the communication costs of
the reduction are O(n2 logP ) words and O(logP ) messages. In the context
of CAQR, the implicit representation computed by TSQR is used to update
the trailing matrix; this requires a different algorithm to the conventional
approach, and is described in Demmel et al. (2012). It is possible to perform
TSQR and recover the conventional Householder storage scheme without
asymptotically increasing communication costs: see Ballard et al. (2014)
for more details.

Tiskin (2002, 2007) has proposed generic pairwise reduction algorithms
that use extra local memory to reduce communication compared to minimal-
memory algorithms. These algorithms can be used for Givens-based QR
factorizations. While no known lower bound exists for a trade-off between
bandwidth and latency costs for QR factorization, his algorithms navigate
the same trade-off as in the case of LU factorization. However, these al-
gorithms are still considered only theoretical because they involve a (possi-
bly large) constant factor increase in the computational cost compared to
minimal-memory QR algorithms.

As in the sequential case, for communication-optimal algorithms perform-
ing rank-revealing QR factorizations, see Demmel et al. (2013c) and Bal-
lard et al. (2011a, Algorithm 1). Again for tall and skinny matrices, a
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Algorithm 3.2 [{Yi,k}, R] = TSQR(A); Tall Skinny QR

Require: Number of processors P is a power of 2 and i is the proc. index
Require: A is m× b, distributed in block row layout; Ai is proc. i’s block
Ensure: R = R0,log p is stored by proc. 0 and Yi,k is stored by proc. i
Ensure: A = QR with Q implicitly represented by {Yi,k}
1: [Yi,0, Ri,0] = Householder–QR(Ai)
2: for k = 1 to logP do 
 binary reduction tree for TSQR
3: if i ≡ 0 mod 2k then
4: j = i+ 2k−1

5: Receive Rj,k−1 from processor j

6: [Yi,k, Ri,k] = QR

([
Ri,k−1

Rj,k−1

])
7: else if i ≡ 2k−1 mod 2k then
8: Send Ri,k−1 to processor i− 2k−1

9: end if
10: end for

communication-optimal rank-revealing TSQR is straightforward to derive,
since a costly (conventional) rank-revealing QR can be applied after TSQR
to the resulting triangular factor, with no communication cost.

We note one example of a speed-up of 13× for TSQR on a Tesla C2050
Ferma NVIDIA GPU, compared to CULA, a commercial library from EM
Photonics (Anderson, Ballard, Demmel and Keutzer 2011).

3.3.6. Symmetric eigenfactorization and SVD

The processes for determining the eigenvalues and eigenvectors of a sym-
metric matrix and the singular values and singular vectors of a general
matrix are computationally similar. In both cases, the standard approach
is to reduce the matrix via two-sided orthogonal transformations (stably
preserving the eigenvalues or singular values) to a condensed form. In the
symmetric eigenproblem, this condensed form is a tridiagonal matrix; in
the case of the SVD, the matrix is reduced to bidiagonal form. Computing
the eigenvalues or singular values of these more structured matrices is much
cheaper (both in terms of computation and communication) than reducing
the full matrices to condensed form, so we do not consider this phase of
computation. The most commonly used tridiagonal and bidiagonal solvers
include MRRR, bisection/inverse iteration, divide-and-conquer, or QR it-
eration: see Demmel, Marques, Parlett and Vömel (2008c), for example.
After both eigen- or singular values and vectors are computed for the con-
densed forms, the eigen- or singular vectors of the original matrix can be
computed via a back-transformation, by applying the orthogonal matrices
that transformed the dense matrix to tri- or bidiagonal.
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Figure 3.3. TSQR parallel algorithm with four processors, with notation matching
Algorithm 3.2. Solid black arrows indicate a message, and dotted black arrows
show which data do not need to be sent or received at a particular step. Grey thick
arrows indicate a computation (in this case, the QR factorization of two vertically
stacked R factors).

3.3.6.1. Sequential case. LAPACK’s routines for computing the symmetric
eigen-decomposition (syev) and SVD (gesvd) use a similar approach to
the LU and QR routines, blocking the computations to cast work in terms
of calls to matrix multiplication. However, because the transformations are
two-sided, a constant fraction of the work is cast as BLAS-2 operations, such
as matrix–vector multiplication, which are communication-inefficient. As a
result, these algorithms do not minimize bandwidth or latency costs, for
any matrix dimension; they require communicating Θ(n3) words, meaning
the data re-use achieved for a constant fraction of the work is as low as
O(1). Later work improved the constant factor in the bandwidth cost by
2× (Howell et al. 2008), but it is still far from optimal.

Bischof, Lang and Sun (2000a, 2000b) proposed a two-step approach to
reducing a symmetric matrix to tridiagonal form known as Successive Band
Reduction (SBR): first reduce the dense matrix to band form and then
reduce the band matrix to tridiagonal. The advantage of this approach is
that the first step can be performed so that nearly all of the computation is
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cast as matrix multiplication; that is, the data re-use can be Θ(
√
M), which

is communication-optimal. The drawback is that reducing the band matrix
to tridiagonal form is a difficult task, requiring O(n2b) flops (as opposed
to O(nb2) flops in the case of the symmetric indefinite linear solver) and
complicated data dependences. The algorithms of Ballard, Demmel and
Knight (2013d) perform this reduction in a communication-efficient manner.

If only eigenvalues are desired, then the two-step approach applied to a
dense symmetric matrix performs the same number of flops (modulo lower-
order terms) as the standard approach used in LAPACK. If eigenvectors
are also desired, then the computational cost of the back-transformation
phase is higher for the two-step approach by a constant factor. In terms
of the communication costs, the two-step approach can be much more effi-
cient, matching the lower bound of Corollary 2.23 and Theorem 2.24: see
Ballard et al. (2011a, Section 6) for the bandwidth cost analysis. In order
to minimize communication across the entire computation, the two-step ap-
proach also requires a communication-efficient Tall Skinny QR factorization
(during the first step) and one of the algorithms proposed in Ballard et al.
(2013d) (for the second step). All of the SBR algorithms designed for the
symmetric eigenproblem can be adapted for computing the SVD.

Another communication-optimal approach is to use the spectral divide-
and-conquer algorithms described in Section 3.3.7, adapted for symmetric
matrices or computing the SVD. In the symmetric case, a more efficient
iterative scheme is presented by Nakatsukasa and Higham (2012). These
approaches require efficient QR factorization and matrix multiplication al-
gorithms and perform a constant factor more computation than the reduc-
tion approaches.

3.3.6.2. Parallel case. As in the case of one-sided factorizations, ScaLA-
PACK’s routines for the two-sided factorizations for the symmetric eigen-
decomposition (pxsyev) and SVD (pxgesvd) minimize bandwidth cost but
fail to attain the latency cost lower bound. However, by using the two-step
SBR approach, we can minimize both words and messages. In the two-step
approach, the first step requires an efficient parallel Tall Skinny QR factor-
ization, such as TSQR. For the second step, the use of the parallel algorithm
given in Ballard et al. (2013d) ensures that the overall algorithm achieves
the lower bounds. As in the sequential case, the two-step approach requires
extra computational cost (up to a logarithmic factor in P ) when eigenvec-
tors are desired. Formulating optimal, extra-memory parallel algorithms for
the symmetric eigenproblem and SVD is ongoing research.

We note a speed-up of up to 6.7× for symmetric eigen-decomposition with
banded A, on a ten-core Intel Westmere platform compared to PLASMA
version 2.4.1 (Ballard, Demmel and Knight 2012a).
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3.3.7. Nonsymmetric eigen-decomposition

The standard approach for computing the eigen-decomposition of a non-
symmetric matrix is similar to the symmetric case: orthogonal similarity
transformations are used to reduce the dense matrix to a condensed form,
from which the Schur form is computed. In the nonsymmetric case, the
condensed form is an upper Hessenberg matrix (an upper triangular matrix
with one nonzero subdiagonal), and QR iteration (with some variations) is
typically used to annihilate the subdiagonal. In this case, the amount of
data in the condensed form is asymptotically the same as the original matrix
(about n2/2 versus n2), and Θ(n3) computation is required to obtain Schur
form from a Hessenberg matrix (as opposed to the symmetric case, where
the data and computation involved in solving the tridiagonal eigenproblem
are lower-order terms). Thus, in determining the communication cost of the
overall algorithm, we cannot ignore the second phase of computation as in
Section 3.3.6.

3.3.7.1. Sequential case. LAPACK’s routine for the nonsymmetric eigen-
problem (geev) takes the reduction approach and moves O(n3) words in the
reduction phase and O(n3) words in the QR iteration, so it is sub-optimal
both in terms of words and messages. While there have been approaches to
reduce communication costs in the reduction phase in a manner similar to
SBR, reducing first to band-Hessenberg and then to Hessenberg form (see
Karlsson and K̊agström (2011)), it is an open question whether an asymp-
totic reduction is possible and the lower bound of Corollary 2.23 and The-
orem 2.24 is attainable. Even if the reduction phase can be done optimally,
it is also an open question whether QR iteration can be done in an equally
efficient manner. Some work on reducing communication for multishift QR
iteration in the sequential case, based on the work of Braman, Byers and
Mathias (2002a, 2002b), appears in Mohanty and Gopalan (2012). See also
Granat, K̊agström, Kressner and Shao (2012) and K̊agström, Kressner and
Shao (2012).

Because of the difficulties of the reduction approach, we consider a differ-
ent approach for computing the nonsymmetric eigen-decomposition, called
spectral divide-and-conquer. In this approach, the goal is to compute an
orthogonal similarity transformation which transforms the original matrix
into a block upper triangular matrix, thereby generating two smaller sub-
problems whose Schur form can be combined to compute the Schur form of
the original matrix. While there are a variety of spectral divide-and-conquer
methods, we focus on the one proposed in Bai, Demmel and Gu (1997b),
adapted in Demmel, Dumitriu and Holtz (2007a), and further developed in
Ballard et al. (2011a). This approach relies on a randomized rank-revealing
QR factorization and communication-optimal algorithms for QR factoriza-
tion and matrix multiplication. Under mild assumptions, the algorithm
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asymptotically minimizes communication (and is cache-oblivious if the QR
factorization and matrix multiplication algorithms are) but involves a (pos-
sibly large) constant factor more computation than the reduction and QR
iteration approach. The algorithm can be applied to the generalized eigen-
problem as well as symmetric variants and the SVD. See Ballard et al.
(2011a) for full details of the algorithm and its communication costs.

Note also that to form the eigen-decomposition from Schur form requires
computing the eigenvectors of a (quasi-)triangular matrix. The LAPACK
routine for this computation (trevc) computes one eigenvector at a time
and does not minimize communication. A communication-optimal, blocked
algorithm is presented in Ballard et al. (2011a, Section 5).

3.3.7.2. Parallel case. For the nonsymmetric eigenproblem, ScaLAPACK’s
routine (pxgeev) minimizes neither words nor messages. As in the sequen-
tial case, it is an open problem to minimize communication using the stan-
dard approach of reduction to Hessenberg form followed by Hessenberg QR
iteration. Ongoing algorithmic and implementation development on the
ScaLAPACK code has been improving the communication costs and speed
of convergence: see Granat et al. (2012) for details. These improvements,
while important, do not achieve the communication lower bound.

For the purposes of minimizing communication, we consider a different
approach based on spectral divide-and-conquer. As in the sequential case,
by using the method of Bai et al. (1997b), Ballard et al. (2011a) and Demmel
et al. (2007a), we can minimize both words and messages with the use of
optimal parallel QR factorization and matrix multiplication subroutines.

Formulating parallel algorithms for the nonsymmetric eigenproblem that
utilize extra memory optimally is an open problem.

3.3.8. Direct computations with sparse matrices

All of the algorithms for direct matrix computations discussed thus far in
Section 3.3 have been designed for dense matrices. While the number of
communication-optimal, direct algorithms for sparse matrices is very limited
in comparison, we highlight three examples of algorithms that are optimal
for specific sets of sparse matrices.

The first example is of an algorithm for computing all-pairs shortest paths
between vertices in graph via the Floyd–Warshall method (Floyd 1962,
Warshall 1962). For graphs of sufficiently low diameter, even if the original
graph is sparse, the associated distance matrix fills in quickly and dense
lower bounds apply. The communication-optimal parallel algorithm for this
computation appears in Solomonik et al. (2013).

In other sparse computations, the majority of the computational work
is performed on dense submatrices. This is the case for computation of
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the Cholesky factorization of matrices corresponding to meshes and pla-
nar graphs. The extension of the lower bounds and the identification of a
communication-optimal algorithm are given in Grigori et al. (2010).

The last example involves matrices and computations which are truly
sparse: multiplying two sparse matrices whose sparsity structures corre-
spond to Erdős–Rényi random graphs with expected vertex degrees con-
stant with respect to the matrix dimension. In this case, the lower bounds
of Section 2 are unattainable; however, similar proof techniques can obtain
tighter lower bounds in the parallel case that match optimal algorithms.
See Ballard et al. (2013c) for details.

3.4. Conclusions and future work

3.4.1. Sequential case

Sequential algorithms that are communication-optimal exist for all of the
dense matrix computations discussed in this section (see Table 3.1), though
much work remains to be done. In some cases, implementations of theo-
retically optimal algorithms have demonstrated performance improvements
over previous algorithms; in others, implementations are still in progress.
There are several possible future directions of algorithmic improvement:
finding ways to reduce costs by constant factors or develop other theoreti-
cally optimal algorithms that might perform more efficiently in practice.

For example, it may be possible to minimize both words and messages
for one-sided factorizations without relying on tournament pivoting, House-
holder reduction trees, or the block-Aasen algorithm by using more standard
blocked algorithms (as in LAPACK) and adding a second level of block-
ing. This could also produce a communication-optimal LDLT algorithm.
Other open problems with respect to QR factorization include reconstruct-
ing Householder vectors from the tree representation of TSQR and modi-
fying the algorithm of Frens and Wise (2003) to be more computationally
efficient.

There are many variants of eigenvalue and singular value algorithms, in
several of which large constant factor improvements are possible, partic-
ularly in the cases of computing eigenvectors of a symmetric matrix and
singular vectors of a general matrix. The communication-optimal nonsym-
metric eigensolver also suffers from high computational costs and requires
more optimization to be competitive in practice.

In particular, this approach relies on randomization in two ways: first, the
division of the spectrum is done with a randomly chosen curve through the
complex plane, and second, a randomized rank-revealing QR factorization
is used to implicitly compute a factorization of a matrix product of the form
A−1B (Ballard et al. 2011a). Also, computing the eigenvectors from Schur
form requires an optimal algorithm (assuming minimal memory) which is
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presented in Ballard et al. (2011a, Section 5). For sparse matrices, most
cases are open, and only a few optimal algorithms exist.

3.4.2. Parallel case
Parallel algorithms that are communication-optimal exist for many, but
not all, dense matrix problems. As in the sequential case, there are many
constant-factor improvements possible for the algorithms discussed in this
section (see Table 3.2). In particular, many implementations are in progress
for demonstrating performance benefits of the new algorithms for symmetric
indefinite factorizations and computing the symmetric eigen-decomposition
and SVD.

Furthermore, the algorithms presented in Table 3.2 assume limitations
on local memory that are often not necessary, especially in strong-scaling
scenarios. Only a few of the computations listed in Table 3.2 appear in Ta-
ble 3.3: many open algorithmic problems remain. Developing and optimiz-
ing extra-memory algorithms is an important area of research for developing
scalable algorithms. For sparse matrices, most cases are open, and only a
few optimal algorithms exist.

4. Lower bounds for Strassen-like computations

In this section we consider the communication costs of Strassen’s algorithm
(Strassen 1969) and similar computations. Recall that Strassen’s key idea
is to multiply 2 × 2 matrices using seven scalar multiplications instead of
eight. Because n×n matrices can be divided into quadrants, Strassen’s idea
applies recursively. Each of the seven quadrant multiplications is computed
recursively, and the computational cost of additions and subtractions of
quadrants is Θ(n2). Thus, the recurrence for the flop count is F (n) =
7F (n/2) + Θ(n2) with base case F (1) = 1, which yields F (n) = Θ(nlog2 7),
which is asymptotically less computation than the classical algorithm.

The main results in the following section expose a wonderful fact: not
only does Strassen’s algorithm require less computation than the classical
algorithm, but it also requires less communication. The lower bounds are
lower than the bounds for the classical algorithm (Hong and Kung 1981,
Irony et al. 2004). In both sequential and parallel cases, there now ex-
ist communication-optimal algorithms that achieve the lower bounds: see
Section 5.

4.1. Expansion and communication

The computation performed by an algorithm on a given input can be mod-
elled as a computation directed acyclic graph (CDAG): we have a vertex for
each input, intermediate, and output argument, and edges according to di-
rect dependences; for example, for the binary arithmetic operation x = y+z
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we have directed edges from vertices corresponding to operands y and z to
the vertex corresponding to x.

In the sequential case, an implementation (or schedule) determines the
order of execution of the arithmetic operations, which respects the partial
ordering of the CDAG. In the parallel case, an implementation determines
which arithmetic operations are performed by which of the P processors as
well as the ordering of local operations. This corresponds to partitioning the
CDAG into P parts. Edges crossing between the various parts correspond
to arguments that are in the possession of one processor but are needed by
another processor and therefore relate to communication.

4.2. General framework

The proof technique described here has two main ingredients. One is a
partition argument, similar to that used in Section 2 for classical algorithms
in numerical linear algebra. However, we replace the use of Loomis–Whitney
geometric inequality there (Lemma 2.5) with edge expansion analysis of the
corresponding computation graph. Various analyses of computation graphs
appear in Hong and Kung (1981) and Savage (1995) for communication cost
bounds and in Lev and Valiant (1983) for bounding the arithmetic cost.

We base our analysis on the edge expansion of Strassen’s CDAG. The edge
expansion h(G) of a d-regular (i.e., d neighbours for each vertex) undirected
graph G = (V,E) is

h(G) ≡ min
U⊆V,|U |≤|V |/2

|EG(U, V \ U)|
d · |U | , (4.1)

where EG(A,B) is the set of edges connecting the disjoint vertex sets A
and B.

For many graphs, small sets have larger expansion than larger sets. Let
hs(G) denote the edge expansion of G for sets of size at most s:

hs(G) ≡ min
U⊆V,|U |≤s

|EG(U, V \ U)|
d · |U | . (4.2)

For many interesting graph families (including Strassen’s CDAG), hs(G)
does not depend on |V (G)| when s is fixed, although it may decrease when
s increases.

Intuitively, the edge expansion relates the amount of data that must be
accessed in order to perform a given set of computations. For a given set S
of vertices (a set of arithmetic operations, of size |S| ≤ s), the neighbours
of S are data items that are necessary to perform the computation; if this
data is not in fast or local memory, communication is required. Hence the
edge expansion of a set S can be used to bound the communication costs.
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Algorithm 4.1 Matrix multiplication: Strassen’s algorithm

Require: Two n× n matrices, A and B
1: procedure C = Matrix-Multiplication(A, B, n)
2: if n = 1 then
3: C = A ·B
4: else

5: Decompose A,B,C into quadrants: A =

(
A11 A12

A21 A22

)
6: S1 = A11 +A22; T1 = B11 +B22

7: S2 = A21 +A22; T2 = B11

8: S3 = A11; T3 = B12 −B22

9: S4 = A22; T4 = B21 −B11

10: S5 = A11 +A12; T5 = B22

11: S6 = A21 −A11; T6 = B11 +B12

12: S7 = A12 −A22; T7 = B21 +B22

13: for i = 1 to 7 do
14: Qi = Matrix-Multiplication(Si, Ti, n/2)
15: end for
16: C11 = Q1 +Q4 −Q5 +Q7

17: C12 = Q3 +Q5

18: C21 = Q2 +Q4

19: C22 = Q1 −Q2 +Q3 +Q6

20: end if
21: return C
22: end procedure

4.3. Strassen’s algorithm

The CDAG of Strassen’s algorithm can be decomposed into three subgraphs:
an ‘encoding’ of the input matrix A, an ‘encoding’ of the input matrix B,
and ‘decoding’ of the nlog2 7 scalar multiplications to produce the output
matrix C. We choose to perform an expansion analysis of the last of these
subgraphs, which we denote by DeclgnC for matrices of dimension n. See
Algorithm 4.1 and Figure 4.1.

In Ballard, Demmel, Holtz and Schwartz (2011c, 2012b) we show the
following.

Lemma 4.1. The edge expansion of Deck C is

h(Deck C) = Ω

((
4

7

)k)
.
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(a) (b)

(c)

    0 

(d)

Figure 4.1. The computation graph of Strassen’s algorithm (see
Algorithm 4.1): (a) Dec1 C, (b) H1, (c) Declgn C, (d) Hlgn.

By another argument (proof in Ballard, Demmel, Holtz and Schwartz
2012b) we obtain that

hs(Declog2 nC) ≥ h(Deck C),

where s = Θ(7k). Combining with the partition argument we obtain the
following lower bound.

Theorem 4.2 (Ballard et al. 2012b). Consider Strassen’s algorithm im-
plemented on a sequential machine with fast memory of size M . Then, for
M ≤ n2, the bandwidth cost of Strassen’s algorithm is

W (n,M) = Ω

((
n√
M

)log2 7

·M
)
.

It holds for any implementation and any known variant of Strassen’s
algorithm that is based on performing 2 × 2 matrix multiplication with
seven scalar multiplications. This includes Winograd’s O(nlog2 7) variant
using 15 additions instead of 18, which is the most commonly used fast
matrix multiplication algorithm in practice. This lower bound is tight, in
that it is attained by the standard recursive sequential implementation of
Strassen’s algorithm.
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The proof technique of Theorem 4.2 extends to parallel machines, yielding
the following result.

Corollary 4.3 (Ballard et al. 2012b). Consider Strassen’s algorithm im-
plemented on a parallel machine with P processors, each with a local mem-
ory of size M . Then, for

3n2

P
≤M ≤ n2

P 2/ log2 7
,

the bandwidth cost of Strassen’s algorithm is

W (n, P,M) = Ω

((
n√
M

)log2 7

· M
P

)
.

While Corollary 4.3 does not hold for all sizes of local memory (rela-
tive to the problem size and number of processors), the following memory-
independent lower bound, proved using similar techniques (Ballard et al.
2012d), holds for all local memory sizes, though it requires separate as-
sumptions.

Theorem 4.4 (Ballard et al. 2012d). Suppose a parallel algorithm per-
forming Strassen’s matrix multiplication load balances the computation.
Then, the bandwidth cost is

W (n, P ) = Ω

(
n2

P 2/ log2 7

)
.

Note that the bound in Corollary 4.3 dominates the one in Theorem 4.4
for M = O(n2/P 2/ log2 7) (which coincides with the lower bound). Thus, the
tightest lower bound for parallel implementations of Strassen is the maxi-
mum of these two bounds. Similar bounds exist for classical computations:
see Section 2.6.2. As in the classical case, the bound in Theorem 4.4 implies
that there is a limit to how far a parallel algorithm for Strassen’s matrix
multiplication can strongly scale perfectly. See Table 4.1 and Ballard et al.
(2012d) for more details.

4.4. Strassen-like algorithms

A Strassen-like algorithm is a recursive matrix multiplication algorithm
based on a scheme for multiplying k × k matrices using q scalar multi-
plications for some k and q < k3 (so that the algorithm performs O(nω0)
flops where ω0 = logk q). For the latest bounds on the arithmetic complex-
ity of matrix multiplication and references to previous bounds, see Williams
(2012). For our lower bound proof to apply, we require another technical cri-
terion for Strassen-like algorithms: the decoding graph must be connected.
This class of algorithms includes many (but not all) fast matrix multiplica-
tions. For details and examples, see Ballard et al. (2012b, 2012f).
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Table 4.1. Communication-cost lower bounds for parallel matrix multiplication and
perfect strong scaling ranges; n is the matrix dimension, M is the local memory
size, P is the number of processors, and ω0 is the exponent of the arithmetic cost.

Classical Strassen Strassen-like

Memory-dependent
Ω
( n3

PM1/2

)
Ω
( nlog2 7

PM log2 7/2−1

)
Ω
( nω0

PMω0/2−1

)
lower bound

Memory-independent
Ω
( n2

P 2/3

)
Ω
( n2

P 2/ log2 7

)
Ω
( n2

P 2/ω0

)
lower bound

Perfect strong
P = O

( n3

M3/2

)
P = O

( nlog2 7

M log2 7/2

)
P = O

( nω0

Mω0/2

)
scaling range

For Strassen-like algorithms, the statements of the communication lower
bounds have the same form as Theorem 4.2, Corollary 4.3, and Theorem 4.4:
replace log2 7 with ω0 everywhere it appears! (See Table 4.1.) The proof
technique follows that for Strassen’s algorithm. While the bounds for the
classical algorithm have the same form, replacing log2 7 with 3, the proof
techniques are quite different (Hong and Kung 1981, Irony et al. 2004). In
particular, the proof here does not apply to the classical matrix multiplica-
tion (and other three-nested-loops algorithms; recall Section 2) because the
decoding graph there is not connected: for example, C11 = A11·B11+A12·B21

and C22 = A21 ·B12 +A22 ·B22 do not share anything.

4.5. Fast rectangular matrix multiplication

Many fast algorithms have been devised for multiplication of rectangular
matrices: see Ballard et al. (2012f) for a detailed list. A fast algorithm for
multiplying m× k and k× r matrices in q < mkr scalar multiplications can
be applied recursively to multiply mt×kt and kt×rt matrices in O(qt) flops.
For such algorithms, the CDAG has a very similar structure to Strassen and
Strassen-like algorithms for square multiplication in that it is composed of
two encoding graphs and one decoding graph. Assuming that the decoding
graph is connected, the proofs of Theorem 4.2 and Lemma 4.1 apply, where
we plug in mr and q for 4 and 7, respectively. In this case, we obtain a
result analogous to Theorem 4.2 which states that the communication cost
of such an algorithm is given by Ω(qt/M logmr q−1). If the output matrix is the
largest of the three matrices (i.e., k < m and k < r), then this lower bound
is attained by the natural recursive algorithm and is therefore tight. The
lower bound extends to the parallel case as well, analogous to Corollary 4.3,
and can be attained using the algorithmic technique of McColl and Tiskin
(1999) and Ballard et al. (2012e); see Section 5.
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4.6. Fast linear algebra

Fast matrix multiplication algorithms are basic building blocks in many
fast algorithms in linear algebra, such as algorithms for LU, QR, and eigen-
value and singular value decompositions (Demmel et al. 2007a). Therefore,
communication cost lower bounds for these algorithms can be derived from
our lower bounds for fast matrix multiplication algorithms. For example, a
lower bound on LU (or QR, etc.) follows when the fast matrix multiplication
algorithm is called by the LU algorithm on sufficiently large submatrices.
This is the case in the algorithms of Demmel et al. (2007a), and we can
then deduce matching lower and upper bounds (Ballard, Demmel, Holtz
and Schwartz 2012b); see Section 5.

5. Communication-optimal Strassen-like algorithms

The results of Section 4 suggest that the communication costs of fast algo-
rithms can be substantially less than classical algorithms. While a smaller
lower bound does not imply that this is the case, we discuss in this section
fast algorithms that attain the lower bounds, showing that the bounds in
Section 4 are tight.

5.1. Fast sequential matrix multiplication

The bandwidth cost of Strassen’s algorithm where the recursion tree is tra-
versed in the usual depth-first order, can be bounded above with the fol-
lowing argument. Let W (n,M) be the bandwidth cost of the algorithm
applied to n × n matrices on a machine with fast memory of size M . The
recursion consists of computing seven subproblems and performing matrix
additions, where the base case occurs when the problem fits entirely in fast
memory (cn2 ≤M for a small constant c > 3). In the base case, we read the
two input submatrices into fast memory, perform the matrix multiplication
inside fast memory, and write the result into the slow memory. We thus
have

W (n,M) ≤ 7 ·W
(
n

2
,M

)
+O(n2) and W

(√
M

c
,M

)
= O(M).

Thus

W (n,M) = O

((
n√
M

)lg 7

·M
)
.

Note that this matches the lower bound stated in Theorem 4.2. In order to
attain the latency lower bound as well, a careful choice of matrix layout is
necessary. Morton ordering (also known as bit-interleaved layout) enables
the recursive algorithm to attain the latency lower bound; see Frigo et al.
(1999) and Wise (2000) for more details.
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5.2. Fast sequential linear algebra

Demmel et al. (2007a) showed that nearly all of the fundamental problems
in dense linear algebra can be solved with algorithms using asymptotically
the same number of flops as matrix multiplication. Although the stability
properties of fast matrix multiplication are slightly weaker than those of
classical matrix multiplication, all fast matrix multiplication algorithms are
stable or can be made stable, with asymptotically negligible arithmetic cost
(Demmel, Dumitriu, Holtz and Kleinberg 2007b). Further, Demmel et al.
(2007a) showed that fast linear algebra can be made stable at the expense
of only a polylogarithmic (i.e., polynomial in logn) factor increase in cost.
That is, to maintain stability, one can use polylogarithmically more bits
to represent each floating point number and to compute each flop. While
this increases the time to perform one flop or move one word, it does not
change the number of flops computed or floating point numbers moved by
the algorithm.

The bandwidth cost analysis for the algorithms presented in Demmel
et al. (2007a) is given in Ballard, Demmel, Holtz and Schwartz (2012c).
While stability and computational complexity were the main concerns in
Demmel et al. (2007a), in Ballard et al. (2012c) the bandwidth cost of the
linear algebra algorithms is shown to match the corresponding lower bound.
To minimize latency costs, the analysis in Ballard et al. (2012c) must be
combined with the shape-morphing technique of Ballard et al. (2013f).

5.3. Fast parallel matrix multiplication

Compared to classical linear algebra, much less work has been done on the
parallelization of fast linear algebra algorithms (matrix multiplication or
otherwise). Because there is not as rich a history of minimal-memory fast
algorithms, we do not differentiate between minimal-memory and extra-
memory algorithms in this section. Note that the fast algorithms that do
exist are analogous to the classical extra-memory algorithms of Section 3:
they can be executed with M = O(n2/P ) if necessary but can also exploit
extra memory at reduced communication cost if possible. While Strassen’s
matrix multiplication has been efficiently parallelized, both in theory (e.g.,
McColl and Tiskin 1999, Ballard et al. 2012e) and in practice (e.g., our
CAPS algorithm: see Figure 5.1), there are only a few theoretical results
for other fast matrix multiplication algorithms and for other linear algebra
computations.

McColl and Tiskin (1999) present a parallelization of any Strassen-like
matrix multiplication algorithm in the BSPRAM model that achieves a
bandwidth cost of W (n, P ) = O(n2/P 2/ω0−α(ω0−2)) words using local mem-
ory of size M = O(n2/P 2/ω0+2α), where ω0 is the exponent of the compu-
tational cost of the algorithm and 0 ≤ α ≤ 1/2 − 1/ω0. This algorithm is



Numerical linear algebra: communication costs 71

 0

 10

 20

 30

 40

 50

 100  1000  10000

E
ffe

ct
iv

e 
G

flo
ps

 / 
se

c 
/ p

ro
ce

ss
or

Number of processors

Classical peak

New algorithm
Best previous Strassen
Best classical

Figure 5.1. Strong-scaling performance comparison of parallel matrix multipli-
cation algorithms on a Cray XT4. All data correspond to a fixed dimension
n = 94 080. The x-axis represents the number of processors P on a log scale, and
the y-axis measures effective performance, or 2n3/(P · time). The new algorithm
CAPS outperforms all other known algorithms and exceeds the peak performance
of the machine with respect to the classical flop count. CAPS runs 24–184% faster
than the best previous Strassen-based algorithm and 51–84% faster than the best
classical algorithm for this problem size.

communication-optimal for any local memory size; in particular, choosing
maximum α achieves a minimal-memory algorithm, and choosing minimum
α achieves the memory-independent lower bound (given by Theorem 4.4 for
Strassen’s algorithm). As in the classical algorithm, this occurs when M
is as large as the total communication required by one processor, and the
latency lower bound shrinks to one message.

A more practical version of the algorithm, CAPS (for Communication-
Avoiding Parallel Strassen) with communication analysis in the distributed-
memory model, as well as an implementation with performance results,
is presented by Ballard et al. (2012e). For more detailed implementation
description and performance results, see Lipshitz et al. (2012) and Lipshitz
(2013). We show that the new algorithm is more efficient than any other
parallel matrix multiplication algorithm of which we are aware, including
those that are based on the classical algorithm and those that are based on
previous parallelizations of Strassen’s algorithm.

Figure 5.1 shows performance on a Cray XT4. For results on other ma-
chines, see Lipshitz et al. (2012). For example, running on a Cray XE6
with up to 10 000 cores, for a problem of dimension n = 131 712, our new
algorithm attains performance as high as 30% above the peak for classical
matrix multiplication, 83% above the best classical implementation, and
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BFS DFS

Figure 5.2. Representation of BFS and DFS. In BFS, all seven subproblems are
computed at once, each on 1/7 of the processors. In DFS, the seven subproblems
are computed in sequence, each using all the processors.

75% above the best previous implementation of Strassen’s algorithm. Even
for a small problem of dimension n = 4704, it attains performance 66%
higher than the best classical implementation.

In order to understand the main idea behind CAPS, consider the recur-
sion tree of Strassen’s sequential algorithm. CAPS traverses it in parallel
as follows. At each level of the tree, the algorithm proceeds in one of two
ways. A ‘breadth-first step’ (BFS) divides the seven subproblems among
the processors, so that 1/7 of the processors work on each subproblem inde-
pendently and in parallel. A ‘depth-first step’ (DFS) uses all the processors
on each subproblem, solving each one in sequence. See Figure 5.2 and Al-
gorithm 5.1.

In short, BFS requires more memory but reduces communication costs
while DFS requires little extra memory but is less communication-efficient.
In order to minimize communication costs, the algorithm must choose an
ordering of BFS and DFS that uses as much memory as possible. See Ballard
et al. (2012e), Lipshitz et al. (2012), Demmel et al. (2013a) and Lipshitz
(2013) for further details on optimizing BFS–DFS interleaving.

5.4. Fast parallel linear algebra

We note that the recursive algorithms in Section 3 that use square matrix
multiplication as a subroutine can benefit from a fast matrix multiplication
algorithm. In particular, the triangular solve and Cholesky decomposition
algorithms of Lipshitz (2013, Section 5) and the algorithms of Tiskin (2007)
attain the same computational costs as the matrix multiplication algorithm
used and similarly navigate the communication–memory trade-off. However,
these algorithms have only been analysed theoretically: no implementations
exist yet. We leave the implementation of these known algorithms and the
development of new algorithms for the rest of linear algebra to future work.
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Algorithm 5.1 CAPS, in brief

Require: A, B, n, where A and B are n× n matrices
P = number of processors

Ensure: C = A ·B

 The dependence of the Si on A, the Ti on B and

C on the Qi follows the Strassen or Strassen–Winograd algorithm. See
Ballard et al. (2012e).

1: procedure C = CAPS(A, B, n, P )
2: if enough memory then 
 Do a BFS step
3: locally compute the Si and Ti from A and B
4: while i = 1 . . . 7 do
5: redistribute Si and Ti
6: Qi = CAPS(Si, Ti, n/2, P/7)
7: redistribute Qi

8: end while
9: locally compute C from all the Qi

10: else 
 Do a DFS step
11: for i = 1 . . . 7 do
12: locally compute Si and Ti from A and B
13: Qi = CAPS(Si, Ti, n/2, P )
14: locally compute contribution of Qi to C
15: end for
16: end if
17: end procedure

6. Sparse matrix–vector multiplication (SpMV)

We now turn our attention to iterative methods, as opposed to the direct
methods that were the focus of the first half of this work. We are concerned
in particular with Krylov subspace methods (KSMs), a widely used class
of iterative methods for solving linear systems and eigenproblems, and the
focus of Section 8. At its core, a KSM constructs a basis of a Krylov sub-
space (to be defined in Section 7), conventionally by performing a sequence
of matrix–vector multiplications, and typically the matrix is sparse. In this
section, we discuss the communication costs of sparse matrix–vector multi-
plication, and then in Section 7, we demonstrate communication-avoiding
approaches for the more general computation of a Krylov basis. Lastly, in
Section 8, we show how to apply the communication-avoiding strategies de-
veloped in the previous section to KSMs; besides matrix–vector operations,
KSMs also perform vector–vector operations, for instance Gram–Schmidt
orthogonalization, and we discuss opportunities to reduce these communi-
cation costs in Section 8.2.1.2.
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A matrix–vector multiplication (MV) algorithm computes y = Ax for an
m × n matrix A; the ‘vectors’ x and y are sometimes matrices, typically
with a small number of columns. The classical MV algorithm computes
the sums-of-products yi =

∑n
j=1Aijxj for i ∈ {1, . . . ,m}. A classical sparse

MV (SpMV) algorithm is only required to compute a scalar product Aijxj ,
or to add two partial sums of products, when both operands are nonzero.

In this section we will restrict our attention to classical SpMV, but remark
briefly on the myriad of ‘sparse’ MV algorithms that exploit more general
algebraic properties of (A, x) besides zero elements. For example, a matrix
with constant entries Aij = c has rank one, and can be applied by the algo-
rithm y = c(1Tx)1, where 1 is an n-vector of all ones, with Θ(n) operations,
rather than Θ(n2). Lower bounds can be derived on the computational cost
of applying a linear operator A, in terms of the number of degrees of free-
dom in its representation (Demmel 2013); however, general lower bounds
on communication cost have so far only addressed the case of classical MV.
As well as avoiding open theoretical questions, one practical justification
for restricting to classical SpMV is that this is the most efficient algorithm,
in terms of ‘+’ and ‘·’ operations, that is correct when the entries of (A, x)
vary over a general semiring (Bender et al. 2010); see Kepner and Gilbert
(2011) for applications of SpMV over semirings. Our practical justification,
however, is that the communication-avoiding optimization proposed in the
next section is easier to apply to classical SpMV, because the computation
graph of the algorithm is encoded by the graph of A, defined next.

There are many correspondences between matrices and graphs; see, for
example, Kepner and Gilbert (2011). Motivated by our our KSM applica-
tions in Section 8, we assume square, complex-valued matrices, although
this discussion generalizes to rectangular matrices over a semiring. Given
an n×n matrix A over C, we say that the graph of A, G(A) = (V,E), is the
directed graph with vertices V = {1, . . . , n} and edges (i, j) ∈ E ⊆ V × V
corresponding to the entries of A which are interpreted4 as nonzero. We
sometimes refer to E as the (nonzero) structure of A, and define the num-
ber of nonzeros by nnz = |E|.

While we restrict our attention to classical SpMV algorithms, we do not
restrict the allowable sparse matrix representations, that is, the data struc-
tures used to represent the matrix A in memory. We informally categorize
these representations based on whether they store the nonzero values Aij ,
and their positions (i, j), either explicitly or implicitly (see Figure 6.1). An
explicitly stored value Aij or position (i, j) is represented in memory inde-
pendently from other values/positions in the data structure, thus incurring

4 Practical optimizations such as register blocking demonstrate that it can be more
efficient to explicitly store and compute with some zero values (Vuduc, Demmel and
Yelick 2005).
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Figure 6.1. A characterization of sparse matrix
representations, shown on a Cartesian plane.

a distinct memory footprint, and so we require Ω(nnz) memory for the
whole matrix; implicit storage means that the representation exploits ad-
ditional assumptions about the matrix, which may eliminate much or all
of the memory needed to store it. For example, stencil matrices, e.g., the
discrete Laplacian on a regular grid, have entries Aij = f(i, j), where the
space required to store and compute the function f does not grow with the
matrix dimension; thus stencil matrices have implicit values and positions.
In some cases we can query whether Aij = 0 in constant time/space, but
Aij must be stored explicitly, as for the matrix of a general linear operator
on a structured mesh, where the values are independent and must be stored
explicitly, but their positions can be represented implicitly due to the reg-
ular connectivity structure. In other cases the values are implicit but the
structure is general and stored explicitly, such as the Laplacian matrix A
of a simple (i.e., undirected and without loops) graph G: for each pair of
distinct vertices vi, vj in G, Aij = −1 if vi and vj are adjacent in G, other-
wise Aij = 0, and the diagonal Aii = deg(vi), the degree of vi. A general
sparse matrix has no assumptions on its nonzero values and positions, so
they must be stored explicitly. As depicted in Figure 6.1, the distinction
between ‘implicit’ and ‘explicit’ is fuzzy: for example, a general Toeplitz
matrix requires Θ(

√
nnz) storage for its nonzero values. As well as the stor-

age complexity, we are also interested in the run time cost of computing the
SpMV; as mentioned above, we restrict our attention to classical SpMV, so
the number of flops is Θ(nnz), regardless of whether the storage is implicit
or explicit.
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To confirm our practical intuition that SpMV performance is bounded
by communication costs rather than computation costs (Θ(nnz)), we look
for communication lower bounds. We will not exploit zero entries in the
input vector x, and we assume that nnz ≥ n. We will distinguish between
two cases: the ‘implicit case’ corresponds to the case of implicit values and
implicit positions, and the ‘explicit case’ corresponds to the three cases
where values and/or positions are explicit.

6.1. Lower bounds and optimal algorithms (sequential)

In the sequential model, a bandwidth lower bound for the explicit case
follows from the fact that W = Ω(nnz) words must be moved between
slow and fast memory (of size M), since this many nonzero values and/or
positions must be read to apply A. This assumes that the matrix storage
exceeds the fast memory size by a constant factor, that is, nnz ≥ cM for
some c > 1, to avoid the case when most or all A could reside in fast memory
before the computation. Since we allow messages of size between 1 and M ,
the latency lower bounds are a factor of M smaller. This bandwidth lower
bound is tight: the naive algorithm reads O(nnz) words, scanning A and
performing the scalar multiplications and summations in the natural order.
However, the latency lower bound Ω(nnz /M) is not trivially attainable,
because in block transfer models such as ours (introduced in Section 2 and
similar to Aggarwal and Vitter 1988), messages must consist of values stored
in contiguous memory addresses. The naive algorithm will attain the latency
lower bound if, for example, in each row of A the nonzeros lie in sets of
M contiguous columns, or if the input vector can fit in fast memory, but
attainability of Ω(nnz /M) messages is open for general sparsity structures.

In the implicit case, we can apply the results of Christ et al. (2013),
applied there to the case of a direct N -body simulation, to obtain

W = Ω

(
max

{
nnz

M
,#inputs,#outputs

})
= Ω

(
max

{
nnz

M
,n

})
.

We assume that the arguments of Ω(·) are ω(M) to hide O(M) subtractive
terms due to the possibility of operands residing in fast memory before or
after the execution. This bandwidth lower bound is only known to be tight
in certain special cases, such as when the nonzeros of A are concentrated in
dense Ω(M)×Ω(M) submatrices; if these submatrices are contiguous, then
the latency lower bound is also attainable. However, for random sparsity
patterns, it seems unlikely that Θ(M) data re-use is attainable, as suggested
by results in Bender et al. (2010), discussed next.

Asymptotically tighter sequential latency lower bounds in the implicit
case were established by Bender et al. (2010), under a variant of the se-
quential model of Hong and Kung (1981) augmented with block transfers
of size 1 ≤ B ≤ M (see Aggarwal and Vitter 1988). Whereas our model is
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more general, since it does not fix B and counts words and messages sepa-
rately, our lower bounds for latency are weaker, since we simply divide the
bandwidth lower bound by the maximum B (i.e., M). Bender et al. derived
the logarithmically larger lower bound of

Ω(min{kn/B(1 + logM/B n/(kM)), kn})

messages of fixed size B for matrices with nnz = kn, for some k ≤ n1/3,
and demonstrated a sorting-based SpMV algorithm that attains this lower
bound for these matrices. This bound assumes the optimal memory layout
of matrix and vectors; Bender et al. also give tighter attainable latency
lower bounds for a wider range of k for the explicit cases where the entries
of A, represented as tuples (i, j, Aij), are stored in column-major layout, or
in an arbitrary (e.g., pessimal) layout. These results demonstrate that in
many explicit cases, the latency lower bound Ω(nnz /M) in the preceding
paragraph is attainable, provided, in the case of optimal memory layout,
that the ratio n/(kM) remains bounded above by a constant. These results
also demonstrate a class of problems where implicit storage can give no
asymptotic benefit, suggesting that attaining Θ(M) data re-use requires
problems with irregular sparsity that violate their assumptions, especially
k ≤ n1/3. The results of Bender et al. (2010) were subsequently extended
to computing a sequence yT1 Ax1, . . . , y

T
mAxm of sparse bilinear forms for

rectangular A (Greiner and Jacob 2010a), and to computing AX where
A,X are both n × n and X is dense, assuming B ≤ √

M (Greiner and
Jacob 2010b). Tight lower bounds in a similar model were derived in Hupp
and Jacob (2013) for a class of stencils (see, e.g., Section 7.2.5).

In the explicit case, it is the Ω(nnz) bandwidth lower bound that leads to
the conventional wisdom that SpMV performance is communication-bound.
Each nonzero Aij , or its position, is only needed once, so there is no re-use
of these values. Thus, if the nonzeros, or their positions, do not fit in cache,
then they can be accessed at no faster rate than main memory bandwidth.
More importantly, at most two floating-point operations – a multiply and,
perhaps, an add – are performed for each Aij read from memory. Thus the
computational intensity – the ratio of floating-point operations to memory
operations – is no greater than two, and is in fact often less. Furthermore,
typical sparse matrix data structures require indirect loads and/or stores
for SpMV. These indirect accesses often interfere with compiler and hard-
ware optimizations, so that the memory operations may not even run at full
memory bandwidth. These issues are discussed by Vuduc et al. (2005) and
Williams et al. (2009), for example. Authors such as these have found exper-
imentally that typical sequential SpMV implementations generally achieve
no more than 10% of the machine’s peak floating-point rate on commod-
ity microprocessors. In the best case, memory bandwidth usually does not
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suffice to keep all the floating-point units busy, so performance is generally
bounded above by peak memory bandwidth.

Some optimizations can improve the computational intensity of SpMV for
certain classes of matrices. For example, considering small, dense blocks of
A as ‘nonzeros’ rather than the nonzero elements themselves – a technique
called register blocking – helps exploit re-use of vector entries, and also re-
duces the number of indices needing to be read from memory. For details, see
Vuduc (2003), Vuduc et al. (2005) and Williams et al. (2009), for example.
For a small class of non-square matrices, a technique called cache-blocking
may increase re-use in the source vector: see Nishtala, Vuduc, Demmel and
Yelick (2007) for details. Reordering the sparse matrix to concentrate ele-
ments around the diagonal (e.g., reverse Cuthill–McKee ordering) can im-
prove spatial locality of the vector accesses, potentially reducing the latency
cost. Nevertheless, none of these optimizations can make the performance of
sequential SpMV (explicit case) comparable with the performance of dense
matrix–matrix operations, whose computational intensity is Θ(

√
M) (see

Section 3.1).
We have raised the possibility of much greater computational intensity in

the implicit case, for instance, Θ(M) when A is dense. While the results
of Bender et al. (2010) suggest that this is rare for general (unstructured)
sparse matrices, there are many practical examples of dense matrices that
admit compressed representations: for instance, matrices arising from dis-
crete Fourier transforms, or V-cycles of multigrid and fast multipole meth-
ods. Moreover, there are algorithms that apply these matrices in o(nnz)
operations, by exploiting the recursive and/or low-rank structures in the
linear operator. While special cases like the FFT are well studied (Hong
and Kung 1981), general communication lower bounds for such algorithms,
which do not satisfy the constraints of classical SpMV algorithms (as defined
above), are open.

The sequential communication-avoiding approaches introduced in Sec-
tion 7 focus primarily on the explicit case, although they also apply to the
implicit case. However, in the implicit case, this approach may or may not
demonstrate an asymptotic reduction in communication; in our KSM ap-
plication, we will see there is still an opportunity, as explained further in
Section 7.2.

6.2. Lower bounds and optimal algorithms (parallel)

Parallel communication lower bounds for SpMV require some notion of ini-
tial data layout, load balance and/or local memory capacity, in order to
avoid the (communication-optimal) situation where one of the the P pro-
cessors computes y = Ax locally, by storing all the data, and doing no
communication at all.
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We define the parallel classical SpMV algorithm as one where each pro-
cessor j owns a matrix A(j) and computes y(j) = A(j)x, where

A =
P∑

j=1

A(j)

is a sum of matrices with disjoint nonzero structures. (Allowing the non-
zero structures to overlap does not invalidate the lower bounds.) The vec-
tors x, y are distributed across the P processors, and their layout, along
with the splitting of A, determines the communication cost: first, zero or
more entries of x are communicated, and then zero or more entries of y
are computed by a reduction over the (sparse) vectors y(j). We assume a
load-balanced parallelization among P ≥ 2 processors, where at least two
processors perform at least nnz /P flops.

If we do not constrain the layout of x and y, zero communication is
always possible in the explicit case. Consider a P -way 1D block row-wise
partition of A, that is, each processor is assigned a subset of the rows of
A, and replicate the source vector entries on each processor whose block
row has nonzeros in the corresponding columns. (This replication no more
than doubles the memory requirements, since either the matrix nonzeros
or their positions are explicit.) There is no communication required to
accumulate y, so all communication is hidden in the replication phase. In
our KSM application, we will see that such replication would incur a run
time communication cost, and so is not actually free; in this application,
zero communication is only attainable in special cases, such as when A has
block diagonal structure. When x and y are to be partitioned across the P
processors with no replication, a hypergraph model is more appropriate for
modelling the communication cost, as explained shortly.

In the implicit case, the lower bound from Christ et al. (2013) (again for
the direct N -body problem, as in the sequential case) gives

W = Ω

(
max

{
nnz /P

M
,#inputs,#outputs

})
= Ω

(
nnz

PM

)
,

provided P = o(nnz /M2). When more processors are used, zero communi-
cation may be possible, for the same reasons as in the explicit case. This
is related to the notion of perfect strong scaling (see Section 2.6.2). The
latency lower bound is smaller by a factor of M . This is a natural generaliza-
tion of the sequential bandwidth and latency lower bounds (implicit case),
and the algorithm that can attain these lower bounds, nonzero structure
permitting, is similar: tile a sufficiently large square of the iteration space
{(i, j)} into Θ(M) × Θ(M) subsquares, and distribute subsquares to pro-
cessors; see, for instance, the communication-optimal N -body algorithms in
Christ et al. (2013) and Driscoll et al. (2013).

It turns out that the communication costs for parallel SpMV without
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data replication (implicit or explicit storage) can be exactly modelled by a
hypergraph constructed from the computation’s DAG. (Note that the ma-
trix nonzeros never need to be communicated between processors, so we
do not expect a distinction between implicit and explicit storage in this
context.) In the fine-grained SpMV hypergraph model (Çatalyürek and
Aykanat 2001), vertices represent matrix nonzeros (scalar multiplications)
and the hyperedges are the union of the predecessor and successor sets, that
is, the vertices adjacent to incoming (resp. outgoing) edges, of each vertex in
the graph of A. Each vertex partition corresponds to a parallelization of the
classical SpMV computations, and the induced hyperedge cut corresponds
to interprocessor communication for that parallelization. By varying the
metric applied to the cut, one can exactly measure communication volume
(number of words moved) or synchronization (number of messages between
processors) on a distributed-memory machine. Additional constraints may
be applied to enforce load balance requirements. Various heuristics are ap-
plied to find approximate solutions to these NP-hard partitioning problems
in practice and mature software packages are available: see, for example,
Devine et al. (2006).

It is open whether the parallel hypergraph model can also exactly model
communication in the sequential case; a comparison of the hypergraph
model with the combinatorial notion of an s-partition (Hong and Kung
1981) may be one way forward. It is worth noting that hypergraph models
have inspired successful approaches to reducing cache traffic in sequential
SpMV (Yzelman and Bisseling 2011). It is also open how to allow for repli-
cation of the vectors in the hypergraph model; especially in the implicit case,
the minimum obtained from hypergraph partitioning could be far from the
optimum.

An important component of parallel SpMV is sequential SpMV. It is hard
to characterize the proportion of time that parallel SpMV spends in sequen-
tial SpMV (done on each processor), relative to how much time it spends in
communication between processors, because there are many different kinds
of parallel processors and sparse matrices. Trade-offs between sequential
and parallel communication costs in a DAG-based computation model were
developed in Bilardi and Preparata (1999), and it would be valuable to ex-
tend the hypergraph model to explore these trade-offs. Nevertheless, the
common experience is that even if both the computational and communica-
tion load are balanced evenly among the processors, the cost of communica-
tion is enough, in distributed-memory computations at least, to justify the
expense of a complicated reordering scheme that reduces communication
volume and/or the number of messages; see, for example, Wolf, Boman and
Hendrickson (2008). This suggests that interprocessor communication is an
important part of parallel SpMV, and that avoiding that communication
could improve performance significantly.
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7. Krylov basis computations

Despite all the optimizations described in Section 6, the fact remains that
the computational intensity of classical SpMV, when the nonzeros or their
positions are stored explicitly, is O(1). So any algorithm that uses classical
SpMV as a ‘black box’, such as conventional KSMs for solving Ax = b, will
necessarily be communication-bound. This means that we need a different
kernel than SpMV, with higher computational intensity, to have a hope of
reducing communication. This section presents such a kernel, and Section 8
shows how to use it to restructure KSMs to avoid communication.

We turn our attention to computing a length-(k + 1) basis of the Krylov
subspace,

Kk(A, x) = span{x,Ax, . . . , Akx},
assembled as a matrix Kk = [x0, . . . , xk]. More precisely, we consider the
computation xj = Axj−1 for j ∈ {1, . . . , k}, that is, xj = Ajx0, which can
also be expressed as a matrix equation,

A[x0, . . . , xk−1] = [x1, . . . , xk] = [x0, . . . , xk]

[
01,k
Ik,k

]
,

and the more general computation xj = pj(A)x0, where pj is a degree-j
polynomial, defined by a recurrence

pj(z) =

(
zpj−1(z) −

j∑
i=1

hi,jpi−1(z)

)/
hj+1,j ,

with p0(z) = 1, or

A[x0, . . . , xk−1] = [x0, . . . , xk]Hk, (7.1)

where the upper Hessenberg matrix Hk has entries hi,j and is nonzero on
its subdiagonal.5 We note that we cannot straightforwardly replace the
SpMV by computing Kk in conventional KSMs, because A is multiplied by
different vectors when k > 1. In Section 8 we exploit the fact that KSMs
compute bases of the same underlying spaces Kk, and can be reformulated
by a change of basis to use Kk. We also note that numerical stability will
play a role in which basis vectors of Kk we can accurately compute. This
will be addressed in Section 8.5.1, and is the motivation for allowing the
freedom of choosing the polynomials pj .

Conventionally, Kk may be computed by a sequence of k SpMV opera-
tions, and O(k2) vector–vector operations, depending on the polynomial re-
currence. On a distributed-memory parallel machine, this involves k rounds

5 We ignore the possibility that x0, . . . , xk may not be linearly independent, either in
exact arithmetic, or to machine precision.
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of messages, one for each vector computed, in order to distribute remote
vector entries, called ghost zones. On a sequential machine with a two-level
memory hierarchy, when A is explicit6 (see Section 6), and its storage cost
sufficiently exceeds the fast memory capacity (M), the matrix A must be
read Θ(k) times from slow memory to fast memory. Our goal is to reduce
the parallel latency cost, and the components of the sequential bandwidth
and latency cost associated with reading A, ideally by factors of Θ(k). Fur-
ther, we will attempt to minimize any resulting increases in computation,
memory requirements, parallel bandwidth cost, and sequential communica-
tion of the vectors, ideally keeping each bounded by small constant factors;
matrices where this is possible (for the approaches in this section) are called
well-partitioned. We will restrict our attention to ‘classical’ algorithms for
computing Kk, called Akx algorithms.

The rest of this section is organized as follows. In Section 7.1 we review
what is known about communication lower bounds for computing Krylov
bases. Then, in Section 7.2, we define Akx algorithms, which naturally
generalize classical SpMV (Section 6) to Krylov basis computations. Lastly,
in Section 7.3, we will demonstrate a ‘non-classical’ algorithm that also
computes Kk but is not realizable as a simple reorganization of k classical
SpMV computations, and may have much better performance for matrices
that are not well-partitioned in the sense described above but are more
general.

7.1. Lower bounds

To our knowledge, tight and general communication lower bounds for com-
puting Krylov bases (e.g., Kk) are open. However, progress has been made
for special classes of structured matrices. For example, if A is a stencil on an
N × · · · ×N d-dimensional mesh (see Section 7.2.5 for a precise definition),
the results of Hong and Kung (1981, Corollary 7.1) can be used to show
that Ω(kNd/M1/d) words must be moved between slow and fast memory
sequentially. The results of Christ et al. (2013) extend this lower bound to
a class of DAGs that admit a more general type of geometric embedding.
Parallel extensions of this result have been discovered more recently, for
example in Scquizzato and Silvestri (2014) and Solomonik et al. (2014).

By ignoring data dependences between the columns of Kk, we see that
a lower bound for the simpler SpMM computation Y = AX, where X is
a dense matrix with a small number k of columns and Y is computed in a
row-wise manner, also applies to computing Kk. Although this lower bound

6 Sequentially, when A is implicit, the communication cost is dominated by moving vector
entries, and Θ(k) communication savings may not be possible. However, sometimes only
the last vector xk, or a set of linear functionals {y(x1), . . . , y(xk)}, is needed, in which
case there is O(k) potential communication savings.
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seems quite weak, it is asymptotically attainable in some special cases, for
instance when A is block diagonal and each diagonal block plus the corre-
sponding block row of Kk fits in fast/local memory. Indeed, this block row-
wise computation of Kk underpins a more general communication-avoiding
approach (Akx algorithms) that we discuss in Section 7.2. We will show
that for certain problems and ranges of parameters, the arithmetic, com-
munication, and storage costs of computing Kk with certain Akx algorithms
are within constant factors of those for computing AX via classical SpMM,
indicating asymptotic optimality. Since these algorithms exploit redundant
copies of inputs and intermediate quantities, it does not seem that the lower
bound approaches in Bender et al. (2010) and Greiner and Jacob (2010a)
apply; however, it is open whether such redundancy is necessary for com-
munication savings. We hope that these approaches, as well as those of
Scquizzato and Silvestri (2014) and Solomonik et al. (2014), will general-
ize and tighten the lower bounds for this problem, and motivate a more
thorough exploration of the Akx design space.

7.2. Akx algorithms

In this section we summarize some of the Akx algorithms derived by Dem-
mel, Hoemmen, Mohiyuddin and Yelick (2007c) (see also Demmel, Hoem-
men, Mohiyuddin and Yelick 2008b); we refer to the subsequent works by
Mohiyuddin et al. (2009) and Mohiyuddin (2012) for details on the imple-
mentation (we summarize their speed-up results in Figure 7.1). We will
distinguish two Akx approaches: Akx, the conventional approach of re-
peated calls to SpMV, and CA-Akx, a potentially communication-avoiding
approach.

We will first consider the parallel case and, for simplicity, a tridiagonal
n×n matrix A with explicit nonzeros and positions, and using the monomial
basis xj = pj(A)x0 = Ajx0. (Of course, KSMs, our motivating application,
are typically not used for tridiagonal A.) This example suffices to illustrate
the more general concept of iteration space tiling (see Section 7.4). We then
extend the Akx approaches to arbitrary (square) sparse matrices and poly-
nomial recurrences, and introduce related sequential versions. We compare
Akx and CA-Akx when A is an explicitly stored stencil on a mesh (defined
below); in these special cases, we obtain upper bounds that demonstrate
asymptotic communication optimality for ranges of parameters.

While CA-Akx is a general approach, communication savings depend on
nonzero structure, especially the graph of A, G(A), having vertex parti-
tions with good (small) surface-to-volume ratios, in a sense to be formal-
ized below. In Section 7.3 we discuss an algebraic manipulation that extends
the applicability of CA-Akx to matrices with dense blocks (possibly large
surface-to-volume ratio), provided these blocks have low rank.
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Figure 7.1. Performance of CA-Akx (labelled ‘Our implementation’, the medium
grey bars) versus Akx (labelled ‘SpMV’, the dark grey bars) on an Intel Clover-
town (shared-memory parallel) machine, from the implementation described by
Mohiyuddin et al. (2009) and Mohiyuddin (2012). Medium grey bars indicate the
best performance over all possible k (the chosen integer k appears above each bar);
the cases λ = 0 and λ = 0 correspond to polynomials of the form pj(z) =

∏
j(z−λj),

that is, monomials in the case λ = 0, and unweighted Newton polynomials other-
wise. The Akx implementation (‘SpMV’) uses a highly optimized classical SpMV
algorithm, and the upper bound (the light grey bars) indicates the performance
predicted by scaling the SpMV performance by using a performance model based
on computational intensity. The labels at the bottom correspond to a suite of test
matrices. We refer to the cited works for more details, including the ‘I’ and ‘E’
designations, which describe implementation details.

7.2.1. Example: parallel CA-Akx, stencil on a (1D) mesh

Figure 7.2 helps illustrate parallel CA-Akx (for tridiagonal A) with k = 8,
n ≥ 30, and P ≥ 2. Each row of circles represents the entries of xj = Ajx0,
for j ∈ {0, . . . , 8}, which we partition in contiguous block rows of width 15
across the processors; matrix rows are partitioned similarly. We show just
the first 30 components of the vectors, owned by two processors, one to the
left of the dashed vertical line and the other to the right. The diagonal and
vertical lines show the dependences (arcs are implicitly directed downward):
the three lines below each circle (component i of xj) connect to the circles
on which its value depends (components i− 1, i, and i+ 1 of xj−1), since A
is tridiagonal.

In Akx, the conventional approach (not depicted in Figure 7.2), each
processor computes its local xj entries, exchanging their boundary elements
of xj−1 (immediate left and right of the dashed vertical line) before each
j ∈ {1, . . . , 8}, to compute Ax from x, A2x from Ax, and so on. Thus,
the number of messages (along a critical path) is Θ(k). We will reorganize
Akx to arrive at CA-Akx, which may perform redundant arithmetic and
additional data movement but can reduce latency cost. The argument here
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(b) remote dependences in CA-Akx

Figure 7.2. Communication in parallel Akx approaches for
computing [Ax, . . . , Akx] with tridiagonal A and k = 8.

is informal; in Section 7.2.5 we give concrete complexity results, and see
that for well-partitioned matrices these trade-offs can be worthwhile.

In Figure 7.2(a) we show the left processor’s locally computable vector
elements, that is, those that can be computed without communicating with
the right processor; clearly the left processor cannot compute all its vector
elements without receiving information from the right. In CA-Akx, each
processor first computes their locally computable elements, in an effort to
overlap this computation with subsequent communication. In Figure 7.2(b),
the dependences are again shown by diagonal and vertical lines below each
circle, but now dependences on data owned by the right processor are shown
in grey. The eight vertices of x0 with grey fill (x0(16) to x0(23), in the bot-
tom row and just to the right of the dashed vertical line) are sent from the
right to the left processor in one message (not Θ(k)), and the left proces-
sor then computes all of the vertices on paths from these vertices to local
elements of xk, which appears as a parallelogram (locally computable ele-
ments in Figure 7.2(a) have been computed at this point). Note that the
grey-circled elements will be computed redundantly, by both processors; the
corresponding matrix rows must be stored redundantly as well.

While typically the bandwidth cost of CA-Akx exceeds that of Akx, in
special cases like this tridiagonal example the costs are the same, that is,
k words are sent from each processor to its neighbours in order to com-
pute Ax, . . . , Akx. Furthermore, one can construct examples where, given a
fixed partition of [x0, . . . , xk], CA-Akx will asymptotically decrease the par-
allel bandwidth cost (versus Akx): suppose G(A) is a set of P − 1 isolated
cliques, so that all but the last two processors are responsible for their own
cliques, while processors P −1 and P split the work of the remaining clique.
The communication volume of Akx, only due to the last two processors,
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increases with k, while that of CA-Akx stays fixed, and with the same cost
as Akx for k = 1 (the ghost zones are the same size but only need to be
exchanged once); for sufficiently large P , the loss of parallelism causes a
negligible increase in computation cost along a critical path. While this is
an unrealistic example (it can be beneficial to use fewer than p processors),
it demonstrates the inherent sensitivity of the algorithmic costs to the non-
zero structure and data layout; in general, we suggest using a DAG model of
the Akx computation (discussed next) to explore the algorithm parameter
space and develop performance models.

7.2.2. The Akx DAG
Now we formalize and generalize to other matrices the DAG G = (V,E)
for the computation of Kk that was sketched for a tridiagonal example in
Section 7.2.1. We first form a layer graph of A. The (k + 1)n vertices V =
I∪O are the union of inputs I =

⋃n
i=1{x0(i)}, representing the components

of the starting vector x0, and outputs O =
⋃k

j=1

⋃n
i=1{xj(i)}, representing

the components of the computed basis vectors {x1, . . . , xk}. For each non-
zero Aij , and for each � ∈ {1, . . . , k} there is an edge (x�(i), x�−1(j)) ∈ E.
So far, this layer graph can be viewed equivalently as the tensor product of
G(A) with a simple directed path, or as the graph of the Kronecker product
of A with a shift matrix. Next, we add edges to the layer graph according
to the additional dependences introduced by the polynomial recurrence,
that is, nonzeros in the (k + 1) × k upper Hessenberg matrix Hk (7.1).
Pick the smallest u ∈ {0, . . . , k} such that Hk is zero outside the band of
u + 1 diagonals {−1, 0, . . . , u − 1}, that is, Hk has upper semi-bandwidth
u − 1. (When u ≥ 1, u + 1 corresponds to the ‘length’ of the polynomial
recurrence (7.1).) Then, for each i ∈ {1, . . . , n}, for each j ∈ {1, . . . , u},
and for each � ∈ {j, . . . , k}, there is an edge (x�(i), x�−j(i)) ∈ E. Note that
when j = 1, some of these edges may already exist in the layer graph, due to
nonzero diagonal elements of A, and also note that we could exploit a more
general nonzero structure of Hk, as well as vanishing diagonal elements of
A− hjjI, by dropping edges.

In typical Akx applications, the input x0 and the outputs x1, . . . , xk are
general n-vectors, and thus treated as dense. We make this assumption when
discussing our Akx algorithms, which will still be correct, albeit possibly
inefficient, if zeros are present: if it is known that some xj(i) = 0, then we
can drop all incoming and outgoing edges from the corresponding vertex,
and label it both as an input and output. Thus, our analysis assumes A
has no zero rows. One can imagine many other algebraic relations between
elements of A and the basis vectors which could be exploited; we discuss
another example below in Section 7.3.

We now discuss two simplifications we have made in this DAG construc-
tion. First, if the sparse matrices A and Hk are explicit, their accesses may
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incur data movement, sequentially or in parallel, typically expressed by in-
troducing input vertices for the nonzeros of A and Hk. We will sidestep
this subtlety by associating each edge in E with a nonzero of A and/or Hk,
and invoking this association in our analysis below. This also gives us the
flexibility of modelling the implicit case, when A and Hk may not require
any data movement because their entire data structure representations fit
in fast/local memory. Second, we have hidden the details of computing the
vector elements xj(i) by evaluating a polynomial recurrence: in practice,
this is implemented as a sequence of scalar multiplications (elements of A
and Hk by elements of x0, . . . , xk−1) and a summation of these products.

Next, we generalize parallel Akx and CA-Akx from the tridiagonal ex-
ample above to general sparsity structures (Section 7.2.3), and then to the
sequential case (Section 7.2.4). We present general upper bounds for the
algorithmic complexity of these approaches, using the models introduced in
Section 1.2. Finally, in Section 7.2.5, we simplify these upper bounds in the
case of (2b + 1)d-point stencils on d-dimensional meshes, which allows us
to easily identify parameter ranges where the CA-Akx approaches can be
beneficial versus the Akx approaches.

7.2.3. Parallel Akx algorithms

Given the DAG G, we can now give general parallel Akx and CA-Akx
algorithms (see Algorithms 7.1–7.2), for which we define the notation below.
We explicitly show point-to-point messages, but assume they incur no cost
if the message is empty.

Let G = (V,E) be the Akx DAG described in the previous section. Let
R(X) be the set of vertices reachable from X ⊆ V , including X, and let
RT (X) be a reachable set in the transpose graph GT (i.e., G with all edges
reversed). In the remainder of this section, we use lower-case p to denote
the number of processors. Let Π = {I1, . . . , Ip} be a p-way partition of
{1, . . . , n}. For q ∈ {1, . . . , p}, let Pq = {xj(i) : i ∈ Iq ∧ j ∈ {1, . . . , k}},
that is, all the components of vectors assigned to processor q, and let G(Pq)
be its (vertex-induced) subgraph. (Recall that xj is both a vector and
a vertex subset, depending on context.) We also introduce the notation
Pq,j = Pq ∩ xj , as well as Rq(X) = R(X) ∩ Pq and Rq,j(X) = R(X) ∩ Pq,j .

For both algorithms, we initially distribute [A, x0] row-wise so that pro-
cessor q owns rows indexed by Iq; A(i) denotes the ith row of A. (In special
cases, such as when A is a shift matrix, a non-row-wise vector layout may
be better.) We do not claim that it is optimal to use a row-wise partition
of A and a commensurate row-wise partition of [x0, . . . , xk]. A theoreti-
cal comparison of this approach with more general layouts, for instance a
column-wise or fine-grained (Çatalyürek and Aykanat 2001) partition of A,
is open, and we hope to address this in future work. For the class of struc-
tured matrices we consider in this work, that is, stencils on meshes, it seems
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Algorithm 7.1 Parallel Akx: code for processor q

1: for j = 1 to k do
2: for each processor r = q do
3: Send vector entries Rq,j−1(Pr,j) to processor r
4: Receive vector entries Rr,j−1(Pq,j) from processor r
5: end for
6: Compute vector entries Pq,j \RT (xj−1 \ Pq)
7: Wait for receives to finish
8: Compute vector entries Pq,j ∩RT (xj−1 \ Pq)
9: end for

Algorithm 7.2 Parallel CA-Akx: code for processor q

1: for each processor r = q do
2: Send vector entries Rq,0(Pr) to processor r
3: Send matrix rows {A(i) : xj(i) ∈ Rq(Pr) \ x0} to processor r
4: Receive vector entries Rr,0(Pq) from processor r
5: Receive matrix rows {A(i) : xj(i) ∈ Rr(Pq) \ x0} from processor r
6: end for
7: Compute vector entries (R(Pq) \ x0) \RT (x0 \ Pq)
8: Wait for receives to finish
9: Compute vector entries (R(Pq) \ x0) ∩RT (x0 \ Pq)

that a column-wise CA-Akx approach could yield similar (parallel) latency
savings to the row-wise version we present. However, the other algorithmic
costs seem to increase more drastically with k.

We assume each processor owns a copy of Hk (nnz = O(k2)). Thus, in
the worst case, we must assume k = O(

√
M), where M is a processor’s local

memory size. However, in general this will not be the tightest constraint
on k.

The Akx approach proceeds as in the earlier example: for each j ∈
{1, . . . , k}, processor q synchronizes with other processors r = q before com-
puting Pq,j (the entries of xj for which they are responsible), by fetching
Rr,j−1(Pq,j), its remote reachable vertices in xj−1 (the neighbouring ghost
zones), resulting in k rounds of messages.

The CA-Akx approach is also similar to before: now, processor q fetches
the non-empty sets Rr,0(Pq) for r = q, all remote x0 vertices reachable from
the vector entries for which they are responsible, in one round of messages.
In both Akx and CA-Akx we assume an initial (non-overlapping) row-wise
layout of A. In CA-Akx, processors may need to communicate rows of A
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when k > 1, unlike Akx, where matrix rows never need to be communi-
cated or replicated. In our motivating application, however, a sequence

K
(1)
k ,K

(2)
k , . . . of many Krylov bases are computed with the same matrix

A, so it is feasible to replicate rows of A at the beginning and amortize
the cost. Moreover, if A is implicit, and its data structure representation is
sufficiently small compared to M , then no communication of its entries is
needed.

In general, while CA-Akx reduces latency costs by up to a factor of k,
it incurs greater bandwidth, arithmetic, and storage costs than Akx, as
processors may perform redundant computation to avoid communication
(see Table 7.1). Whether these trade-offs are worthwhile depends on many
machine and algorithm parameters, in addition to the nonzero structure;
we refer to the detailed analysis and performance modelling in Demmel
et al. (2007c), Hoemmen (2010) and Mohiyuddin (2012). When the ma-
trix is ‘well-partitioned’, these extra costs are lower-order terms, as will
be illustrated in Section 7.2.5. Note that there is no change in the parallel
communication cost if general polynomials pj are used, instead of the mono-
mials, as in the example earlier. This is not the case for more general DAG
parallelizations (e.g., the ‘PA2’ approach in Demmel et al. 2007c), where
the parallel bandwidth may increase linearly in the length of the recurrence,
that is, Θ(u), in the notation of Section 7.2.2. (In our KSM applications, we
consider at longest three-term recurrences, i.e., u = 2.) It is important to
note that redundant computation is not necessary to avoid communication;
we leave a generalization of CA-Akx to more general partitions of V (i.e.,
parallelizations) for future study.

Now we compare the algorithmic complexity of parallel Akx and CA-Akx
and collect the results in Table 7.1; these costs are precise but opaque, and
they will be evaluated in Section 7.2.5 on a model problem for illustration.
For any processor q ∈ {1, . . . , p}, we bound the number of arithmetic op-
erations performed F , the number of words sent and received W , and the
number of messages sent and received S. In the case of CA-Akx, we split
W into two terms, the latter of which, WA, can be amortized over succes-
sive calls with the same matrix A. The computational cost of each vector
element xj(i) varies depending on the polynomial recurrence, requiring an
additional 2 min{u, j}+ 1 flops, under our assumption from earlier that Hk

has u nonzero superdiagonals, where u is minimal. The SpMV cost (the
first term inside the summation) does not vary with j, and depends only
on the sparsity of the rows A(i); in particular, computing A(i)xj requires
2 nnz(A(i)) − 1 flops. We also bound the memory capacity MX needed for
entries of the vectors [x0, . . . , xk], and MA needed for rows of A when A
is explicit and where each nonzero (value and/or position) costs c words of
storage. These costs assume that, for every processor, the local memory
size M ≥ MX + MA, which is also a limit on the maximum message size
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Table 7.1. Upper bounds on algorithmic costs of parallel Akx and CA-Akx for each
processor q. Note that W for CA-Akx is split into two terms, where the second
term WA can be amortized over successive invocations with the same matrix A.

Akx

F 2 ·∑xj(i)∈Pq\x0
nnz(A(i)) + min{u, j}

W k
(∑

r �=q |Rr,0(Pq,1)| + |Rq,0(Pr,1)|)
S k

(|{r = q : Rr,0(Pq,1) = ∅}| + |{r = q : Rq,0(Pr,1) = ∅}|)
MX |R(Pq,1) \ Pq| + (k + 1)|Iq|
MA c ·∑i∈Iq

nnz(A(i))

CA-Akx

F 2 ·∑xj(i)∈R(Pq)\x0
nnz(A(i)) + min{u, j}

W
∑

r �=q |Rr,0(Pq)| + |Rq,0(Pr)| +WA

WA c ·∑r �=q

(∑
i:xj(i)∈Rr(Pq)\x0

nnz(A(i)) +
∑

i:xj(i)∈Rq(Pr)\x0
nnz(A(i))

)
S |{r = q : Rr(Pq) = ∅}| + |{r = q : Rq(Pr) = ∅}|
MX |R(Pq)|
MA c ·∑i:xj(i)∈R(Pq)\x0

nnz(A(i))

in our model. Here and later in the section, we model the case where A is
implicit by taking c = 0, so, e.g., MA = O(1) for both Akx and CA-Akx,
and additionally in CA-Akx, we neglect WA, A’s contribution to W .

For both Akx and CA-Akx, the data layout optimization problem of min-
imizing the costs in Table 7.1 is most straightforwardly treated as a graph
partitioning problem, but we believe a hypergraph model gives better in-
sight into the communication costs. The hypergraph models for parallel
SpMV (mentioned in Section 6.2) immediately apply to Akx, and can be
easily extended to CA-Akx. For a single SpMV with a row-wise parti-
tion of A, we consider the column-net hypergraph model (Catalyurek and
Aykanat 1999), where vertices represent matrix rows, and hyperedges (nets)
represent matrix columns, so net j connects the vertices corresponding to
rows i with a nonzero entry Aij . By varying the cut-size metric, we can
model both bandwidth and latency costs in SpMV, and thus for Akx. The
communication cost of CA-Akx is equivalent to that of computing a sin-
gle SpMV y = Akx (ignoring cancellation and assuming A has a nonzero
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diagonal), with the same row-wise partition of A. So we can use the same
approach for CA-Akx, except that we consider the column-net hypergraph
of Ak. Of course, computing this hypergraph can be a costly operation
– typically more costly than the subsequent matrix powers computation –
and so the cost would have to be amortized over many calls to CA-Akx.
We have explored probabilistic approaches to approximately computing the
hypergraph, based on an O(nnz) algorithm for estimating the transitive
closure (Cohen 1994, 1997), and preliminary results are promising. A sim-
pler approximation is to construct the hypergraph of Aj for some j < k;
interestingly, our experiments on regular G(A) (i.e., meshes) did not show
significant improvement in partition quality increasing j past 1. Since the
SpMV DAG is a subgraph of the Akx DAG, it is reasonable to suspect that
good SpMV partitions might suggest good Akx partitions: this warrants
further study. We note that it is harder to precisely measure the compu-
tation cost of CA-Akx than Akx (or SpMV) using the hypergraph model:
for Akx, this is a simple function of the sparsity of A, while for CA-Akx
it depends on the nonzero fill introduced in successive powers of A, rather
than just the sparsity of Ak. Also, we recall from Section 6.2 that this ap-
proach is particular to the parallel case; it is an open problem to develop a
general hypergraph model for sequential SpMV communication. However,
once this model is developed, we expect that it can be applied to sequential
(CA-) Akx partitioning as well.

7.2.4. Sequential Akx algorithms

The parallel Akx and CA-Akx approaches in the previous section can be
modified to run on a sequential machine; we give explicit data movement
instructions, and suppose that all values in fast memory are discarded after
every iteration of the ‘q’ loop. We will also call these approaches Akx and
CA-Akx (see Algorithms 7.3–7.4), and the machine model, sequential or
parallel, will be clear from the context. We still assume a p-way row-wise
partition of [A, x0, . . . , xk], but p is not related to the number of processors
(now 1). Each of the p block rows of [A, x0, . . . , xk] is assumed to be laid
out contiguously in memory (the entries of x1, . . . , xk are uninitialized to
start with). We let N(X) denote the neighbours of a vertex subset X, that
is, the vertices reachable from some x ∈ X by paths of length 1 in the Akx
graph G = (V,E), defined in the last section. We distinguish between the
case when A has implicit nonzeros and positions (‘implicit case’), and the
three cases when A has explicit nonzeros and/or positions (‘explicit case’).
CA-Akx is intended to avoid communication in the explicit case, but may
not yield an asymptotic communication savings in the implicit case.

We consider the explicit case, and say ‘read A’ to mean ‘read the explicit
values (nonzeros and/or positions) of A from slow memory to fast memory’.
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Algorithm 7.3 Sequential Akx

1: for j = 1 to k do
2: for q ∈ {1, . . . , p} do
3: Load vector entries N(Pq,j)
4: Load matrix rows {A(i) : i ∈ Iq}
5: Compute vector entries Pq,j

6: Store vector entries Pq,j

7: end for
8: end for

Algorithm 7.4 Sequential CA-Akx

1: for q ∈ {1, . . . , p} do
2: Load vector entries R(Pq) ∩ x0
3: Load matrix rows {A(i) : xj(i) ∈ R(Pq) \ x0}
4: Compute vector entries R(Pq) \ x0
5: Store vector entries Pq \ x0
6: end for

For now, we assume that A does not fit in fast memory of size M ; we relax
this assumption, below, alongside the discussion of the implicit case.

Sequential Akx is the conventional approach of performing k SpMVs in
sequence. Some components of A must be read multiple times, incurring
an O(k nnz) bandwidth cost. Furthermore, poor temporal locality in the
vector accesses can potentially increase their bandwidth cost from O(kn) to
O(k nnz): recall from Bender et al. (2010) that for SpMV, in many cases
the vector element communication is the dominant cost (versus reading A).
Similarly to the parallel case, while we assume a row-wise execution of the
SpMVs, sequential Akx can be adapted to work with any available SpMV
routine.

Sequential CA-Akx7 is essentially a sequential execution of parallel CA-
Akx. That is, it computes the Krylov basis in a block row-wise fashion,
attempting to reduce the cost of reading A at the price of redundant com-
putation and additional data movement. As in the parallel case, evaluating
these trade-offs depends on many machine and algorithm parameters: see
Demmel et al. (2007c), Hoemmen (2010) and Mohiyuddin (2012). These
works also show that it is possible to modify CA-Akx to avoid all redun-
dant computation.

7 Demmel et al. (2007c) made a distinction for CA-Akx between the case when
[x0, . . . , xk] fits in fast memory but A does not, and when neither vectors nor A fit
in fast memory; here, we call both cases CA-Akx.
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Table 7.2. Upper bounds on algorithmic costs of sequential Akx and CA-Akx.

Akx

F 2 ·∑p
q=1

∑
xj(i)∈Pq\x0

nnz(A(i)) + min{u, j}
W

∑k
j=1

∑p
q=1 |N(Pq,j)| + |Iq| + c ·∑i∈Iq

nnz(A(i))

S k ·∑p
q=1 2 + |{r : Pr ∩N(Pq) = ∅}|

MX,slow,MX,fast (k + 1)n, maxp
q=1 |N(Pq,k)| + |Iq|

MA,slow,MA,fast c nnz(A), cmaxp
q=1

∑
i∈Iq

nnz(A(i))

CA-Akx

F 2 ·∑p
q=1

∑
xj(i)∈R(Pq)\x0

nnz(A(i)) + min{u, j}
W

∑p
q=1 |R(Pq) \ x0| + |Pq \ x0| + c ·∑i:xj(i)∈R(Pq)\x0

nnz(A(i)))

S
∑p

q=1 2 + |{r : Pr ∩R(Pq = ∅}|
MX,slow,MX,fast (k + 1)n, maxp

q=1 |R(Pq)|
MA,slow,MA,fast c nnz(A), cmaxp

q=1

∑
i:xj(i)∈R(Pq)\x0

nnz(A(i))

Now we compare the algorithmic complexity of Akx and CA-Akx (see
Table 7.2); again, these costs are precise but opaque, and we will illustrate
them for a model problem in the next section. We bound the number of
arithmetic operations F performed, the number of words W read from and
written to slow memory, and the number of messages S in which these words
were moved. We also measure the total memory MX,slow,MA,slow needed to
store the vectors [x0, . . . , xk] and matrix A in slow memory, as well as the
corresponding fast memory MX,fast,MA,fast required. The table considers
the explicit case where each nonzero (explicit value and/or position) costs
c words of storage; in the implicit case, for both Akx and CA-Akx, we take
MA = O(1) and neglect A’s contribution to W , and, in the case of CA-Akx,
to S (i.e., restricting to r such that P0,r ∩ R(Pq) = ∅). The algorithms
assume that the slow memory capacity is at least MX,slow + MA,slow and
likewise the fast memory size M ≥MX,fast +MA,fast. In fact, M may need
to be up to twice this size, in order to reorganize data in fast memory to
allow reading and writing of contiguous blocks, to attain the given latency
bound.

In the implicit case, Akx may be asymptotically optimal, thus CA-Akx
may not offer an asymptotic improvement: suppose that y = Ax can be per-
formed with a single read of x and a single write of y; by applying this SpMV
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algorithm k times, Akx moves 2kn words in total, while a lower bound is the
(k + 1)n words to read x0 and write [x1, . . . , xk]. However, if only the last
vector xk is desired (e.g., multigrid smoothing, or the power method), then
CA-Akx can reduce bandwidth and latency costs by O(k), by only writing
out the last vector’s rows from each block, i.e., Pq,k. Or, if the Akx computa-
tion is later used to compute the k×k matrix G = [x1, . . . , xk]T [x1, . . . , xk],
then we can interleave these two computations, leaving a k × k matrix of
partial sums in fast memory, and never reading/writing any of the vec-
tors x1, . . . , xk; a similar interleaving is possible with TSQR (Section 3.3.5).
These approaches may also yield asymptotic benefits in the explicit case
when nnz = o(kn), and constant factor savings when nnz = O(kn), for
instance when A, but not all the vectors, fits in fast memory.

7.2.5. Akx for stencils on meshes

We now discuss the asymptotic complexity for the sequential and parallel
Akx and CA-Akx approaches for stencils on meshes, generalizing the three-
point stencil on a one-dimensional mesh in Section 7.2.1 (i.e., the tridiagonal
example) to a (2b + 1)d-point stencil on a d-dimensional mesh, with nd

vertices. More precisely, the matrices A are defined by their graphs G(A):
identify a vertex with each element of {1, . . . , n}d, and connect each pair
of vertices within distance b (in the ∞-norm) by a pair of directed edges
in both directions. This will allow us to simplify the general expressions
in Tables 7.1–7.2 to illustrate the potential performance advantages of CA-
Akx for a family of sparse matrices that models many common examples
arising from discretized partial differential equations.

We first analyse the complexity in the parallel case (see Table 7.3). We
now suppose there are p = ρd processors, where m = n/ρ is an integer, and
the mesh vertices are partitioned so that each processor owns a contiguous
m×· · ·×m subcube. To simplify the counting, we add edges to convert the
cubic mesh into a torus, by connecting opposite cube faces so that every ver-
tex lies on exactly 2d simple cycles of length n (adding edges in this manner
only increases the upper bounds). Because of the periodic boundaries, each
processor has an equal amount of computation and communication, so we
can measure the critical path by following any processor. We identify five
costs for any processor: the number of arithmetic operations F , the number
of words moved W , the number of messages sent/received S, and the mem-
ory needed to store the vectors MX and the matrix entries MA. (Recall
that when A is stored explicitly, each entry costs c words of memory.)

In Table 7.3 we compare the costs of parallel Akx and CA-Akx row by
row, assuming we use the same ρd-way row-wise partition of [A, x0, . . . , xk]
for both, and that both approaches have sufficient memory. In general,
this comparison may be unfair, because CA-Akx has higher memory re-
quirements than Akx; however, we will restrict our attention to a range of
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Table 7.3. Upper bounds on algorithmic costs of parallel Akx and CA-Akx for
each processor q, for a (2b+ 1)d-point stencil on a n× · · · × n d-dimensional mesh
(explicit nonzero values) partitioned into p = ρd subcubes with edge length an
integer m = n/ρ, so each of the p processors owns a subcube. Note that W for
CA-Akx is split into two terms, where the second term WA can be amortized over
successive invocations with the same matrix A.

Akx

F 2md ·∑k
j=1(2b+ 1)d + min{u, j}

W 2k(min{n,m+ 2b}d −md)

S 2k(min{ρ, 1 + 2�b/m�}d − 1)

MX kmd + min{n,m+ 2b}d

MA c(2b+ 1)dmd

CA-Akx

F 2 ·∑k
j=1((2b+ 1)d + min{u, j}) min{n,m+ 2b(j − 1)}d

W 2(min{n,m+ 2bk}d −md) +WA

WA 2c(2b+ 1)d(min{n,m+ 2b(k − 1)}d −md)

S 2(min{ρ, 1 + 2�bk/m�}d − 1)

MX

∑k
j=0 min{n,m+ 2bj}d

MA c(2b+ 1)d min{n,m+ 2b(k − 1)}d

parameters where both approaches have the same asymptotic memory foot-
print. In the case k = O(m/b), we see a factor Θ(k) decrease in S at the
cost of increasing the other four costs by a factor O(1), except possibly for
W in the explicit case, which increases by a factor of O(1+cbd), due to WA,
incurred by distributing matrix rows, each of size O(cbd), when k > 1. (As
mentioned above, there is no need to distribute matrix rows in the implicit
case, so WA = 0 and the increase in W is also O(1).) Typically, b, c, and d
are not asymptotic parameters but rather small constants, so it is reason-
able to assume cbd = O(1), in order to keep the growth in W bounded by
a constant factor. However, in our applications, it is common to perform a
sequence of Akx invocations with the same matrix, so the ghost zone rows
can be distributed once, amortizing WA over Ω(cbd) invocations to keep the
growth in W bounded by a constant factor.
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The situation is similar in the sequential case (see Table 7.4). Again, we
would like to compare costs componentwise (for the same row-wise parti-
tion), but this is now complicated by different (fast) memory requirements.
We again suppose k = O(m/b). Since MX,fast is greater for CA-Akx than
for Akx by a factor of O(k/u), then, when u = Θ(1), it is possible to pick
the number of blocks p to be smaller for Akx by a factor of O(k), in which
case the latency costs of the two approaches are comparable. In the explicit
case with u = Θ(1), we observe a Θ(k)-fold decrease in the component of the
bandwidth cost due to reading A – this is the main benefit – but no savings
due to reading/writing vector elements. In the implicit case with u = Θ(1),
the bandwidth costs are comparable for the two approaches (actually, CA-
Akx is more expensive due to lower-order terms). For longer recurrences
with u = Θ(k), we cannot reduce the number of blocks for Akx by more
than a constant factor, so we see a Θ(k)-fold decrease in latency cost for
CA-Akx. Note that changing the number of blocks p does not affect the
asymptotic computation or bandwidth costs for either approach, so we con-
clude that CA-Akx only performs a constant factor more computation than
Akx. In the case u = Θ(k), we observe a Θ(k)-fold decrease in bandwidth
cost (in addition to the Θ(k) latency savings) for CA-Akx.

7.3. Blocking covers

In general, the CA-Akx approach is only beneficial if the additional costs
due to the ghost zones grow slowly with k. Leiserson, Rao and Toledo
(1997) expressed this intuition (in the sequential case) with their notion of
a neighbourhood cover: in our notation, the set of subgraphs induced by
{vi : xj(i) ∈ R(Pq)} for q ∈ {1, . . . , p} form a k-neighbourhood cover of
the vertices {vi} of G(A). Informally, the efficacy of the CA-Akx approach
depends on each subgraph fitting in fast memory and not overlapping too
much with the others, but finding a good cover is not always possible, for
instance when G(A) has low diameter (or, A is not well-partitioned). Leis-
erson et al. (1997) proposed removing a subset of vertices from G(A) so
that the remaining subgraph has a good cover, computing the Krylov basis
with the subgraph, and then updating the basis vectors to correct for the
removed vertices. When the number of vertices is small, and A is fixed over
sufficiently many Akx invocations, the additional costs are negligible.

We have generalized this approach in Knight, Carson and Demmel (2014),
in two ways. First, we additionally address the parallel case, that is, CA-
Akx. Second, we consider exploiting the more general splitting A = D+B,
where D has a good cover and B has low rank. The trick is to exploit
the identity (D + B)j = Dj +

∑j
i=1D

i−1BAj−i and an efficient repre-
sentation B = UV T . The algorithm has four phases. First, we compute
V T [U,DU, . . . ,Dk−2U ]; second, V T [x,Dx, . . . , Dk−1x]. Both involve Akx
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Table 7.4. Upper bounds on algorithmic costs of sequential Akx and CA-Akx, for a
(2b+1)d-point stencil on a n×· · ·×n d-dimensional mesh (explicit nonzero values)
partitioned into p = ρd subcubes with edge length an integer m = n/ρ.

Akx

F 2nd ·∑k
j=1(2b+ 1)d + min{u, j}

W p ·∑k
j=1

(
min{n,m+ 2b}d + (1 + max{0,min{u, j} − 1})md

+ c(2b+ 1)dmd
)

S kp(1 + min{ρ, 1 + 2�b/m�}d)

MX,slow,MX,fast (k + 1)nd, min{n,m+ 2b}d + (1 + max{0, u− 1})md

MA,slow,MA,fast c nnz(A), c(2b+ 1)dmd

CA-Akx

F 2p ·∑k
j=1((2b+ 1)d + min{u, j}) min{n,m+ 2b(j − 1)}d

W p
(
min{n,m+ 2bk}d + kmd

+ c(2b+ 1)d min{n,m+ 2b(k − 1)}d)
S p(1 + min{ρ, 1 + 2�bk/m�}d)

MX,slow,MX,fast

∑k
j=0 min{n,m+ 2bj}d

MA,slow,MA,fast c nnz(A), c(2b+ 1)d min{n,m+ 2b(k − 1)}d

computations with D, and a matrix–matrix multiplication with V T and the
Krylov basis matrix. Third, the small matrix V T [Ax, . . . , Ak−1x] is com-
puted cheaply and without communication, by exploiting the identity above.
Fourth, the desired basis Ax, . . . , Akx is obtained by interleaving another
Akx computation with D and MVs of the form U · V TAjx. Ideally, many
Krylov bases (with A) are desired, so computing V T [U,DU . . . ,Dk−2U ]
can be performed once, and its cost amortized. However, the trade-offs
are more complicated than with the Akx algorithms above, so we refer to
Knight et al. (2014) for further discussion and performance modelling. This
approach generalizes from the monomials to other polynomials, as consid-
ered earlier in this section. In addition, one can exploit the case when B has
low-rank blocks; in Knight et al. (2014) we show how to adapt this approach
to hierarchical semiseparable matrices (see, e.g., Xia, Chandrasekaran, Gu
and Li 2010).
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We call this approach the blocking covers algorithm, after Leiserson et al.
(1997); their approach corresponds to the special case where the columns
of U are taken from an identity matrix, and V T contains the corresponding
rows of A. Another approach was described in Demmel et al. (2007c) and
Hoemmen (2010), motivated by preconditioning; the algorithm from Knight
et al. (2014) sketched above improves on this approach’s costs by factors of
k, but a comparison in finite precision is open. One can view the blocking
covers algorithm as an extension to the Akx design space, although the
reorganization changes the DAG significantly.

7.4. Discussion and related work

Our primary motivation for reorganizing Krylov basis computations (e.g.,
Ax, . . . , Akx) is to reduce their communication costs. Whereas general, tight
lower bounds are open, we suggested that, in the absence of cancellation,
any classical8 algorithm incurs computation and communication costs at
least as great as computing A ·X for some n×k matrix X. And whereas we
do not have general, tight communication lower bounds for SpMV either, it
is reasonable to expect that when computing A ·X in parallel, the number
of messages should be independent of k, and sequentially, the number of
times A is read from slow memory should be independent of k, assuming k
is not too large. We demonstrated that, for a family of stencil matrices and
a range of parameters, sequential and parallel ‘tiled’ approaches (CA-Akx)
satisfy these criteria, while conventional approaches (Akx) do not.

In practice, we care about improved performance with respect to a phys-
ical measure such as time or energy. For example, if we model the time
per n-word message as α + βn, and the time per arithmetic operation as
γ, then we can estimate the run time by αS + βW + γF , as explained in
the Introduction; one can estimate energy cost in a similar manner. Ex-
tensive performance modelling for the approaches discussed here, as well as
other approaches that reduce redundant computation, appeared in Demmel,
Hoemmen, Mohiyuddin and Yelick (2008b); see also the preceding technical
report by Demmel et al. (2007c). A shared-memory implementation subse-
quently appeared in Mohiyuddin et al. (2009) (see the thesis by Mohiyuddin
2012 for additional details), and demonstrated speed-ups for sparse matri-
ces from a variety of domains (see Figure 7.1). We refer to those works for
details about practical implementations of the Akx approaches given here.

We gave a detailed description of the Akx dependency DAG, to empha-
size that the CA-Akx and CA-Akx approaches are examples of iteration
space tiling (or blocking), as are the reorganizations of dense linear alge-
bra computations in Section 3. Many authors have studied tiling, at many

8 In the sense of ‘classical SpMV’ in Section 6.
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levels of abstraction. As an approach for performance optimization, tiling
was possibly inspired by domain decomposition techniques for solving PDEs
(Schwarz 1870), or out-of-core stencil codes (Pfeifer 1963): small-capacity
primary memories and the lack of a virtual memory system on early com-
puters necessitated operating only on small subsets of a domain at a time.
Tiling of stencil codes became popular for performance as a result of two de-
velopments in computer hardware: increasingly deep memory hierarchies,
and multiple independent processors (Irigoin and Triolet 1988). Typical
tiling approaches for stencils rely on static code transformations, based on
analysis of loop bounds; recent cache-aware approaches are detailed in Datta
et al. (2008) and Dursun et al. (2009). A successful cache-oblivious approach
that attains Hong and Kung’s lower bound in the sequential case, but based
on the ideal cache model (Frigo et al. 1999), was given in Frigo and Strumpen
(2005), and subsequently generalized to shared memory parallel machines
(Frigo and Strumpen 2009, Tang et al. 2011). However, this poses a com-
plication for matrices with general nonzero structures, in which case the
loop bounds may not be known until run time, and tiling incurs an online
run time overhead (Douglas et al. 2000, Strout, Carter and Ferrante 2001).
The hope is that this overhead can be amortized over many Krylov basis
computations with the same matrix A.

8. Communication-avoiding Krylov subspace methods

Krylov subspace methods (KSMs) are a class of iterative algorithms com-
monly used for finding eigenvalues and eigenvectors or singular values and
singular vectors of matrix A, or solving linear systems or least-squares prob-
lems Ax = b, when A is large and sparse. Iteration m of a KSM can be
viewed as a projection process onto subspace Km orthogonal to another
subspace Lm, where Km is the Krylov subspace

Km(A, v) = span{v,Av, . . . , Am−1v}. (8.1)

For KSMs which solve linear systems, the approximate solution is chosen
from Km according to some optimality criterion. This optimality criterion
and the choice of Lm distinguish various Krylov methods. For a thorough
introduction to KSMs, see Saad (2003).

In conventional KSM implementations, each iteration of the projection
process consists of one or more sparse matrix–vector multiplications
(SpMVs) and inner products. On modern computer architectures, these
operations are both communication-bound : the movement of data, rather
than the computation, is the limiting factor in performance. Recent efforts
have thus focused on communication-avoiding KSMs (CA-KSMs) (Carson,
Knight and Demmel 2013, Demmel et al. 2007c, Hoemmen 2010), based
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on s-step KSM formulations (Chronopoulos and Gear 1989a, Chronopou-
los and Swanson 1996, Gannon and Van Rosendale 1984, Hindmarsh and
Walker 1986, Van Rosendale 1983, Sturler 1996, Toledo 1995). CA-KSMs
reorder the computations in conventional KSMs to perform O(s) compu-
tation steps of the algorithm for each communication step, allowing an
O(s) reduction in total communication cost. In practice, this can trans-
late into significant speed-ups (Mohiyuddin et al. 2009). Note that in this
section, the term ‘conventional KSM’ is used to refer to standard, that is,
not communication-avoiding, implementations.

In Sections 8.2 and 8.3 below, we derive communication-avoiding variants
of four KSMs. We first derive communication-avoiding variants of Arnoldi
and nonsymmetric Lanczos in Section 8.2, algorithms commonly used in
solving eigenvalue problems with nonsymmetric A. In Section 8.3 we de-
rive communication-avoiding variants of the generalized minimal residual
method (GMRES) and the biconjugate gradient method (BICG) for solv-
ing linear systems Ax = b with nonsymmetric A, which are based on Arnoldi
and Lanczos, respectively. We selected these four methods for simplicity,
and to demonstrate the variety of different CA-KSMs that exist. We have
also developed communication-avoiding versions of other KSMs, including
communication-avoiding biconjugate gradient stabilized (CA-BICGSTAB)
(Carson et al. 2013). We note that in the case that A is symmetric posi-
tive definite (SPD), the communication-avoiding nonsymmetric Lanczos and
BICG methods reduce to give communication-avoiding variants of the more
commonly used Lanczos and conjugate gradient (CG) methods, respectively.

There are two challenges to creating fast and reliable CA-KSMs. First,
depending on the KSM and input matrix, the communication bottleneck
may either be computing a basis of the Krylov subspace or the subsequent
(dense) vector operations, such as dot products. To accelerate the former,
we will use the CA-Akx kernel presented in Section 7. Hoemmen et al. (see,
e.g., Demmel et al. 2007c, Hoemmen 2010, Mohiyuddin et al. 2009) were the
first to make use of the matrix powers kernel optimization for general sparse
matrices, which reduces the communication cost by a factor of O(s) for well-
partitioned matrices, fusing together a sequence of s SpMV operations into
one kernel invocation. This kernel is used in the CA-KSM to compute an
(s + 1)-dimensional Krylov basis Ks+1(A, v). Depending on the nonzero
structure of A (more precisely, of {Aj}sj=1), this enables communication-
avoidance in both serial and parallel implementations. As well as SpMV
operations, KSMs also incur communication costs due to orthogonalization
performed in each iteration, usually involving a series of dot products, which
incur a costly global synchronization on parallel computers. For Lanczos-
based KSMs, the simplest strategy is to block together dot products using
a Gram matrix; this can lead to an s-fold decrease in latency in both paral-
lel and sequential algorithms. In the case of Arnoldi-based KSMs (such as
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GMRES), the orthogonalization operations can be blocked by computing a
(thin) QR factorization of a tall and skinny matrix. Using the Tall Skinny
QR algorithm in Demmel et al. (2012) (and Section 3.3.5), this leads to
an s-fold decrease in latency in the parallel case, as well as an s-fold de-
crease in latency and bandwidth in the sequential case (Hoemmen 2010).
There are many complementary approaches to reducing communication in
KSMs which differ from this approach, including reducing synchronizations,
overlapping communication and computation, allowing asynchronous itera-
tions, using block Krylov methods to exploit locality, and using alternative
methods such as Chebyshev Iteration. For a good overview, see Hoemmen
(2010, §1.6).

Second, achieving numerical stability for CA-KSMs is more challenging
than for classical KSMs. The most straightforward reorganizations of KSMs
to CA-KSMs give identical results in exact arithmetic, but (depending on
the input matrix) may completely fail to converge because of numerical in-
stability. This is not surprising, since the vectors [x,Ax, . . . , Akx] computed
by the Akx kernel converge to the eigenvector of the dominant eigenvalue
of A as k grows, and so form an increasingly ill-conditioned basis of the
Krylov subspace. This was observed by early researchers in these methods
(this related work is described in Section 8.1), who proposed using different,
better-conditioned polynomial bases [x, p1(A)x, . . . , pk(A)x], whose compu-
tation was also discussed in Section 7. Choosing appropriate polynomials
pj(A) will be discussed further in Section 8.5.1. But this is not enough to
guarantee numerical stability comparable to the conventional algorithm in
all cases. An additional technique to further improve numerical stability
is a generalization of the residual replacement approach of Van der Vorst
and Ye (1999) to improve the correlation between independent recurrences
for updating the solution vector and its residual. We have shown that in
many cases, the approach of combining well-conditioned polynomial bases
and residual replacement strategies can make CA-KSMs reliable (Carson
and Demmel 2014). Complete understanding and mitigation of numerical
instabilities remains future work.

The rest of this section is organized as follows. Section 8.1 describes re-
lated work. Sections 8.2 and 8.3 describe eigenvalue problems and linear sys-
tems, respectively. Section 8.4 details speed-up results from previous work
that demonstrate the performance benefits of these approaches. Section 8.5
discusses finite precision considerations. Lastly, Section 8.6 discusses pre-
conditioning techniques for CA-KSMs.

8.1. Related work

There is a wealth of related work in the area of s-step KSMs. We highlight a
few results and direct the reader to the thorough overview given in Hoemmen
(2010, §1.5-6).
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The first instance of an s-step method in the literature is Van Rosendale’s
conjugate gradient method (Van Rosendale 1983). Van Rosendale’s imple-
mentation was motivated by exposing more parallelism. Chronopoulos and
Gear (1989b) later created an s-step GMRES method with the goal of expos-
ing more parallel optimizations. With a similar goal, Kim and Chronopou-
los (1992) derived an s-step nonsymmetric Lanczos method. Walker (1988)
used s-step bases as a method for improving stability in GMRES by re-
placing the Modified Gram–Schmidt orthogonalization process with House-
holder QR.

The above studies found that convergence often could not be guaranteed
for s > 5 using the (inherently unstable) monomial basis for construction of
the Krylov subspaces (see Section 7). This motivated research into the use
of other, more well-conditioned bases for the Krylov subspace.

Hindmarsh and Walker (1986) used a scaled (normalized) monomial ba-
sis to improve convergence, but only saw minimal improvement. Joubert
and Carey (1992) implemented a scaled and shifted Chebyshev basis, which
provided more accurate results. Bai, Hu and Reichel (1994) also saw im-
proved convergence using a Newton basis. Philippe and Reichel (2012) have
demonstrated that good basis parameters can be computed inexpensively
and dynamically updated throughout the iteration. The construction of
other bases for the Krylov subspace will be covered more thoroughly in
Section 8.5.1.

8.2. Eigenvalue problems

In this subsection, we derive communication-avoiding variants of two funda-
mental Krylov subspace methods for solving eigenvalue problems with non-
symmetric A. In Section 8.2.1 we derive communication-avoiding Arnoldi
(CA-Arnoldi), and communication-avoiding nonsymmetric Lanczos (CA-
BIOC) can be found in Section 8.2.2. These two methods were selected
for their simplicity, and because they form the fundamental basis of many
other CA-Krylov methods, including CA-GMRES (Section 8.3.1) and CA-
BICG (Section 8.3.2).

8.2.1. Arnoldi

Arnoldi begins with an n× n matrix A and an n× 1 starting vector v = 0.
After s steps, assuming no breakdown occurs, the method constructs an
(s+ 1) × s nonsingular upper Hessenberg matrix H such that

AQ = QH, (8.2)

in which Q is an n× (s+ 1) orthonormal matrix

Q = [Q, qs+1] = [q1, . . . , qs, qs+1]
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Algorithm 8.1 Arnoldi

Require: n× n matrix A, and length n starting vector v
Output: Matrices Q and H satisfying (8.2)
1: β = ‖v‖2, q1 = v/β
2: for j = 1 to s do
3: wj = Aqj
4: for i = 1 to j do
5: hij = 〈w, qi〉
6: wj = wj − hijqi
7: end for
8: hj+1,j = ‖wj‖2
9: qj+1 = wj/hj+1,j

10: end for

(with q1 = v/‖v‖2) whose columns comprise a basis of the Krylov subspace

Ks+1(A, v) = span{v,Av,A2v, . . . , Asv}.
We do not indicate s when we write Q or H, because s is usually understood
from the context. We write hij = H(i, j), and we write H for the principal
s× s submatrix of H, so that

H =

(
H

0, . . . , 0, hs+1,s

)
.

Depending on the context, an underline under a letter representing a matrix
means either ‘add one more column to the right side’ (e.g., Q) or ‘add one
more row to the bottom’ (e.g., H) of the matrix.

Algorithm 8.1 shows the usual formulation of Arnoldi iteration. For sim-
plicity, we assume no breakdown occurs. It uses Modified Gram–Schmidt
(MGS) to orthogonalize successive basis vectors. There are other forms of
Arnoldi iteration, which use other orthogonalization methods. However,
MGS-based Arnoldi (Algorithm 8.1) is most often employed in practice, ei-
ther by itself (usually with restarting, to be handled in Section 8.2.1.2)
or as the inner loop of a method such as Implicitly Restarted Arnoldi
(Sorensen 1992).

The key operations of Arnoldi iteration are the computation of the up-
per Hessenberg matrix H and the orthonormal basis vectors q1, . . . , qs+1.
(We use the letter ‘q’, rather than the customary ‘v’, because q suggests
orthonormality by recalling the QR factorization.) The upper Hessenberg
matrix H = QTAQ is the projection of the matrix A onto the subspace
span{q1, . . . , qs}. Various operations on H yield information for solving lin-
ear systems or eigenvalue problems involving A. For example, the Arnoldi
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method finds approximations for the eigenvalues of A using the eigenvalues
of H (the Ritz values). GMRES solves Ax = b approximately by start-
ing with an initial guess x0, performing Algorithm 8.1 with r = b − Ax0,
and then solving the least-squares problem miny ‖Hy − βe1‖2 to obtain
coefficients y for the approximate solution xs in terms of the basis vectors
q1, . . . , qs. The Full Orthogonalization Method (FOM) (see, e.g., Saad 2003)
gets coefficients y for the approximate solution by solving the linear system
Hy = βe1.

If hj+1,j = 0 in Algorithm 8.1, Arnoldi breaks down. In exact arithmetic,
this only occurs when the smallest j has been reached such that a degree
j− 1 polynomial pj−1 exists with pj−1(A)v = 0. The Krylov subspace basis
cannot be made any larger, given the starting vector v. This is called a lucky
breakdown, for two reasons: when solving eigenvalue problems, the set of
eigenvalues of H equals a subset of the eigenvalues of A, and when solving
linear systems, the current approximate solution equals the exact solution.
For simplicity, we assume the starting vector v is not deficient in any of the
desired eigenvectors, and no breakdown occurs; in practice, methods used in
conventional KSMs for handling breakdown can be extended to CA-KSMs.

The Arnoldi process requires us to store all the basis vectors and do a full
orthogonalization at each step. If s iterations are performed, then memory
requirements scale as a multiple of s, and the computational expense of
the vector operations scales quadratically with s. Letting s grow until the
algorithm converges to the desired accuracy may therefore require too much
memory or too much computation. As a result, the Arnoldi process may be
restarted by forgetting H and all basis vectors except qs+1, making the last
(or best, where ‘best’ means the residual vector with the smallest norm)
residual vector the new starting vector, and beginning the iteration over
again. That would entail enclosing Algorithm 8.1 in an outer loop, a simple
step which we do not show. We then say that the restart length is s, and
that Algorithm 8.1 represents one restart cycle.

Restarting bounds the memory requirements by a multiple of s. However,
it causes a loss of information stored in the discarded basis vectors and H
matrix. This loss can adversely affect how fast the iteration converges,
for both linear systems and eigenvalue problems. Picking the right restart
length involves a trade-off between convergence rate and computational cost,
and is constrained by memory capacity.

We will first present a simple communication-avoiding version of Arnoldi
iteration, CA-Arnoldi(s). In this variant, the blocking factor s is the same
as the restart length. We begin by showing how to rearrange Arnoldi so as
to complete s steps of a single restart cycle with the same communication
requirements as a single step of Algorithm 8.1. The basic idea is to use the
matrix powers kernel to generate s basis vectors, and then orthogonalize
them all at once using TSQR.
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The requirement of restarting every s steps is not intrinsic to CA-Arnoldi.
In the subsequent section, we present CA-Arnoldi(s, t), where s and the
restart length s · t can be chosen independently (i.e., the restart length
can be chosen to meet constraints on convergence rate, memory capacity,
etc.). This approach uses a combination of TSQR and block Gram–Schmidt
orthogonalization (BGS) to avoid communication in the dense vector oper-
ations.

8.2.1.1. CA-Arnoldi(s). Walker (1988) developed a version of GMRES that
we consider a precursor to the CA-Arnoldi(s) algorithm. The usual imple-
mentation of Arnoldi (Algorithm 8.1) generates the unitary basis vectors one
at a time and the upper Hessenberg matrix one column at a time, using Mod-
ified Gram–Schmidt orthogonalization. Walker wanted to use Householder–
QR instead to orthogonalize the basis vectors, since Householder–QR pro-
duces more orthogonal vectors than MGS in finite precision arithmetic.9

However, conventional Householder–QR requires that all the vectors to or-
thogonalize be available at once. Algorithm 8.1 only generates one basis
vector at a time, and cannot generate another until the current one has
been orthogonalized against all the previous basis vectors. Walker dealt
with this by first generating s+1 vectors, which form a basis for the Krylov
subspace, and then computing their QR factorization. From the resulting
R factor and knowledge about the basis, he could reconstruct the upper
Hessenberg matrix H and use that to solve the least-squares problem un-
derlying GMRES. This performed the work of s steps of GMRES. Then,
he restarted GMRES and repeated the process until convergence. Walker
did not use a matrix powers kernel to compute the basis vectors, nor did he
have a communication-avoiding QR factorization. Bai et al. (1994) based
their Newton-basis GMRES on Walker’s Householder GMRES, improving
numerical stability by using a different s-step basis.

We summarize Walker’s algorithm in our own, more general notation.
Given a starting vector v, the algorithm first computes the vectors v1 = v,
v2 = Av, v3 = A2v, . . . , vs+1 = Asv. We write

V = [V , vs+1] = [v1, . . . , vs, vs+1].

These vectors form a monomial basis for the Krylov subspace Ks+1(A, r).
Note that different polynomials (besides monomials A,A2, . . . , As) can be
used for constructing a basis for the Krylov subspace: see Section 8.5.1.
Throughout this section, we use calligraphic letters such as V to denote
the generated s-step bases for the required Krylov subspace(s) (except for

9 This turns out to matter more for Arnoldi than for GMRES. The loss of orthogonality
in finite precision arithmetic due to using MGS does not adversely affect the accuracy
of solving linear systems with GMRES: see Greenbaum, Rozložńık and Strakoš (1997).
However, at the time of Walker’s work this was not known.
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Km, which always denotes a Krylov subspace of size m). For any choice of
polynomials, the computation of V can be written in matrix form as

AV = VB, (8.3)

where B is an (s+1)×s change of basis matrix. Note that for the monomial
basis, B = [e2, e3, . . . , es+1].

Note the similarity between (8.3) and the Arnoldi relation (8.2); we will
use this below to derive the CA-Arnoldi(s) algorithm. We denote by B the
s× s principal submatrix of B, so that

B =

(
B

0, . . . , 0, B(s+ 1, s)

)
.

Note that we assume that the QR factorization of V leaves the unit start-
ing vector unchanged. Some QR factorizations may give the basis vectors qj
a different unitary scaling than the basis vectors computed by conventional
Arnoldi. Similarly, the upper Hessenberg matrices may differ by a unitary
diagonal similarity transform. This does not affect Ritz value calculations,
but it will affect the least-squares problem which GMRES solves in order to
get the approximate solution to Ax = b (to be covered in Section 8.3.1). For
CA-GMRES, the only scaling factor that matters is that of the first basis
vector q1. Furthermore, if CA-GMRES uses a QR factorization under which
the direction of the first column is invariant, then CA-GMRES computes
the same approximate solution in exact arithmetic as conventional GMRES
at all iterations. Otherwise, one additional inner product will be necessary
in order to compute the change in direction of q1; see Hoemmen (2010).

We write the QR factorization of V: QR = V and QR = V . Here, we
use the ‘thin’ QR factorization in which R is (s+ 1) × (s+ 1) and R is the
s × s leading principal submatrix of R. Then, we can use R and (8.3) to
reconstruct the Arnoldi relation of (8.2):

AQ = QH,

AQR = QRR−1HR,

AV = VR−1HR.

This means that if AV = VB for some (s+ 1) × s matrix B, we have

H = RBR−1. (8.4)

(For an analogous derivation in the case of Lanczos iteration, see the begin-
ning of Meurant (2006).) Naturally one can exploit the structures of B, R,
and R−1 in order to calculate this expression more quickly, as shown below.

Algorithm 8.2 shows our CA-Arnoldi(s) algorithm (which again assumes
no breakdown). It restarts after every s steps. In line 6 of the algorithm,
we can exploit the structure of B and R in order to reduce the cost of
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Algorithm 8.2 CA-Arnoldi(s)

Require: n× n matrix A and length n starting vector v
Output: Matrices Q and H satisfying (8.2)
1: β = ‖v‖2, q1 = v/β
2: while we want to restart do
3: Fix the (s+ 1) × s basis matrix B
4: Compute V via CA-Akx (see Section 7)
5: Compute the QR factorization V = QR via TSQR

6: H = RBR−1 (equation (8.5))
7: if we want to restart then
8: Set v = qs+1 (the last column of Q) and β = 1
9: Optionally change B based on eigenvalue approximations gath-

ered from H
10: end if
11: end while

computing H. If we break down R into

R =

(
R z

01,s ρ

)
,

where R is s× s, z is s× 1, and ρ is a scalar, and break down B into

B =

(
B

0, . . . , 0, b

)
,

where B is s× s and b = B(s+ 1, s), then

H = RBR−1 =

(
R z

01,s ρ

)(
B

0, . . . , 0, b

)
R−1

=

(
RBR−1 + b · zeTs R−1

ρb · eTs R−1

)
.

If we further let ρ̃ = R(s, s), then eTs R
−1 = ρ̃−1 and therefore

H =

(
RBR−1 + ρ̃−1b · zeTs

ρ̃−1ρb · eTs

)
≡

(
H

0, . . . , 0, h

)
. (8.5)

This formula can be used to compute H in line 6 of Algorithm 8.2.

8.2.1.2. CA-Arnoldi(s, t). We now derive CA-Arnoldi(s, t), where the basis
length s in CA-Arnoldi(s, t) can be shorter than the restart length s·t. Here,
t refers to the number of ‘outer iterations’, or times that the matrix powers
kernel is invoked and its output vectors are made orthogonal to previous
vectors and among themselves. Note that CA-Arnoldi(s) is the same as
CA-Arnoldi(s, t = 1).
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The ability to choose s shorter than the restart length s · t has at least
two advantages.

(1) s-step methods are not numerically stable if s is too large, but if the
restart length r is too short, the Krylov method may converge slowly
or not at all (‘stagnation’). In that case, CA-Arnoldi(s, t) can use a
known stable value of s, while still choosing a restart length r for which
Arnoldi is known to converge sufficiently fast.

(2) The best value of s for performance may be much shorter than typical
restart lengths.

Previous s-step Arnoldi or GMRES algorithms, including Walker’s House-
holder GMRES (Walker 1988) and the Newton-basis GMRES algorithm of
Bai et al. (1991, 1994), had the same limitation as CA-Arnoldi(s). Like
CA-Arnoldi(s), CA-Arnoldi(s, t) communicates a factor of s less than con-
ventional Arnoldi with the same restart length r = s · t. CA-Arnoldi(s, t)
requires the same storage as conventional Arnoldi. It may require a lower-
order term more of floating-point arithmetic operations than conventional
Arnoldi, but this is due only to the matrix powers kernel (see Section 7 for
details).

We first briefly discuss block Gram–Schmidt methods, which will be used
in CA-Arnoldi(s, t); for further details and related work, see Hoemmen
(2010).

Orthogonalizing a vector against an orthogonal basis in order to add the
vector to the basis is an important kernel in most KSMs. Some KSMs,
such as Arnoldi and GMRES, explicitly orthogonalize each new basis vector
against all previous basis vectors.

We showed in Demmel et al. (2012) that Classical Gram–Schmidt (CGS)
and Modified Gram–Schmidt (MGS) communicate asymptotically more than
the lower bound, both in parallel and between levels of the memory hierar-
chy. This is a problem for KSMs such as Arnoldi and GMRES, which may
spend a large fraction of their time orthogonalizing basis vectors. Whatever
progress we make replacing SpMV with CA-Akx (Section 7), we also have to
address the orthogonalization phase(s) in order to make our methods truly
communication-avoiding.

Block CGS is the natural generalization of CGS where a vector becomes
a block of k vectors, a dot product becomes a matrix multiplication of
two n × k blocks, and dividing a vector by its 2-norm becomes a (TS)QR
decomposition of an n × k block. Blocked versions of Gram–Schmidt are
not new: see, for example, Jalby and Philippe (1991), Vanderstraeten (1999)
and Stewart (2008).

These block variants reduce the amount of communication required. If the
number of columns in each block is k, block CGS and block MGS algorithms
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require a factor of Θ(k) and Θ(k2), respectively, fewer messages in parallel
than their analogous non-blocked versions, and the sequential versions also
both require a factor of Θ(k) fewer words transferred between slow and
fast memory. Mohiyuddin et al. (2009) and Hoemmen (2010) suggested
combining block Gram–Schmidt with TSQR (Section 3.3.5), to improve the
communication costs to attain the lower bounds of Demmel et al. (2012).

We will thus use block Gram–Schmidt methods to orthogonalize the ‘new’
set of basis vectors against the previously orthogonalized basis vectors. This
may be done for all sk basis vectors at once (the block CGS approach) or
k − 1 times for each group of s previous basis vectors (the block MGS
approach).

In exact arithmetic, both block CGS and block MGS compute the same
updated basis vectors; the differences are in performance and accuracy. The
accuracy of block MGS is comparable to that of orthogonalizing a vector
against k unit-length orthogonal vectors using standard MGS. The accuracy
of block CGS is comparable to that of orthogonalizing a vector against k
unit-length orthogonal vectors with standard CGS. Loss of orthogonality is
an issue for all aforementioned Gram–Schmidt methods; we refer to Stewart
(2008) for a concise summary and bibliography of numerical stability con-
cerns when performing Gram–Schmidt orthogonalization in finite precision
arithmetic. We discuss reorthogonalization for CA-KSMs in Section 8.5.2.4.

For simplicity, we will use block CGS in CA-Arnoldi(s, t) and refer to
Hoemmen (2010) for further details on orthogonalization methods, including
block MGS.

We now introduce the three levels of notation used in CA-Arnoldi(s, t).
For more outer levels, we use taller and more elaborate typefaces. We
use lower-case Roman type to denote single basis vectors, upper-case cal-
ligraphic type for n × s matrices whose columns are the Krylov subspace
basis vectors generated in a single outer iteration, and upper-case black-
letter type for a collection of s(k + 1) groups of orthogonal basis vectors
from all previous outer iterations up to k. For example, vsk+j is a single
basis vector in outer iteration k, Vk = [vsk+1, vsk+2, . . . , vsk+s] is an n × s
matrix whose columns are s basis vectors in a group for outer iteration k,
and Qk is a collection of k+ 1 groups of s orthogonal basis vectors at outer
iteration k, that is, Qk = [Q0, Q1, . . . , Qk].

Using this notation, if CA-Arnoldi(s, t) performs all its iterations without
breaking down, it produces the matrix relation

AQk = QkHk, (8.6)

where

Qk = [Q0, Q1, . . . , Qk],

Qk = [Qk, qs(k+1)+1],
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Hk =



H0 for k = 0,(

Hk−1 Hk−1,k

hk−1e1e
T
s(k−1) Hk

)
for k > 0,

and

Hk =

(
Hk

hke
T
s(k+1)

)
.

Suppose that we perform s steps of Arnoldi, either conventional Arnoldi
or the s-step variant, using the n × n matrix A and the starting vector
q1. Assuming that the iteration does not break down, this results in an
n× (s+ 1) matrix of basis vectors Q

0
, with

Q
0

= [Q0, qs+1] = [q1, q2, . . . , qs, qs+1].

Its columns are an orthogonal basis for the Krylov subspace span{q1, Aq1,
. . . , Asq1}. Arnoldi also produces an (s+1)×s nonsingular upper Hessenberg
matrix H0, with

H0 =

(
H0

h0e
T
s

)
.

The upper Hessenberg matrix H0 satisfies

AQ0 = Q
0
H0 = Q0H0 + h0 · qs+1e

T
s . (8.7)

We have already shown how to compute Q
0

and H0 using CA-Arnoldi(s)
instead of conventional Arnoldi. However we choose to compute Q

0
and

H0, (8.7) still holds in exact arithmetic.10

If this were CA-Arnoldi(s), we would have to restart now. Instead, we
take the last basis vector qs+1, and make it the input of the matrix powers
kernel. We set vs+1 = qs+1, and the matrix powers kernel produces an
n× (s+ 1) matrix of basis vectors V1 with

V1 = [qs+1 = vs+1, vs+2, . . . , v2s+1].

We write
V1 = [vs+1, vs+2, . . . , v2s],

V1 = [V1, v2s+1],

V́1 = [vs+2, . . . , v2s],

V́1 = [V́1, v2s+1].

The underline, as before, indicates ‘one more at the end’, and the acute

10 In practice, we may want to begin a run of CA-Arnoldi(s, t) with s iterations of conven-
tional Arnoldi first, in order to compute Ritz values, which are used in successive outer
iterations to compute a good basis: see Section 8.5.1. This is why we allow the first
outer iteration to be computed either by conventional Arnoldi or by CA-Arnoldi(s).
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accent (pointing up and to the right) indicates ‘one fewer at the beginning’.
The vector omitted ‘at the beginning’ is qs+1 = vs+1, which is already
orthogonal to the previous basis vectors; we no longer need or want to
change it.

The columns of V́1 have not yet been orthogonalized against the columns
of Q

0
. We set

Q0 = Q0 and Q0 = Q
0
. (8.8)

Orthogonalizing the columns of V́1 against the previous basis vectors (here
the columns of Q0) is equivalent to updating a QR factorization by adding

the s columns of V́1 to the right of Q0. This results in an efficiently computed

QR factorization of [Q0, V́1]:

[Q0, V́1] = [Q0, Q́1
] ·

(
Is+1,s+1 Ŕ0,1

0 Ŕ1

)
. (8.9)

We perform this update in two steps. First, we use a block Gram–Schmidt
operation (see Section 8.2.1.2) to orthogonalize the columns of V́1 against
the columns of Q0:

• Ŕ0,1 = QH
0 V́1,

• V́ ′
1 = V́1 −Q0 · Ŕ0,1.

Then, we compute the QR factorization of V́ ′
1, which makes the new basis

vectors mutually orthogonal as well as orthogonal to the previous basis
vectors:

V́ ′
1 = Q́

1
Ŕ1.

Now that we have the desired QR factorization update and a new set of s
orthogonalized Arnoldi basis vectors, we can update the upper Hessenberg
matrix as well. Just as in CA-Arnoldi(s), the basis vectors V1 satisfy AV1 =
V1B1 for the nonsingular upper Hessenberg matrix B1, which is defined by
the choice of basis. That means

A[Q0,V1] = [Q0,V1]B1, (8.10)

where the (2s+ 1) × 2s matrix B1 satisfies

B1 =

(
H0 0s,s

h0e1e
T
s B1

)
=

(
B1

b1e
T
2s

)
. (8.11)

Combining (8.10) with the QR factorization update in (8.9) and the defini-
tion of B1 in (8.11), we get

A[Q0, Q1]

(
I R0,1

0 R1

)
= [Q0,V1]

(
I R0,1

0 R1

)(
H0 0s,s

h0e1e
T
s B1

)
, (8.12)
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where

R0,1 = QH
0 V1 = [e1,Q

H
0 V́1],

R0,1 = QH
0 V1 = [e1,Q

H
0 V́1],

and R1 and R1 are the R factors in the QR factorization of V1 and V1,
respectively. (Similarly, R1(1, 1) = R1(1, 1) = 1.) This is just a rearrange-
ment of the updated R factor in equation (8.9) and involves no additional
computation.

We set H0 = H0 and H0 = H0. By (8.12), we can recover the (2s+1)×2s
upper Hessenberg matrix H1 which is the same as would be computed by
2s steps of conventional Arnoldi iteration. We have

A[Q0, Q1] = [Q0, Q1
]H1,

and therefore

H1 =

(
I R0,1

0 R1

)(
H0 0s,s

h0e1e
T
s B1

)(
I R0,1

0 R1

)−1

. (8.13)

The formula for H1 in (8.13) can be simplified so that H1 can be computed
as an update without needing to change H0.

Applying the update technique in this section k < t − 1 times results in
a total of k + 1 ‘outer iterations’ of CA-Arnoldi(s, t). In outer iteration k,

the matrix powers kernel outputs new basis vectors V́k. Block CGS is then

used to orthogonalize vectors in V́k against previously computed vectors

Qk−1, producing the (sk + 1) × s factor Ŕk−1,k. After computing the QR

factorization V́
′
k = Q́

k
Ŕk, the global QR factors can be denoted by

Qk = [Qk−1, Q́k
], (8.14)

and

Rk =

(
Is(k−1)+1,s(k−1)+1 Ŕk−1,k

0s,s(k−1)+1 Ŕk

)
. (8.15)

The Arnoldi relation that results is

AQk = QkHk + hkqs(k+1)+1e
T
s(k+1)

= QkHk,
(8.16)

where the outputs of CA-Arnoldi(s, t) are the n× (s(k + 1) + 1) matrix of
basis vectors Qk, and the (s(k+ 1) + 1)× s(k+ 1) upper Hessenberg matrix
Hk. Here,

Hk = RkBkR
−1
k , (8.17)
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Algorithm 8.3 CA-Arnoldi(s, t)

Require: n× n matrix A and n× 1 starting vector v
Output: Matrices Qk and Hk satisfying (8.6)
1: h0 = ‖r‖2, q1 = v/h0
2: for k = 0 to t− 1 do
3: Fix basis conversion matrix Bk

4: Compute V́k using CA-Akx
5: if k = 0 then
6: Compute QR factorization V0 = Q

0
R0 via TSQR

7: Q0 = Q
0

8: H0 = R0B0R
−1
0

9: else
10: Ŕk−1,k = QH

k−1V́k (block CGS)

11: V́ ′
k = V́k −Qk−1Ŕk−1,k (block CGS, continued)

12: Compute QR factorization V́ ′
k = Q́

k
Ŕk

13: Update Qk and Rk by (8.14) and (8.15), resp.
14: Update Hk by (8.17)
15: end if
16: end for

where

Rk =

(
Is(k−1)+1,s(k−1)+1 Ŕk−1,k

0s,s(k−1)+1 Ŕk

)
and (8.18)

Bk =

(
Hk−1 0s(k−1),s

hk−1e1e
T
s(k−1) Bk

)
. (8.19)

The CA-Arnoldi(s, t) algorithm, shown in Algorithm 8.3, follows directly
from the described QR factorization update. Again, we assume that no
breakdown occurs. For simplicity, this variant uses a block CGS update
procedure in lines 10 and 11. The update produces the same results (in
exact arithmetic) as would a full QR factorization of all the basis vectors, but
saves work. The update also preserves the scalings of previous basis vectors,
which a full QR factorization might not do. There are many alternative
implementation choices for computing the QR factorization update and the
upper Hessenberg update: for details, see Hoemmen (2010, §3.3.3–4).

8.2.2. Nonsymmetric Lanczos (BIOC )

Given an n × n matrix A and starting vector y0, m steps of the Lanczos
process (assuming no breakdown) produce the decompositions

AYm = Ym+1Tm and AH Ỹm = Ỹm+1T̃m, (8.20)
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where Ym = [y0, . . . , ym−1] and Tm is an (m + 1) × m tridiagonal matrix
(similarly for Ỹm and T̃m). The matrices Ym+1 and Ỹm+1 are bases for
the Krylov subspaces Km+1(A, y0) and Km+1(A

H , ỹ0), respectively, and are
biorthogonal, that is, Ỹ H

m+1Ym+1 = I. The eigenvalues of Tm (the upper
m ×m submatrix of Tm) are called Petrov values (or Ritz values for SPD
A), and are useful approximations for the eigenvalues of A.

In this section we present a communication-avoiding version of the ‘BIOC’
variant of nonsymmetric Lanczos (see, e.g., Gutknecht 1997), which we call
CA-BIOC. We note that in the case that A is SPD, elimination of certain
computations from BIOC and CA-BIOC gives algorithms for symmetric
Lanczos and communication-avoiding symmetric Lanczos, respectively. The
BIOC algorithm, shown in Algorithm 8.4, is governed by two coupled two-
term recurrences (rather than the single three-term recurrence (8.20)) which
can be written as

Ym = VmUm, Ỹm = ṼmŨm,

AVm = Ym+1Lm, AH Ṽm = Ỹm+1L̃m,
(8.21)

where Vm and Ṽm are biconjugate, and as before, Ym and Ỹm are biorthog-
onal. The matrices

Lm =




φ0
γ0 φ1

. . .
. . .

γm−2 φm−1

γm−1


 and Um =



ψ0

1 ψ1

. . .
. . .

1 ψm−1




(8.22)
are the LU factors of Tm in (8.20). Although BIOC breakdown can occur if
the (pivot-free) LU factorization of Tm does not exist, the four bidiagonal
matrices in (8.21) are preferable to the two tridiagonal matrices in (8.20)
for a number of reasons (Parlett 1995). Derivations for a communication-
avoiding three-term recurrence variant of symmetric Lanczos can be found
in Hoemmen (2010).

Now, suppose we want to perform blocks of s ≥ 1 iterations at once. That
is, we wish to calculate

[vsk+1, . . . , vsk+s], [ṽsk+1, . . . , ṽsk+s],

[ysk+1, . . . , ysk+s], [ỹsk+1, . . . , ỹsk+s],

given {vsk, ṽsk, ysk, ỹsk}, for k ≥ 0.
By induction on lines {6, 7, 10, 11} of conventional BIOC (Algorithm 8.4),

it can be shown that, for iterations sk + j, 0 < j ≤ s, the vector iterates
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Algorithm 8.4 BIOC

Require: n × n matrix A and length n starting vectors y0, ỹ0 ∈ C
n, such

that ‖y0‖2 = ‖ỹ0‖2 = 1, and δ0 = ỹH0 y0 = 0

Output: Matrices Vm, Ṽm, Ym, Ỹm, Lm, L̃m, Um, and Ũm satisfying (8.21)
1: Set v0 = ṽ0 = y0.
2: for m = 0, 1, . . ., until convergence do
3: δ̂m = ṽHmAvm
4: φm = δ̂m/δm
5: Choose γm, γ̃m = 0
6: ym+1 = (Avm − φmym)/γm
7: ỹm+1 = (AH ṽm − φmỹm)/γ̃m
8: δm+1 = ỹHm+1ym+1

9: ψm = γ̃mδm+1/δ̂m, ψ̃m = γmδm+1/δ̂m
10: vm+1 = ym+1 − ψmvm
11: ṽm+1 = ỹm+1 − ψ̃mṽm
12: end for

satisfy

vsk+j , ysk+j ∈ Ks+1(A, vsk) + Ks(A, ysk),

ṽsk+j , ỹsk+j ∈ Ks+1(A
H , ṽsk) + Ks(A

H , ỹsk),
(8.23)

where we exploit the nesting of the Krylov bases, that is, Kj(A, vsk) ⊆
Kj+1(A, vsk) (and similarly for other starting vectors). Then, to perform
iterations sk + j for 0 < j ≤ s, we will use the Krylov basis matrices

Vk =[ρ0(A)vsk, ρ1(A)vsk, . . . , ρs(A)vsk], span(Vk)=Ks+1(A, vsk),

Ṽk =[ρ0(A
H)ṽsk, ρ1(A

H)ṽsk, . . . , ρs(A
H)ṽsk], span(Ṽk)=Ks+1(A

H , ṽsk),

Yk =[ρ0(A)ysk, ρ1(A)ysk, . . . , ρs−1(A)ysk], span(Yk)=Ks(A, ysk),

Ỹk =[ρ0(A
H)ỹsk, ρ1(A

H)ỹsk, . . . , ρs−1(A
H)ỹsk], span(Ỹk)=Ks(A

H , ỹsk),
(8.24)

where ρj(z) is a polynomial of degree j, satisfying a three-term recurrence

ρ0(z) = 1, ρ1(z) = (z − α̂0)ρ0(z)/γ̂0, and

ρj(z) = ((z − α̂j−1)ρj−1(z) − β̂j−2ρj−2(z))/γ̂j−1, for j > 1.
(8.25)

This derivation generalizes to polynomials satisfying longer recurrences, al-
though three-term recurrences are most commonly used.

Using the defined Krylov matrices (8.24) and the relations (8.23), we can
represent components of the BIOC iterates in C

n by their coordinates in
the Krylov bases, that is, subspaces of C

n of dimension at most 2s + 1.
We introduce coefficient vectors {v′j , ṽ′j , y′j , ỹ′j}, each of length 2s + 1, to
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represent the length n vectors {vsk+j , ṽsk+j , ysk+j , ỹsk+j}. That is,

vsk+j = [Vk,Yk]v′j ,

ṽsk+j = [Ṽk, Ỹk]ṽ′j ,

ysk+j = [Vk,Yk]y′j ,

ỹsk+j = [Ṽk, Ỹk]ỹ′j ,
(8.26)

where the base cases for these recurrences are given by

v′0 = ṽ′0 = [1, 01,2s]
T and y′0 = ỹ′0 = [01,s+1, 1, 01,s−1]

T . (8.27)

Then, the iterate updates (lines {6, 7, 10, 11} of Algorithm 8.4) in the
Krylov basis become

[Vk,Yk]y′j+1 = (A[Vk,Yk]v′j − φsk+j [Vk,Yk]y′j)/γsk+j , (8.28)

[Ṽk, Ỹk]ỹ′j+1 = (AH [Ṽk, Ỹk]ṽ′j − φ̃sk+j [Ṽk, Ỹk]ỹ′j)/γ̃sk+j , (8.29)

[Vk,Yk]v′j+1 = [Vk,Yk]y′j+1 + ψsk+j [Vk,Yk]v′j , and (8.30)

[Ṽk, Ỹk]ṽ′j+1 = [Ṽk, Ỹk]ỹ′j+1 + ψ̃sk+j [Ṽk, Ỹk]ṽ′j . (8.31)

for iterations sk + j, where 0 ≤ j ≤ s− 1.
Next, we represent the multiplications by A and AH (lines 6 and 7 of

Algorithm 8.4) in the new coordinates, in order to manipulate (8.28) and
(8.29). We first note that the recurrence (8.25) for generating the matrices
Vk and Yk can be written in matrix form as

AVk = VkBk, AYk = YkBk,

AH Ṽk = ṼkBk, AH Ỹk = ỸkBk,
(8.32)

with

Bk =




α̂0 β̂0

γ̂0 α̂1
. . .

γ̂1
. . . β̂s−2

. . . α̂s−1

γ̂s−1




∈ C
(s+1)×s. (8.33)

Note that to perform iterations 0 ≤ j ≤ s − 1, we need to perform multi-
plication of A with each vsk+j (likewise for AH and ṽsk+j). By (8.23) and
(8.26), for 0 ≤ j ≤ s− 1,

Avsk+j = A[Vk,Ys]v
′
j = A[Vk, 0n,1,Yk, 0n,1]v

′
j = [Vk,Yk]B′

kv
′
j ,

AH ṽsk+j = AH [Ṽk, Ỹk]ṽ′j = AH [Ṽk, 0n,1, Ỹk, 0n,1]ṽ
′
j = [Ṽk, Ỹk]B′

kṽ
′
j ,

(8.34)

where

B′
k =

[[
Bk 0s+1,1

] [
Bk 0s,1

]], (8.35)

and Bk is the matrix consisting of the first s rows and first s − 1 columns



Numerical linear algebra: communication costs 117

of Bk. We now substitute (8.26) and (8.34) into conventional BIOC. The
vector updates in each of lines 6, 7, 10, and 11 of Algorithm 8.4 are now
expressed as a linear combination of the columns of the Krylov basis matri-
ces. We can match coefficients on the right- and left-hand sides to obtain
the governing recurrences

y′j+1 = (B′
kv

′
j − φsk+jy

′
j)/γsk+j , (8.36)

ỹ′j+1 = (B′
kṽ

′
j − φsk+j ỹ

′
j)/γ̃sk+j , (8.37)

v′j+1 = y′j+1 + ψsk+jv
′
j , (8.38)

ṽ′j+1 = ỹ′j+1 + ψ̃sk+j ṽ
′
j , (8.39)

for 0 ≤ j ≤ s− 1.
We also need scalar quantities δ̂sk+j and δsk+j which are computed from

inner products involving the vector iterates. We represent these inner prod-
ucts (lines 3 and 8 of Algorithm 8.4) in the new basis, using the Gram(-like)
matrices

G∗
k = [Ṽk, Ỹk]H [Vk,Yk] (8.40)

of size (2s+ 1)× (2s+ 1). We can then write the required inner products as

ỹHsk+j+1ysk+j+1 = ỹ′Hj+1G
∗
ky

′
j+1, (8.41)

ṽHsk+jAvsk+j = ṽ′Hj G∗
kB

′
kv

′
j . (8.42)

In our BIOC formulation, we have allowed freedom in choosing the values
γm. It is common to choose starting vectors ‖y0‖2 = ‖ỹ0‖2 and choose γm
and γ̃m in line 5 of Algorithm 8.4 such that ‖ym+1‖2 = ‖ỹm+1‖2 = 1, that is,

γm = ‖Avm − φmym‖2, γ̃m = ‖AH ṽm − φmỹm‖2.
In this case, CA-BIOC also requires us to compute the matrices

Gk = [Vk,Yk]H [Vk,Yk], G̃k = [Ṽk, Ỹk]H [Ṽk, Ỹk],

in each outer loop. Note that computing these matrices does not asymptot-
ically affect communication costs if they can be computed simultaneously
with G∗

k. Then we can compute γm and γ̃m by

‖Avsk+j − φsk+jysk+j‖2 =
√

(B′
kv

′
j − φsk+jy

′
j)

HGk(B′
kv

′
j − φsk+jy

′
j),

(8.43)

‖AH ṽsk+j − φsk+j ỹsk+j‖2 =
√

(B′
kṽ

′
j − φ̃sk+j ỹ

′
j)

HG̃k(B′
kṽ

′
j − φsk+j ỹ

′
j),

(8.44)

in each inner loop iteration with no communication.
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Algorithm 8.5 Communication-avoiding BIOC

Require: n × n matrix A and length n starting vectors y0, ỹ0 ∈ C
n, such

that ‖y0‖2 = ‖ỹ0‖2 = 1, and δ0 = ỹH0 y0 = 0

Output: Matrices Vm, Ṽm, Ym, Ỹm, Lm, L̃m, Um, and Ũm satisfying (8.21)
1: Set v0 = ṽ0 = y0
2: for k = 0, 1, . . ., until convergence do
3: Assemble B′

k according to (8.35) and (8.33)

4: Compute [Vk,Yk] and [Ṽk, Ỹk] according to (8.24)
5: Compute G∗

k according to (8.40)
6: Initialize {v′0, ṽ′0, y′0, ỹ′0} according to (8.27)
7: for j = 0 to s− 1 do
8: δ̂sk+j = ṽ′Hj G∗

kB
′
kv

′
j

9: φsk+j = δ̂sk+j/δsk+j

10: Choose γsk+j , γ̃sk+j = 0
11: y′j+1 = (B′

kv
′
j − φsk+jy

′
j)/γsk+j

12:

13: ỹ′j+1 = (B′
kṽ

′
j − φsk+j ỹ

′
j)/γ̃sk+j

14:

15: δsk+j+1 = ỹ′Hj+1G
∗
ky

′
j+1

16: ψsk+j = γ̃sk+jδsk+j+1/δ̂sk+j ψ̃sk+j = γsk+jδsk+j+1/δ̂sk+j

17: v′j+1 = y′j+1 + ψsk+jv
′
j

18:

19: ṽ′j+1 = ỹ′j+1 + ψ̃sk+j ṽ
′
j

20:

21: end for
22: Recover {vsk+s, ṽsk+s, ysk+s, ỹsk+s} according to (8.26)
23: end for

We now assemble the CA-BIOC method in Algorithm 8.5.

8.3. Linear systems

In this subsection, we derive communication-avoiding variants of the Gen-
eralized Minimal Residual method (GMRES) and the biconjugate gradient
method (BICG) for solving n × n nonsymmetric linear systems Ax = b.
These methods are based on Arnoldi and Lanczos, respectively, presented
in Section 8.2. We selected these methods for simplicity, although we have
also developed communication-avoiding versions of other KSMs, including
communication-avoiding biconjugate gradient stabilized (CA-BICGSTAB)
(Carson et al. 2013). A slightly different variant of the conjugate gradient
method (CG), which uses a single three-term recurrence rather than coupled
two-term recurrences, can be found in Hoemmen (2010).



Numerical linear algebra: communication costs 119

Algorithm 8.6 GMRES

Require: n× n linear system Ax = b, and initial guess x0
Output: Approximate solution xm to Ax = b
1: r0 = b−Ax0, β = ‖r0‖2, q1 = r0/β
2: for j = 1 to m do
3: wj = Aqj
4: for i = 1 to j do 
 Use MGS to orthogonalize wj against q1, . . . , qj
5: hij = wH

j qi
6: wj = wj − hijqi
7: end for
8: hj+1,j = ‖wj‖2
9: qj+1 = wj/hj+1,j

10: yj = argminy ‖Hy − βe1‖2
11: xj = x0 +Qyj
12: end for

To derive methods in this section, we can make use of CA-Arnoldi(s, t)
and CA-BIOC from the previous subsection. It only remains to determine
how to choose the approximate solutions xj from the Krylov subspaces
produced by CA-Arnoldi(s, t) or CA-BIOC.

8.3.1. Arnoldi-based solvers

The Generalized Minimal Residual method (GMRES) of Saad and Schultz
(1986), shown in Algorithm 8.6, is a Krylov subspace method for solving
nonsymmetric linear systems. It does so by choosing the solution update
from the span of the Arnoldi basis vectors that minimizes the 2-norm resid-
ual error. This entails solving a least-squares problem with the Arnoldi
upper Hessenberg matrix, which is (m + 1) × m at iteration m of GM-
RES. Saad and Schultz’s formulation of GMRES combines (conventional,
MGS-based) Arnoldi with a Givens rotation scheme for maintaining a QR
factorization of the upper Hessenberg matrix at each iteration. The Givens
rotation scheme (not explicitly shown in Algorithm 8.6) exposes the resid-
ual error of the least-squares problem at every iteration j, which (in exact
arithmetic) is the GMRES residual error ‖b − Axj‖2 in iteration j. Thus
GMRES need not compute the approximate solution xj in order to estimate
convergence.

We can compute exactly the same approximate solution as m iterations of
Saad and Schultz’s GMRES if we perform m iterations of CA-Arnoldi(s, t),
where s and t are chosen so that m = s · t. This results in an (st+ 1) × st
upper Hessenberg matrix Ht−1. We can even use Givens rotations to main-
tain its QR factorization and get the same convergence estimate as in Saad
and Schultz (1986). The only difference is that we have to perform s Givens
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Algorithm 8.7 CA-GMRES

Require: n× n linear system Ax = b, and initial guess x0
Output: Approximate solution xst to Ax = b
1: r0 = b−Ax0, β = ‖r0‖2, q1 = r0/β
2: for k = 0 to t− 1 do
3: Fix basis conversion matrix Bk

4: Compute V́ k using matrix powers kernel
5: if k = 0 then
6: Compute QR factorization V 0 = Q

0
R

7: Set Q0 = Q
0

and H0 = R0B0R
−1
0

8: else
9: Ŕk−1,k = QH

k−1V́ k

10: V́
′
k = V́ k −Qk−1Ŕk−1,k

11: Compute QR factorization V́
′
k = Q́

k
Ŕk

12: Update Qk and Rk by (8.14) and (8.15), resp.
13: Update Hk by (8.17)
14: end if
15: ys(k+1) = argminy ‖Hky − βe1‖2
16: xs(k+1) = x0 + Qkyk
17: end for

rotations at a time, since CA-Arnoldi(s, t) adds s columns at a time to
the upper Hessenberg matrix with every outer iteration. The Givens ro-
tations technique has little effect on raw performance (one would normally
solve the least-squares problem with a QR factorization and use Givens
rotations to factor the upper Hessenberg matrix anyway), but it offers an
inexpensive convergence test at every outer iteration. The resulting algo-
rithm, based on CA-Arnoldi(s, t) and equivalent to conventional GMRES in
exact arithmetic, we call communication-avoiding GMRES or CA-GMRES
(Algorithm 8.7). The notation used is the same as in Section 8.2.1.

CA-GMRES includes all of CA-Arnoldi(s, t) as shown in Algorithm 8.3,
and, at every outer iteration k, locally solves the least-squares problem

yk = argminy ‖Hky − βe1‖2 (8.45)

to compute a new approximate solution xs(k+1) = x0 + Qkyk. Here, β =
‖b − Ax0‖2, the 2-norm of the initial residual. Although not shown here,
one can update the QR factorization of Hk by first applying all the previous
sk+1 Givens rotations, say G1, . . . , Gsk+1, to the new s columns of Hk, and
then applying s more Givens rotations Gsk+2, . . . , Gs(k+1)+1 to Hk to reduce
it to upper triangular form. The Givens rotations are also applied to the
right-hand side of the least-squares problem, resulting in what we denote
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Algorithm 8.8 BICG

Require: Initial approximation x0 for solving Ax = b, let v0 = r0 = b−Ax0
Output: Approximate solution xm+1 to Ax = b with residual rm+1 =

b−Axm+1

1: Choose r̃0 arbitrarily s.t. δ0 = r̃H0 r0 = 0, and let ṽ0 = r̃0
2: for m = 0, 1, 2, . . ., until convergence do
3: αm = δm/ṽ

H
mAvm

4: xm+1 = xm + αmvm
5: rm+1 = rm − αmAvm
6: r̃m+1 = r̃m − αmA

H ṽm
7: δm+1 = r̃Hm+1rm+1

8: βm = δm+1/δm
9: vm+1 = rm+1 + βmvm

10: ṽm+1 = r̃m+1 + βmṽm
11: end for

at outer iteration k by ζk. The last component of ζk, in exact arithmetic,
equals the 2-norm of the absolute residual error b−Axs(k+1). See Hoemmen
(2010) for details.

8.3.2. Lanczos-based solvers

We now derive communication-avoiding BICG (CA-BICG) for solving non-
symmetric linear systems Ax = b. We first review BICG (Algorithm 8.8)
and demonstrate its relation to BIOC; for a thorough treatment see Gut-
knecht (1997), for example. It follows that we can easily obtain CA-BICG
from CA-BIOC.

The BICG method starts with an initial solution guess x0 and corre-
sponding residuals r0 = r̃0 = b − Ax0. In each iteration m, the solution
xm is updated by a vector selected from Km(A, r0) such that (b − Axm) ⊥
Km(AH , r̃0), the so-called Petrov–Galerkin condition.

The solution can then be written as xm = x0 + Ymcm, where Ym and Ỹm
are the matrices of biorthogonal basis vectors of Km(A, r0) and Km(AH , r̃0),
respectively, produced by BIOC with starting guess y0 = ỹ0 = r0.

Enforcing the Petrov–Galerkin condition gives cm = T−1
m e1. Then, using

(8.21) and (8.22),

xm+1 = x0 + YmT
−1
m e1

= x0 + YmU
−1
m L−1

m e1

= x0 + VmL
−1
m e1

= −φm
γm

xm − 1

γm
vm.
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Algorithm 8.9 Communication-avoiding BICG

Require: Initial approximation x0 for solving Ax = b, let v0 = r0 = b−Ax0
Output: Approximate solution xs(k+1) to Ax = b with residual rs(k+1) =

b−Axs(k+1)

1: Choose r̃0 arbitrarily s.t. δ0 = r̃H0 r0 = 0, and let ṽ0 = r̃0
2: for k = 0, 1, 2, . . ., until convergence do
3: Assemble B′

k according to (8.35) and (8.33)

4: Compute [Vk,Rk] and [Ṽk, R̃s] according to (8.24)
5: Compute G∗

k according to (8.40)
6: Initialize {v′0, ṽ′0, r′0, r̃′0, x0} according to (8.27)
7: for j = 0 to s− 1 do
8: αsk+j = δsk+j/ṽ

′H
j G∗

kB
′
kv

′
j

9: x′j+1 = x′j + αsk+jv
′
j

10: r′j+1 = r′j − αsk+jB
′
kv

′
j

11: r̃′j+1 = r̃′j − αsk+jB
′
kṽ

′
j

12: δsk+j+1 = r̃′Hj+1G
∗
kr

′
j+1

13: βsk+j = δsk+j+1/δsk+j

14: v′j+1 = r′j+1 + βsk+jv
′
j

15: ṽ′j+1 = r̃′j+1 + βsk+j ṽ
′
j

16: end for
17: Recover {rsk+s, r̃sk+s, vsk+s, ṽsk+s, xsk+s} according to (8.26) and

(8.48)
18: end for

The updates to rm+1 then become

rm+1 = r0 −AVmL
−1
m e1 = −φm

γm
rm +

1

γm
Avm,

and similarly for r̃m.
To meet the BICG consistency condition that ρ(0) = 1 for the BICG

residual vectors, the matrix Tm (and T̃m) must have zero-sum columns.
Since Lm = TmU

−1
m , Lm inherits this property from Tm, and thus we must

set the scalars γi = −φi = −ṽHi Avi/r̃Hi ri. Similar relations hold for the left

residual vectors, that is, γ̃i = −φ̃i. Updates to xm+1 and rm+1 are then

xm+1 = xm + αmvm and rm+1 = rm − αmAvm, (8.46)

where αm = 1/φm = r̃Hi ri/ṽ
H
i , Avi. From BIOC, we have the relation

Rm = Ym = VmUm, and thus the biconjugate vectors vm+1 are updated, as
in BIOC, as

vm+1 = rm+1 − ψmvm = rm+1 + βmvm,

where βm = −ψm (and similarly for ṽm+1).
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Figure 8.1. Speed-ups for CA-GMRES on Nehalem.

One can therefore obtain BICG by running BIOC with y0 = r0, γi = −φi,
and with the additional computation of xm+1 as in (8.46).

Then, to write CA-BICG we can make use of CA-BIOC in the same way.
In CA-BICG, we can use (8.40), (8.41) and (8.42) to obtain the required
scalar quantities. As before, we let r′j , r̃

′
j , v

′
j ,ṽ

′
j , and now x′j , represent the co-

efficients for the BICG vectors in the generated bases. The solution update
of (8.46) in the inner loop then becomes

x′j+1 = x′j + αsk+jv
′
j , (8.47)

and the iterates can be recovered by

xsk+j = xsk + [Vk,Rk]x′j (8.48)

for 0 ≤ j ≤ s. Note that this gives the initial condition x′0 = 02s+1. We can
now present the resulting CA-BICG method, shown in Algorithm 8.9.

8.4. Speed-up results

We now list a few select experiments which have demonstrated the perfor-
mance benefits of CA-KSMs. Figure 8.1, presented in Hoemmen (2010),
compares a shared-memory parallel implementation of CA-GMRES (Al-
gorithm 8.7) with conventional GMRES, on an Intel Nehalem node (both
algorithms used eight cores). Both communication-avoiding and conven-
tional algorithm implementations were highly tuned for the best perfor-
mance; see Mohiyuddin et al. (2009) for details. In particular, CA-GMRES
used both sequential and parallel techniques to minimize on-chip/off-chip
communication and communication between cores. The x-axis shows the
matrices tested. These matrices, all available through the University of
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(a)

LMC-2D mac_project solve

(b)

Figure 8.2. (a) Speed-ups for CA-BICGSTAB bottom solver and overall GMG
application on Cray XE6. (b) Speed-ups for CA-BICGSTAB bottom solver and
overall LMC-2D application on Cray XE6, where the x-axis gives the number of
cores used.

Florida Sparse Matrix Collection (Davis and Hu 2011), represent a wide
variety of application domains. The vertical axis shows the run time of CA-
GMRES (the left bar in each pair) and conventional GMRES (the right bar),
normalized so the time of CA-GMRES is 1. For these tests, CA-GMRES
achieves a speed-up of 1.3× to 4.1×. Comparing white bars on the left to
white bars on the right shows the speed-up due to avoiding communication
in the sparse operations (using the matrix powers kernel). Comparing light
grey, dark grey, and black bars on the left to black bars on the right shows
speed-ups due to avoiding communication in the dense orthogonalization
operations. This demonstrates that, for most cases, avoiding communica-
tion in both the dense and sparse linear algebra kernels was necessary to
obtain the best speed-ups. We note that it was important to cotune the dif-
ferent kernels (especially matrix powers and TSQR), rather than tune them
independently, since the optimal parameter choices varied significantly for
some test problems.

Figure 8.2(a) shows that CA-BICGSTAB (another BIOC-based algo-
rithm: see Carson et al. 2013 for derivation) achieves over a 4× speed-up
over conventional BICGSTAB as the bottom solve routine in a geometric
multigrid solver (GMG) (Williams et al. 2014) run on a Cray XE6 (Hopper
at NERSC). Figure 8.2(b) shows over 2.5× speed-ups for CA-BICGSTAB
in an application where GMG is used as the solver in a low-Mach-number
2D combustion application (LMC-2D mac project), leading to an overall
1.3× speed-up of the entire GMG solver on 1024 cores. See Williams et al.
(2014) for details.
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8.5. Numerical behaviour in finite precision

In exact arithmetic, CA-KSMs produce the same iterates as the conventional
variants. This means that theoretical rates of convergence for conventional
KSMs in exact arithmetic also hold for the corresponding CA-KSMs. It
has long been recognized, however, that the finite precision behaviour of
CA-KSMs differs greatly from that of their conventional counterparts for
s > 1. Accumulation of round-off error can have undesirable effects, such
as decrease in maximum attainable accuracy, decrease in convergence rate,
and even failure to converge in the worst case. In this section, we explore
these phenomena and show ways to overcome them.

8.5.1. Convergence

When one considers the performance of iterative methods in practice, one
must consider two factors.

(1) The time per iteration, which depends on the kernels required, the
machine parameters, autotuning/optimization of local operations, as
well as matrix structure and partition.

(2) The number of iterations required for convergence, that is, until the
stopping criterion is met. This quantity depends on the eigenvalue
distribution of the system, as well as round-off error in finite precision.
In practice, round-off errors resulting from finite precision computation
heavily influence the rate of convergence; for example, large round-
off errors can lead to loss of (bi)orthogonality between the computed
Lanczos vectors, causing convergence to slow.

With these two variables in mind, we can approximate the total time re-
quired for an iterative method as:

Total time = (time per iteration) × (number of iterations). (8.49)

Both quantities are thus important in devising efficient algorithms. In order
to achieve O(s) speed-ups using CA-KSMs, we must not only reduce the
time per iteration by O(s), but we must also ensure a convergence rate close
to that of the conventional method in finite precision arithmetic. Note that
in the case that communication cost dominates the run time, even small s
(e.g., s = 2) can lead to significant s-fold speed-ups. Choosing such a small
s may eliminate most numerical stability concerns, but ideally we would like
to be able to choose s larger to improve performance even more.

It has been empirically observed that the convergence rate of s-step meth-
ods is tied to the condition number of the constructed Krylov basis: the
higher the basis condition number, the slower the convergence rate. Bounds
on condition number growth for the monomial basis grow exponentially with
s. This limited the range of suitable s values, and thus limited the potential
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savings in communication cost, motivating the use of bases known to have
better conditioning than the monomials, namely Newton and Chebyshev
polynomials: see, for example, Bai et al. (1994), Walker (1988) and Joubert
and Carey (1992). We discuss the use of these bases in the subsections
below.

The three-term recurrence satisfied by polynomials {ρj(z)}sj=0 in (8.25)
can be represented by a tridiagonal matrix B (8.33) consisting of the recur-
rence coefficients. In the subsections below, we show how to choose these
coefficients based on properties of A to construct better-conditioned Newton
and Chebyshev bases.

8.5.1.1. Newton. The (scaled) Newton polynomials are defined by the re-
currence coefficients

α̂j = θj , β̂j = 0, γ̂j = σj , (8.50)

where the σj are scaling factors and the shifts θj are chosen to be eigenvalue
estimates. If the shifts θj were exactly equal to the extreme eigenvalues of A,
then computing the polynomials ρj(A) would be analogous to working with
a smaller and better-conditioned matrix missing those extreme eigenvalues;
in practice, approximate θj are often enough to obtain the desired effect.

After choosing s shifts, we permute them according to a Leja ordering
(see, e.g., Reichel 1990). Informally, the Leja ordering recursively selects
each θj to maximize a certain measure on the set {θi}i≤j ⊂ C; this helps to
avoid repeated or nearly repeated shifts. Real matrices may have complex
eigenvalues, so the Newton basis may introduce complex arithmetic; to avoid
this, we use the modified Leja ordering (Hoemmen 2010), which exploits the
fact that complex eigenvalues of real matrices occur in complex conjugate
pairs. The modified Leja ordering means that for every complex shift θj /∈ R

in the sequence, its complex conjugate θj is adjacent, and the complex
conjugate pairs (θj , θj+1) are permuted so that Im (θj) > 0. This leads to
the recurrence coefficients

α̂j = Re (θj), β̂j =

{
− Im (θj)

2 θj = θj+1 ∧ Im (θj) > 0,

0 otherwise,
γ̂j = σj .

(8.51)
Both Leja orderings can be computed efficiently. For CA-KSMs, choosing
σj is challenging: we cannot simply scale each basis vector by its Euclidean
norm as it is generated, since this eliminates our communication savings. In
our experiments, we pick all scaling factors σj = 1 (i.e., no scaling), instead
relying entirely on matrix equilibration, described in Section 8.5.2.1, to keep
the spectral radius ρ(A) close to 1. Note that approximate θj values can
be computed using information produced during the iterations. One could
compute initial estimates after the first few iterations and then update them
periodically in each new outer loop.



Numerical linear algebra: communication costs 127

8.5.1.2. Chebyshev. Chebyshev polynomials have a unique minimax prop-
erty: over all (appropriately scaled and shifted) real polynomials of a spec-
ified degree on a specified real interval, the Chebyshev polynomial of that
degree minimizes the maximum absolute value on the interval. When their
region of definition is extended to ellipses in the complex plane, the Cheby-
shev polynomials still satisfy the minimax property asymptotically, though
not (always) exactly. The minimax property makes Chebyshev polynomials
both theoretically and practically useful for Krylov subspace methods.

The Chebyshev basis requires two parameters, complex numbers d and
c, where d ± c are the foci of a bounding ellipse for the spectrum of A.
The scaled, shifted, and rotated Chebyshev polynomials {τ̃j}j≥0 can then
be written as

τ̃j(z) = τj((d− z)/c)/τj(d/c) =: τj((d− z)/c)/σj , (8.52)

where the Chebyshev polynomials (of the first kind) {τj}j≥0 are

τ0(z) = 1, τ1(z) = z, and

τj(z) = 2zτj−1(z) − τj−2(z), for j > 1.
(8.53)

Substituting (8.52) into (8.53), we obtain

τ̃0(z) = 1, τ̃1(z) = σ0(d− z)/(cσ1), and

τ̃j(z) = 2σj−1(d− z)τ̃j−1(z)/(cσj) − σj−2τ̃j−2(z)/σj , for j > 1.
(8.54)

Extracting coefficients, we obtain

α̂j = d, β̂j = −cσj/(2σj+1), γ̂j =

{
−cσ1/σ0 j = 0,

−cσj+1/(2σj) j > 0.
(8.55)

Note that the transformation z → (d − z)/c maps the ellipse with foci
f1,2 = d ± c to the ellipse with foci at ∓1, especially the line segment
(f1, f2) to (−1, 1). If A is real, then the ellipse is centred on the real axis;
thus d ∈ R, so c is either real or imaginary. In the former case, arithmetic
will be real. In the latter case (c ∈ iR), we avoid complex arithmetic by
replacing c = c/i. This is equivalent to rotating the ellipses by 90◦.

For real matrices, Joubert and Carey (1992) also give a three-term recur-
rence, where

α̂j = d, β̂j = c2/(4g), γ̂j =

{
2g j = 0,

g j > 0.
(8.56)

It is assumed that the spectrum is bounded by the rectangle

{z : |Re (z) − d| ≤ a, |Im (z)| ≤ b}
in the complex plane, where a ≥ 0, b ≥ 0, and d are real. Here we choose

c =
√
a2 − b2, g = max{a, b}.
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Figure 8.3. Basis properties for cdde: (a) computed Leja points (×) of cdde, plotted
in the complex plane; (b) basis condition number growth rate. The x-axis denotes
the basis length s and the y-axis denotes the basis condition number for monomial
(◦), Newton (×), and Chebyshev (�) bases. Leja points in (a) were used to generate
the bases shown in (b).

Note that for real-valued matrices, recurrence (8.56) is usually sufficient
for capturing the necessary spectral information. As in the Newton case,
eigenvalue estimates can be computed from the iterations and used to obtain
or refine Chebyshev basis parameters.

8.5.1.3. Example. We now give two examples which illustrate how basis
choice can greatly improve the numerical behaviour of CA-BICG. In all
tests, the right-hand side b was constructed such that the true solution x is
the n-vector with components xi = 1/

√
n.

Our first test problem comes from the constant-coefficient convection dif-
fusion equation

−∆u+ 2p1ux + 2p2uy − p3uy =f in [0, 1]2,

u =g on ∂[0, 1]2.

This problem is widely used for testing and analysing numerical solvers
(Bai, Day, Demmel and Dongarra 1997a). We discretized the PDE using
centred finite difference operators on a 512 × 512 grid with (p1, p2, p3) =
(25, 600, 250), resulting in a nonsymmetric matrix with n = 262K, nnz(A) =
1.3M , and condition number ∼ 5.5. To select the Leja points, we used the
convex hull of the known spectrum, given in Bai et al. (1997a). This is the
best we can expect; in practice, one would use approximate eigenvalues (this
is shown in the subsequent example). Figure 8.3 shows the selected Leja
points and resulting basis condition number for the monomial, Newton and
Chebyshev bases, for basis lengths up to s = 32, with a starting vector whose
entries are 1/

√
n. Figure 8.4 shows convergence results for CA-BICG for the
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Figure 8.4. Convergence for cdde matrix for (CA)-BICG with various s values:
(a) s = 4, (b) s = 8, (c) s = 12. The x-axis denotes the iteration number and the
y-axis denotes the 2-norm of the (normalized) updated residual (i.e., ‖rm‖2/‖b‖2).
In the legend, ‘M’ denotes the monomial basis, ‘N’ denotes the Newton basis, and
‘C’ denotes the Chebyshev basis.

different bases, for s ∈ {4, 8, 12}, using the same starting vector as the right-
hand side. We see that the Newton basis (CA-BICG, N) and the Chebyshev
basis (CA-BICG, C) yield indistinguishable results from conventional BICG,
but for s = 12, the monomial basis (CA-BICG, M) converges much more
slowly.

The xenon1 matrix is a nonsymmetric matrix from the University of
Florida Sparse Matrix Collection (Davis and Hu 2011). This matrix is
used in analysing elastic properties of crystalline compounds (Davis and
Hu 2011). Here, n = 48.6K and nnz(A) = 1.2M . This test case is less well-
conditioned than the first, with condition number ∼ 1.1 · 105. As a prepro-
cessing step, we performed matrix equilibration, as described in Hoemmen
(2010). The xenon1 matrix has all real eigenvalues. Here, we used approxi-
mate eigenvalues to generate the basis parameters, computed based on esti-
mates of the maximum and minimum eigenvalues obtained from ARPACK
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Figure 8.5. Basis properties for xenon1: (a) computed Leja points (×) of xenon1,
plotted in the complex plane; (b) basis condition number growth rate. The x-axis
denotes the basis length s and the y-axis denotes the basis condition number for
monomial (◦), Newton (×), and Chebyshev (�) bases. Leja points in (a) were used
to generate the bases shown in (b).

(MATLAB eigs). Figure 8.5 shows the generated Leja points and resulting
basis condition numbers for the monomial, Newton and Chebyshev bases,
for basis lengths up to s = 32, with a starting vector whose entries are
1/
√
n. Figure 8.6 shows convergence results for CA-BICG for the different

bases, for s ∈ {4, 8, 12}, using the same starting vector as the right-hand
side, with results similar to those in in Figure 8.4.

For CA-BICG with the monomial basis, we generally see the convergence
rate decrease (relative to the conventional method) as s grows larger. This
is due to round-off error in computation of the basis vectors in the matrix
powers kernel, which results in a larger perturbation to the finite precision
Lanczos recurrence that determines the rate of convergence (see, e.g., Tong
and Ye 2000). At some point, when s becomes large, CA-KSMs with the
monomial basis will fail to converge due to (near) numerical rank deficiencies
in the generated Krylov bases. For both of our test matrices, CA-BICG
with the monomial basis fails to converge to the desired tolerance when
s > 12. Of course limiting s ≤ 12 limits the potential speed-up from
avoiding communication to 12×, but this is still of practical value.

CA-BICG with the Newton and Chebyshev bases can maintain conver-
gence closer to that of the conventional method, even for s as large as 12.
This is especially evident if we have a well-conditioned matrix, as in Fig-
ure 8.4 (cdde). For this matrix, tests with the Newton and Chebyshev bases
converge in the same number of iterations as the conventional method, for
all tested s values.
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Figure 8.6. Convergence for xenon1 matrix, for (CA)-BICG with various s values:
(a) s = 4, (b) s = 8, (c) s = 12. The x-axis denotes the iteration number and the y-
axis denotes the 2-norm of the (normalized) updated residual (i.e., ‖rm+1‖2/‖b‖2).
In the legend, ‘M’ denotes the monomial basis, ‘N’ denotes the Newton basis, and
‘C’ denotes the Chebyshev basis.

8.5.2. Improving the stability of CA-KSMs

We discuss techniques for improving stability in CA-KSMs below. This
includes matrix equilibration, which can be done as a single preprocessing
step, as well as residual replacement strategies (Van der Vorst and Ye 1999)
and lookahead techniques, which have been adapted from those developed
for conventional KSMs; see, for example, Gutknecht and Ressel (2000) or
Parlett, Taylor and Liu (1985).

8.5.2.1. Matrix equilibration. Successively scaling (i.e., normalizing) the
Krylov vectors as they are generated increases the numerical stability of
the basis generation step. As discussed by Hoemmen (2010), successively
scaling the basis vectors (e.g., dividing by their Euclidean norms) is not pos-
sible in the CA variants, as it reintroduces global communication between
SpMV operations. As an alternative, one can perform matrix equilibration.
For nonsymmetric matrices, this involves applying diagonal row and column
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scalings, Dr and Dc, such that each row and column of the equilibrated ma-
trix DrADc has norm (close to) one. This is performed once offline before
running the CA-KSM. Results in Hoemmen (2010) indicate that this tech-
nique is an effective alternative to successively scaling the basis vectors.

8.5.2.2. Residual replacement strategies for improving accuracy. The accu-
racy of conventional KSMs in finite precision has been studied extensively in
the literature; see, for example, Greenbaum (1997a), Gutknecht and Strakoš
(2000), Meurant and Strakoš (2006), Meurant (2006), Sleijpen and van der
Vorst (1996) and Van der Vorst and Ye (1999). Such analyses stem from the
observation that updates to xm and rm have different round-off patterns in
finite precision. That is, the expression for xm does not depend on rm, nor
does the expression for rm depend on xm. Therefore, computational errors
made in xm are not self-correcting. These errors can accumulate over many
iterations and cause deviation of the true residual, b−Axm, and the updated
residual, rm. Writing the true residual as b−Axm = rm + (b−Axm − rm),
we can bound its norm by

‖b−Axm‖ ≤ ‖rm‖ + ‖b−Axm − rm‖.
When the updated residual rm is much larger than b−Axm − rm, the true
residual and the updated residual will be of similar magnitude. However,
as the updated residual converges, that is, ‖rm‖ → 0, the size of the true
residual depends on ‖b − Axm − rm‖. This term denotes the size of the
deviation between the true and updated residuals. If this deviation grows
large, it can limit the maximum attainable accuracy, that is, the accuracy
with which we can solve Ax = b on a computer with unit round-off ε.

Like conventional implementations, CA-KSMs suffer from round-off error
in finite precision, which can decrease the maximum attainable accuracy of
the solution. A quantitative analysis of round-off error in CA-KSMs can be
found in Carson and Demmel (2014). Based on the work of Van der Vorst
and Ye (1999) for conventional KSMs, we have explored implicit residual
replacement strategies for CA-KSMs as a method to limit the deviation of
true and computed residuals when high accuracy is required: see Carson
and Demmel (2014).

We demonstrate the possible improvement in accuracy with a brief numer-
ical example from Davis and Hu (2011), shown in Figure 8.7. We compare
conventional CG with CA-CG, both with and without residual replace-
ment, for s = [4, 8, 12], and with the monomial, Newton and Chebyshev
bases: see, for example, Philippe and Reichel (2012). Coefficients for the
Newton and Chebyshev bases were computed using Leja-ordered points ob-
tained from O(s) Ritz value estimates, as described in Carson et al. (2013),
Hoemmen (2010) and Philippe and Reichel (2012). We used row and col-
umn scaling to equilibrate the input matrix A, preserving symmetry, as
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described in Hoemmen (2010). The right-hand side b was set such that
‖x‖2 = 1, xi = 1/

√
N , and used the zero vector as the initial guess. All

tests were performed in double precision, that is, ε ≈ 10−16. In each test,
the convergence criterion used was ‖rsk+j‖/‖r0‖ ≤ 10−16. Since r0 = b and
‖b‖ ≤ ‖A‖‖x‖,

‖rsk+j‖/‖r0‖ ≤ 10−16

implies

‖rsk+j‖ = O(ε)‖A‖‖x‖.
Figure 8.7(a,c,e) shows CA-CG, and Figure 8.7(b,d,f) shows CA-CG with

residual replacement. Figures 8.7(a,b), 8.7(c,d) and 8.7(e,f) show tests run
with s = 4, 8 and 12, respectively. For comparison, we plot conventional CG
and conventional CG with replacement using algorithms given in Van der
Vorst and Ye (1999). The x-axis is the iteration number and the y-axis is
the 2-norm of the quantities listed in the legend, where ‘true’ is the true
residual b − Axm, ‘upd’ is the updated residual rm, and ‘M’, ‘N’ and ‘C’
denote tests with monomial, Newton and Chebyshev bases, respectively,
and ‘CA-CG-RR’ denotes CA-CG with residual replacement.

In Figure 8.7(a,c,e) we see that the updated and true residuals match
until they are fairly small, after which the updated residual keeps decreasing
where the true residual stagnates (except for the monomial basis with s =
12, which does not converge at all).

In Figure 8.7(b,d,f), when the updated residual converges to O(ε)‖A‖‖x‖,
the residual replacement scheme for CA-CG improves convergence of the
true residual to within O(ε)‖A‖‖x‖. The highest number of replacements,
which incur the cost of an additional outer loop in terms of communication
(a matrix powers computation and orthogonalization operation), for any
test was 12 (monomial with s = 8), less than 1% of the total number of
iterations. Since the number of residual replacement steps is small relative
to the total number of iterations, the communication cost of performing
residual replacements is negligible in the context of CA-CG in this case.

8.5.2.3. Consistent/inconsistent formulations and lookahead. The version
of conventional BICG on which CA-BICG (Algorithm 8.9) is based is called
a consistent formulation, since the Lanczos vectors {rm} are restricted to
be the unscaled residuals of the current candidate solution. In an incon-
sistent formulation, the residual vectors may be scaled arbitrarily. This
flexibility gives more control over the sizes of the iterates and scalar coef-
ficients, and thus the bounds on round-off error (Gutknecht 1997). Since
they only involve a small amount of additional scalar computation, we can
derive communication-avoiding formulations of the inconsistent BICG vari-
ant introduced in Gutknecht (1997) and Gutknecht and Ressel (2000) in the
same way as we obtained Algorithm 8.9.
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Figure 8.7. Convergence results for consph, an FEM/spheres problem: n = 8.3·104,
nnz = 6.0 · 106, κ(A) = 9.7 · 103, ‖A‖2 = 9.7.
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Inconsistent formulations do not, however, help in the case of a Lanczos
breakdown. Lookahead techniques may allow nonsymmetric Lanczos-type
solvers, including BICG, to continue past a Lanczos breakdown. Kim and
Chronopoulos (1992) have noted that for their s-step nonsymmetric Lanczos
algorithm, in exact arithmetic, if breakdown occurs at iteration m in the
conventional algorithm, then the same breakdown will only occur in the s-
step variant if m is a multiple of s. They also comment that lookahead in the
exact arithmetic s-step method amounts to ensuring that no blocked inner
products between basis matrices have determinant zero. Hoemmen (2010),
however, has commented that the situation is more complicated in finite
precision, as it is difficult to determine which type of breakdown occurred.

Nonsymmetric Lanczos-based CA-KSMs can thus exploit the matrix pow-
ers optimization for two purposes: for increasing performance of the algo-
rithm, and increasing stability by use of lookahead techniques to detect
breakdown (Hoemmen 2010). As the s-step structure of our CA algo-
rithms is similar to the technique used in lookahead algorithms, we can add
communication-avoiding lookahead to our CA-KSMs for little additional
computational cost. Preliminary experiments are promising.

8.5.2.4. Reorthogonalization. In finite precision, the vectors produced by
Arnoldi- or Lanczos-based KSMs may lose orthogonality (or biorthogon-
ality), and reorthogonalization may be necessary. Reorthogonalization is
typically implemented as a second orthogonalization phase, following the
usual Gram–Schmidt step.

All of the Gram–Schmidt algorithms discussed in Section 8.2.1.2 are
equivalent in exact arithmetic, as long as the input matrix V has full column
rank. However, in finite precision arithmetic, the approaches vary in accu-
racy; we refer to Stewart (2008) for a survey. If we think of Gram–Schmidt
as computing the QR factorization V = QR, then there are at least two
ways of defining the accuracy of the orthogonalization:

• the residual error ‖V −Q ·R‖, or

• orthogonality of the columns of Q, e.g., ‖I −QHQ‖.

Stewart explains that almost all orthogonalization methods of interest guar-
antee a small residual error under certain conditions (such as V being of full
numerical rank). However, fewer algorithms are able to guarantee that the
vectors they produce are orthogonal to machine precision. In exact arith-
metic, for all Gram–Schmidt schemes, ‖I −QHQ‖ = 0 as long as the input
vectors are linearly independent. In finite precision computations, however,
this norm many grow larger and larger, at least until the supposedly or-
thogonal vectors become linearly dependent. Schemes for improving the
stability of orthogonalization schemes thus focus on bounding the loss of
orthogonality. Note that the latter norm is feasible to compute in the usual
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Table 8.1. Upper bounds on deviation from orthogonality of the Q factor from
various QR factorization algorithms of the m × n matrix V (with m ≥ n). Ma-
chine precision is ε. CGS2 means CGS with one full reorthogonalization pass and
MGS2 means MGS with one full reorthogonalization pass. Cholesky–QR means
computing the Cholesky factorization V HV = LLH and computing Q = V L−H .

Algorithm ‖I −QHQ‖2 upper bound Reference(s)

Householder–QR O(ε) [1]
TSQR O(ε) [2]
CGS2 or MGS2 O(ε) [3, 4]
MGS O(εκ(A)) [5]
Cholesky–QR O(εκ(A)2) [6]
CGS O(εκ(A)n−1) [7, 8]

[1] Golub and Van Loan (1996) [5] Björck (1967)
[2] Demmel et al. (2008a) [6] Stathopoulos and Wu (2002)
[3] Abdelmalek (1971) [7] Kie�lbasinski (1974)
[4] Kie�lbasinski (1974) [8] Smoktunowicz et al. (2006)

case of interest, where Q has many more rows than columns (so that the
matrix I −QHQ has small dimensions).

Demmel, Grigori, Hoemmen and Langou (2008a), in their Table 11, sum-
marize the accuracy of various orthogonalization schemes, quoting Smok-
tunowicz, Barlow and Langou (2006) and Giraud, Langou and Rozloznik
(2005), among others (which those works in turn cite). The various orthog-
onalization schemes summarized in Demmel et al. (2008a) include House-
holder–QR, TSQR, MGS and CGS (with and without reorthogonaliza-
tion), and Cholesky–QR (which entails computing the Cholesky factoriza-
tion V HV = LLH and then Q = V L−H). We repeat the summary in
this section as Table 8.1. Note that Householder–QR and TSQR produce
Q factors that are unconditionally orthogonal, that is, that are orthogonal
whether or not the matrix V is numerically full rank. We do not make
that distinction in our Table 8.1, because in an s-step Krylov method, the
s-step basis should always be numerically full rank (ignoring breakdown).
Otherwise orthogonalizing the basis may produce vectors not in the desired
Krylov subspace.

In CGS and MGS, reorthogonalization is not always necessary. One may
choose to do it anyway, to be safe and also to avoid the expense or trouble
of checking: this is called full reorthogonalization. To avoid unnecessary
reorthogonalization, one may perform selective reorthogonalization. There,
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one tests each vector before and after orthogonalizing it against the previ-
ously orthogonalized vectors. If the test fails, one reorthogonalizes it against
all the previously orthogonalized vectors. A typical criterion involves com-
paring the norm of the vector before and after the orthogonalization pass: if
it drops by more than a certain factor, then the result may be mostly noise
and thus reorthogonalization is required. For a review and evaluation of
various reorthogonalization criteria, see Giraud and Langou (2003). There
are also reorthogonalization tests specific to Krylov subspace methods such
as symmetric Lanczos: see Bai and Day (2000) for an overview.

We refer to Hoemmen (2010) for a more thorough discussion of reorthog-
onalization for KSMs, especially communication cost considerations. How-
ever, we remark on one important detail for the blocked approaches: de-
tecting when the input V is rank-deficient. Da Cunha, Becker and Patter-
son (2002) observed that one can construct a rank-revealing factorization
algorithm for tall and skinny matrices, using any fast and accurate QR fac-
torization algorithm (such as the one they propose, which, as we discuss
in Demmel et al. (2012), is a precursor to our TSQR). One first computes
the thin QR factorization using the fast and accurate algorithm, and then
one applies any suitable rank-revealing decomposition to the resulting small
R factor. We call ‘RR-TSQR’ the resulting rank-revealing decomposition,
when the fast QR factorization algorithm used is TSQR; this approach was
outlined earlier in Section 3.3.5. In Hoemmen (2010) we describe in detail
how to use RR-TSQR to construct a robust version of BGS.

8.6. Communication-avoiding preconditioning

The matrix powers kernel summarized in the previous section computes
[p0(A)v, p1(A)v, . . . , ps(A)v] for a sparse matrix A, a vector v, and a set of
polynomials p0(z), . . . , ps(z) with certain properties. The vectors produced
form a basis for a Krylov subspace span{v,Av,A2v, . . . , Asv} in exact arith-
metic, assuming that the Krylov subspace has dimension at least s+1. This
kernel is useful for implementing unpreconditioned iterative methods for
solving Ax = λx and Ax = b. In practice, though, solving Ax = b efficiently
with a Krylov method often calls for preconditioning. Including a precon-
ditioner changes the required matrix powers kernel, in a way that depends
on the iterative method and the form of preconditioning. In this section,
we discuss the new kernels required and present types of preconditioners
known to be compatible with the communication-avoiding approach. Given
a preconditioned matrix powers kernel, one can then substitute it directly
in the CA-KSMs derived above to obtain their preconditioned versions.

Preconditioning transforms the linear system Ax = b into another one,
with the goal of reducing the number of iterations required for a Krylov
method to attain the desired accuracy; see, for example, Barrett et al.
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(1994), Greenbaum (1997b) and Saad (2003). The form of the resulting lin-
ear system depends on the type of preconditioner. If M is some nonsingular
operator of the same dimensions as A, then left preconditioning changes the
system to M−1Ax = M−1b, and right preconditioning changes the system
to AM−1(Mx) = b. The intuition in either case is that if M−1A ≈ I in
some sense (see the next paragraph), then the iterative method converges
quickly.11 Similarly, if M can be factored as M = M1M2, then split pre-
conditioning changes the system to M−1

1 AM−1
2 (M2x) = M−1

1 b. (Here, the
expression M2x is interpreted as ‘Solve M−1

1 AM−1
2 y = M−1

1 b using the
iterative method, and then solve M2x = y’.) If A and M are self-adjoint
and M1 = MH

2 (as in, for example, an incomplete Cholesky decomposition),
then M−1

1 AM−1
2 is also self-adjoint. We define the preconditioned matrix

for a left preconditioner as M−1A, for a right preconditioner as AM−1,
and for a split preconditioner as M−1

1 AM−1
2 . In all cases, in this section we

denote the preconditioned matrix by Ã. The context will indicate whether
this means left, right, or split preconditioning.

Behind the statement M−1A ≈ I lies an entire field of study, which we
cannot hope to summarize here. Often, developing an effective precon-
ditioner requires domain-specific knowledge, either of the physical system
which A represents, or of the continuous mathematical problem which the
discrete operator A approximates. There is no ‘general preconditioner’ that
almost always works well.

8.6.1. New kernels

Preconditioning changes the linear system, thus changing the Krylov sub-
space(s) which the iterative method builds. Therefore, preconditioning calls
for new matrix powers kernels. Different types of iterative methods re-
quire different kernels. For example, for the preconditioned version of CA-
GMRES (see Hoemmen 2010), the required kernel is

V = [p0(Ã)v, p1(Ã)v, . . . , ps(Ã)v]. (8.57)

For the preconditioned symmetric Lanczos and preconditioned CA-CG algo-
rithms (see Hoemmen 2010) that require A to be self-adjoint, the kernel(s)
required depend on whether left, right, or split preconditioning is used. For
a split self-adjoint preconditioner with M1 = MH

2 , the kernel is the same as

in equation (8.57), and only the preconditioned matrix Ã is different. (We
do not consider the case where A is self-adjoint but M1 = MH

2 .) For left
preconditioning, two kernels are needed: one for the left-side basis,

V = [p0(M
−1A)v, p1(M

−1A)v, . . . , ps(M
−1A)v], (8.58)

11 According to convention, M is the preconditioner, and ‘Solve Mu = v for u’ is how one
applies the preconditioner. This is the standard notation even if we have an explicit
representation for M−1.
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and one for the right-side basis,

W = [p0(AM
−1)w, p1(AM

−1)w, . . . , ps(AM
−1)w], (8.59)

where the starting vectors v and w satisfy Mv = w. For right precondition-
ing, the kernels needed are analogous.

A straightforward implementation of each of the kernels (8.57), (8.58),
and (8.59) would involve s sparse matrix–vector products with the matrix
A, and s interleaved preconditioner solves (or 2s, in the case of the split
preconditioner). In this section, we present classes of preconditioners for
which the left-preconditioned kernel can be computed with much less com-
munication. In particular, we can compute each kernel in parallel for only
1 + o(1) times more messages than a single SpMV with A and a single pre-
conditioner solve. We can also compute the left-preconditioned kernel for
only 1 + o(1) times more words transferred between levels of the memory
hierarchy than a single SpMV with A and a single preconditioner solve.
(The right-preconditioned kernel uses an analogous technique, so we do not
describe it here.)

8.6.2. Exploiting sparsity structure

One approach to accelerating the preconditioned kernel exploits sparsity in
the preconditioned system. This approach works when A is sparse enough
for the matrix powers kernel to be efficient, and the preconditioner is also
sparse enough, such as diagonal or block diagonal preconditioners with small
blocks. It may also work for more complicated preconditioners that can be
constrained to have the same or nearly the same sparsity pattern as the
matrix A, such as sparse approximate inverse (SPAI) preconditioners (see
Chow 2000).

All the techniques described in Section 7 can be applied in order to com-
pute the preconditioned kernel, if we know the sparsity structure of the
preconditioned matrices involved. For example, for the split-preconditioned
kernel (equation (8.57)), the sparsity structure of M−1

1 AM−1
2 would be

needed. For the two left-preconditioned kernels, the techniques of Section 7
would be applied separately to both the matrices M−1A (for kernel (8.58))
and AM−1 (for kernel (8.59)). This is particularly easy when M−1 is (block)
diagonal. Note that we may apply the techniques of Section 7 to the precon-
ditioned case without needing to compute matrix products such as M−1A
explicitly; we only need to know the sparsity pattern, which gives the com-
munication pattern via the connections between subdomains.

Some sparse approximate inverse preconditioners have a structure which
could work naturally with the preconditioned matrix powers kernel. For ex-
ample, Chow’s ParaSails preconditioner (Chow 2001) constrains the sparsity
pattern to that of a small power Ak of the sparse matrix A to precondition.
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The (unpreconditioned) matrix powers kernel computes the structure of
powers of the matrix A anyway, more or less, so one could imagine com-
bining the two structural preprocessing steps to save time. Of course an
important part of Chow’s preconditioner is the ‘filtering’ step, which re-
moves small nonzeros from the structure of the preconditioner in order to
save computation and bandwidth costs, so such a combined structural com-
putation would require significant work in order to be useful. We propose
this as a topic for future investigation.

In the special case of M diagonal (or block diagonal with sufficiently small
blocks), there is no change to the communication of parallel CA-Akx at all.
The same comments apply to sequential Akx and sequential CA-Akx, which
are based on parallel CA-Akx.

8.6.3. Hierarchical semiseparable preconditioners

Another class of preconditioners approximates the inverse of a continuous
integral operator, in order to approximate or precondition the discretization
of that integral operator. Hierarchical matrices are a good example: see, for
example, Börm, Grasedyck and Hackbusch (2004), Hackbusch (2006) and
Börm and Grasedyck (2006). The exact inverse of the discrete operator A
is generally dense, even if A itself is sparse. Furthermore, many integral
operator discretizations produce a dense matrix A. However, that matrix
has a structure which can be exploited, either to produce an approximate
factorization or a preconditioner.

Again using tridiagonals as a motivating example, suppose M is a tridi-
agonal matrix. Even though tridiagonal systems may be solved in linear
time, M−1 is dense in general, making our techniques presented so far inap-
plicable. However, the inverse of a tridiagonal has another important prop-
erty: any submatrix strictly above or strictly below the diagonal has rank
one. This off-diagonal low-rank property (hierarchical semiseparability) is
shared by many good preconditioners, and we may exploit it to avoid com-
munication too. A communication-avoiding algorithm for computing the
preconditioned matrix powers kernel with hierarchical semiseparable Ã is
given in Knight et al. (2014).

8.6.4. Polynomial preconditioners

Previous authors developing s-step methods did not suggest how to avoid
communication when preconditioning. Saad (1985), though not discussing
s-step KSMs, did suggest applying something like a matrix powers kernel
to polynomial preconditioning, when the matrix has the form of a stencil
on a regular mesh. However, polynomial preconditioning tends to have a
decreasing payoff as the degree of the polynomial increases, in terms of the
number of CG iterations required for convergence (Saad 1985).
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8.6.5. Incomplete factorizations
Recently, Grigori and Moufawad (2013) have derived and implemented a
communication-avoiding ILU(0) preconditioner, CA-ILU(0), for both se-
quential and parallel architectures. To avoid communication, the authors
propose a reordering algorithm for structured matrices that results in sparse
L−1 and U−1 factors.

8.6.6. Deflation
Given a set of c deflation vectors which make up the columns of n × c
matrix W , the Deflated CG method presented in Saad, Yeung, Erhel and
Guyomarc’h (2000) transforms the linear system Ax = b into the deflated
system HTAHx̃ = HT b, where H = I − W (W TAW )−1(AW )T . When
the columns of W are approximate eigenvectors of A associated with the
c smallest eigenvalues, κ(HTAH) ≈ λn/λc+1, which in theory leads to an
improved convergence rate.

This deflation technique can be extended to CA-CG such that the result-
ing algorithm still allows an O(s) reduction in communication cost without
a significant increase in computation costs. While this work is considered
ongoing, preliminary numerical experiments confirm that deflation can in-
crease the convergence rate of CA-CG, and additionally can make possible
the use of higher s values (which can improve performance depending on
the computing platform).

8.7. Conclusions and future work

In this section, we have derived and discussed communication-avoiding vari-
ants of four representative KSMs: Arnoldi and Lanczos for eigenvalue prob-
lems, and the corresponding GMRES and BICG for solving linear systems.
We have also developed communication-avoiding versions of other KSMs, in-
cluding communication-avoiding conjugate gradient squared (CA-CGS) and
communication-avoiding biconjugate gradient stabilized (CA-BICGSTAB)
(Carson et al. 2013). Three-term recurrence versions of both CA-Lanczos
and CA-CG, as well as preconditioned variants of CA-GMRES, CA-Lanczos,
and CA-CG, can be found in the thesis of Hoemmen (2010). For SPD A,
communication-avoiding variants of symmetric Lanczos and CG can be eas-
ily obtained by simplifying (using A = AH) the communication-avoiding
nonsymmetric Lanczos and BICG methods in this section, respectively.

Speed-up results from a recent study of CA-KSM performance, presented
in Section 8.4, demonstrate how the communication-avoiding approach can
lead to significant speed-ups in practical applications. Ongoing work in-
cludes both theoretical and practical studies of the numerical stability and
convergence rate in finite precision CA-KSMs, presented in Section 8.5, as
well as the continued development of communication-avoiding precondition-
ers, discussed in Section 8.6.
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While we have focused on algorithms rather than implementation de-
tails in this section, many nontrivial implementation decisions, discussed in
Section 7, are required for the kernels used in CA-KSMs. Optimizations
required for performance are both machine- and matrix-dependent, which
makes autotuning and code generation an attractive approach. There are
many ongoing efforts with this goal: see, for example, Byun, Lin, Yelick
and Demmel (2012) and LaMielle and Strout (2010). By further analytical
and empirical study of the convergence and performance properties of CA-
KSMs, we hope to identify problems and machines for which CA-KSMs are
competitive in solving practical problems, allowing the design of effective
autotuners and integration of CA-KSM codes into existing frameworks.

9. Conclusion

We have considered many of the most commonly used algorithms of numer-
ical linear algebra, including both direct and iterative methods, and asked
the following three questions: Are there lower bounds on the amount of
communication, that is, data movement, that these algorithms must per-
form? Do existing widely used algorithms attain these lower bounds? If not,
are there other algorithms that do? To summarize the answers briefly, there
are indeed communication lower bounds, current algorithms frequently fail
to attain these bounds, and there are many new algorithms that do attain
them, demonstrating large speed-ups in theory and practice. We pointed
out many open questions that remain, in terms of refining the lower bounds,
finding numerically stable algorithms that attain them, and producing high-
performance implementations for the wide variety of existing and emerging
computer architectures.

As mentioned in Section 2.6.7, it is in fact possible to extend these lower
bounds and optimal algorithms to a much more general class of problems,
namely algorithms that access arrays with subscripts that are linear func-
tions of loop indices. The three nested loops of matrix multiplication and
other linear algebra algorithms are canonical examples, but of course many
other algorithms can be expressed in this way. To summarize, it is time to
rebuild many of the standard linear algebra and other libraries on which
computational science and engineering depend.
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Brascamp–Lieb multilinear inequalities’, Math. Res. Lett. 17, 647–666.

J. Berntsen (1989), ‘Communication efficient matrix multiplication on hypercubes’,
Parallel Comput. 12, 335–342.

G. Bilardi and F. P. Preparata (1999), ‘Processor–time tradeoffs under bounded-
speed message propagation II: Lower bounds’, Theory Comput. Syst. 32, 531–
559.

G. Bilardi, A. Pietracaprina and P. D’Alberto (2000), On the space and access
complexity of computation DAGs. In Graph-Theoretic Concepts in Computer
Science: 26th International Workshop (U. Brandes and D. Wagner, eds),
Vol. 1928 of Lecture Notes in Computer Science, Springer, pp. 47–58.

C. Bischof and C. Van Loan (1987), ‘The WY representation for products of House-
holder matrices’, SIAM J. Sci. Statist. Comput. 8, 2–13.

C. H. Bischof, B. Lang and X. Sun (2000a), ‘Algorithm 807: The SBR Toolbox,
Software for successive band reduction’, ACM Trans. Math. Softw. 26, 602–
616.

C. Bischof, B. Lang and X. Sun (2000b), ‘A framework for symmetric band reduc-
tion’, ACM Trans. Math. Softw. 26, 581–601.
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