
A Modular Approach to Roberts’ Theorem

Shahar Dobzinski ∗ Noam Nisan †

February 9, 2009

Abstract

Roberts’ theorem from 1979 states that the only incentive compatible mechanisms over a full
domain and range of at least 3 are weighted variants of the VCG mechanism termed affine maximizers.
Roberts’ proof is somewhat ”magical” and we provide a new ”modular” proof. We hope that this
proof will help in future efforts to extend the theorem to non-full domains such as combinatorial
auctions or scheduling.

1 Introduction

Mechanism design theory has gained a place as a conceptual cornerstone for designing computer protocols
among self-interested parties, as is found in the internet. For background on mechanism design we refer
the reader to standard textbooks in micro-economic theory [10] and for background on its computational
applications to part II of [13].

The most basic notion in mechanism design is that of truthfulness in dominant strategies. The setting
involves a set of alternatives A, and a set of n players, that each has a valuation function vi ∈ Vi ⊆ <A,
where vi(a) denotes the value that player i assigns to alternative a. A (direct revelation) mechanism
M = (f, p1, ..., pn) contains a preference-aggregation function f : V1 × · · · × Vn → A and payment
functions pi : V1 × · · · × Vn → <. An incentive compatible mechanism ensures that each player’s best
interest when “reporting” his input vi to the mechanism is to report it truthfully.

Definition 1.1 A mechanism M = (f, p1, ..., pn) is incentive compatible (equivalently truthful or strategy-
proof) if for all players i, all valuations vi, v

′
i ∈ Vi and v−i ∈ V−i,

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v′i, v−i))− pi(v′i, v−i)

We say that f can be implemented if for some p1, ..., pn, the obtained mechanism is incentive compatible.

As incentive compatibility is the basic requirement in applications, a characterization is of central
interest:

Characterization Question: Which preference-aggregation functions f are implementable?

While it is clear why we would like to understand which naturally-desired functions are implementable,
in computational applications we require more: understanding the implementability of the family of
approximations to a desired function. The necessity of settling for an approximation can be either due
to computational hardness of f or due to the unimplementability of f itself.

∗The School of Computer Science and Engineering, the Hebrew University of Jerusalem. Supported by the Adams
Fellowship Program of the Israel Academy of Sciences and Humanities, and by a grant from the Israeli Academy of
Sciences. Email: shahard@cs.huji.ac.il.

†The Hebrew University of Jerusalem and Google Tel Aviv. Email: noam@cs.huji.ac.il.

1



The key positive result in mechanism design, VCG mechanisms (see, e.g., [12]), states that social-
welfare maximization is implementable for every range of alternatives and domain of valuations. I.e.,
the function f(v1, ..., vn) = arg maxa

∑
i vi(a) is implementable with VCG payments. (In the case that

maximum social welfare is obtained at more than alternative, any of them can be chosen.) It is easy to
generalize the VCG mechanisms to weighted variations, termed affine maximizers:

Definition 1.2 f : V1 × · · · × Vn → A is an affine maximizer if there exist real constants α1, ..., αn,
αi ≥ 0, and βa for all a ∈ A such that for all v, f(v) ∈ arg maxa

∑
i(αivi(a)) + βa.

The main impossibility result in the area is the surprising theorem of Roberts:

Theorem 1.3 ([15]) : The only implementable functions with range of size more than 2, |A| ≥ 3 and
full domains Vi = <A are affine maximizers.

The main restriction in the theorem is the requirement of full domain. The extreme opposite case
is where the domain is essentially single dimensional. In these cases, termed “single-parameter”, much
more can be implemented, and a good characterization is known (see, e.g., [12]), which has been used
extensively in computational settings [1, 9, 4]. The case of |A| = 2 is always single parameter, which
explains why the theorem required |A| ≥ 3.

Most interesting computational applications do not have a full domain nor are they single-parameter,
and indeed we do not have good characterizations of which functions are implementable for, e.g., com-
binatorial auctions, multi-unit auctions, or scheduling. All of the few such characterizations known are
in very restricted settings: restricted auction domains [7, 6] and “combinatorial public projects” [14].
All these papers start by showing that all implementable mechanisms are affine maximizers by proving
Roberts-like theorems, and then provide lower bounds on what can be achieved by affine-maximizers in
polynomial time [5]. This lack of characterization is the underlying reason for the very little progress on
the long standing problems of how well can computationally-efficient incentive compatible mechanisms
approximate the optimal allocation in combinatorial auctions, or approximate the optimal schedule in
scheduling problems. Of note is a positive result for “combinatorial auctions with duplicate items” [3].

Extending Roberts’ theorem to other domains has remained elusive. While Roberts’ proof itself
is not very difficult or long, it is quite mysterious (to us, at least). There is no clear separation into
independent tasks, each which can be extended (or not) to non-full domains. The second author has
already been involved in efforts to extend [7] and simplify the proof of [8] Roberts’ theorem, but still finds
it mysterious. During the last few years the two authors have spend considerable time in attempting to
extend — or at least obtain a really clear proof of — Roberts’ theorem. While we can not claim to be
completely satisfied, we feel that we do have a new modular proof that may be of interest and so we
bring it here. From a technical point of view, our proof is completely combinatorial and does not rely
on the separation theorem between convex bodies, unlike the original proof.

Here is a high-level structure of the new proof.

1. We begin with the direct and standard [12] observations:

• An implementable f is “weakly monotone”: f(vi, v−i) = a and f(v′i, v−i) = b implies that
vi(a)− vi(b) ≥ v′i(a)− v′i(b).

• The payment function for player i does not depend on vi, and may be represented as pi(vi, v−i) =
pa

i (v−i) for a = f(vi, v−i).
• f must optimize for each player: f(vi, v−i) ∈ arg maxa vi(a)− pa(v−i).

2. The next step is due to [7] and shows that “ties can be ignored”. Specifically, we may assume
without loss of generality that the ”≥” in the weak monotonicity condition is in fact strict, a
condition termed strong monotonicity: f(vi, v−i) = a and f(v′i, v−i) = b implies that vi(a)−vi(b) >
v′i(a)− v′i(b). As shown in [7] a the critical element here is full-dimensionality of the domains.
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3. The third step is a proof that f must have a player with no veto power – i.e., that for every value
of vi, the range of f after fixing this value still remains full. This is somewhat in spirit of Barbera
and Peleg’s proof [2] of Gibbard-Satterthwaite theorem. A critical element is the un-boundedness
of the valuation space, shedding some light on the bounded domain example of [11].

4. The fourth step in the proof is the case n = 2 (when we already know that there is a player with no
veto power). Here we observe that that pricing functions pa

i mentioned in step 1 satisfy a simple
condition that pa

i (v1) − pb
i(v1) is a (monotone) function only of the scalar v1(a) − v1(b). Simple

closed mathematical reasoning implies that real functions that satisfy these conditions must all
be linear with the same slope, which directly proves the statement. The critical element in this
argument is that the range for every fixed value of v1 is of size at least 3.

5. The fifth step is induction on n, with the base step being at n = 2. The logic is basically that every
restriction of a single player results in prices that are linear functions of the remaining players,
and since it can be shown that the slopes must be equal for different restrictions, we get the prices
must be linear over-all.

2 Preliminaries

We start with some notation. A is the set of alternatives, |A| ≥ 3. V = <A is the full domain of
valuations of a single player. An n-player mechanism is a pair (f, p) where f : V n → A and p : V n → <,
and p = (p1, · · · , pn), where pi : V → R.

Definition 2.1 va+=δ the valuation obtained from v by increasing the value for a by δ and not changing
any other value.

In the rest of the paper, unless noted otherwise, i will range over 1, ..., n; a, b, c, k will always range
over A, vi, v

′
i will always range over V , and v−i will range over V n−1.

Definition 2.2 (f, p) is incentive compatible if for all i, all vi, v
′
i and all v−i we have that vi(f(vi, v−i))−

p(vi, v−i) ≥ v′i(f(v′i, v−i))− p(v′i, v−i).

The next two propositions are standard, and hold over all domains not just the full domain:

Definition 2.3 f is weakly monotone if for all vi, v
′
i and a, b: f(vi, v−i) = a and f(v′i, v−i) = b implies

vi(a)− vi(b) ≥ v′i(a)− v′i(b).

Lemma 2.4 (e.g., [12]) If (f, p) is incentive compatible then there exist functions pa
i : V n−1 → < ∪

{∞} such that

1. Whenever f(vi, v−i) = a we have that pi(vi, v−i) = pa(v−i).

2. f(vi, v−i) ∈ arg maxa vi(a)− pa
i (v−i).

Lemma 2.5 ([7]) If (f, p) is incentive compatible then f is weakly monotone.

Proof: Since f is incentive compatible, we have that vi(a)−pa
i (v

−i) ≥ vi(b)−pb
i(v

−i), since f(vi, v−i) =
a. On the other hand, f(v′i, v−i) = b, and thus v′i(b) − pb

i(v
−i) ≥ v′i(a) − pa

i (v
−i). Subtracting the two

inequalities we get that vi(a)− vi(b) ≥ v′i(a)− v′i(b).

Definition 2.6 f is an affine maximizer if there exists constants αi ≥ 0 and βa ∈ < ∪ {∞} such that
f(v1, ..., vn) ∈ arg maxa(

∑
i(αivi(a))− βa).
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3 Getting Rid of Ties

Definition 3.1 f is strongly monotone if for all vi, v
′
i and a, b: f(vi, v−i) = a and f(v′i, v−i) = b implies

vi(a)− vi(b) > v′i(a)− v′i(b).

Lemma 3.2 ([7]) : If for every incentive compatible (f, p) with a strongly monotone f , f is an affine
maximizer, then also for every incentive compatible (f, p), f is an affine maximizer.

4 Existence of No-Veto-Power Players

Definition 4.1 Player i is said to hold no veto power in f if for every vi and every a there exists v−i

with f(vi, v−i) = a. Player i said to be decisive in f if for every v−i and for every a there exists some
vi such that f(vi, v−i) = a.

Lemma 4.2 If (f, p) is incentive compatible and f is strongly monotone then all players, except perhaps
a single one, hold no veto power.

We will prove this by considering the range of vi (for some fixed player i):

Definition 4.3 range(vi) = {f(vi, v−i)}v−i.

Lemma 4.4 If (f, p) is incentive compatible and f is strongly monotone and onto A then range(·)
satisfies the following properties:

1. Full Range: ∪virange(vi) = A.

2. Monotonicity: a ∈ range(vi) and δ ≥ 0 implies a ∈ range(va+=δ
i ).

3. IIA: vi(a)−vi(b) = v′i(a)−v′i(b) implies that range(vi)∩{a, b} = range(v′i)∩{a, b} or range(vi)∩
{a, b} = ∅.

Proof: We first show that f has a full range. This follows immediately from f being onto A: for each
alternative a, let va

i , va
−i be so that f(va

i , va
−i) = a. a ∈ range(va

i ), and thus ∪a∈Arange(va
i ) = A.

For monotonicity, consider vi such that a ∈ range(vi), and v−i be such that f(vi, v−i) = a. By strong
monotonicity, for every δ > 0, f(va+=δ

i , v−i) = a. Hence a ∈ range(va+=δ
i ).

The proof of IIA is a bit more involved. Let vi, v′i be as in the IIA condition. It is enough to show
that it cannot be the case the a, b ∈ range(vi), a ∈ range(v′i), but b /∈ range(v′i). Suppose not. Consider
the case where the valuation of each of the other players is identical and defined as follows: u(b) = 0,
u(a) = t, and for each other alternative k 6= a, b, u(k) = −t, for some t to be defined later. We will show
that f(v, u, . . . , u) = a and f(v′, u, . . . , u) = b, and obtain a contradiction to strong monotonicity.

We start by showing that f(v, u, . . . , u) = a. Since a ∈ range(v), there exist valuations u′2, . . . , u
′
n

such that f(v, u′2, . . . , u
′
n) = a. Choose t to be large enough, so that for every i ≥ 2, and alternative k 6=

a, b: t−u′i(a) = u(a)−u′i(a) ≥ maxk u(k)−u′i(k). By strong monotonicity we have that f(v, u, . . . , u) = a.
We now show that f(v′, u, . . . , u) = b. Since b ∈ range(v′), there exist valuations u′2, . . . , u

′
n such that

f(v′, u′2, . . . , u
′
n) = b. Choose t to be large enough so that: 0−u′i(b) = u(b)−u′i(b) ≥ maxu(k)−u′i(k) =

−t − u′i(k), for every alternative k 6= a and i ≥ 2. We have that f(v′, u, . . . , u) ∈ {a, b}. However,
a /∈ range(v′), and thus f(v′, u, . . . , u) = b, as needed.

The rest of the proof considers any R(·) that satisfies these three conditions.

Definition 4.5 Alternative a is dictatable in R : V → 2A \ {∅} if for some v, R(v) = {a}.
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Lemma 4.6 If R : V → 2A \ {∅} satisfies Full Range (for |A| ≥ 3), Monotonicity, and IIA then either
all alternatives are dictatable in R or none are.

Proof: The proof consists of the following series of claims.

Claim 4.7 For all v, a, δ > 0, either R(va+=δ) = {a} or R(v) ⊆ R(va+=δ) ∪ {a}.
Proof: We show that no alternative is removed from the R(va+=δ) unless a remains alone in the range.
Assume b 6= a remained in R(va+=δ), and that c 6= b, a was removed. However, this is a contradiction to
IIA, since v(b)− v(c) = va+=δ(b)− va+=δ(c).

Claim 4.8 For all v and for all alternatives a, there exists some δ > 0 such that a ∈ R(va+=δ).

Proof: Let v′ be such that a ∈ R(v′). Fix some b ∈ R(v). Assume without loss of generality
v′(a)− v′(b) ≥ v(a)− v(b) (else, consider v′a+=γ instead of v′, for sufficiently large γ > 0, and still have
a ∈ R(v′a+=γ) by monotonicity). Let δ = v′(a)− v′(b)− (v(a)− v(b)). By Claim 4.7 either a ∈ R(va+=δ)
(and we are done), or b ∈ R(va+=δ) (since R(v) ⊆ R(va+=δ)). In the latter case, observe that since
v′(a)− v′(b) = va+=δ(a)− va+=δ(b), by IIA and since b ∈ R(va+=δ) we also have that a ∈ R(va+=δ).

Claim 4.9 Let a be a non dictatable alternative. Let v be such that a, b ∈ R(v). Let w be such that
v(a)− v(b) ≤ w(a)− w(b). Then, if a ∈ R(w) we also have that b ∈ R(w).

Proof: Let δ = w(a)−w(b)− (v(a)− v(b)). By Claim 4.7, a, b ∈ R(va+=δ) (since a is non-dictatable).
The claim now follows by using IIA.

Claim 4.10 Let a be a non-dictatable alternative. For all v, there exists δ > 0 such that R(va+=δ) = A.

Proof: For alternative k, let wk be a valuation with a, k ∈ range(w). Such a valuation exists: Let w′k
be such that k ∈ R(w′k). By Claim 4.8, for some δk > 0, a ∈ R(wa+=δk

k ). By Claim 4.7, k ∈ R(wa+=δk
k ).

Fix v. For each k, let rk = wk(a)− wk(k). Let γ > 0 be so that a ∈ R(va+=γ), as guaranteed from
Claim 4.8. Let δ ≥ γ be such that va+=δ(a) − va+=δ(a) ≥ wk(a) − wk(k), for every k. By Claim 4.7
a ∈ R(va+=δ). By Claim 4.9 k ∈ R(va+=δ), for all k.

To finish the proof of Lemma 4.6, suppose there is a dictatable alternative a, and a non-dictatable
one b. Let v, δ > 0 be such that R(v) = {a}, and R(vb+=δ) = A (as guaranteed by Claim 4.10). However,
for c 6= b, a we have that v(a)− v(c) = vb+=δ(a)− vb+=δ(c). By IIA b ∈ R(v). A contradiction.

Lemma 4.11 If all alternatives of a player are non-dictatable then the player holds no veto power.

The lemma immediately gives us Lemma 4.2 since at most one player can have all his alternatives
dictatable (otherwise two players will dictate contradicting alternatives).
Proof: Let v be some valuation. Let a, b be some alternatives with a, b ∈ R(v) (the existence of two
such alternatives is guaranteed since all alternatives are non dictatable). By Claim 4.10, there is some
δ > 0 such that R(va+=δ) = A. For every other c 6= a, b, we have that v(b)− v(c) = va+=δ(b)− va+=δ(c),
and thus, by IIA and since R(va+=δ) = A, we also have that c ∈ R(v), and hence R(v) = A.
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5 Two Players

Lemma 5.1 Let f : V 2 → A. If (f, p) is incentive compatible, f satisfies strong monotonicity, and the
second player is decisive then f is an affine maximizer.

Definition 5.2 p : <m → <m is pair-wise-determined if xa−xb = x′a−x′b implies pa(x)−pb(x) = pa(x′)−
pb(x′). It is pair-wise-monotone (decreasing) if xa−xb > x′a−x′b implies pa(x)−pb(x) ≤ pa(x′)−pb(x′).

Claim 5.3 If (f, p) is incentive compatible, f satisfies strong monotonicity, and the second player is
decisive, then the vector p of payment functions pa : <m → < associated with it by Lemma 2.4 is
pair-wise-determined and pair-wise-monotone.

Proof: We first note that the function pa(x) are always finite, as an infinite value of pa(x) will cause
a never to be the value of f contradicting decisiveness. Now assume by way of contradiction to one of
these assertions that pa(x) − pb(x) > pa(x′) − pb(x′), while xa − xb ≥ x′a − x′b. Choosing y such that
pa(x) − pb(x) > ya − yb > pa(x′) − pb(x′), with low values for all other yc’s will give, by Lemma 2.4,
f(x, y) = b but f(x′, y) = a, contradicting strong monotonicity.

The rest of the proof follows directly from this property:

Claim 5.4 Let p : <m → <m be pair-wise determined and pair-wise-monotone then for some fixed
function h : <m → <, constant α ≥ 0 and constants βa ∈ < we have that for all a, pa(x) = h(x)−αxa−βa.

Claim 5.4 directly implies the lemma: By Lemma 2.4, we know that f(x, y) ∈ arg maxa(ya − pa(x))
and since h(x) does not depend on a, f(x, y) ∈ arg maxa(ya + αxa + βa) as required.
Proof: (of Claim 5.4) For ease of notation, we start by assuming without loss of generality that
pc(x) = 0 for all x, where c is some fixed alternative. This is without loss of generality since neither the
assumptions nor the result of the lemma changes when subtracting a fixed function pc from all entries
pa. It now suffices to prove the characterization for x with that xc = 0 since by pair-wise determination
adding a constant k to all entries does not change pa(x), while increasing the right-hand-side by the
fixed constant α · k (the same for all a) which can be folded back into h(x).

Definition 5.5 ∆a(x) = pa(xa+=δ)− pa(x).

Claim 5.6 For every x, ∆a(x) = ∆b(x).

Proof: By pair-wise determination applied to a, c we have that pa(xa+=δ) = pa(xa+=δ,b+=δ) and
similarly pb(xb+=δ = pb(xa+=δ,b+=δ). But then

∆a(x)−∆b(x) = (pa(xa+=δ)− pa(x))− (pb(xb+=δ)− pb(x)) =

(pa(xa+=δ,b+=δ)− pb(xa+=δ,b+=δ)− (pa(x)− pb(x)) = 0

where the equality to 0 follows from pair-wise determination applied to a, b.

Claim 5.7 There exists a constant l = l(δ) such that for all x and a, ∆a(x) = l(δ).

Proof: Using pair-wise determination on a, c, ∆a(x) may only depend on xa−xc, and similarly ∆b(x)
may only depend on xb−xc. Since Claim 5.6 showed that these are equal then for all x, y such that xc = yc

also ∆a(x) = ∆a(y). Now take x, y – by pair-wise determination ∆a(x) = ∆a(ya+=yc−xc) = ∆a(y), where
the last equality is since y and ya+=yc−xc have the same c-coordinate.

We now conclude the proof of Claim 5.4. By definition we have that l(δ + γ) = l(δ) + l(γ) and so
for integer k, l(kδ) = k · l(δ), and then also for rational q, l(qδ) = q · l(δ). By the definition of pair-
wise (decreasing) monotonicity (used here for the only time) applied to a, c we see that δ ≥ γ implies
l(δ) ≤ l(γ). This implies the extension of l(qδ) = q · l(δ) to all reals q. Now define α = −l(1) (with
α ≥ 0 since l(1) < 0) and we have that for every x, y and a, pa(x)− pa(y) = −α · (xa − ya). Now define
βa = −pa(~0) so pa(x) = −α · xa − βa as required.
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6 n ≥ 3 Players

Theorem 6.1 ([15]) Let (f, p) be incentive compatible and onto then f is an affine maximizer.

Proof: By Lemma 3.2 we assume with out loss of generality that f is strongly monotone. We now
prove the result by induction on n, with our base case n = 2 shown in Lemma 5.1.

Assume correctness for n − 1 players. We now prove for n. By Lemma 4.2, all players, except
perhaps player n (without loss of generality) have no veto power, and thus for any fixed value of v1, the
induced function, fv1(v−1) = f(v1, v−1), is onto so by the induction hypothesis is an affine maximizer
fv1(v−1) ∈ arg maxa(

∑
i(α

v1
i vi(a))− βv1

a ). Without loss of generality we assume that fv1 is normalized:
for each v1 and all i, αi ≤ 1, with at least one αv1

1 = 1, and that we have βv1
c = 0. We now show:

Lemma 6.2 The values αi do not depend on v1. I.e., for each v1 and v′1 and i, αv1
i = α

v′1
i .

Proof: Suppose not. Without loss of generality, v1 and v′1 differ only in their value for c, and αv1
i > α

v′1
i .

Let j be the player with αv1
j = 1. Observe that αv1

j ≤ α
v′1
j , since the weights are normalized. Define

the following valuations: for player j, vj(a) = t, where t >> |βv1
a − βv1

b |, and vj(k) = 0 for all k 6= a.
For player i, define vi(b) = (αv1

j vj(b) + (βv1
a − βv1

b ) − ε)/αi, and v(k) = 0 for all k 6= b. For each player
l 6= 1, j, k let vl be identically zero. For small enough values of ε > 0, we have that fv1(v1, v2, . . . , vn) = a
but fv1(v

′
1, v2, . . . , vn) = b, a contradiction to strong monotonicity.

If there is a player with αi = 0, then the output does not depend on his valuation. In this case f is
essentially a function for n− 1 players, and hence it is an affine maximizer by the induction hypothesis.
Else, all αi > 0, and in particular we have that all players, perhaps except the first one, are decisive.

Lemma 6.3 For each v1, v
′
1, βv1

a − β
v′1
a = α1(v1(a)− v′1(a)), for every alternative a.

Proof: We require the following claim first:

Claim 6.4 βv1
a depends only on v1(a).

Proof: Let v1, v
′
1 be such that v1(a) = v′1(a) and βv1

a > β
v′1
a . Let v2(a) = −(βv1

a − β
v′1
a )/2, v2(c) = 0,

and for each other k 6= a, c, v(k) = −max(|βv1
k |, |β

v′1
k |) − ε, for some ε > 0. Let all other valuations be

identically zero. Now, f(v1, v−i) = a while f(v′1, v−i) = c, a contradiction to strong monotonicity.
Thus, it is enough to consider identical valuations v1, v′1 that only differ in their value for a. Consider

the following two ways to calculate the output. In the first one, given valuations v1, . . . , vn we calculate
the output according to fv1 . In the second one, define fv2,...,vn−1(v1, vn) = f(v1, . . . , vn) and calculate
according to fv2,...,vn−1 . Since fixing some players and using the same price functions still result in a
truthful mechanism, we may assume that in both fv2,...,vn−1 and fv1 the prices are calculated according
to the price functions p1, . . . , pn of f . Also notice that by the induction hypothesis both functions are
affine maximizers (the range of both is A since player n is decisive). Now, for each alternative a:

pa
i (v1)− pa

i (v
′
1) = α1(v1(a)− v′1(a)) = Σi≥2αivi(a) + βv1

a − (Σi≥2αivi(a) + β
v′1
a ) = βv1

a − β
v′1
a

where the first equality is by calculating the price difference according to fv2,...,vn−1 and using the fact
that it is an affine maximizer, the second equality is by calculating the price difference according to fv1

and fv′1 and taking into account that both fv1 and fv′1 are affine maximizers.
In total we get that the function fv1 maximizes a function of the form arg maxa Σi≥2αivi(a) + (βa +

α1v(a)) = arg maxa Σi≥1αivi(a) + βa, hence f is an affine maximizer, as needed.
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