
in

with Java

Bruce Eckel
President, MindView, Inc.

Revision 0.5a

Please note that this document is in its initial form, and much remains to
be done. Corrections and comments should go to
http://www.topica.com/lists/TIPatterns/

http://www.topica.com/lists/TIPatterns/

Contents
Preface 7

Introduction 9

1: The pattern concept 11
What is a pattern? 11
Pattern taxonomy............... 13
The singleton 14
Classifying patterns........... 15
The development challenge17
Exercises 17

2: Unit Testing 19
Write tests first 20
A very simple framework. 21
Writing tests 23
White-box & black-box tests26
Running tests...................... 28
Automatically executing tests 30
Exercises 31

3: Building application frameworks 33
Template method............... 33

4:Fronting for an implementation 35
Proxy.................................... 36
State...................................... 37
StateMachine 40
Tools..................................... 47
Exercises 47

X: Iterators: decoupling algorithms from containers 49
Type-safe iterators 50

5: Factories: encapsulating object creation 53
Simple Factory method..... 54

Polymorphic factories........56
Abstract factories................59
Exercises62

6: Function objects 63
Command............................63
Strategy65
Chain of responsibility67
Exercises69

7: Changing the interface 71
Adapter71
Façade73

Package as a variation of Façade .. 74
Exercises75

8: Table-driven code: configuration flexibility 77
Table-driven code using anonymous inner classes 77

9: Interpreter/ Multiple Languages 79
Interpreter............................80
Motivation80
Python overview81

Built-in containers 82
Functions .. 83
Strings ... 84
Classes... 85

Creating a language89
Configuring Jython 93

Generating documentation93
Controlling the interpreter 94

Putting data in 94
Getting data out........................... 100
Multiple interpreters................... 103

Controlling Java from Jython104
Using Java libraries108

Inheriting from Java library classes110
Creating Java classes with Jython 111

Building the Java classes from the Python code 116
Summary117
Exercises118

10: Callbacks 119
Observer............................ 119

Observing flowers 121
A visual example of observers 125
Exercises 128

11: Multiple dispatching 129
Visitor, a type of multiple dispatching 132
Exercises 135

12: Pattern refactoring 137
Simulating the trash recycler137
Improving the design...... 141

“Make more objects”................... 142
A pattern for prototyping creation 145

Trash subclasses 150
Parsing Trash from an external file151
Recycling with prototyping 155

Abstracting usage 156
Multiple dispatching 161

Implementing the double dispatch162
The Visitor pattern 169

A Reflective Decorator................ 172
More coupling? 178

RTTI considered harmful?178
Summary........................... 181
Exercises 183

13: Projects 184
Rats & Mazes 184

Other maze resources.................. 189
XML Decorator................. 189

Preface

Introduction

1: The pattern
concept

This book introduces the important and yet non-
traditional “patterns” approach to program design.
Probably the most important step forward in object-oriented design is the
“design patterns” movement, chronicled in Design Patterns, by Gamma,
Helm, Johnson & Vlissides (Addison-Wesley, 1995).1 That book shows 23
different solutions to particular classes of problems. In this book, the
basic concepts of design patterns will be introduced along with examples.
This should whet your appetite to read Design Patterns by Gamma, et. al.,
a source of what has now become an essential, almost mandatory,
vocabulary for OOP programmers.

The latter part of this book contains an example of the design evolution
process, starting with an initial solution and moving through the logic
and process of evolving the solution to more appropriate designs. The
program shown (a trash sorting simulation) has evolved over time, and
you can look at that evolution as a prototype for the way your own
design can start as an adequate solution to a particular problem and
evolve into a flexible approach to a class of problems.

What is a pattern?
Initially, you can think of a pattern as an especially clever and insightful
way of solving a particular class of problems. That is, it looks like a lot of
people have worked out all the angles of a problem and have come up
with the most general, flexible solution for it. The problem could be one

1 But be warned: the examples are in C++.

you have seen and solved before, but your solution probably didn’t have
the kind of completeness you’ll see embodied in a pattern.

Although they’re called “design patterns,” they really aren’t tied to the
realm of design. A pattern seems to stand apart from the traditional way
of thinking about analysis, design, and implementation. Instead, a
pattern embodies a complete idea within a program, and thus it can
sometimes appear at the analysis phase or high-level design phase. This
is interesting because a pattern has a direct implementation in code and
so you might not expect it to show up before low-level design or
implementation (and in fact you might not realize that you need a
particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of
program design: adding a layer of abstraction. Whenever you abstract
something you’re isolating particular details, and one of the most
compelling motivations behind this is to separate things that change from
things that stay the same. Another way to put this is that once you find
some part of your program that’s likely to change for one reason or
another, you’ll want to keep those changes from propagating other
changes throughout your code. Not only does this make the code much
cheaper to maintain, but it also turns out that it is usually simpler to
understand (which results in lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-
maintain design is in discovering what I call “the vector of change.”
(Here, “vector” refers to the maximum gradient and not a container
class.) This means finding the most important thing that changes in your
system, or put another way, discovering where your greatest cost is.
Once you discover the vector of change, you have the focal point around
which to structure your design.

So the goal of design patterns is to isolate changes in your code. If you
look at it this way, you’ve been seeing some design patterns already in
this book. For example, inheritance can be thought of as a design pattern
(albeit one implemented by the compiler). It allows you to express
differences in behavior (that’s the thing that changes) in objects that all
have the same interface (that’s what stays the same). Composition can
also be considered a pattern, since it allows you to change—dynamically
or statically—the objects that implement your class, and thus the way
that class works.

You’ve also already seen another pattern that appears in Design Patterns:
the iterator (Java 1.0 and 1.1 capriciously calls it the Enumeration; Java 2
containers use “iterator”). This hides the particular implementation of the
container as you’re stepping through and selecting the elements one by
one. The iterator allows you to write generic code that performs an
operation on all of the elements in a sequence without regard to the way
that sequence is built. Thus your generic code can be used with any
container that can produce an iterator.

Pattern taxonomy
One of the events that’s occurred with the rise of design patterns is what
could be thought of as the “pollution” of the term – people have begun to
use the term to mean just about anything synonymous with “good.”
After some pondering, I’ve come up with a sort of hierarchy describing a
succession of different types of categories:

1. Idiom: how we write code in a particular language to do this
particular type of thing. This could be something as common as
the way that you code the process of stepping through an array in
C (and not running off the end).

2. Specific Design: the solution that we came up with to solve this
particular problem. This might be a clever design, but it makes no
attempt to be general.

3. Standard Design: a way to solve this kind of problem. A design
that has become more general, typically through reuse.

4. Design Pattern: how to solve an entire class of similar problem.
This usually only appears after applying a standard design a
number of times, and then seeing a common pattern throughout
these applications.

I feel this helps put things in perspective, and to show where something
might fit. However, it doesn’t say that one is better than another. It
doesn’t make sense to try to take every problem solution and generalize it
to a design pattern – it’s not a good use of your time, and you can’t force
the discovery of patterns that way; they tend to be subtle and appear over
time.

One could also argue for the inclusion of Analysis Pattern and
Architectural Pattern in this taxonomy.

The singleton
Possibly the simplest design pattern is the singleton, which is a way to
provide one and only one object of a particular type. This is used in the
Java libraries, but here’s a more direct example:

//: c01:SingletonPattern.java
// The Singleton design pattern: you can
// never instantiate more than one.

// Since this isn't inherited from a Cloneable
// base class and cloneability isn't added,
// making it final prevents cloneability from
// being added through inheritance:
final class Singleton {
 private static Singleton s = new Singleton(47);
 private int i;
 private Singleton(int x) { i = x; }
 public static Singleton getReference() {
 return s;
 }
 public int getValue() { return i; }
 public void setValue(int x) { i = x; }
}

public class SingletonPattern {
 public static void main(String[] args) {
 Singleton s = Singleton.getReference();
 System.out.println(s.getValue());
 Singleton s2 = Singleton.getReference();
 s2.setValue(9);
 System.out.println(s.getValue());
 try {
 // Can't do this: compile-time error.
 // Singleton s3 = (Singleton)s2.clone();
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 }
} ///:~

The key to creating a singleton is to prevent the client programmer from
having any way to create an object except the ways you provide. You
must make all constructors private, and you must create at least one
constructor to prevent the compiler from synthesizing a default
constructor for you (which it will create as “friendly”).

At this point, you decide how you’re going to create your object. Here,
it’s created statically, but you can also wait until the client programmer
asks for one and create it on demand. In any case, the object should be
stored privately. You provide access through public methods. Here,
getReference() produces the reference to the Singleton object. The rest
of the interface (getValue() and setValue()) is the regular class interface.

Java also allows the creation of objects through cloning. In this example,
making the class final prevents cloning. Since Singleton is inherited
directly from Object, the clone() method remains protected so it cannot
be used (doing so produces a compile-time error). However, if you’re
inheriting from a class hierarchy that has already overridden clone() as
public and implemented Cloneable, the way to prevent cloning is to
override clone() and throw a CloneNotSupportedException as
described in Appendix A. (You could also override clone() and simply
return this, but that would be deceiving since the client programmer
would think they were cloning the object, but would instead still be
dealing with the original.)

Note that you aren’t restricted to creating only one object. This is also a
technique to create a limited pool of objects. In that situation, however,
you can be confronted with the problem of sharing objects in the pool. If
this is an issue, you can create a solution involving a check-out and
check-in of the shared objects.

Classifying patterns
The Design Patterns book discusses 23 different patterns, classified under
three purposes (all of which revolve around the particular aspect that can
vary). The three purposes are:

1. Creational: how an object can be created. This often involves
isolating the details of object creation so your code isn’t dependent
on what types of objects there are and thus doesn’t have to be
changed when you add a new type of object. The aforementioned
Singleton is classified as a creational pattern, and later in this book
you’ll see examples of Factory Method and Prototype.

2. Structural: designing objects to satisfy particular project
constraints. These work with the way objects are connected with
other objects to ensure that changes in the system don’t require
changes to those connections.

3. Behavioral: objects that handle particular types of actions within a
program. These encapsulate processes that you want to perform,
such as interpreting a language, fulfilling a request, moving
through a sequence (as in an iterator), or implementing an
algorithm. This book contains examples of the Observer and the
Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns along
with one or more examples for each, typically in C++ but sometimes in
Smalltalk. (You’ll find that this doesn’t matter too much since you can
easily translate the concepts from either language into Java.) This book
will not repeat all the patterns shown in Design Patterns since that book
stands on its own and should be studied separately. Instead, this book
will give some examples that should provide you with a decent feel for
what patterns are about and why they are so important.

After years of looking at these things, it began to occur to me that the
patterns themselves use basic principles of organization, other than (and
more fundamental than) those described in Design Patterns. These
principles are based on the structure of the implementations, which is
where I have seen great similarities between patterns (more than those
expressed in Design Patterns). Although we generally try to avoid
implementation in favor of interface, I have found that it’s often easier to
think about, and especially to learn about, the patterns in terms of these
structural principles. This book will attempt to present the patterns based
on their structure instead of the categories presented in Design Patterns.

The development
challenge

Issues of development, the UML process, Extreme Programming.

Is evaluation valuable? The Capability Immaturity Model:

Wiki Page: http://c2.com/cgi-bin/wiki?CapabilityImMaturityModel
Article: http://www.embedded.com/98/9807br.htm

Pair programming research:

http://collaboration.csc.ncsu.edu/laurie/

Exercises
1. SingletonPattern.java always creates an object, even if it’s never

used. Modify this program to use lazy initialization, so the
singleton object is only created the first time that it is needed.

2. Using SingletonPattern.java as a starting point, create a class that
manages a fixed number of its own objects. Assume the objects
are database connections and you only have a license to use a
fixed quantity of these at any one time.

http://c2.com/cgi-bin/wiki?CapabilityImMaturityModel
http://www.embedded.com/98/9807br.htm
http://collaboration.csc.ncsu.edu/laurie/

2: Unit Testing
One of the important recent realizations is the dramatic
value of unit testing.
This is the process of building integrated tests into all the code that you
create, and running those tests every time you do a build. It’s as if you
are extending the compiler, telling it more about what your program is
supposed to do. That way, the build process can check for more than just
syntax errors, since you teach it how to check for semantic errors as well.

C-style programming languages, and C++ in particular, have typically
valued performance over programming safety. The reason that
developing programs in Java is so much faster than in C++ (roughly
twice as fast, by most accounts) is because of Java’s safety net: features
like better type checking, enforced exceptions and garbage collection. By
integrating unit testing into your build process, you are extending this
safety net, and the result is that you can develop faster. You can also be
bolder in the changes that you make, and more easily refactor your code
when you discover design or implementation flaws, and in general
produce a better product, faster.

Unit testing is not generally considered a design pattern; in fact, it might
be considered a “development pattern,” but perhaps there are enough
“pattern” phrases in the world already. Its effect on development is so
significant that it will be used throughout this book, and thus will be
introduced here.

My own experience with unit testing began when I realized that every
program in a book must be automatically extracted and organized into a
source tree, along with appropriate makefiles (or some equivalent
technology) so that you could just type make to build the whole tree. The
effect of this process on the code quality of the book was so immediate
and dramatic that it soon became (in my mind) a requisite for any
programming book—how can you trust code that you didn’t compile? I
also discovered that if I wanted to make sweeping changes, I could do so
using search-and-replace throughout the book, and also bashing the code

around at will. I knew that if I introduced a flaw, the code extractor and
the makefiles would flush it out.

As programs became more complex, however, I also found that there was
a serious hole in my system. Being able to successfully compile programs
is clearly an important first step, and for a published book it seemed a
fairly revolutionary one—usually due to the pressures of publishing, it’s
quite typical to randomly open a programming book and discover a
coding flaw. However, I kept getting messages from readers reporting
semantic problems in my code (in Thinking in Java). These problems could
only be discovered by running the code. Naturally, I understood this and
had taken some early faltering steps towards implementing a system that
would perform automatic execution tests, but I had succumbed to the
pressures of publishing, all the while knowing that there was definitely
something wrong with my process and that it would come back to bite
me in the form of embarrassing bug reports (in the open source world,
embarrassment is one of the prime motivating factors towards increasing
the quality of one’s code!).

The other problem was that I was lacking a structure for the testing
system. Eventually, I started hearing about unit testing and JUnit1, which
provided a basis for a testing structure. However, even though JUnit is
intended to make the creation of test code easy, I wanted to see if I could
make it even easier, applying the Extreme Programming principle of “do
the simplest thing that could possibly work” as a starting point, and then
evolving the system as usage demands (In addition, I wanted to try to
reduce the amount of test code, in an attempt to fit more functionality in
less code for screen presentations). This chapter is the result.

Write tests first
As I mentioned, one of the problems that I encountered—that most
people encounter, it turns out—was submitting to the pressures of
publishing and as a result letting tests fall by the wayside. This is easy to
do if you forge ahead and write your program code because there’s a
little voice that tells you that, after all, you’ve got it working now, and

1 http://www.junit.org

wouldn’t it be more interesting/useful/expedient to just go on and write
that other part (we can always go back and write the tests later). As a
result, the tests take on less importance, as they often do in a
development project.

The answer to this problem, which I first found described in Extreme
Programming Explained, is to write the tests before you write the code. This
may seem to artificially force testing to the forefront of the development
process, but what it actually does is to give testing enough additional
value to make it essential. If you write the tests first, you:

1. Describe what the code is supposed to do, not with some external
graphical tool but with code that actually lays the specification
down in concrete, verifiable terms.

2. Provide an example of how the code should be used; again, this is
a working, tested example, normally showing all the important
method calls, rather than just an academic description of a library.

3. Provide a way to verify when the code is finished (when all the
tests run correctly).

Thus, if you write the tests first then testing becomes a development tool,
not just a verification step that can be skipped if you happen to feel
comfortable about the code that you just wrote (a comfort, I have found,
that is usually wrong).

You can find convincing arguments in Extreme Programming Explained, as
“write tests first” is a fundamental principle of XP. If you aren’t
convinced you need to adopt any of the changes suggested by XP, note
that according to Software Engineering Institute (SEI) studies, nearly 70%
of software organizations are stuck in the first two levels of SEI's scale of
sophistication: chaos, and slightly better than chaos. If you change
nothing else, add automated testing.

A very simple framework
As mentioned, a primary goal of this code is to make the writing of unit
testing code very simple, even simpler than with JUnit. As further needs
are discovered during the use of this system, then that functionality can be

added, but to start with the framework will just provide a way to easily
create and run tests, and report failure if something breaks (success will
produce no results other than normal output that may occur during the
running of the test). My intended use of this framework is in makefiles,
and make aborts if there is a non-zero return value from the execution of
a command. The build process will consist of compilation of the
programs and execution of unit tests, and if make gets all the way
through successfully then the system will be validated, otherwise it will
abort at the place of failure. The error messages will report the test that
failed but not much else, so that you can provide whatever granularity
that you need by writing as many tests as you want, each one covering as
much or as little as you find necessary.

In some sense, this framework provides an alternative place for all those
“print” statements I’ve written and later erased over the years.

To create a set of tests, you start by making a static inner class inside the
class you wish to test (your test code may also test other classes; it’s up to
you). This test code is distinguished by inheriting from UnitTest:

//: com:bruceeckel:test:UnitTest.java
// The basic unit testing class
package com.bruceeckel.test;
import java.util.ArrayList;

public class UnitTest {
 static String testID;
 static ArrayList errors = new ArrayList();
 // Override cleanup() if test object
 // creation allocates non-memory
 // resources that must be cleaned up:
 protected void cleanup() {}
 // Verify the truth of a condition:
 protected final void assert(boolean condition){
 if(!condition)
 errors.add("failed: " + testID);
 }
} ///:~

The only testing method [[So far]] is assert(), which is protected so that
it can be used from the inheriting class. All this method does is verify
that something is true. If not, it adds an error to the list, reporting that the

current test (established by the static testID, which is set by the test-
running program that you shall see shortly) has failed. Although this is
not a lot of information—you might also wish to have the line number,
which could be extracted from an exception—it may be enough for most
situations.

Unlike JUnit (which uses setUp() and tearDown() methods), test objects
will be built using ordinary Java construction. You define the test objects
by creating them as ordinary class members of the test class, and a new
test class object will be created for each test method (thus preventing any
problems that might occur from side effects between tests). Occasionally,
the creation of a test object will allocate non-memory resources, in which
case you must override cleanup() to release those resources.

Writing tests
Writing tests becomes very simple. Here’s an example that creates the
necessary static inner class and performs trivial tests:

//: c02:TestDemo.java
// Creating a test
import com.bruceeckel.test.*;

public class TestDemo {
 private static int objCounter = 0;
 private int id = ++objCounter;
 public TestDemo(String s) {
 System.out.println(s + ": count = " + id);
 }
 public void close() {
 System.out.println("Cleaning up: " + id);
 }
 public boolean someCondition() { return true; }
 public static class Test extends UnitTest {
 TestDemo test1 = new TestDemo("test1");
 TestDemo test2 = new TestDemo("test2");
 public void cleanup() {
 test2.close();
 test1.close();
 }
 public void testA() {
 System.out.println("TestDemo.testA");

 assert(test1.someCondition());
 }
 public void testB() {
 System.out.println("TestDemo.testB");
 assert(test2.someCondition());
 assert(TestDemo.objCounter != 0);
 }
 // Causes the build to halt:
 //! public void test3() { assert(false); }
 }
} ///:~

The test3() method is commented out because, as you’ll see, it causes the
automatic build of this book’s source-code tree to stop.

You can name your inner class anything you’d like; the only important
factor is that it extends UnitTest. You can also include any necessary
support code in other methods. Only public methods that take no
arguments and return void will be treated as tests (the names of these
methods are also not constrained).

The above test class creates two instances of TestDemo. The TestDemo
constructor prints something, so that we can see it being called. You
could also define a default constructor (the only kind that is used by the
test framework), although none is necessary here. The TestDemo class
has a close() method which suggests it is used as part of object cleanup,
so this is called in the overridden cleanup() method in Test.

The testing methods use the assert() method to validate expressions, and
if there is a failure the information is stored and printed after all the tests
are run. Of course, the assert() arguments are usually more complicated
than this; you’ll see more examples throughout the rest of this book.

Notice that in testB(), the private field objCounter is accessible to the
testing code—this is because Test has the permissions of an inner class.

You can see that writing test code requires very little extra effort, and no
knowledge other than that used for writing ordinary classes.

To run the tests, you use RunUnitTests.java (which will be introduced
shortly). The command for the above code looks like this:

java com.bruceeckel.test.RunUnitTests TestDemo

It produces the following output:

test1: count = 1
test2: count = 2
TestDemo.testA
Cleaning up: 2
Cleaning up: 1
test1: count = 3
test2: count = 4
TestDemo.testB
Cleaning up: 4
Cleaning up: 3

All the output is noise as far as the success or failure of the unit testing is
concerned. Only if one or more of the unit tests fail does the program
returns a non-zero value to terminate the make process after the error
messages are produced. Thus, you can choose to produce output or not,
as it suits your needs, and the test class becomes a good place to put any
printing code you might need—if you do this, you tend to keep such code
around rather than putting it in and stripping it out as is typically done
with tracing code.

If you need to add a test to a class derived from one that already has a
test class, it’s no problem, as you can see here:

//: c02:TestDemo2.java
// Inheriting from a class that
// already has a test is no problem.
import com.bruceeckel.test.*;

public class TestDemo2 extends TestDemo {
 public TestDemo2(String s) { super(s); }
 // You can even use the same name
 // as the test class in the base class:
 public static class Test extends UnitTest {
 public void testA() {
 System.out.println("TestDemo2.testA");
 assert(1 + 1 == 2);
 }
 public void testB() {
 System.out.println("TestDemo2.testB");
 assert(2 * 2 == 4);
 }

 }
} ///:~

Even the name of the inner class can be the same. In the above code, all
the assertions are always true so the tests will never fail.

White-box & black-box
tests

The unit test examples so far are what are traditionally called white-box
tests. This means that the test code has complete access to the internals of
the class that’s being tested (so it might be more appropriately called
“transparent box” testing). White-box testing happens automatically
when you make the unit test class as an inner class of the class being
tested, since inner classes automatically have access to all their outer class
elements, even those that are private.

A possibly more common form of testing is black-box testing, which refers
to treating the class under test as an impenetrable box. You can’t see the
internals; you can only access the public portions of the class. Thus,
black-box testing corresponds more closely to functional testing, to verify
the methods that the client programmer is going to use. In addition,
black-box testing provides a minimal instruction sheet to the client
programmer – in the absence of all other documentation, the black-box
tests at least demonstrate how to make basic calls to the public class
methods.

To perform black-box tests using the unit-testing framework presented in
this book, all you need to do is create your test class as a global class
instead of an inner class. All the other rules are the same (for example,
the unit test class must be public, and derived from UnitTest).

There’s one other caveat, which will also provide a little review of Java
packages. If you want to be completely rigorous, you must put your
black-box test class in a separate directory than the class it tests,
otherwise it will have package access to the elements of the class being
tested. That is, you’ll be able to access protected and friendly elements of
the class being tested. Here’s an example:

//: c02:Testable.java

public class Testable {
 private void f1() {}
 void f2() {} // "Friendly": package access
 protected void f3() {} // Also package access
 public void f4() {}
} ///:~

Normally, the only method that should be directly accessible to the client
programmer is f4(). However, if you put your black-box test in the same
directory, it automatically becomes part of the same package (in this case,
the default package since none is specified) and then has inappropriate
access:

//: c02:TooMuchAccess.java
import com.bruceeckel.test.*;

public class TooMuchAccess extends UnitTest {
 Testable tst = new Testable();
 public void test1() {
 tst.f2(); // Oops!
 tst.f3(); // Oops!
 tst.f4(); // OK
 }
} ///:~

You can solve the problem by moving TooMuchAccess.java into its own
subdirectory, thereby putting it in its own default package (thus a
different package from Testable.java). Of course, when you do this, then
Testable must be in its own package, so that it can be imported (note that
it is also possible to import a “package-less” class by giving the class
name in the import statement and ensuring that the class is in your
CLASSPATH):

//: c02:testable:Testable.java
package c02.testable;

public class Testable {
 private void f1() {}
 void f2() {} // "Friendly": package access
 protected void f3() {} // Also package access
 public void f4() {}
} ///:~

Here’s the black-box test in its own package, showing how only public
methods may be called:

//: c02:test:BlackBoxTest.java
import c02.testable.*;
import com.bruceeckel.test.*;

public class BlackBoxTest extends UnitTest {
 Testable tst = new Testable();
 public void test1() {
 //! tst.f2(); // Nope!
 //! tst.f3(); // Nope!
 tst.f4(); // Only public methods available
 }
} ///:~

Note that the above program is indeed very similar to the one that the
client programmer would write to use your class, including the imports
and available methods. So it does make a good programming example.
Of course, it’s easier from a coding standpoint to just make an inner class,
and unless you’re ardent about the need for specific black-box testing
you may just want to go ahead and use the inner classes (with the
knowledge that if you need to you can later extract the inner classes into
separate black-box test classes, without too much effort).

Running tests
The program that runs the tests makes significant use of reflection so that
writing the tests can be simple for the client programmer.

//: com:bruceeckel:test:RunUnitTests.java
// Discovering the unit test
// class and running each test.
package com.bruceeckel.test;
import java.lang.reflect.*;
import java.util.Iterator;

public class RunUnitTests {
 public static void
 require(boolean requirement, String errmsg) {
 if(!requirement) {
 System.err.println(errmsg);
 System.exit(1);

 }
 }
 public static void main(String[] args) {
 require(args.length == 1,
 "Usage: RunUnitTests qualified-class");
 try {
 Class c = Class.forName(args[0]);
 // Only finds the inner classes
 // declared in the current class:
 Class[] classes = c.getDeclaredClasses();
 Class ut = null;
 for(int j = 0; j < classes.length; j++) {
 // Skip inner classes that are
 // not derived from UnitTest:
 if(!UnitTest.class.
 isAssignableFrom(classes[j]))
 continue;
 ut = classes[j];
 break; // Finds the first test class only
 }
 // If it found an inner class,
 // that class must be static:
 if(ut != null)
 require(
 Modifier.isStatic(ut.getModifiers()),
 "inner UnitTest class must be static");
 // If it couldn't find the inner class,
 // maybe it's a regular class (for black-
 // box testing:
 if(ut == null)
 if(UnitTest.class.isAssignableFrom(c))
 ut = c;
 require(ut != null,
 "No UnitTest class found");
 require(
 Modifier.isPublic(ut.getModifiers()),
 "UnitTest class must be public");
 Method[] methods = ut.getDeclaredMethods();
 for(int k = 0; k < methods.length; k++) {
 Method m = methods[k];
 // Ignore overridden UnitTest methods:
 if(m.getName().equals("cleanup"))
 continue;
 // Only public methods with no

 // arguments and void return
 // types will be used as test code:
 if(m.getParameterTypes().length == 0 &&
 m.getReturnType() == void.class &&
 Modifier.isPublic(m.getModifiers())) {
 // The name of the test is
 // used in error messages:
 UnitTest.testID = m.getName();
 // A new instance of the
 // test object is created and
 // cleaned up for each test:
 Object test = ut.newInstance();
 m.invoke(test, new Object[0]);
 ((UnitTest)test).cleanup();
 }
 }
 } catch(Exception e) {
 e.printStackTrace(System.err);
 // Any exception will return a nonzero
 // value to the console, so that
 // 'make' will abort:
 System.exit(1);
 }
 // After all tests in this class are run,
 // display any results. If there were errors,
 // abort 'make' by returning a nonzero value.
 if(UnitTest.errors.size() != 0) {
 Iterator it = UnitTest.errors.iterator();
 while(it.hasNext())
 System.err.println(it.next());
 System.exit(1);
 }
 }
} ///:~

Automatically executing
tests

Exercises
1. Install this book’s source code tree and ensure that you have a

make utility installed on your system (Gnu make is freely
available on the internet at various locations). In TestDemo.java,
un-comment test3(), then type make and observe the results.

2. Modify TestDemo.java by adding a new test that throws an
exception. Type make and observe the results.

3. Modify your solutions to the exercises in Chapter 1 by adding
unit tests. Write makefiles that incorporate the unit tests.

3: Building
application
frameworks

An application framework allows you to inherit from a class or set of
classes and create a new application, reusing most of the code in the
existing classes and overriding one or more methods in order to
customize the application to your needs. A fundamental concept in the
application framework is the Template Method which is typically hidden
beneath the covers and drives the application by calling the various
methods in the base class (some of which you have overridden in order
to create the application).

For example, whenever you create an applet you’re using an application
framework: you inherit from JApplet and then override init(). The
applet mechanism (which is a Template Method) does the rest by drawing
the screen, handling the event loop, resizing, etc.

Template method
An important characteristic of the Template Method is that it is defined in
the base class and cannot be changed. It’s sometimes a private method
but it’s virtually always final. It calls other base-class methods (the ones
you override) in order to do its job, but it is usually called only as part of
an initialization process (and thus the client programmer isn’t necessarily
able to call it directly).

//: c03:TemplateMethod.java
// Simple demonstration of Template Method.
import com.bruceeckel.test.*;

abstract class ApplicationFramework {

 public ApplicationFramework() {
 templateMethod(); // Dangerous!
 }
 abstract void customize1();
 abstract void customize2();
 // "private" means automatically "final":
 private void templateMethod() {
 for(int i = 0; i < 5; i++) {
 customize1();
 customize2();
 }
 }
}

// Create a new "application":
class MyApp extends ApplicationFramework {
 void customize1() {
 System.out.print("Hello ");
 }
 void customize2() {
 System.out.println("World!");
 }
}

public class TemplateMethod extends UnitTest {
 MyApp app = new MyApp();
 public void test() {
 // The MyApp constructor does all the work.
 // This just makes sure it will complete
 // without throwing an exception.
 }
 public static void main(String args[]) {
 new TemplateMethod().test();
 }
} ///:~

The base-class constructor is responsible for performing the necessary
initialization and then starting the “engine” (the template method) that
runs the application (in a GUI application, this “engine” would be the
main event loop). The client programmer simply provides definitions for
customize1() and customize2() and the “application” is ready to run.

4:Fronting for an
implementation

Both Proxy and State provide a surrogate class that you use in your code;
the real class that does the work is hidden behind this surrogate class.
When you call a method in the surrogate, it simply turns around and
calls the method in the implementing class. These two patterns are so
similar that the Proxy is simply a special case of State. One is tempted to
just lump the two together into a pattern called Surrogate, but the term
“proxy” has a long-standing and specialized meaning, which probably
explains the reason for the two different patterns.

The basic idea is simple: from a base class, the surrogate is derived along
with the class or classes that provide the actual implementation:

Interface

Surrogate Implementation

Surrogate Implementation1 Implementation2 Etc.

When a surrogate object is created, it is given an implementation to
which to send all of the method calls.

Structurally, the difference between Proxy and State is simple: a Proxy has
only one implementation, while State has more than one. The application
of the patterns is considered (in Design Patterns) to be distinct: Proxy is
used to control access to its implementation, while State allows you to
change the implementation dynamically. However, if you expand your

notion of “controlling access to implementation” then the two fit neatly
together.

Proxy
If we implement Proxy by following the above diagram, it looks like this:

//: c04:ProxyDemo.java
// Simple demonstration of the Proxy pattern.
import com.bruceeckel.test.*;

interface ProxyBase {
 void f();
 void g();
 void h();
}

class Proxy implements ProxyBase {
 private ProxyBase implementation;
 public Proxy() {
 implementation = new Implementation();
 }
 // Pass method calls to the implementation:
 public void f() { implementation.f(); }
 public void g() { implementation.g(); }
 public void h() { implementation.h(); }
}

class Implementation implements ProxyBase {
 public void f() {
 System.out.println("Implementation.f()");
 }
 public void g() {
 System.out.println("Implementation.g()");
 }
 public void h() {
 System.out.println("Implementation.h()");
 }
}

public class ProxyDemo extends UnitTest {
 Proxy p = new Proxy();
 public void test() {

 // This just makes sure it will complete
 // without throwing an exception.
 p.f();
 p.g();
 p.h();
 }
 public static void main(String args[]) {
 new ProxyDemo().test();
 }
} ///:~

Of course, it isn’t necessary that Implementation have the same interface
as Proxy; as long as Proxy is somehow “speaking for” the class that it is
referring method calls to then the basic idea is satisfied (note that this
statement is at odds with the definition for Proxy in GoF). However, it is
convenient to have a common interface so that Implementation is forced
to fulfill all the methods that Proxy needs to call.

State
The State pattern adds more implementations to Proxy, along with a way
to switch from one implementation to another during the lifetime of the
surrogate:

//: c04:StateDemo.java
// Simple demonstration of the State pattern.
import com.bruceeckel.test.*;

interface StateBase {
 void f();
 void g();
 void h();
}

class State implements StateBase {
 private StateBase implementation;
 public State(StateBase imp) {
 implementation = imp;
 }
 public void changeImp(StateBase newImp) {
 implementation = newImp;

 }
 // Pass method calls to the implementation:
 public void f() { implementation.f(); }
 public void g() { implementation.g(); }
 public void h() { implementation.h(); }
}

class Implementation1 implements StateBase {
 public void f() {
 System.out.println("Implementation1.f()");
 }
 public void g() {
 System.out.println("Implementation1.g()");
 }
 public void h() {
 System.out.println("Implementation1.h()");
 }
}

class Implementation2 implements StateBase {
 public void f() {
 System.out.println("Implementation2.f()");
 }
 public void g() {
 System.out.println("Implementation2.g()");
 }
 public void h() {
 System.out.println("Implementation2.h()");
 }
}

public class StateDemo extends UnitTest {
 static void run(State b) {
 b.f();
 b.g();
 b.h();
 }
 State b = new State(new Implementation1());
 public void test() {
 // This just makes sure it will complete
 // without throwing an exception.
 run(b);
 b.changeImp(new Implementation2());
 run(b);

 }
 public static void main(String args[]) {
 new StateDemo().test();
 }
} ///:~

In main(), you can see that the first implementation is used for a bit, then
the second implementation is swapped in and that is used.

The difference between Proxy and State is in the problems that are solved.
The common uses for Proxy as described in Design Patterns are:

1. Remote proxy. This proxies for an object in a different address
space. A remote proxy is created for you automatically by the RMI
compiler rmic as it creates stubs and skeletons.

2. Virtual proxy. This provides “lazy initialization” to create
expensive objects on demand.

3. Protection proxy. Used when you don’t want the client
programmer to have full access to the proxied object.

4. Smart reference. To add additional actions when the proxied
object is accessed. For example, or to keep track of the number of
references that are held for a particular object, in order to
implement the copy-on-write idiom and prevent object aliasing. A
simpler example is keeping track of the number of calls to a
particular method.

You could look at a Java reference as a kind of protection proxy, since it
controls access to the actual object on the heap (and ensures, for example,
that you don’t use a null reference).

[[Rewrite this: In Design Patterns, Proxy and State are not seen as related
to each other because the two are given (what I consider arbitrarily)
different structures. State, in particular, uses a separate implementation
hierarchy but this seems to me to be unnecessary unless you have
decided that the implementation is not under your control (certainly a
possibility, but if you own all the code there seems to be no reason not to
benefit from the elegance and helpfulness of the single base class). In
addition, Proxy need not use the same base class for its implementation,
as long as the proxy object is controlling access to the object it “fronting”

for. Regardless of the specifics, in both Proxy and State a surrogate is
passing method calls through to an implementation object.]]]

StateMachine
While State has a way to allow the client programmer to change the
implementation, StateMachine imposes a structure to automatically
change the implementation from one object to the next. The current
implementation represents the state that a system is in, and the system
behaves differently from one state to the next (because it uses State).
Basically, this is a “state machine” using objects.

The code that moves the system from one state to the next is often a
Template Method, as seen in this example:

//: c04:statemachine:StateMachineDemo.java
// Demonstrates StateMachine pattern
// and Template method.
package c04.statemachine;
import java.util.*;
import com.bruceeckel.test.*;

interface State {
 void run();
}

abstract class StateMachine {
 protected State currentState;
 abstract protected boolean changeState();
 // Template method:
 protected final void runAll() {
 while(changeState()) // Customizable
 currentState.run();
 }
}

// A different subclass for each state:

class Wash implements State {
 public void run() {
 System.out.println("Washing");
 }

}

class Spin implements State {
 public void run() {
 System.out.println("Spinning");
 }
}

class Rinse implements State {
 public void run() {
 System.out.println("Rinsing");
 }
}

class Washer extends StateMachine {
 private int i = 0;
 // The state table:
 private State states[] = {
 new Wash(), new Spin(),
 new Rinse(), new Spin(),
 };
 public Washer() { runAll(); }
 public boolean changeState() {
 if(i < states.length) {
 // Change the state by setting the
 // surrogate reference to a new object:
 currentState = states[i++];
 return true;
 } else
 return false;
 }
}

public class StateMachineDemo extends UnitTest {
 Washer w = new Washer();
 public void test() {
 // The constructor does the work.
 // This just makes sure it will complete
 // without throwing an exception.
 }
 public static void main(String args[]) {
 new StateMachineDemo().test();
 }
} ///:~

Here, the class that controls the states (StateMachine in this case) is
responsible for deciding the next state to move to. Another approach is to
allow the state objects themselves to decide what state to move to next,
typically based on some kind of input to the system. This is a more
flexible solution. Here it is, and in addition the program is evolved to use
2-d arrays to configure the state machines:

//: c04:washer:Washer.java
// An example of the State Machine pattern
package c04.washer;
import java.util.*;
import java.io.*;
import com.bruceeckel.test.*;

class MapLoader {
 public static void load(Map m, Object[][] pairs) {
 for(int i = 0; i < pairs.length; i++)
 m.put(pairs[i][0], pairs[i][1]);
 }
}

interface State {
 void run(String input);
}

public class Washer {
 private State currentState;
 static HashMap states = new HashMap();
 public Washer() {
 states.put("Wash", new Wash());
 states.put("Rinse", new Rinse());
 states.put("Spin", new Spin());
 currentState = (State)states.get("Wash");
 }
 private void
 nextState(Map stateTable, String input) {
 currentState = (State)states.get(
 stateTable.get(input));
 }

 class TState implements State {
 protected HashMap stateTable = new HashMap();

 public void run(String input) {
 String name = getClass().toString();
 System.out.println(
 name.substring(
 name.lastIndexOf("$") + 1));
 nextState(stateTable, input);
 }
 }
 // A different subclass for each state:
 class Wash extends TState {
 {
 MapLoader.load(stateTable, new String[][] {
 { "Wash", "Spin" },
 { "Spin", "Spin" },
 { "Rinse", "Rinse" }
 });
 }
 }
 class Spin extends TState {
 {
 MapLoader.load(stateTable, new String[][] {
 { "Wash", "Wash" },
 { "Spin", "Rinse" },
 { "Rinse", "Rinse" }
 });
 }
 }
 class Rinse extends TState {
 {
 MapLoader.load(stateTable, new String[][] {
 { "Wash", "Wash" },
 { "Spin", "Spin" },
 { "Rinse", "Spin" }
 });
 }
 }
 public void run() {
 try {
 BufferedReader inputStream =
 new BufferedReader (
 new FileReader("StateFile.txt"));
 while (inputStream.ready()) {
 // Get next state from file...
 String input =

 inputStream.readLine().trim();
 if (input != null)
 currentState.run(input);
 }
 inputStream.close ();
 } catch (IOException e) {
 e.printStackTrace(System.err);
 }
 }
 public static class Test extends UnitTest {
 Washer w = new Washer();
 public void test() { w.run(); }
 }
 public static void main(String args[]) {
 new Test().test();
 }
} ///:~

The input is read from the file StateFile.txt:

//:! c04:washer:StateFile.txt
Wash
Spin
Rinse
Spin
Wash
Spin
Rinse
Spin
Wash
Spin
Rinse
Spin
Wash
Spin
Rinse
Spin
///:~

If you look at the above program, you can easily see that having the
proliferation of tables is annoying and messy to maintain. If you are
going to be regularly configuring and modifying the state transition

information, the best solution is to combine all the state information into
a single table. This can be implemented using a Map of Maps, but at this
point we might as well create a reusable tool for the job:

//: com:bruceeckel:util:TransitionTable.java
// Tool to assist creating &
// using state transition tables
package com.bruceeckel.util;
import java.util.*;

public class TransitionTable {
 public static Map
 build(Object[][][] table, Map m) {
 for(int i = 0; i < table.length; i++) {
 Object[][] row = table[i];
 Object key = row[0][0];
 Map val = new HashMap();
 for(int j = 1; j < row.length; j++)
 val.put(row[j][0], row[j][1]);
 m.put(key, val);
 }
 return m;
 }
 public interface Transitioner {
 Object nextState(Object curr, Object input);
 }
 // Default implementation and example
 // of nextState() method code:
 public static class StateChanger
 implements Transitioner {
 private Map map = new HashMap();
 public StateChanger(Object[][][] table) {
 TransitionTable.build(table, map);
 }
 public Object
 nextState(Object curr, Object input) {
 return ((Map)map.get(curr)).get(input);
 }
 }
} ///:~

Here is the unit test code that creates and runs an example transition
table. It also includes a main() for convenience:

//: c04:TransitionTableTest.java
// Unit test code for TransitionTable.java
import com.bruceeckel.test.*;
import com.bruceeckel.util.*;

public class TransitionTableTest extends UnitTest{
 Object[][][] transitionTable = {
 { {"one"}, // Current state
 // Pairs of input & new state:
 {"one", "two"},
 {"two", "two"},
 {"three", "two"}},
 { {"two"}, // Current state
 // Pairs of input & new state:
 {"one", "three"},
 {"two", "three"},
 {"three", "three"}},
 { {"three"}, // Current state
 // Pairs of input & new state:
 {"one", "one"},
 {"two", "one"},
 {"three", "one"}},
 };
 TransitionTable.StateChanger m =
 new TransitionTable.StateChanger(
 transitionTable);
 public void test() {
 System.out.println(m);
 String current = "one";
 String[] inputs = { "one", "two", "three" };
 for(int i = 0; i < 20; i++) {
 String input = inputs[
 (int)(Math.random() * inputs.length)];
 System.out.print("input = " + input);
 current =
 (String)m.nextState(current, input);
 System.out.println(
 ", new state = " + current);
 }
 }
 public static void main(String[] args) {
 new TransitionTableTest().test();
 }
} ///:~

Tools
Another approach, as your state machine gets bigger, is to use an
automation tool whereby you configure a table and let the tool generate
the state machine code for you. This can be created yourself using a
language like Python, but there are also free, open-source tools such as
Libero, at http://www.imatix.com.

Exercises
1. Create an example of the “virtual proxy.”

2. Create an example of the “Smart reference” proxy where you keep
count of the number of method calls to a particular object.

3. Using the State, make a class called UnpredictablePerson which
changes the kind of response to its hello() method depending on
what kind of Mood it’s in. Add an additional kind of Mood called
Prozac.

4. Create a simple copy-on write implementation.

5. Apply TransitionTable.java to the “Washer” problem.

6. Create a StateMachine system whereby the current state along
with input information determines the next state that the system
will be in. To do this, each state must store a reference back to the
proxy object (the state controller) so that it can request the state
change. Use a HashMap to create a table of states, where the key
is a String naming the new state and the value is the new state
object. Inside each state subclass override a method nextState()
that has its own state-transition table. The input to nextState()
should be a single word that comes from a text file containing one
word per line.

http://www.imatix.com/

7. Modify the previous exercise so that the state machine can be
configured by creating/modifying a single multi-dimensional
array.

X: Iterators:
decoupling
algorithms from
containers

Alexander Stepanov thought for years about the problem
of generic programming techniques before creating the
STL (along with Dave Musser). He came to the conclusion
that all algorithms are defined on algebraic structures –
what we would call containers.
In the process, he realized that iterators are central to the use of
algorithms, because they decouple the algorithms from the specific type
of container that the algorithm might currently be working with. This
means that you can describe the algorithm without worrying about the
particular sequence it is operating on. More generally, any code that you
write using iterators is decoupled from the data structure that the code is
manipulating, and thus your code is more general and reusable.

The use of iterators also extends your code into the realm of functional
programming, whose objective is to describe what a program is doing at
every step rather than how it is doing it. That is, you say “sort” rather
than describing the sort. The objective of the C++ STL was to provide this
generic programming approach for C++ (how successful this approach will
actually be remains to be seen).

If you’ve used containers in Java (and it’s hard to write code without
using them), you’ve used iterators – in the form of the Enumeration in
Java 1.0/1.1 and the Iterator in Java 2. So you should already be familiar

with their general use. If not, see Chapter 9, Holding Your Objects, under
Iterators in Thinking in Java, 2nd edition (freely downloadable from
www.BruceEckel.com).

Because the Java 2 containers rely heavily on iterators they become
excellent candidates for generic/functional programming techniques.
This chapter will explore these techniques by converting the STL
algorithms to Java, for use with the Java 2 container library.

Type-safe iterators
In Thinking in Java, 2nd edition, I show the creation of a type-safe container
that will only accept a particular type of object. A reader, Linda
Pazzaglia, asked for the other obvious type-safe component, an iterator
that would work with the basic java.util containers, but impose the
constraint that the type of objects that it iterates over be of a particular
type.

If Java ever includes a template mechanism, this kind of iterator will have
the added advantage of being able to return a specific type of object, but
without templates you are forced to return generic Objects, or to require
a bit of hand-coding for every type that you want to iterate through. I
will take the former approach.

A second design decision involves the time that the type of object is
determined. One approach is to take the type of the first object that the
iterator encounters, but this is problematic because the containers may
rearrange the objects according to an internal ordering mechanism (such
as a hash table) and thus you may get different results from one iteration
to the next. The safe approach is to require the user to establish the type
during construction of the iterator.

Lastly, how do we build the iterator? We cannot rewrite the existing Java
library classes that already produce Enumerations and Iterators.
However, we can use the Decorator design pattern, and create a class that
simply wraps the Enumeration or Iterator that is produced, generating a
new object that has the iteration behavior that we want (which is, in this
case, to throw a RuntimeException if an incorrect type is encountered)
but with the same interface as the original Enumeration or Iterator, so
that it can be used in the same places (you may argue that this is actually

a Proxy pattern, but it’s more likely Decorator because of its intent). Here
is the code:

//: com:bruceeckel:util:TypedIterator.java
package com.bruceeckel.util;
import java.util.*;

public class TypedIterator implements Iterator {
 private Iterator imp;
 private Class type;
 public TypedIterator(Iterator it, Class type) {
 imp = it;
 this.type = type;
 }
 public boolean hasNext() {
 return imp.hasNext();
 }
 public void remove() { imp.remove(); }
 public Object next() {
 Object obj = imp.next();
 if(!type.isInstance(obj))
 throw new ClassCastException(
 "TypedIterator for type " + type +
 " encountered type: " + obj.getClass());
 return obj;
 }
} ///:~

5: Factories:
encapsulating
object creation

When you discover that you need to add new types to a system, the most
sensible first step is to use polymorphism to create a common interface to
those new types. This separates the rest of the code in your system from
the knowledge of the specific types that you are adding. New types may
be added without disturbing existing code … or so it seems. At first it
would appear that the only place you need to change the code in such a
design is the place where you inherit a new type, but this is not quite
true. You must still create an object of your new type, and at the point of
creation you must specify the exact constructor to use. Thus, if the code
that creates objects is distributed throughout your application, you have
the same problem when adding new types—you must still chase down
all the points of your code where type matters. It happens to be the
creation of the type that matters in this case rather than the use of the type
(which is taken care of by polymorphism), but the effect is the same:
adding a new type can cause problems.

The solution is to force the creation of objects to occur through a common
factory rather than to allow the creational code to be spread throughout
your system. If all the code in your program must go through this factory
whenever it needs to create one of your objects, then all you must do
when you add a new object is to modify the factory.

Since every object-oriented program creates objects, and since it’s very
likely you will extend your program by adding new types, I suspect that
factories may be the most universally useful kinds of design patterns.

Simple Factory method
As an example, let’s revisit the Shape system. Since the factory may fail
in its creation of a requested Shape, an appropriate exception is needed:

//: c05:badshape:BadShapeCreation.java
package c05.badshape;
public class BadShapeCreation extends Exception {
 public BadShapeCreation(String msg) {
 super(msg);
 }
}///:~

One approach is to make the factory a static method of the base class:

//: c05:shapefact1:ShapeFactory1.java
// A simple static factory method.
package c05.shapefact1;
import c05.badshape.*;
import java.util.*;
import com.bruceeckel.test.*;

abstract class Shape {
 public abstract void draw();
 public abstract void erase();
 public static Shape factory(String type)
 throws BadShapeCreation {
 if(type.equals("Circle")) return new Circle();
 if(type.equals("Square")) return new Square();
 throw new BadShapeCreation(type);
 }
}

class Circle extends Shape {
 Circle() {} // Friendly constructor
 public void draw() {
 System.out.println("Circle.draw");
 }
 public void erase() {
 System.out.println("Circle.erase");
 }
}

class Square extends Shape {
 Square() {} // Friendly constructor
 public void draw() {
 System.out.println("Square.draw");
 }
 public void erase() {
 System.out.println("Square.erase");
 }
}

public class ShapeFactory1 extends UnitTest {
 String shlist[] = { "Circle", "Square",
 "Square", "Circle", "Circle", "Square" };
 List shapes = new ArrayList();
 public void test() {
 try {
 for(int i = 0; i < shlist.length; i++)
 shapes.add(Shape.factory(shlist[i]));
 } catch(BadShapeCreation e) {
 e.printStackTrace(System.err);
 assert(false); // Fail the unit test
 }
 Iterator i = shapes.iterator();
 while(i.hasNext()) {
 Shape s = (Shape)i.next();
 s.draw();
 s.erase();
 }
 }
 public static void main(String args[]) {
 new ShapeFactory1().test();
 }
} ///:~

The factory() takes an argument that allows it to determine what type of
Shape to create; it happens to be a String in this case but it could be any
set of data. The factory() is now the only other code in the system that
needs to be changed when a new type of Shape is added (the
initialization data for the objects will presumably come from somewhere
outside the system, and not be a hard-coded array as in the above
example).

To encourage creation to only happen in the factory(), the constructors
for the specific types of Shape are made “friendly,” so factory() has
access to the constructors but they are not available outside the package.

Polymorphic factories
The static factory() method in the previous example forces all the
creation operations to be focused in one spot, so that’s the only place you
need to change the code. This is certainly a reasonable solution, as it
throws a box around the process of creating objects. However, the Design
Patterns book emphasizes that the reason for the Factory Method pattern is
so that different types of factories can be subclassed from the basic
factory (the above design is mentioned as a special case). However, the
book does not provide an example, but instead just repeats the example
used for the Abstract Factory (you’ll see an example of this in the next
section). Here is ShapeFactory1.java modified so the factory methods are
in a separate class as virtual functions. Notice also that the specific Shape
classes are dynamically loaded on demand:

//: c05:shapefact2:ShapeFactory2.java
// Polymorphic factory methods.
package c05.shapefact2;
import c05.badshape.*;
import java.util.*;
import com.bruceeckel.test.*;

interface Shape {
 void draw();
 void erase();
}

abstract class ShapeFactory {
 protected abstract Shape create();
 private static Map factories = new HashMap();
 public static void
 addFactory(String id, ShapeFactory f) {
 factories.put(id, f);
 }
 // A Template Method:
 public static final Shape createShape(String id)
 throws BadShapeCreation {

 if(!factories.containsKey(id)) {
 try {
 // Load dynamically
 Class.forName("c05.shapefact2." + id);
 } catch(ClassNotFoundException e) {
 throw new BadShapeCreation(id);
 }
 // See if it was put in:
 if(!factories.containsKey(id))
 throw new BadShapeCreation(id);
 }
 return
 ((ShapeFactory)factories.get(id)).create();
 }
}

class Circle implements Shape {
 private Circle() {}
 public void draw() {
 System.out.println("Circle.draw");
 }
 public void erase() {
 System.out.println("Circle.erase");
 }
 private static class Factory
 extends ShapeFactory {
 protected Shape create() {
 return new Circle();
 }
 }
 static {
 ShapeFactory.addFactory(
 "Circle", new Circle.Factory());
 }
}

class Square implements Shape {
 private Square() {}
 public void draw() {
 System.out.println("Square.draw");
 }
 public void erase() {
 System.out.println("Square.erase");
 }

 private static class Factory
 extends ShapeFactory {
 protected Shape create() {
 return new Square();
 }
 }
 static {
 ShapeFactory.addFactory(
 "Square", new Square.Factory());
 }
}

public class ShapeFactory2 extends UnitTest {
 String shlist[] = { "Circle", "Square",
 "Square", "Circle", "Circle", "Square" };
 List shapes = new ArrayList();
 public void test() {
 // This just makes sure it will complete
 // without throwing an exception.
 try {
 for(int i = 0; i < shlist.length; i++)
 shapes.add(
 ShapeFactory.createShape(shlist[i]));
 } catch(BadShapeCreation e) {
 e.printStackTrace(System.err);
 assert(false); // Fail the unit test
 }
 Iterator i = shapes.iterator();
 while(i.hasNext()) {
 Shape s = (Shape)i.next();
 s.draw();
 s.erase();
 }
 }
 public static void main(String args[]) {
 new ShapeFactory2().test();
 }
} ///:~

Now the factory method appears in its own class, ShapeFactory, as the
create() method. This is a protected method which means it cannot be
called directly, but it can be overridden. The subclasses of Shape must
each create their own subclasses of ShapeFactory and override the

create() method to create an object of their own type. The actual creation
of shapes is performed by calling ShapeFactory.createShape(), which is
a static method that uses the Map in ShapeFactory to find the
appropriate factory object based on an identifier that you pass it. The
factory is immediately used to create the shape object, but you could
imagine a more complex problem where the appropriate factory object is
returned and then used by the caller to create an object in a more
sophisticated way. However, it seems that much of the time you don’t
need the intricacies of the polymorphic factory method, and a single
static method in the base class (as shown in ShapeFactory1.java) will
work fine.

Notice that the ShapeFactory must be initialized by loading its Map with
factory objects, which takes place in the static initialization clause of each
of the Shape implementations. So to add a new type to this design you
must inherit the type, create a factory, and add the static initialization
clause to load the Map. This extra complexity again suggests the use of a
static factory method if you don’t need to create individual factory
objects.

Abstract factories
The Abstract Factory pattern looks like the factory objects we’ve seen
previously, with not one but several factory methods. Each of the factory
methods creates a different kind of object. The idea is that at the point of
creation of the factory object, you decide how all the objects created by
that factory will be used. The example given in Design Patterns
implements portability across various graphical user interfaces (GUIs):
you create a factory object appropriate to the GUI that you’re working
with, and from then on when you ask it for a menu, button, slider, etc. it
will automatically create the appropriate version of that item for the GUI.
Thus you’re able to isolate, in one place, the effect of changing from one
GUI to another.

As another example suppose you are creating a general-purpose gaming
environment and you want to be able to support different types of
games. Here’s how it might look using an abstract factory:

//: c05:Games.java
// An example of the Abstract Factory pattern.

import com.bruceeckel.test.*;

interface Obstacle {
 void action();
}

interface Player {
 void interactWith(Obstacle o);
}

class Kitty implements Player {
 public void interactWith(Obstacle ob) {
 System.out.print("Kitty has encountered a ");
 ob.action();
 }
}

class KungFuGuy implements Player {
 public void interactWith(Obstacle ob) {
 System.out.print("KungFuGuy now battles a ");
 ob.action();
 }
}

class Puzzle implements Obstacle {
 public void action() {
 System.out.println("Puzzle");
 }
}

class NastyWeapon implements Obstacle {
 public void action() {
 System.out.println("NastyWeapon");
 }
}

// The Abstract Factory:
interface GameElementFactory {
 Player makePlayer();
 Obstacle makeObstacle();
}

// Concrete factories:
class KittiesAndPuzzles

implements GameElementFactory {
 public Player makePlayer() {
 return new Kitty();
 }
 public Obstacle makeObstacle() {
 return new Puzzle();
 }
}

class KillAndDismember
implements GameElementFactory {
 public Player makePlayer() {
 return new KungFuGuy();
 }
 public Obstacle makeObstacle() {
 return new NastyWeapon();
 }
}

class GameEnvironment {
 private GameElementFactory gef;
 private Player p;
 private Obstacle ob;
 public GameEnvironment(
 GameElementFactory factory) {
 gef = factory;
 p = factory.makePlayer();
 ob = factory.makeObstacle();
 }
 public void play() { p.interactWith(ob); }
}

public class Games extends UnitTest {
 GameElementFactory
 kp = new KittiesAndPuzzles(),
 kd = new KillAndDismember();
 GameEnvironment
 g1 = new GameEnvironment(kp),
 g2 = new GameEnvironment(kd);
 // These just ensure no exceptions are thrown:
 public void test1() { g1.play(); }
 public void test2() { g2.play(); }
 public static void main(String args[]) {
 Games g = new Games();

 g.test1();
 g.test2();
 }
} ///:~

In this environment, Player objects interact with Obstacle objects, but
there are different types of players and obstacles depending on what
kind of game you’re playing. You determine the kind of game by
choosing a particular GameElementFactory, and then the
GameEnvironment controls the setup and play of the game. In this
example, the setup and play is very simple, but those activities (the initial
conditions and the state change) can determine much of the game’s
outcome. Here, GameEnvironment is not designed to be inherited,
although it could very possibly make sense to do that.

This also contains examples of Double Dispatching and the Factory Method,
both of which will be explained later.

Exercises
1. Add a class Triangle to ShapeFactory1.java

2. Add a class Triangle to ShapeFactory2.java

3. Add a new type of GameEnvironment called GnomesAndFairies
to GameEnvironment.java

4. Modify ShapeFactory2.java so that it uses an Abstract Factory to
create different sets of shapes (for example, one particular type of
factory object creates “thick shapes,” another creates “thin
shapes,” but each factory object can create all the shapes: circles,
squares, triangles etc.).

6: Function objects
In Advanced C++:Programming Styles And Idioms (Addison-Wesley, 1992),
Jim Coplien coins the term “functor” which is an object whose sole
purpose is to encapsulate a function. The point is to decouple the choice
of function to be called from the site where that function is called.

This term is mentioned but not used in Design Patterns. However, the
theme of the functor is repeated in a number of patterns in that book.

Command
This is the functor in its purest sense: a method that’s an object1. By
wrapping a method in an object, you can pass it to other methods or
objects as a parameter, to tell them to perform this particular operation in
the process of fulfilling your request.

//: c06:CommandPattern.java
import java.util.*;
import com.bruceeckel.test.*;

interface Command {
 void execute();
}

class Hello implements Command {
 public void execute() {
 System.out.print("Hello ");
 }
}

class World implements Command {
 public void execute() {
 System.out.print("World! ");

1 In the Python language, all functions are already objects and so the Command
pattern is often redundant.

 }
}

class IAm implements Command {
 public void execute() {
 System.out.print("I'm the command pattern!");
 }
}

// An object that holds commands:
class Macro {
 private List commands = new ArrayList();
 public void add(Command c) { commands.add(c); }
 public void run() {
 Iterator it = commands.iterator();
 while(it.hasNext())
 ((Command)it.next()).execute();
 }
}

public class CommandPattern extends UnitTest {
 Macro macro = new Macro();
 public void test() {
 macro.add(new Hello());
 macro.add(new World());
 macro.add(new IAm());
 macro.run();
 }
 public static void main(String args[]) {
 new CommandPattern().test();
 }
} ///:~

The primary point of Command is to allow you to hand a desired action to
a method or object. In the above example, this provides a way to queue a
set of actions to be performed collectively. In this case, it allows you to
dynamically create new behavior, something you can normally only do
by writing new code but in the above example could be done by
interpreting a script (see the Interpreter pattern if what you need to do
gets very complex).

Another example of Command is c12:DirList.java. The DirFilter class is
the command object which contains its action in the method accept() that

is passed to the list() method. The list() method determines what to
include in its result by calling accept().

Design Patterns says that “Commands are an object-oriented replacement
for callbacks2.” However, I think that the word “back” is an essential part
of the concept of callbacks. That is, I think a callback actually reaches
back to the creator of the callback. On the other hand, with a Command
object you typically just create it and hand it to some method or object,
and are not otherwise connected over time to the Command object. That’s
my take on it, anyway. Later in this book, I combine a group of design
patterns under the heading of “callbacks.”

Strategy
Strategy appears to be a family of Command classes, all inherited from the
same base. But if you look at Command, you’ll see that it has the same
structure: a hierarchy of functors. The difference is in the way this
hierarchy is used. As seen in c12:DirList.java, you use Command to solve
a particular problem—in that case, selecting files from a list. The “thing
that stays the same” is the body of the method that’s being called, and the
part that varies is isolated in the functor. I would hazard to say that
Command provides flexibility while you’re writing the program, whereas
Strategy’s flexibility is at run time. Nonetheless, it seems a rather fragile
distinction.

Strategy also adds a “Context” which can be a surrogate class that
controls the selection and use of the particular strategy object—just like
State! Here’s what it looks like:

//: c06:strategy:StrategyPattern.java
package c06.strategy;
import com.bruceeckel.util.*; // Arrays2.print()
import com.bruceeckel.test.*;

// The strategy interface:
interface FindMinima {
 // Line is a sequence of points:

2 Page 235.

 double[] algorithm(double[] line);
}

// The various strategies:
class LeastSquares implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 1.1, 2.2 }; // Dummy
 }
}

class Perturbation implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 3.3, 4.4 }; // Dummy
 }
}

class Bisection implements FindMinima {
 public double[] algorithm(double[] line) {
 return new double[] { 5.5, 6.6 }; // Dummy
 }
}

// The "Context" controls the strategy:
class MinimaSolver {
 private FindMinima strategy;
 public MinimaSolver(FindMinima strat) {
 strategy = strat;
 }
 double[] minima(double[] line) {
 return strategy.algorithm(line);
 }
 void changeAlgorithm(FindMinima newAlgorithm) {
 strategy = newAlgorithm;
 }
}

public class StrategyPattern extends UnitTest {
 MinimaSolver solver =
 new MinimaSolver(new LeastSquares());
 double[] line = {
 1.0, 2.0, 1.0, 2.0, -1.0,
 3.0, 4.0, 5.0, 4.0 };
 public void test() {
 Arrays2.print(solver.minima(line));

 solver.changeAlgorithm(new Bisection());
 Arrays2.print(solver.minima(line));
 }
 public static void main(String args[]) {
 new StrategyPattern().test();
 }
} ///:~

Chain of responsibility
Chain of Responsibility might be thought of as a dynamic generalization of
recursion using Strategy objects. You make a call, and each Strategy in a
linked sequence tries to satisfy the call. The process ends when one of the
strategies is successful or the chain ends. In recursion, one method calls
itself over and over until a termination condition is reached; with Chain of
Responsibility, a method calls the same base-class method (with different
implementations) which calls another implementation of the base-class
method, etc., until a termination condition is reached.

Instead of calling a single method to satisfy a request, multiple methods
in the chain have a chance to satisfy the request, so it has the flavor of an
expert system. Since the chain is effectively a linked list, it can be
dynamically created, so you could also think of it as a more general,
dynamically-built switch statement.

In StrategyPattern.java, above, what you probably want is to
automatically find a solution. Chain of Responsibility provides a way to do
this:

//: c06:ChainOfResponsibility.java
import com.bruceeckel.util.*; // Arrays2.print()
import com.bruceeckel.test.*;
import java.util.*;

class FindMinima {
 private FindMinima successor = null;
 public void add(FindMinima succ) {
 FindMinima end = this;
 while(end.successor != null)

 end = end.successor; // Traverse list
 end.successor = succ;
 }
 public double[] nextAlgorithm(double[] line) {
 if(successor != null)
 // Try the next one in the chain:
 return successor.algorithm(line);
 else
 return new double[] {}; // Nothing found
 }
 public double[] algorithm(double[] line) {
 // FindMinima algorithm() is only the
 // start of the chain; doesn't actually try
 // to solve the problem:
 return nextAlgorithm(line);
 }
}

class LeastSquares extends FindMinima {
 public double[] algorithm(double[] line) {
 System.out.println("LeastSquares.algorithm");
 boolean weSucceed = false;
 if(weSucceed) // Actual test/calculation here
 return new double[] { 1.1, 2.2 }; // Dummy
 else // Try the next one in the chain:
 return nextAlgorithm(line);
 }
}

class Perturbation extends FindMinima {
 public double[] algorithm(double[] line) {
 System.out.println("Perturbation.algorithm");
 boolean weSucceed = false;
 if(weSucceed) // Actual test/calculation here
 return new double[] { 3.3, 4.4 }; // Dummy
 else // Try the next one in the chain:
 return nextAlgorithm(line);
 }
}

class Bisection extends FindMinima {
 public double[] algorithm(double[] line) {
 System.out.println("Bisection.algorithm");
 boolean weSucceed = true;

 if(weSucceed) // Actual test/calculation here
 return new double[] { 5.5, 6.6 }; // Dummy
 else
 return nextAlgorithm(line);
 }
}

// The "Handler" proxies to the first functor:
class MinimaSolver {
 private FindMinima chain = new FindMinima();
 void add(FindMinima newAlgorithm) {
 chain.add(newAlgorithm);
 }
 // Make the call to the top of the chain:
 double[] minima(double[] line) {
 return chain.algorithm(line);
 }
}

public
class ChainOfResponsibility extends UnitTest {
 MinimaSolver solver = new MinimaSolver();
 double[] line = {
 1.0, 2.0, 1.0, 2.0, -1.0,
 3.0, 4.0, 5.0, 4.0 };
 public void test() {
 solver.add(new LeastSquares());
 solver.add(new Perturbation());
 solver.add(new Bisection());
 Arrays2.print(solver.minima(line));
 }
 public static void main(String args[]) {
 new ChainOfResponsibility().test();
 }
} ///:~

Exercises
1. Modify ChainOfResponsibility.java so that it uses an ArrayList

to hold the different strategy objects. Use Iterators to keep track

of the current item and to move to the next one. Does this
implement the Chain of Responsibility according to GoF?

2. Implement Chain of Responsibility to create an "expert system"
that solves problems by successively trying one solution after
another until one matches. You should be able to dynamically add
solutions to the expert system. The test for solution should just be
a string match, but when a solution fits, the expert system should
return the appropriate type of ProblemSolver object. What other
pattern/patterns show up here?

7: Changing the
interface

Sometimes the problem that you’re solving is as simple as “I don’t have
the interface that I want.” Two of the patterns in Design Patterns solve
this problem: Adapter takes one type and produces an interface to some
other type. Façade creates an interface to a set of classes, simply to provide
a more comfortable way to deal with a library or bundle of resources.

Adapter
When you’ve got this, and you need that, Adapter solves the problem. The
only requirement is to produce a that, and there are a number of ways
you can accomplish this adaptation.

//: c07:Adapter.java
// Variations on the Adapter pattern.
import com.bruceeckel.test.*;

class WhatIHave {
 public void g() {}
 public void h() {}
}

interface WhatIWant {
 void f();
}

class ProxyAdapter implements WhatIWant {
 WhatIHave whatIHave;
 public ProxyAdapter(WhatIHave wih) {
 whatIHave = wih;
 }
 public void f() {
 // Implement behavior using
 // methods in WhatIHave:

 whatIHave.g();
 whatIHave.h();
 }
}

class WhatIUse {
 public void op(WhatIWant wiw) {
 wiw.f();
 }
}

// Approach 2: build adapter use into op():
class WhatIUse2 extends WhatIUse {
 public void op(WhatIHave wih) {
 new ProxyAdapter(wih).f();
 }
}

// Approach 3: build adapter into WhatIHave:
class WhatIHave2 extends WhatIHave
implements WhatIWant {
 public void f() {
 g();
 h();
 }
}

// Approach 4: use an inner class:
class WhatIHave3 extends WhatIHave {
 private class InnerAdapter implements WhatIWant{
 public void f() {
 g();
 h();
 }
 }
 public WhatIWant whatIWant() {
 return new InnerAdapter();
 }
}

public class Adapter extends UnitTest {
 WhatIUse whatIUse = new WhatIUse();
 WhatIHave whatIHave = new WhatIHave();
 WhatIWant adapt= new ProxyAdapter(whatIHave);

 WhatIUse2 whatIUse2 = new WhatIUse2();
 WhatIHave2 whatIHave2 = new WhatIHave2();
 WhatIHave3 whatIHave3 = new WhatIHave3();
 public void test() {
 whatIUse.op(adapt);
 // Approach 2:
 whatIUse2.op(whatIHave);
 // Approach 3:
 whatIUse.op(whatIHave2);
 // Approach 4:
 whatIUse.op(whatIHave3.whatIWant());
 }
 public static void main(String args[]) {
 new Adapter().test();
 }
} ///:~

I’m taking liberties with the term “proxy” here, because in Design Patterns
they assert that a proxy must have an identical interface with the object
that it is a surrogate for. However, if you have the two words together:
“proxy adapter,” it is perhaps more reasonable.

Façade
A general principle that I apply when I’m casting about trying to mold
requirements into a first-cut object is “If something is ugly, hide it inside
an object.” This is basically what Façade accomplishes. If you have a
rather confusing collection of classes and interactions that the client
programmer doesn’t really need to see, then you can create an interface
that is useful for the client programmer and that only presents what’s
necessary.

Façade is often implemented as singleton abstract factory. Of course, you
can easily get this effect by creating a class containing static factory
methods:

//: c07:Facade.java
import com.bruceeckel.test.*;

class A { public A(int x) {} }
class B { public B(long x) {} }

class C { public C(double x) {} }

// Other classes that aren't exposed by the
// facade go here ...

public class Facade extends UnitTest {
 static A makeA(int x) { return new A(x); }
 static B makeB(long x) { return new B(x); }
 static C makeC(double x) { return new C(x); }
 // The client programmer gets the objects
 // by calling the static methods:
 A a = Facade.makeA(1);
 B b = Facade.makeB(1);
 C c = Facade.makeC(1.0);
 public void test() {}
 public static void main(String args[]) {
 new Facade().test();
 }
} ///:~

The example given in Design Patterns isn’t really a Façade but just a class
that uses the other classes.

Package as a variation of Façade
To me, the Façade has a rather “procedural” (non-object-oriented) feel to
it: you are just calling some functions to give you objects. And how
different is it, really, from Abstract Factory? The point of Façade is to hide
part of a library of classes (and their interactions) from the client
programmer, to make the interface to that group of classes more
digestible and easier to understand.

However, this is precisely what the packaging features in Java
accomplish: outside of the library, you can only create and use public
classes; all the non-public classes are only accessible within the package.
It’s as if Façade is a built-in feature of Java.

To be fair, Design Patterns is written primarily for a C++ audience.
Although C++ has namespaces to prevent clashes of globals and class
names, this does not provide the class hiding mechanism that you get

with non-public classes in Java. The majority of the time I think that Java
packages will solve the Façade problem.

Exercises
1. The java.util.Map has no way to automatically load a two-

dimensional array of objects into a Map as key-value pairs. Create
an adapter class that does this.

2.

8: Table-driven
code:
configuration
flexibility

Table-driven code using
anonymous inner
classes

See ListPerformance.java example in TIJ from Chapter 9

Also GreenHouse.java

9: Interpreter/
Multiple
Languages

This chapter looks at the value of crossing language boundaries. That is,
it is often very advantageous to solve a problem using more than one
programming language, rather than being arbitrarily stuck using a single
language. As you’ll see in this chapter, often a problem that is very
difficult or tedious to solve in one language can be solved quickly and
easily in another. If you can combine the use of languages, you can often
create your product much more quickly and cheaply.

The most straightforward use of this idea is the Interpreter design pattern,
which adds an interpreted language to your program to allow the end
user to easily customize a solution. In Java, the easiest and most powerful
way to do this is with Jython1, an implementation of the Python language
in pure Java byte codes.

Interpreter solves a particular problem – that of creating a scripting
language for the user. But sometimes it’s just easier and faster to
temporarily step into another language to solve a particular aspect of
your problem. You’re not creating an interpreter, you’re just writing
some code in another language. Again, Jython is a good example of this,
but CORBA also allows you to cross language boundaries.

1 The original version of this was called JPython, but the project changed and the
name was changed to emphasize the distinctness of the new version.

Interpreter
If the application user needs greater run time flexibility, for example to
create scripts describing the desired behavior of the system, you can use
the Interpreter design pattern. Here, you create and embed a language
interpreter into your program.

Motivation
Remember that each design pattern allows one or more factors to change,
so it’s important to first be aware of which factor is changing. Sometimes
the end user of your application (rather than the programmers of that
application) needs complete flexibility in the way that they configure
some aspect of the program. That is, they need to do some kind of simple
programming. The interpreter pattern provides this flexibility by adding
a language interpreter.

The problem is that developing your own language and building an
interpreter for it is a time-consuming distraction from the process of
building your application. You must ask whether you want to finish
writing your application or create a new language. The best solution is to
reuse code: embed an interpreter that’s already been built and debugged
for you. The Python language can be freely embedded in your for-profit
application without signing any license agreement, paying royalties, or
dealing with strings of any kind. There are basically no restrictions at all
when you're using Python.

Python is a language that is very easy to learn, very logical to read and
write, supports functions and objects, has a large set of available libraries,
and runs on virtually every platform. You can download Python and
learn more about it by going to www.Python.org.

For solving Java problems, we will look at a special version of Python
called Jython. This is generated entirely in Java byte codes, so
incorporating it into your application is quite simple, and it’s as portable
as Java is. It has an extremely clean interface with Java: Java can call
Python classes, and Python can call Java classes.

Python is designed with classes from the ground up and is a truly pure
object oriented language (both C++ and Java violate purity in various
ways). Python scales up so that you can create very big programs with it,
without losing control of the code.

To install Python, go to www.Python.org and follow the links and
instructions. To install Jython, go to http://sourceforge.net/projects/jython.
The download is a .class file, which will run an installer when you
execute it with Java.

Python overview
To get you started, here is a brief introduction for the experienced
programmer (which is what you should be if you’re reading this book).
You should refer to the full documentation at www.Python.org (especially
the incredibly useful HTML page A Python Quick Reference), and also
numerous books such as Learning Python by Mark Lutz and David Ascher
(O’Reilly, 1999).

Python is often referred to as a scripting language, but scripting
languages tend to be limiting, especially in the scope of the problems that
they solve. Python, on the other hand, is a programming language that
also supports scripting. It is marvelous for scripting, and you may find
yourself replacing all your batch files, shell scripts, and simple programs
with Python scripts. But it is far more than a scripting language.

Python is designed to be very clean to write and especially to read. You
will find that it’s quite easy to read your own code long after you’ve
written it, and also to read other people’s code. This is accomplished
partially through clean, to-the-point syntax, but a major factor in code
readability is the indentation – scoping in Python is determined by
indentation. For example:

#: c09:if.py
response = "yes"
if response == "yes":
 print "affirmative"
 val = 1
print "continuing..."
#:~

http://www.python.org/
http://sourceforge.net/projects/jython

First notice that the basic syntax of Python is C-ish, for example, the if
statement. But in a C if, you would be required to use parentheses
around the conditional, whereas they are not necessary in Python (but it
won’t complain if you use them anyway).

The conditional clause ends with a colon, and this indicates that what
follows will be a group of indented statements, which are the “then” part
of the if statement. In this case, there is a “print” statement which sends
the result to standard output, followed by an assignment to a variable
named val. The subsequent statement is not indented so it is no longer
part of the if. Indenting can nest to any level, just like curly braces in C++
or Java, but unlike those languages there is no option (and no argument)
about where the braces are placed – the compiler forces everyone’s code
to be formatted the same way, which is one of the main reasons for
Python’s consistent readability.

Python normally has only one statement per line (you can put more by
separating them with semicolons) and so no terminating semicolon is
necessary. Even from this brief example you can see that the language is
designed to be as simple as possible, and yet still very readable.

Built-in containers
With languages like C++ and Java, containers are add-on libraries and
not integral to the language. In Python, the essential nature of containers
for programming is acknowledged by building them into the core of the
language: both lists and associative arrays (a.k.a. maps, dictionaries, hash
tables) are fundamental data types. This adds much to the elegance of the
language.

In addition, the for statement automatically iterates through lists rather
than just counting through a sequence of numbers. This makes a lot of
sense when you think about it, since you’re almost always using a for
loop to step through an array or a container. Python formalizes this by
automatically making for use an iterator that works through a sequence.
For example:

#: c09:list.py
list = [1, 3, 5, 7, 9, 11]
print list
list.append(13)

for x in list:
 print x
#:~

The first line creates a list. You can print the list and it will look exactly as
you put it in (remember that I had to create a special Arrays2 class in
order to print arrays in Java). Lists are like Java containers – you can add
new elements to them (here, append() is used) and they will
automatically resize themselves. The for statement creates an iterator x
which takes on each value in the list as it prints it.

You can create a list of numbers with the range() function, so if you
really need to imitate C’s for, you can.

Notice that there aren’t any type declarations – the object names simply
appear, and Python infers their type. Again, it’s almost as if it’s created so
that you only need to press the keys that absolutely must. You’ll find
after you’ve worked with Python for a short while that you’ve been using
up a lot of brain cycles parsing semicolons, curly braces, and all sorts of
other extra verbiage that was demanded by the programming language
but didn’t actually describe what your program was supposed to do.

Functions
To create a function in Python, you use the def keyword, followed by the
function name and argument list, and a colon to begin the function body.
Here is the first example turned into a function:

#: c09:myFunction.py
def myFunction(response):
 val = 0
 if response == "yes":
 print "affirmative"
 val = 1
 print "continuing..."
 return val

print myFunction('no')
print myFunction('yes')
#:~

Notice there is no type information in the function signature – all it
specifies is the name of the function and the argument identifiers, but no

argument types or return types. Python is a weakly-typed language, which
means it puts the minimum possible requirements on typing. For
example, you could pass and return different types from the same
function:

#: c09:differentReturns.py
def differentReturns(arg):
 if arg == 1:
 return "one"
 if arg == "one":
 return 1

print differentReturns(1)
print differentReturns("one")
#:~

The only constraints on an object that is passed into the function are that
the function can apply its operations to that object, but other than that, it
doesn’t care. Here, the same function applies the ‘+’ operator to integers
and strings:

#: c09:sum.py
def sum(arg1, arg2):
 return arg1 + arg2

print sum(42, 47)
print sum('spam ', "eggs")
#:~

When the operator ‘+’ is used with strings, it means concatenation (yes,
Python supports operator overloading, and it does a nice job of it).

Strings
The above example also shows a little bit about Python string handling,
which is the best of any language I’ve seen. You can use single or double
quotes to represent strings, which is very nice because if you surround a
string with double quotes, you can embed single quotes and vice versa:

#: c09:strings.py
print "That isn't a horse"
print 'You are not a "Viking"'
print """You're just pounding two
coconut halves together."""

print '''"Oh no!" He exclaimed.
"It's the blemange!"'''
print r'c:\python\lib\utils'
#:~

Note that Python was not named after the snake, but rather the Monty
Python comedy troupe, and so examples are virtually required to include
Python-esque references.

The triple-quote syntax quotes everything, including newlines. This
makes it particularly useful for doing things like generating web pages
(Python is an especially good CGI language), since you can just triple-
quote the entire page that you want without any other editing.

The ‘r’ right before a string means “raw,” which takes the backslashes
literally so you don’t have to put in an extra backslash.

Substitution in strings is exceptionally easy, since Python uses C’s
printf() substitution syntax, but for any string at all. You simply follow
the string with a ‘%’ and the values to substitute:

#: c09:stringFormatting.py
val = 47
print "The number is %d" % val
val2 = 63.4
s = "val: %d, val2: %f" % (val, val2)
print s
#:~

As you can see in the second case, if you have more than one argument
you surround them in parentheses (this forms a tuple, which is a list that
cannot be modified).

All the formatting from printf() is available, including control over the
number of decimal places and alignment. Python also has very
sophisticated regular expressions.

Classes
Like everything else in Python, the definition of a class uses a minimum
of additional syntax. You use the class keyword, and inside the body you
use def to create methods. Here’s a simple class (The ‘#’ denotes a
comment that goes until the end of the line, just like C++ and Java ‘//’
comments):

#: c09:SimpleClass.py
class Simple:
 def __init__(self, str):
 print "Inside the Simple constructor"
 self.s = str
 # Two methods:
 def show(self):
 print self.s
 def showMsg(self, msg):
 print msg + ':',
 self.show() # Calling another method

if __name__ == "__main__":
 # Create an object:
 x = Simple("constructor argument")
 x.show()
 x.showMsg("A message")
#:~

Both methods have “self” as their first argument. C++ and Java both
have a hidden first argument in their class methods, which points to the
object that the method was called for and can be accessed using the
keyword this. Python methods also use a reference to the current object,
but when you are defining a method you must explicitly specify the
reference as the first argument. Traditionally, the reference is called self
but you could use any identifier you want (if you do not use self you will
probably confuse a lot of people, however). If you need to refer to fields
in the object or other methods in the object, you must use self in the
expression. However, when you call a method for an object as in
x.show(), you do not hand it the reference to the object – that is done for
you.

Here, the first method is special, as is any identifier that begins and ends
with double underscores. In this case, it defines the constructor, which is
automatically called when the object is created, just like in C++ and Java.
However, at the bottom of the example you can see that the creation of an
object looks just like a function call using the class name. Python’s spare
syntax makes you realize that the new keyword isn’t really necessary in
C++ or Java, either.

All the code at the bottom is set off by an if clause, which checks to see if
something called __name__ is equivalent to __main__. Again, the double
underscores indicate special names. The reason for the if is that this file

can also be used as a library module within another program (modules
are described shortly). In that case, you just want the classes defined, but
you don’t want the code at the bottom of the file to be executed. This
particular if statement is only true when you are running this file
directly; that is, if you say on the command line:

Python SimpleClass.py

However, if this file is imported as a module into another program, the
__main__ code is not executed.

Something that’s a little surprising at first is that you define fields inside
methods, and not outside of the methods like C++ or Java (if you create
fields a la C++ or Java, they implicitly become static fields). To create an
object field, you just name it inside of one of the methods (usually in the
constructor, but not always), and space is created when that method is
run. This seems a little strange coming from C++ or Java where you must
decide ahead of time how much space your object is going to occupy, but
it turns out to be a very flexible way to program.

Inheritance
Because Python is weakly typed, it doesn’t really care about interfaces –
all it cares about is applying operations to objects (in fact, Java’s interface
keyword would be wasted in Python). This means that inheritance in
Python is different from inheritance in C++ or Java, where you often
inherit simply to establish a common interface. In Python, the only
reason you inherit is to inherit an implementation – to re-use the code in
the base class.

If you’re going to inherit from a class, you must tell Python to bring that
class into your new file. Python controls its name spaces as aggressively
as Java does, and in a similar fashion (albeit with Python’s penchant for
simplicity). Every time you create a file, you implicitly create a module
(which is like a package in Java) with the same name as that file. Thus, no
package keyword is needed in Python. When you want to use a module,
you just say import and give the name of the module. Python searches
the PYTHONPATH in the same way that Java searches the CLASSPATH
(but for some reason, Python doesn’t have the same kinds of pitfalls as
Java does) and reads in the file. To refer to any of the functions or classes
within a module, you give the module name, a period, and the function

or class name. If you don’t want the trouble of qualifying the name, you
can say

from module import name(s)

Where “name(s)” can be a list of names separated by commas.

You inherit a class (or classes – Python supports multiple inheritance) by
listing the name(s) of the class inside parentheses after the class name.
Note that the Simple class, which resides in the file (and thus, module)
named SimpleClass is brought into this new name space using an
import statement:

#: c09:Simple2.py
from SimpleClass import Simple

class Simple2(Simple):
 def __init__(self, str):
 print "Inside Simple2 constructor"
 # You must explicitly call
 # the base-class constructor:
 Simple.__init__(self, str)
 def display(self):
 self.showMsg("Called from display()")
 # Overriding a base-class method
 def show(self):
 print "Overridden show() method"
 # Calling a base-class method from inside
 # the overridden method:
 Simple.show(self)

class Different:
 def show(self):
 print "Not derived from Simple"

if __name__ == "__main__":
 x = Simple2("Simple2 constructor argument")
 x.display()
 x.show()
 x.showMsg("Inside main")
 def f(obj): obj.show() # One-line definition
 f(x)
 f(Different())
#:~

Simple2 is inherited from Simple, and in the constructor, the base-class
constructor is called. Note that in display(), showMsg() can be called as
a method of self, but when calling the base-class version of the method
you are overriding, you must fully qualify the name and pass self in as
the first argument, as shown in the base-class constructor call. This can
also be seen in the overridden version of show().

In __main__, you will see (when you run the program) that the base-class
constructor is called. You can also see that the showMsg() method is
available in the derived class, just as you would expect with inheritance.

The class Different also has a method named show(), but this class is not
derived from Simple. The f() method defined in __main__ demonstrates
weak typing: all it cares about is that show() can be applied to obj, and it
doesn’t have any other type requirements. You can see that f() can be
applied equally to an object of a class derived from Simple and one that
isn’t, without discrimination. If you’re a C++ programmer, you should
see that the objective of the C++ template feature is exactly this: to
provide weak typing in a strongly-typed language. Thus, in Python you
automatically get the equivalent of templates – without having to learn
that particularly difficult syntax and semantics.

Creating a language
It turns out to be remarkably simple to use Jython to create an interpreted
language inside your application. Consider the greenhouse controller
example from Chapter 8 of Thinking in Java, 2nd edition. This is a situation
where you want the end user – the person managing the greenhouse – to
have configuration control over the system, and so a simple scripting
language is the ideal solution.

To create the language, we’ll simply write a set of Python classes, and the
constructor of each will add itself to a master list. The common data and
behavior will be factored into the base-class Event. Each Event object will
contain an action string (for simplicity – in reality, you’d have some sort
of functionality) and a time when the event is supposed to run. The
constructor initializes these fields, and then adds the new Event object to
a static list called events (defining it in the class, but outside of any
methods, is what makes it static):

#:c09:GreenHouseLanguage.py

class Event:
 events = [] # static
 def __init__(self, action, time):
 self.action = action
 self.time = time
 Event.events.append(self)
 # Used by sort(). This will cause
 # comparisons to be based only on time:
 def __cmp__ (self, other):
 if self.time < other.time: return -1
 if self.time > other.time: return 1
 return 0
 def run(self):
 print "%.2f: %s" % (self.time, self.action)

class LightOn(Event):
 def __init__(self, time):
 Event.__init__(self, "Light on", time)

class LightOff(Event):
 def __init__(self, time):
 Event.__init__(self, "Light off", time)

class WaterOn(Event):
 def __init__(self, time):
 Event.__init__(self, "Water on", time)

class WaterOff(Event):
 def __init__(self, time):
 Event.__init__(self, "Water off", time)

class ThermostatNight(Event):
 def __init__(self, time):
 Event.__init__(self,"Thermostat night", time)

class ThermostatDay(Event):
 def __init__(self, time):
 Event.__init__(self, "Thermostat day", time)

class Bell(Event):
 def __init__(self, time):
 Event.__init__(self, "Ring bell", time)

def run():
 Event.events.sort();
 for e in Event.events:
 e.run()

To test, this will be run when you say:
python GreenHouseLanguage.py
if __name__ == "__main__":
 ThermostatNight(5.00)
 LightOff(2.00)
 WaterOn(3.30)
 WaterOff(4.45)
 LightOn(1.00)
 ThermostatDay(6.00)
 Bell(7.00)
 run()
#:~

The constructor of each derived class calls the base-class constructor,
which adds the new object to the list. The run() function sorts the list,
which automatically uses the __cmp__() method that was defined in
Event to base comparisons on time only. In this example, it only prints
out the list, but in the real system it would wait for the time of each event
to come up and then run the event.

The __main__ section tests the classes to make sure they work right.

The above file is now a module that can be included in another Python
program to define all the classes it contains. But instead of an ordinary
Python program, let’s use Jython inside of Java. This turns out to be
remarkably simple: you import some Jython classes, create a
PythonInterpreter object, and cause the files to be loaded in:

//: c09:GreenHouseController.java
import org.python.util.PythonInterpreter;
import org.python.core.*;
import com.bruceeckel.test.*;

public class
GreenHouseController extends UnitTest {
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {

 System.out.println(
 "Loading GreenHouse Language");
 interp.execfile("GreenHouseLanguage.py");
 System.out.println(
 "Loading GreenHouse Script");
 interp.execfile("Schedule.ghs");
 System.out.println(
 "Executing GreenHouse Script");
 interp.exec("run()");
 }
 public static void
 main(String[] args) throws PyException {
 new GreenHouseController().test();
 }
} ///:~

The PythonInterpreter object is a complete Python interpreter that
accepts commands from the Java program. One of these commands is
execfile(), which tells it to execute all the statements it finds in a
particular file. By executing GreenHouseLanguage.py, all the classes
from that file are loaded into our PythonInterpreter object, and so it now
“holds” the greenhouse controller language. The Schedule.ghs file is the
one created by the end user to control the greenhouse. Here’s an
example:

//:! c09:Schedule.ghs
Bell(7.00)
ThermostatDay(6.00)
WaterOn(3.30)
LightOn(1.00)
ThermostatNight(5.00)
LightOff(2.00)
WaterOff(4.45)
///:~

This is the goal of the interpreter design pattern: to make the
configuration of your program as simple as possible for the end user.
With Jython you can achieve this with almost no effort at all.

One of the other methods available to the PythonInterpreter is exec(),
which allows you to send a command to the interpreter. Here, the run()
function is called using exec().

Configuring Jython
Remember, to run this program you must go to
http://sourceforge.net/projects/jython and download and install Jython
(actually, you only need jython.jar in your CLASSPATH). Once that’s in
place, it’s just like running any other Java program.

You may need to edit jython.bat, as it can incorrectly assume a path for
your java.exe program.

Many improvements have been made in the installation process for
Jython over the old JPython, but it’s still important that jython.jar is in
your CLASSPATH.

Generating documentation
Jython 2.0, for some reason, is distributed with only minimal API
documentation. In fact, only PythonInterpreter has the Java
documentation created for it. The Java documentation strings are there
for the rest of the classes, but they weren’t extracted. Although many of
the classes are not necessary in order to program with Jython, many are
and so it’s valuable to run Javadoc in order to generate the HTML
documentation.

Here is the makefile that I used to create the Java documentation:

all:
 javadoc -sourcepath C:\Progtools\Jython\ \
 -d C:\ProgTools\Jython\docs\new \
 org.python.core org.python.modules \
 org.python.util org.python.rmi

You’ll have to adjust the paths to fit your own installation. The
sourcepath is where you installed Jython, and –d indicates the
destination directory for the generated HTML files. Look up the JDK
online documentation for Javadoc for further details.

Once you generate the documentation, you can poke through and pick
up a few bits and pieces you wouldn’t otherwise find.

http://sourceforge.net/projects/jython

Controlling the interpreter
The prior example only creates and runs the interpreter using external
scripts. In the rest of this chapter, we shall look at more sophisticated
ways to interact with Jython. The simplest way to have more control over
the PythonInterpreter object from within Java is to send data to the
interpreter, and pull data back out.

Putting data in
To inject data into your Python program, the PythonInterpreter class has
a deceptively simple method: set(). However, set() takes many different
data types and performs conversions upon them. The following example
is a reasonably thorough exercise of the various set() possibilities, along
with comments that should give a fairly complete explanation:

//: c09:PythonInterpreterSetting.java
// Passing data from Java to python when using
// the PythonInterpreter object.
import org.python.util.PythonInterpreter;
import org.python.core.*;
import java.util.*;
import com.bruceeckel.python.*;
import com.bruceeckel.test.*;

public class
PythonInterpreterSetting extends UnitTest {
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {
 // It automatically converts Strings into
 // native Python strings:
 interp.set("a", "This is a test");
 interp.exec("print a");
 interp.exec("print a[5:]"); // A slice
 // It also knows what to do with arrays:
 String[] s = { "How", "Do", "You", "Do?" };
 interp.set("b", s);
 interp.exec("for x in b: print x[0], x");
 // set() only takes Objects, so it can't
 // figure out primitives. Instead,
 // you have to use wrappers:

 interp.set("c", new PyInteger(1));
 interp.set("d", new PyFloat(2.2));
 interp.exec("print c + d");
 // You can also use Java's object wrappers:
 interp.set("c", new Integer(9));
 interp.set("d", new Float(3.14));
 interp.exec("print c + d");
 // Define a Python function to print arrays:
 interp.exec(
 "def prt(x): \n" +
 " print x \n" +
 " for i in x: \n" +
 " print i, \n" +
 " print x.__class__\n");
 // Arrays are Objects, so it has no trouble
 // figuring out the types contained in arrays:
 Object[] types = {
 new boolean[]{ true, false, false, true },
 new char[]{ 'a', 'b', 'c', 'd' },
 new byte[]{ 1, 2, 3, 4 },
 new int[]{ 10, 20, 30, 40 },
 new long[]{ 100, 200, 300, 400 },
 new float[]{ 1.1f, 2.2f, 3.3f, 4.4f },
 new double[]{ 1.1, 2.2, 3.3, 4.4 },
 };
 for(int i = 0; i < types.length; i++) {
 interp.set("e", types[i]);
 interp.exec("prt(e)");
 }
 // It uses toString() to print Java objects:
 interp.set("f", new Date());
 interp.exec("print f");
 // You can pass it a List and
 // index into it...
 ArrayList x = new ArrayList();
 for(int i = 0; i < 10; i++)
 x.add(new Integer(i * 10));
 interp.set("g", x);
 interp.exec("print g");
 interp.exec("print g[1]");
 // ... But it's not quite smart enough
 // to treat it as a Python array:
 interp.exec("print g.__class__");
 // interp.exec("print g[5:]); // Fails

 // If you want it to be a python array, you
 // must extract the Java array:
 System.out.println("ArrayList to array:");
 interp.set("h", x.toArray());
 interp.exec("print h.__class__");
 interp.exec("print h[5:]");
 // Passing in a Map:
 Map m = new HashMap();
 m.put(new Integer(1), new Character('a'));
 m.put(new Integer(3), new Character('b'));
 m.put(new Integer(5), new Character('c'));
 m.put(new Integer(7), new Character('d'));
 m.put(new Integer(11), new Character('e'));
 System.out.println("m: " + m);
 interp.set("m", m);
 interp.exec("print m, m.__class__, " +
 "m[1], m[1].__class__");
 // Not a Python dictionary, so this fails:
 //! interp.exec("for x in m.keys():" +
 //! "print x, m[x]");
 // To convert a Map to a Python dictionary,
 // use com.bruceeckel.python.PyUtil:
 interp.set("m", PyUtil.toPyDictionary(m));
 interp.exec("print m, m.__class__, " +
 "m[1], m[1].__class__");
 interp.exec("for x in m.keys():print x,m[x]");
 }
 public static void
 main(String[] args) throws PyException {
 new PythonInterpreterSetting().test();
 }
} ///:~

As usual with Java, the distinction between real objects and primitive
types causes trouble. In general, if you pass a regular object to set(), it
knows what to do with it, but if you want to pass in a primitive you must
perform a conversion. One way to do this is to create a “Py” type, such as
PyInteger or PyFloat. but it turns out you can also use Java’s own object
wrappers like Integer and Float, which is probably going to be a lot
easier to remember.

Early in the program you’ll see an exec() containing the Python
statement:

print a[5:]

The colon inside the indexing statement indicates a Python slice, which
produces a range of elements from the original array. In this case, it
produces an array containing the elements from number 5 until the end
of the array. You could also say ‘a[3:5]’ to produce elements 3 through 5,
or ‘a[:5]’ to produce the elements zero through 5. The reason a slice is
used in this statement is to make sure that the Java String has really been
converted to a Python string, which can also be treated as an array of
characters.

You can see that it’s possible, using exec(), to create a Python function
(although it’s a bit awkward). The prt() function prints the whole array,
and then (to make sure it’s a real Python array), iterates through each
element of the array and prints it. Finally, it prints the class of the array,
so we can see what conversion has taken place (Python not only has run-
time type information, it also has the equivalent of Java reflection). The
prt() function is used to print arrays that come from each of the Java
primitive types.

Although a Java ArrayList does pass into the interpreter using set(), and
you can index into it as if it were an array, trying to create a slice fails. To
completely convert it into an array, one approach is to simply extract a
Java array using toArray(), and pass that in. The set() method converts it
to a PyArray type, which is one of the classes provided with Jython and
can be treated as a Python array (you can also explicitly create a PyArray,
but this seems unnecessary).

Finally, a Map is created and passed directly into the interpreter. While it
is possible to do simple things like index into the resulting object, it’s not
a real Python dictionary so you can’t (for example) call the keys()
method. There is no straightforward way to convert a Java Map into a
Python dictionary, and so I wrote a utility called toPyDictionary() and
made it a static method of com.bruceeckel.python.PyUtil. This also
includes utilities to extract a Python array into a Java List, and a Python
dictionary into a Java Map:

//: com:bruceeckel:python:PyUtil.java
// PythonInterpreter utilities
package com.bruceeckel.python;
import org.python.util.PythonInterpreter;
import org.python.core.*;

import java.util.*;

public class PyUtil {
 /** Extract a Python tuple or array into a Java
 List (which can be converted into other kinds
 of lists and sets inside Java).
 @param interp The Python interpreter object
 @param pyName The id of the python list object
 */
 public static List
 toList(PythonInterpreter interp, String pyName){
 return new ArrayList(Arrays.asList(
 (Object[])interp.get(
 pyName, Object[].class)));
 }
 /** Extract a Python dictionary into a Java Map
 @param interp The Python interpreter object
 @param pyName The id of the python dictionary
 */
 public static Map
 toMap(PythonInterpreter interp, String pyName){
 PyList pa = ((PyDictionary)interp.get(
 pyName)).items();
 Map map = new HashMap();
 while(pa.__len__() != 0) {
 PyTuple po = (PyTuple)pa.pop();
 Object first = po.__finditem__(0)
 .__tojava__(Object.class);
 Object second = po.__finditem__(1)
 .__tojava__(Object.class);
 map.put(first, second);
 }
 return map;
 }
 /** Turn a Java Map into a PyDictionary,
 suitable for placing into a PythonInterpreter
 @param map The Java Map object
 */
 public static PyDictionary
 toPyDictionary(Map map) {
 Map m = new HashMap();
 Iterator it = map.entrySet().iterator();
 while(it.hasNext()) {
 Map.Entry e = (Map.Entry)it.next();

 m.put(Py.java2py(e.getKey()),
 Py.java2py(e.getValue()));
 }
 // PyDictionary constructor wants a Hashtable:
 return new PyDictionary(new Hashtable(m));
 }
} ///:~

Here is the (black-box) unit testing code:

//: com:bruceeckel:python:Test.java
package com.bruceeckel.python;
import org.python.util.PythonInterpreter;
import java.util.*;
import com.bruceeckel.test.*;

public class Test extends UnitTest {
 PythonInterpreter pi =
 new PythonInterpreter();
 public void test1() {
 pi.exec("tup=('fee','fi','fo','fum','fi')");
 List lst = PyUtil.toList(pi, "tup");
 System.out.println(lst);
 System.out.println(new HashSet(lst));
 }
 public void test2() {
 pi.exec("ints=[1,3,5,7,9,11,13,17,19]");
 List lst = PyUtil.toList(pi, "ints");
 System.out.println(lst);
 }
 public void test3() {
 pi.exec("dict = { 1 : 'a', 3 : 'b', " +
 "5 : 'c', 9 : 'd', 11 : 'e'}");
 Map mp = PyUtil.toMap(pi, "dict");
 System.out.println(mp);
 }
 public void test4() {
 Map m = new HashMap();
 m.put("twas", new Integer(11));
 m.put("brillig", new Integer(27));
 m.put("and", new Integer(47));
 m.put("the", new Integer(42));
 m.put("slithy", new Integer(33));
 m.put("toves", new Integer(55));
 System.out.println(m);

 pi.set("m", PyUtil.toPyDictionary(m));
 pi.exec("print m");
 pi.exec("print m['slithy']");
 }
 public static void main(String args[]) {
 Test t = new Test();
 t.test1();
 t.test2();
 t.test3();
 t.test4();
 }
} ///:~

We’ll see the use of the extraction tools in the next section.

Getting data out
There are a number of different ways to extract data from the
PythonInterpreter. If you simply call the get() method, passing it the
object identifier as a string, it returns a PyObject (part of the
org.python.core support classes). It’s possible to “cast” it using the
__tojava__() method, but there are better alternatives:

1. The convenience methods in the Py class, such as py2int(), take a
PyObject and convert it to a number of different types.

2. An overloaded version of get() takes the desired Java Class object
as a second argument, and produces an object that has that run-
time type (so you still need to cast the result).

Using the second approach, getting an array from the PythonInterpreter
is quite easy. This is especially useful because Python is exceptionally
good at manipulating strings and files, and so you will commonly want
to extract the results as an array of strings. For example, you can do a
wildcard expansion of file names using Python’s glob(), as shown
further down in the following code:

//: c09:PythonInterpreterGetting.java
// Getting data from the PythonInterpreter object.
import org.python.util.PythonInterpreter;
import org.python.core.*;
import java.util.*;
import com.bruceeckel.python.*;

import com.bruceeckel.test.*;

public class
PythonInterpreterGetting extends UnitTest{
 PythonInterpreter interp =
 new PythonInterpreter();
 public void test() throws PyException {
 interp.exec("a = 100");
 // If you just use the ordinary get(),
 // it returns a PyObject:
 PyObject a = interp.get("a");
 // There's not much you can do with a generic
 // PyObject, but you can print it out:
 System.out.println("a = " + a);
 // If you know the type it's supposed to be,
 // you can "cast" it using __tojava__() to
 // that Java type and manipulate it in Java.
 // To use 'a' as an int, you must use
 // the Integer wrapper class:
 int ai= ((Integer)a.__tojava__(Integer.class))
 .intValue();
 // There are also convenience functions:
 ai = Py.py2int(a);
 System.out.println("ai + 47 = " + (ai + 47));
 // You can also choose to convert
 // it to different types:
 float af = Py.py2float(a);
 System.out.println("af + 47 = " + (af + 47));
 // If you try to cast it to an inappropriate
 // type you'll get a runtime exception:
 //! String as = (String)a.__tojava__(
 //! String.class);

 // If you know the type, a more useful method
 // is the overloaded get() that takes the
 // desired class as the 2nd argument:
 interp.exec("x = 1 + 2");
 int x = ((Integer)interp
 .get("x", Integer.class)).intValue();
 System.out.println("x = " + x);

 // Since Python is so good at manipulating
 // strings and files, you will often need to
 // extract an array of Strings. Here, a file

 // is read as a Python array:
 interp.exec("lines = " +
 "open('PythonInterpreterGetting.java')" +
 ".readlines()");
 // Pull it in as a Java array of String:
 String[] lines = (String[])
 interp.get("lines", String[].class);
 for(int i = 0; i < 10; i++)
 System.out.print(lines[i]);

 // As an example of useful string tools,
 // global expansion of ambiguous file names
 // using glob is very useful, but it's not
 // part of the standard Jython package, so
 // you'll have to make sure that your
 // Python path is set to include these, or
 // that you deliver the necessary Python
 // files with your application.
 interp.exec("from glob import glob");
 interp.exec("files = glob('*.java')");
 String[] files = (String[])
 interp.get("files", String[].class);
 for(int i = 0; i < files.length; i++)
 System.out.println(files[i]);

 // You can extract tuples and arrays into
 // Java Lists with com.bruceeckel.PyUtil:
 interp.exec(
 "tup = ('fee', 'fi', 'fo', 'fum', 'fi')");
 List tup = PyUtil.toList(interp, "tup");
 System.out.println(tup);
 // It really is a list of String objects:
 System.out.println(tup.get(0).getClass());
 // You can easily convert it to a Set:
 Set tups = new HashSet(tup);
 System.out.println(tups);
 interp.exec("ints=[1,3,5,7,9,11,13,17,19]");
 List ints = PyUtil.toList(interp, "ints");
 System.out.println(ints);
 // It really is a List of Integer objects:
 System.out.println((ints.get(1)).getClass());

 // If you have a Python dictionary, it can
 // be extracted into a Java Map, again with

 // com.bruceeckel.PyUtil:
 interp.exec("dict = { 1 : 'a', 3 : 'b'," +
 "5 : 'c', 9 : 'd', 11 : 'e' }");
 Map map = PyUtil.toMap(interp, "dict");
 System.out.println("map: " + map);
 // It really is Java objects, not PyObjects:
 Iterator it = map.entrySet().iterator();
 Map.Entry e = (Map.Entry)it.next();
 System.out.println(e.getKey().getClass());
 System.out.println(e.getValue().getClass());
 }
 public static void
 main(String[] args) throws PyException {
 new PythonInterpreterGetting().test();
 }
} ///:~

The last two examples show the extraction of Python tuples and lists into
Java Lists, and Python dictionaries into Java Maps. Both of these cases
require more processing than is provided in the standard Jython library,
so I have again created utilities in com.bruceeckel.pyton.PyUtil: toList()
to produce a List from a Python sequence, and toMap() to produce a
Map from a Python dictionary. The PyUtil methods make it easier to take
important data structures back and forth between Java and Python.

Multiple interpreters
It’s also worth noting that you can have multiple PythonInterpreter
objects in a program, and each one has its own name space:

//: c09:MultipleJythons.java
// You can run multiple interpreters, each
// with its own name space.
import org.python.util.PythonInterpreter;
import org.python.core.*;
import com.bruceeckel.test.*;

public class MultipleJythons extends UnitTest {
 PythonInterpreter
 interp1 = new PythonInterpreter(),
 interp2 = new PythonInterpreter();
 public void test() throws PyException {
 interp1.set("a", new PyInteger(42));
 interp2.set("a", new PyInteger(47));

 interp1.exec("print a");
 interp2.exec("print a");
 PyObject x1 = interp1.get("a");
 PyObject x2 = interp2.get("a");
 System.out.println("a from interp1: " + x1);
 System.out.println("a from interp2: " + x2);
 }
 public static void
 main(String[] args) throws PyException {
 new MultipleJythons().test();
 }
} ///:~

When you run the program you’ll see that the value of a is distinct within
each PythonInterpreter.

Controlling Java from
Jython

Since you have the Java language at your disposal, and you can set and
retrieve values in the interpreter, there’s a tremendous amount that you
can accomplish with the above approach (controlling Python from Java).
But one of the amazing things about Jython is that it makes Java classes
almost transparently available from within Jython. Basically, a Java class
looks like a Python class. This is true for standard Java library classes and
classes that you create yourself, as you can see here:

#: c09:JavaClassInPython.py
#=M jython JavaClassInPython.py
Using Java classes within Jython
from java.util import Date, HashSet, HashMap
from c09.javaclass import JavaClass
from math import sin

d = Date() # Creating a Java Date object
print d # Calls toString()

A "generator" to easily create data:
class ValGen:
 def __init__(self, maxVal):
 self.val = range(maxVal)

 # Called during 'for' iteration:
 def __getitem__(self, i):
 # Returns a tuple of two elements:
 return self.val[i], sin(self.val[i])

Java standard containers:
map = HashMap()
set = HashSet()

for x, y in ValGen(10):
 map.put(x, y)
 set.add(y)
 set.add(y)

print map
print set

Iterating through a set:
for z in set:
 print z, z.__class__

print map[3] # Uses Python dictionary indexing
for x in map.keySet(): # keySet() is a Map method
 print x, map[x]

Using a Java class that you create yourself is
just as easy:
jc = JavaClass()
jc2 = JavaClass("Created within Jython")
print jc2.getVal()
jc.setVal("Using a Java class is trivial")
print jc.getVal()
print jc.getChars()
jc.val = "Using bean properties"
print jc.val
#:~

The “=M” comment is recognized by the makefile generator tool (that I
created for this book) as a replacement makefile command. This will be
used instead of the commands that the extraction tool would normally
place in the makefile.

Note that the import statements map to the Java package structure
exactly as you would expect. In the first example, a Date() object is

created as if it were a native Python class, and printing this object just
calls toString().

ValGen implements the concept of a “generator” which is used a great
deal in the C++ STL (Standard Template Library, part of the Standard C++
Library). A generator is an object that produces a new object every time
its “generation method” is called, and it is quite convenient for filling
containers. Here, I wanted to use it in a for iteration, and so I needed the
generation method to be the one that is called by the iteration process.
This is a special method called __getitem__(), which is actually the
overloaded operator for indexing, ‘[]’. A for loop calls this method every
time it wants to move the iteration forward, and when the elements run
out, __getitem__() throws an out-of-bounds exception and that signals
the end of the for loop (in other languages, you would never use an
exception for ordinary control flow, but in Python it seems to work quite
well). This exception happens automatically when self.val[i] runs out of
elements, so the __getitem__() code turns out to be simple. The only
complexity is that __getitem__() appears to return two objects instead of
just one. What Python does is automatically package multiple return
values into a tuple, so you still only end up returning a single object (in
C++ or Java you would have to create your own data structure to
accomplish this). In addition, in the for loop where ValGen is used,
Python automatically “unpacks” the tuple so that you can have multiple
iterators in the for. These are the kinds of syntax simplifications that
make Python so endearing.

The map and set objects are instances of Java’s HashMap and HashSet,
again created as if those classes were just native Python components. In
the for loop, the put() and add() methods work just like they do in Java.
Also, indexing into a Java Map uses the same notation as for dictionaries,
but note that to iterate through the keys in a Map you must use the Map
method keySet() rather than the Python dictionary method keys().

The final part of the example shows the use of a Java class that I created
from scratch, to demonstrate how trivial it is. Notice also that Jython
intuitively understands JavaBeans properties, since you can either use the
getVal() and setVal() methods, or assign to and read from the
equivalent val property. Also, getChars() returns a Character[] in Java,
and this becomes an array in Python.

The easiest way to use Java classes that you create for use inside a Python
program is to put them inside a package. Although Jython can also
import unpackaged java classes (import JavaClass), all such unpackaged
java classes will be treated as if they were defined in different packages
so they can only see each other’s public methods.

Java packages translate into Python modules, and Python must import a
module in order to be able to use the Java class. Here is the Java code for
JavaClass:

//: c09:javaclass:JavaClass.java
package c09.javaclass;
import com.bruceeckel.test.*;
import com.bruceeckel.util.*;

public class JavaClass {
 private String s = "";
 public JavaClass() {
 System.out.println("JavaClass()");
 }
 public JavaClass(String a) {
 s = a;
 System.out.println("JavaClass(String)");
 }
 public String getVal() {
 System.out.println("getVal()");
 return s;
 }
 public void setVal(String a) {
 System.out.println("setVal()");
 s = a;
 }
 public Character[] getChars() {
 System.out.println("getChars()");
 Character[] r = new Character[s.length()];
 for(int i = 0; i < s.length(); i++)
 r[i] = new Character(s.charAt(i));
 return r;
 }
 public static class Test extends UnitTest {
 JavaClass
 x1 = new JavaClass(),
 x2 = new JavaClass("UnitTest");
 public void test1() {

 System.out.println(x2.getVal());
 x1.setVal("SpamEggsSausageAndSpam");
 Arrays2.print(x1.getChars());
 }
 }
 public static void main(String[] args) {
 Test test = new Test();
 test.test1();
 }
} ///:~

You can see that this is just an ordinary Java class, without any awareness
that it will be used in a Jython program. For this reason, one of the
important uses of Jython is in testing Java code2. Because Python is such a
powerful, flexible, dynamic language it is an ideal tool for automated test
frameworks, without making any changes to the Java code that’s being
tested.

Using Java libraries
Jython wraps the Java libraries so that any of them can be used directly or
via inheritance. In addition, Python allows its shorthand to be used to
simplify coding.

As an example, consider the HTMLButton.java example from Chapter 9
of Thinking in Java, 2nd edition (you presumably have already downloaded
and installed the source code for that book from www.BruceEckel.com,
since a number of examples in this book use libraries from that book).
Here is its conversion to Jython:

#: c09:PythonSwing.py
The HTMLButton.java example from
"Thinking in Java, 2nd edition," Chapter 13,
converted into Jython.
Don’t run this as part of the automatic make:
#=M @echo skipping PythonSwing.py
from javax.swing import JFrame, JButton, JLabel

2 Changing the registry setting python.security.respectJavaAccessibility = true
to false makes testing even more powerful because it allows the test script to use
all methods, even protected and package-private.

from java.awt import FlowLayout

frame = JFrame("HTMLButton", visible=1,
 defaultCloseOperation=JFrame.EXIT_ON_CLOSE)

def kapow(e):
 frame.contentPane.add(JLabel("<html>"+
 "<i>Kapow!"))
 # Force a re-layout to
 # include the new label:
 frame.validate()

button = JButton("<html>" +
 "<center>Hello!
<i>Press me now!",
 actionPerformed=kapow)
frame.contentPane.layout = FlowLayout()
frame.contentPane.add(button)
frame.pack()
frame.size=200, 500
#:~

If you compare the Java version of the program to the above Jython
implementation, you’ll see that Jython is shorter and generally easier to
understand. For example, in the Java version to set up the frame you had
to make several calls: the constructor for JFrame(), the setVisible()
method and the setDefaultCloseOperation() method, whereas in the
above code all three of these operations are performed with a single
constructor call.

Also notice that the JButton is configured with an actionListener()
method inside the constructor, with the assignment to kapow. In
addition, Jython’s JavaBean awareness means that a call to any method
with a name that begins with “set” can be replaced with an assignment,
as you can see above.

The only method that did not come over from Java is the pack() method,
which seems to be essential in order to force the layout to happen
properly. It’s also important that the call to pack() appear before the size
setting.

Inheriting from Java library classes
You can easily inherit from standard Java library classes in Jython. Here’s
the Dialogs.java example from Chapter 13 of Thinking in Java, 2nd edition,
converted into Jython:

#: c09:PythonDialogs.py
Dialogs.java from "Thinking in Java, 2nd
edition," Chapter 13, converted into Jython.
Don’t run this as part of the automatic make:
#=M @echo skipping PythonDialogs.py
from java.awt import FlowLayout
from javax.swing import JFrame, JDialog, JLabel
from javax.swing import JButton

class MyDialog(JDialog):
 def __init__(self, parent=None):
 JDialog.__init__(self,
 title="My dialog", modal=1)
 self.contentPane.layout = FlowLayout()
 self.contentPane.add(JLabel("A dialog!"))
 self.contentPane.add(JButton("OK",
 actionPerformed =
 lambda e, t=self: t.dispose()))
 self.pack()

frame = JFrame("Dialogs", visible=1,
 defaultCloseOperation=JFrame.EXIT_ON_CLOSE)
dlg = MyDialog()
frame.contentPane.add(
 JButton("Press here to get a Dialog Box",
 actionPerformed = lambda e: dlg.show()))
frame.pack()
#:~

MyDialog is inherited from JDialog, and you can see named arguments
being used in the call to the base-class constructor.

In the creation of the “OK” JButton, note that the actionPerformed
method is set right inside the constructor, and that the function is created
using the Python lambda keyword. This creates a nameless function with
the arguments appearing before the colon and the expression that
generates the returned value after the colon. As you should know, the
Java prototype for the actionPerformed() method only contains a single

argument, but the lambda expression indicates two. However, the second
argument is provided with a default value, so the function can be called
with only one argument. The reason for the second argument is seen in
the default value, because this is a way to pass self into the lambda
expression, so that it can be used to dispose of the dialog.

Compare this code with the version that’s published in Thinking in Java,
2nd edition. You’ll find that Python language features allow a much more
succinct and direct implementation.

Creating Java classes with
Jython

Although it does not directly relate to the original problem of this chapter
(creating an interpreter), Jython has the additional ability to create Java
classes directly from your Jython code. This can produce very useful
results, as you are then able to treat the results as if they are native Java
classes, albeit with Python power under the hood.

To produce Java classes from Python code, Jython comes with a compiler
called jythonc.

The process of creating Python classes that will produce Java classes is a
bit more complex than when calling Java classes from Python, because
the methods in Java classes are strongly typed, while Python functions
and methods are weakly typed. Thus, you must somehow tell jythonc
that a Python method is intended to have a particular set of argument
types and that its return value is a particular type. You accomplish this
with the “@sig” string, which is placed right after the beginning of the
Python method definition (this is the standard location for the Python
documentation string). For example:

 def returnArray(self):
 "@sig public java.lang.String[] returnArray()"

The Python definition doesn’t specify any return type, but the @sig string
gives the full type information about what is being returned. The jythonc
compiler uses this information to generate the correct Java code.

There’s one other set of rules you must follow in order to get a successful
compilation: you must inherit from a Java class or interface in your
Python class (you do not need to specify the @sig signature for methods
which is defined in the superclass/interface). If you do not do this, you
won’t get your desired methods – unfortunately, jythonc gives you no
warnings or errors in this case, but you won’t get what you want. If you
don’t see what’s missing, it can be very frustrating.

In addition, you must import the appropriate java class and give the
correct package specification. In the example below, java is imported so
you must inherit from java.lang.Object, but you could also say from
java.lang import Object and then you’d just inherit from Object without
the package specification. Unfortunately, you don’t get any warnings or
errors if you get this wrong, so you must be patient and keep trying.

Here is an example of a Python class created to produce a Java class. This
also introduces the ‘=T’ directive for the makefile builder tool, which
specifies a different target than the one that is normally used by the tool.
In this case, the Python file is used to build a Java .class file, so the class
file is the desired makefile target. To accomplish this, the default makefile
command is replaced using the ‘=M’ directive (notice how you can break
across lines using ‘\’):

#: c09:PythonToJavaClass.py
#=T python\java\test\PythonToJavaClass.class
#=M jythonc --package python.java.test \
#=M PythonToJavaClass.py
A Python class created to produce a Java class
from jarray import array
import java

class PythonToJavaClass(java.lang.Object):
 # The '@sig' signature string is used to create
 # the proper signature in the resulting
 # Java code:
 def __init__(self):
 "@sig public PythonToJavaClass()"
 print "Constructor for PythonToJavaClass"

 def simple(self):
 "@sig public void simple()"
 print "simple()"

 # Returning values to Java:
 def returnString(self):
 "@sig public java.lang.String returnString()"
 return "howdy"

 # You must construct arrays to return along
 # with the type of the array:
 def returnArray(self):
 "@sig public java.lang.String[] returnArray()"
 test = ["fee", "fi", "fo", "fum"]
 return array(test, java.lang.String)

 def ints(self):
 "@sig public java.lang.Integer[] ints()"
 test = [1, 3, 5, 7, 11, 13, 17, 19, 23]
 return array(test, java.lang.Integer)

 def doubles(self):
 "@sig public java.lang.Double[] doubles()"
 test = [1, 3, 5, 7, 11, 13, 17, 19, 23]
 return array(test, java.lang.Double)

 # Passing arguments in from Java:
 def argIn1(self, a):
 "@sig public void argIn1(java.lang.String a)"
 print "a: %s" % a
 print "a.__class__", a.__class__

 def argIn2(self, a):
 "@sig public void argIn1(java.lang.Integer a)"
 print "a + 100: %d" % (a + 100)
 print "a.__class__", a.__class__

 def argIn3(self, a):
 "@sig public void argIn3(java.util.List a)"
 print "received List:", a, a.__class__
 print "element type:", a[0].__class__
 print "a[3] + a[5]:", a[5] + a[7]
 #! print "a[2:5]:", a[2:5] # Doesn't work

 def argIn4(self, a):
 "@sig public void \
 argIn4(org.python.core.PyArray a)"
 print "received type:", a.__class__

 print "a: ", a
 print "element type:", a[0].__class__
 print "a[3] + a[5]:", a[5] + a[7]
 print "a[2:5]:", a[2:5] # A real Python array

 # A map must be passed in as a PyDictionary:
 def argIn5(self, m):
 "@sig public void \
 argIn5(org.python.core.PyDictionary m)"
 print "received Map: ", m, m.__class__
 print "m['3']:", m['3']
 for x in m.keys():
 print x, m[x]
#:~

First note that PythonToJavaClass is inherited from java.lang.Object; if
you don’t do this you will quietly get a Java class without the right
signatures. You are not required to inherit from Object; any other Java
class will do.

This class is designed to demonstrate different arguments and return
values, to provide you with enough examples that you’ll be able to easily
create your own signature strings. The first three of these are fairly self-
explanatory, but note the full qualification of the Java name in the
signature string.

In returnArray(), a Python array must be returned as a Java array. To do
this, the Jython array() function (from the jarray module) must be used,
along with the type of the class for the resulting array. Any time you
need to return an array to Java, you must use array(), as seen in the
methods ints() and doubles().

The last methods show how to pass arguments in from Java. Basic types
happen automatically as long as you specify them in the @sig string, but
you must use objects and you cannot pass in primitives (that is,
primitives must be ensconced in wrapper objects, such as Integer).

In argIn3(), you can see that a Java List is transparently converted to
something that behaves just like a Python array, but is not a true array
because you cannot take a slice from it. If you want a true Python array,
then you must create and pass a PyArray as in argIn4(), where the slice
is successful. Similarly, a Java Map must come in as a PyDictionary in
order to be treated as a Python dictionary.

Here is the Java program to exercise the Java classes produced by the
above Python code. This also introduces the ‘=D’ directive for the
makefile builder tool, which specifies a dependency in addition to those
detected by the tool. Here, you can’t compile
TestPythonToJavaClass.java until PythonToJavaClass.class is available:

//: c09:TestPythonToJavaClass.java
//+D python\java\test\PythonToJavaClass.class
import java.lang.reflect.*;
import java.util.*;
import org.python.core.*;
import com.bruceeckel.test.*;
import com.bruceeckel.util.*;
import com.bruceeckel.python.*;
// The package with the Python-generated classes:
import python.java.test.*;

public class
TestPythonToJavaClass extends UnitTest {
 PythonToJavaClass p2j = new PythonToJavaClass();
 public void test1() {
 p2j.simple();
 System.out.println(p2j.returnString());
 Arrays2.print(p2j.returnArray());
 Arrays2.print(p2j.ints());
 Arrays2.print(p2j.doubles());
 p2j.argIn1("Testing argIn1()");
 p2j.argIn2(new Integer(47));
 ArrayList a = new ArrayList();
 for(int i = 0; i < 10; i++)
 a.add(new Integer(i));
 p2j.argIn3(a);
 p2j.argIn4(
 new PyArray(Integer.class, a.toArray()));
 HashMap m = new HashMap();
 for(int i = 0; i < 10; i++)
 m.put("" + i, new Float(i));
 p2j.argIn5(PyUtil.toPyDictionary(m));
 }
 public void dumpClassInfo() {
 Arrays2.print(
 p2j.getClass().getConstructors());
 Method[] methods =
 p2j.getClass().getMethods();

 for(int i = 0; i < methods.length; i++) {
 String nm = methods[i].toString();
 if(nm.indexOf("PythonToJavaClass") != -1)
 System.out.println(nm);
 }
 }
 public static void main(String[] args) {
 TestPythonToJavaClass test =
 new TestPythonToJavaClass();
 test.dumpClassInfo();
 test.test1();
 }
} ///:~

For Python support, you’ll usually only need to import the classes in
org.python.core. Everything else in the above example is fairly
straightforward, as PythonToJavaClass appears, from the Java side, to be
just another Java class. dumpClassInfo() uses reflection to verify that the
method signatures specified in PythonToJavaClass.py have come
through properly.

Building the Java classes from the
Python code
Part of the trick of creating Java classes from Python code is the @sig
information in the method documentation strings. But there’s a second
problem which stems from the fact that Python has no “package”
keyword – the Python equivalent of packages, modules, are implicitly
created based on the file name. However, to bring the resulting class files
into the Java program, jythonc must be given information about how to
create the Java package for the Python code. This is done on the jythonc
command line using the --package flag, followed by the package name
you wish to produce (including the separation dots, just as you would
give the package name using the package keyword in a Java program).
This will put the resulting .class files in the appropriate subdirectory off
of the current directory. Then you only need to import the package in
your Java program, as shown above (you’ll need ‘.’ in your CLASSPATH
in order to run it from the code directory).

Here are the make dependency rules that I used to build the above
example (the backslashes at the ends of the lines are understood by make

to be line continuations). These rules are encoded into the above Java and
Python files using the comment syntax that’s understood by my makefile
builder tool:

TestPythonToJavaClass.class: \
 TestPythonToJavaClass.java \
 python\java\test\PythonToJavaClass.class
 javac TestPythonToJavaClass.java

python\java\test\PythonToJavaClass.class: \
 PythonToJavaClass.py
 jythonc --package python.java.test \
 PythonToJavaClass.py

The first target, TestPythonToJavaClass.class, depends on both
TestPythonToJavaClass.java and the PythonToJavaClass.class, which is
the Python code that’s converted to a class file. This latter, in turn,
depends on the Python source code. Note that it’s important that the
directory where the target lives be specified, so that the makefile will
create the Java program with the minimum necessary amount of
rebuilding.

Summary
This chapter has arguably gone much deeper into Jython than required to
use the interpreter design pattern. Indeed, once you decide that you need
to use interpreter and that you’re not going to get lost inventing your
own language, the solution of installing Jython is quite simple, and you
can at least get started by following the GreenHouseController example.

Of course, that example is often too simple and you may need something
more sophisticated, often requiring more interesting data to be passed
back and forth. When I encountered the limited documentation, I felt it
necessary to come up with a more thorough examination of Jython.

In the process, note that there could be another equally powerful design
pattern lurking in here, which could perhaps be called multiple languages.
This is based on the experience of having each language solve a certain
class of problems better than the other; by combining languages you can
solve problems much faster than with either language by itself. CORBA

is another way to bridge across languages, and at the same time bridging
between computers and operating systems.

To me, Python and Java present a very potent combination for program
development because of Java’s architecture and tool set, and Python’s
extremely rapid development (generally considered to be 5-10 times
faster than C++ or Java). Python is usually slower, however, but even if
you end up re-coding parts of your program for speed, the initial fast
development will allow you to more quickly flesh out the system and
uncover and solve the critical sections. And often, the execution speed of
Python is not a problem – in those cases it’s an even bigger win. A
number of commercial products already use Java and Jython, and
because of the terrific productivity leverage I expect to see this happen
more in the future.

Exercises
1. Modify GreenHouseLanguage.py so that it checks the times for

the events and runs those events at the appropriate times.

2. Create a Swing application with a JTextField (where the user will
enter commands) and a JTextArea (where the command results
will be displayed). Connect to a PythonInterpreter object so that
the output will be sent to the JTextArea (which should scroll).
You’ll need to locate the PythonInterpreter command that
redirects the output to a Java stream.

3. Modify GreenHouseLanguage.py to add a master controller class
(instead of the static array inside Event) and provide a run()
method for each of the subclasses. Each run() should create and
use an object from the standard Java library during its execution.
Modify GreenHouseController.java to use this new class.

4. Modify the resulting GreenHouseLanguage.py from exercise two
to produce Java classes (add the @sig documentation strings to
produce the correct Java signatures, and create a makefile to build
the Java .class files). Write a Java program that uses these classes.

10: Callbacks
Decoupling code behavior

Observer, and a category of callbacks called “multiple dispatching (not in
Design Patterns)” including the Visitor from Design Patterns.

Observer
Like the other forms of callback, this contains a hook point where you can
change code. The difference is in the observer’s completely dynamic
nature. It is often used for the specific case of changes based on other
object’s change of state, but is also the basis of event management.
Anytime you want to decouple the source of the call from the called code
in a completely dynamic way.

The observer pattern solves a fairly common problem: What if a group of
objects needs to update themselves when some object changes state? This
can be seen in the “model-view” aspect of Smalltalk’s MVC (model-view-
controller), or the almost-equivalent “Document-View Architecture.”
Suppose that you have some data (the “document”) and more than one
view, say a plot and a textual view. When you change the data, the two
views must know to update themselves, and that’s what the observer
facilitates. It’s a common enough problem that its solution has been made
a part of the standard java.util library.

There are two types of objects used to implement the observer pattern in
Java. The Observable class keeps track of everybody who wants to be
informed when a change happens, whether the “state” has changed or
not. When someone says “OK, everybody should check and potentially
update themselves,” the Observable class performs this task by calling
the notifyObservers() method for each one on the list. The
notifyObservers() method is part of the base class Observable.

There are actually two “things that change” in the observer pattern: the
quantity of observing objects and the way an update occurs. That is, the

observer pattern allows you to modify both of these without affecting the
surrounding code.

Observer is an “interface” class that only has one member function,
update(). This function is called by the object that’s being observed,
when that object decides its time to update all its observers. The
arguments are optional; you could have an update() with no arguments
and that would still fit the observer pattern; however this is more
general—it allows the observed object to pass the object that caused the
update (since an Observer may be registered with more than one
observed object) and any extra information if that’s helpful, rather than
forcing the Observer object to hunt around to see who is updating and to
fetch any other information it needs.

The “observed object” that decides when and how to do the updating
will be called the Observable.

Observable has a flag to indicate whether it’s been changed. In a simpler
design, there would be no flag; if something happened, everyone would
be notified. The flag allows you to wait, and only notify the Observers
when you decide the time is right. Notice, however, that the control of
the flag’s state is protected, so that only an inheritor can decide what
constitutes a change, and not the end user of the resulting derived
Observer class.

Most of the work is done in notifyObservers(). If the changed flag has
not been set, this does nothing. Otherwise, it first clears the changed flag
so repeated calls to notifyObservers() won’t waste time. This is done
before notifying the observers in case the calls to update() do anything
that causes a change back to this Observable object. Then it moves
through the set and calls back to the update() member function of each
Observer.

At first it may appear that you can use an ordinary Observable object to
manage the updates. But this doesn’t work; to get an effect, you must
inherit from Observable and somewhere in your derived-class code call
setChanged(). This is the member function that sets the “changed” flag,
which means that when you call notifyObservers() all of the observers

will, in fact, get notified. Where you call setChanged() depends on the
logic of your program.

Observing flowers
Here is an example of the observer pattern:

//: c10:ObservedFlower.java
// Demonstration of "observer" pattern.
import java.util.*;
import com.bruceeckel.test.*;

class Flower {
 private boolean isOpen;
 private OpenNotifier oNotify =
 new OpenNotifier();
 private CloseNotifier cNotify =
 new CloseNotifier();
 public Flower() { isOpen = false; }
 public void open() { // Opens its petals
 isOpen = true;
 oNotify.notifyObservers();
 cNotify.open();
 }
 public void close() { // Closes its petals
 isOpen = false;
 cNotify.notifyObservers();
 oNotify.close();
 }
 public Observable opening() { return oNotify; }
 public Observable closing() { return cNotify; }
 private class OpenNotifier extends Observable {
 private boolean alreadyOpen = false;
 public void notifyObservers() {
 if(isOpen && !alreadyOpen) {
 setChanged();
 super.notifyObservers();
 alreadyOpen = true;
 }
 }
 public void close() { alreadyOpen = false; }
 }
 private class CloseNotifier extends Observable{
 private boolean alreadyClosed = false;

 public void notifyObservers() {
 if(!isOpen && !alreadyClosed) {
 setChanged();
 super.notifyObservers();
 alreadyClosed = true;
 }
 }
 public void open() { alreadyClosed = false; }
 }
}

class Bee {
 private String name;
 private OpenObserver openObsrv =
 new OpenObserver();
 private CloseObserver closeObsrv =
 new CloseObserver();
 public Bee(String nm) { name = nm; }
 // An inner class for observing openings:
 private class OpenObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s breakfast time!");
 }
 }
 // Another inner class for closings:
 private class CloseObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Bee " + name
 + "'s bed time!");
 }
 }
 public Observer openObserver() {
 return openObsrv;
 }
 public Observer closeObserver() {
 return closeObsrv;
 }
}

class Hummingbird {
 private String name;
 private OpenObserver openObsrv =
 new OpenObserver();

 private CloseObserver closeObsrv =
 new CloseObserver();
 public Hummingbird(String nm) { name = nm; }
 private class OpenObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Hummingbird " + name
 + "'s breakfast time!");
 }
 }
 private class CloseObserver implements Observer{
 public void update(Observable ob, Object a) {
 System.out.println("Hummingbird " + name
 + "'s bed time!");
 }
 }
 public Observer openObserver() {
 return openObsrv;
 }
 public Observer closeObserver() {
 return closeObsrv;
 }
}

public class ObservedFlower extends UnitTest {
 Flower f = new Flower();
 Bee
 ba = new Bee("A"),
 bb = new Bee("B");
 Hummingbird
 ha = new Hummingbird("A"),
 hb = new Hummingbird("B");
 public void test() {
 f.opening().addObserver(ha.openObserver());
 f.opening().addObserver(hb.openObserver());
 f.opening().addObserver(ba.openObserver());
 f.opening().addObserver(bb.openObserver());
 f.closing().addObserver(ha.closeObserver());
 f.closing().addObserver(hb.closeObserver());
 f.closing().addObserver(ba.closeObserver());
 f.closing().addObserver(bb.closeObserver());
 // Hummingbird B decides to sleep in:
 f.opening().deleteObserver(
 hb.openObserver());
 // A change that interests observers:

 f.open();
 f.open(); // It's already open, no change.
 // Bee A doesn't want to go to bed:
 f.closing().deleteObserver(
 ba.closeObserver());
 f.close();
 f.close(); // It's already closed; no change
 f.opening().deleteObservers();
 f.open();
 f.close();
 }
 public static void main(String args[]) {
 new ObservedFlower().test();
 }
} ///:~

The events of interest are that a Flower can open or close. Because of the
use of the inner class idiom, both these events can be separately
observable phenomena. OpenNotifier and CloseNotifier both inherit
Observable, so they have access to setChanged() and can be handed to
anything that needs an Observable.

The inner class idiom also comes in handy to define more than one kind
of Observer, in Bee and Hummingbird, since both those classes may
want to independently observe Flower openings and closings. Notice
how the inner class idiom provides something that has most of the
benefits of inheritance (the ability to access the private data in the outer
class, for example) without the same restrictions.

In main(), you can see one of the prime benefits of the observer pattern:
the ability to change behavior at run time by dynamically registering and
un-registering Observers with Observables.

If you study the code above you’ll see that OpenNotifier and
CloseNotifier use the basic Observable interface. This means that you
could inherit other completely different Observer classes; the only
connection the Observers have with Flowers is the Observer interface.

A visual example of
observers

The following example is similar to the ColorBoxes example from
Chapter 14 in Thinking in Java, 2nd Edition. Boxes are placed in a grid on
the screen and each one is initialized to a random color. In addition, each
box implements the Observer interface and is registered with an
Observable object. When you click on a box, all of the other boxes are
notified that a change has been made because the Observable object
automatically calls each Observer object’s update() method. Inside this
method, the box checks to see if it’s adjacent to the one that was clicked,
and if so it changes its color to match the clicked box.

//: c10:BoxObserver.java
// Demonstration of Observer pattern using
// Java's built-in observer classes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

// You must inherit a new type of Observable:
class BoxObservable extends Observable {
 public void notifyObservers(Object b) {
 // Otherwise it won't propagate changes:
 setChanged();
 super.notifyObservers(b);
 }
}

public class BoxObserver extends JFrame {
 Observable notifier = new BoxObservable();
 public BoxObserver(int grid) {
 setTitle("Demonstrates Observer pattern");
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(grid, grid));
 for(int x = 0; x < grid; x++)
 for(int y = 0; y < grid; y++)
 cp.add(new OCBox(x, y, notifier));
 }

 public static void main(String[] args) {
 int grid = 8;
 if(args.length > 0)
 grid = Integer.parseInt(args[0]);
 JFrame f = new BoxObserver(grid);
 f.setSize(500, 400);
 f.setVisible(true);
 // JDK 1.3:
 f.setDefaultCloseOperation(EXIT_ON_CLOSE);
 // Add a WindowAdapter if you have JDK 1.2
 }
}

class OCBox extends JPanel implements Observer {
 Observable notifier;
 int x, y; // Locations in grid
 Color cColor = newColor();
 static final Color[] colors = {
 Color.black, Color.blue, Color.cyan,
 Color.darkGray, Color.gray, Color.green,
 Color.lightGray, Color.magenta,
 Color.orange, Color.pink, Color.red,
 Color.white, Color.yellow
 };
 static final Color newColor() {
 return colors[
 (int)(Math.random() * colors.length)
];
 }
 OCBox(int x, int y, Observable notifier) {
 this.x = x;
 this.y = y;
 notifier.addObserver(this);
 this.notifier = notifier;
 addMouseListener(new ML());
 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(cColor);
 Dimension s = getSize();
 g.fillRect(0, 0, s.width, s.height);
 }
 class ML extends MouseAdapter {
 public void mousePressed(MouseEvent e) {

 notifier.notifyObservers(OCBox.this);
 }
 }
 public void update(Observable o, Object arg) {
 OCBox clicked = (OCBox)arg;
 if(nextTo(clicked)) {
 cColor = clicked.cColor;
 repaint();
 }
 }
 private final boolean nextTo(OCBox b) {
 return Math.abs(x - b.x) <= 1 &&
 Math.abs(y - b.y) <= 1;
 }
} ///:~

When you first look at the online documentation for Observable, it’s a bit
confusing because it appears that you can use an ordinary Observable
object to manage the updates. But this doesn’t work; try it—inside
BoxObserver, create an Observable object instead of a BoxObservable
object and see what happens: nothing. To get an effect, you must inherit
from Observable and somewhere in your derived-class code call
setChanged(). This is the method that sets the “changed” flag, which
means that when you call notifyObservers() all of the observers will, in
fact, get notified. In the example above setChanged() is simply called
within notifyObservers(), but you could use any criterion you want to
decide when to call setChanged().

BoxObserver contains a single Observable object called notifier, and
every time an OCBox object is created, it is tied to notifier. In OCBox,
whenever you click the mouse the notifyObservers() method is called,
passing the clicked object in as an argument so that all the boxes
receiving the message (in their update() method) know who was clicked
and can decide whether to change themselves or not. Using a
combination of code in notifyObservers() and update() you can work
out some fairly complex schemes.

It might appear that the way the observers are notified must be frozen at
compile time in the notifyObservers() method. However, if you look
more closely at the code above you’ll see that the only place in
BoxObserver or OCBox where you're aware that you’re working with a

BoxObservable is at the point of creation of the Observable object—from
then on everything uses the basic Observable interface. This means that
you could inherit other Observable classes and swap them at run time if
you want to change notification behavior then.

Exercises
1. Create a minimal Observer-Observable design in two classes. Just

create the bare minimum in the two classes, then demonstrate
your design by creating one Observable and many Observers,
and cause the Observable to update the Observers.

2. Modify BoxObserver.java to turn it into a simple game. If any of
the squares surrounding the one you clicked is part of a
contiguous patch of the same color, then all the squares in that
patch are changed to the color you clicked on. You can configure
the game for competition between players or to keep track of the
number of clicks that a single player uses to turn the field into a
single color. You may also want to restrict a player's color to the
first one that was chosen.

11: Multiple
dispatching

When dealing with multiple types which are interacting, a program can
get particularly messy. For example, consider a system that parses and
executes mathematical expressions. You want to be able to say Number +
Number, Number * Number, etc., where Number is the base class for a
family of numerical objects. But when you say a + b, and you don’t know
the exact type of either a or b, so how can you get them to interact
properly?

The answer starts with something you probably don’t think about: Java
performs only single dispatching. That is, if you are performing an
operation on more than one object whose type is unknown, Java can
invoke the dynamic binding mechanism on only one of those types. This
doesn’t solve the problem, so you end up detecting some types manually
and effectively producing your own dynamic binding behavior.

The solution is called multiple dispatching. Remember that polymorphism
can occur only via member function calls, so if you want double
dispatching to occur, there must be two member function calls: the first to
determine the first unknown type, and the second to determine the
second unknown type. With multiple dispatching, you must have a
polymorphic method call to determine each of the types. Generally,
you’ll set up a configuration such that a single member function call
produces more than one dynamic member function call and thus
determines more than one type in the process. To get this effect, you need
to work with more than one polymorphic method call: you’ll need one
call for each dispatch. The methods in the following example are called
compete() and eval(), and are both members of the same type. (In this
case there will be only two dispatches, which is referred to as double
dispatching). If you are working with two different type hierarchies that
are interacting, then you’ll have to have a polymorphic method call in
each hierarchy.

Here’s an example of multiple dispatching:

//: c11:PaperScissorsRock.java
// Demonstration of multiple dispatching.
import java.util.*;
import com.bruceeckel.test.*;

// An enumeration type:
class Outcome {
 private int value;
 private String name;
 private Outcome(int val, String nm) {
 value = val;
 name = nm;
 }
 public final static Outcome
 WIN = new Outcome(0, "win"),
 LOSE = new Outcome(1, "lose"),
 DRAW = new Outcome(2, "draw");
 public String toString() { return name; }
 public boolean equals(Object o) {
 return (o instanceof Outcome)
 && (value == ((Outcome)o).value);
 }
}

interface Item {
 Outcome compete(Item it);
 Outcome eval(Paper p);
 Outcome eval(Scissors s);
 Outcome eval(Rock r);
}

class Paper implements Item {
 public Outcome compete(Item it) {
 return it.eval(this);
 }
 public Outcome eval(Paper p) {
 return Outcome.DRAW;
 }
 public Outcome eval(Scissors s) {
 return Outcome.WIN;
 }
 public Outcome eval(Rock r) {
 return Outcome.LOSE;

 }
 public String toString() { return "Paper"; }
}

class Scissors implements Item {
 public Outcome compete(Item it) {
 return it.eval(this);
 }
 public Outcome eval(Paper p) {
 return Outcome.LOSE;
 }
 public Outcome eval(Scissors s) {
 return Outcome.DRAW;
 }
 public Outcome eval(Rock r) {
 return Outcome.WIN;
 }
 public String toString() { return "Scissors"; }
}

class Rock implements Item {
 public Outcome compete(Item it) {
 return it.eval(this);
 }
 public Outcome eval(Paper p) {
 return Outcome.WIN;
 }
 public Outcome eval(Scissors s) {
 return Outcome.LOSE;
 }
 public Outcome eval(Rock r) {
 return Outcome.DRAW;
 }
 public String toString() { return "Rock"; }
}

class ItemGenerator {
 public static Item newItem() {
 switch((int)(Math.random() * 3)) {
 default:
 case 0:
 return new Scissors();
 case 1:
 return new Paper();

 case 2:
 return new Rock();
 }
 }
}

class Compete {
 public static Outcome match(Item a, Item b) {
 System.out.print(a + " <--> " + b + " : ");
 return a.compete(b);
 }
}

public class PaperScissorsRock extends UnitTest {
 List items = new ArrayList();
 public PaperScissorsRock() {
 for(int i = 0; i < 40; i++)
 items.add(ItemGenerator.newItem());
 }
 public void test() {
 for(int i = 0; i < items.size()/2; i++)
 System.out.println(
 Compete.match(
 (Item)items.get(i),
 (Item)items.get(i*2)));
 }
 public static void main(String args[]) {
 new PaperScissorsRock().test();
 }
} ///:~

Visitor, a type of multiple
dispatching

The assumption is that you have a primary class hierarchy that is fixed;
perhaps it’s from another vendor and you can’t make changes to that
hierarchy. However, you’d like to add new polymorphic methods to that
hierarchy, which means that normally you’d have to add something to

the base class interface. So the dilemma is that you need to add methods
to the base class, but you can’t touch the base class. How do you get
around this?

The design pattern that solves this kind of problem is called a “visitor”
(the final one in the Design Patterns book), and it builds on the double
dispatching scheme shown in the last section.

The visitor pattern allows you to extend the interface of the primary type
by creating a separate class hierarchy of type Visitor to virtualize the
operations performed upon the primary type. The objects of the primary
type simply “accept” the visitor, then call the visitor’s dynamically-
bound member function.

//: c11:BeeAndFlowers.java
// Demonstration of "visitor" pattern.
import java.util.*;
import com.bruceeckel.test.*;

interface Visitor {
 void visit(Gladiolus g);
 void visit(Renuculus r);
 void visit(Chrysanthemum c);
}

// The Flower hierarchy cannot be changed:
interface Flower {
 void accept(Visitor v);
}

class Gladiolus implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

class Renuculus implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

class Chrysanthemum implements Flower {
 public void accept(Visitor v) { v.visit(this);}
}

// Add the ability to produce a string:
class StringVal implements Visitor {

 String s;
 public String toString() { return s; }
 public void visit(Gladiolus g) {
 s = "Gladiolus";
 }
 public void visit(Renuculus r) {
 s = "Renuculus";
 }
 public void visit(Chrysanthemum c) {
 s = "Chrysanthemum";
 }
}

// Add the ability to do "Bee" activities:
class Bee implements Visitor {
 public void visit(Gladiolus g) {
 System.out.println("Bee and Gladiolus");
 }
 public void visit(Renuculus r) {
 System.out.println("Bee and Renuculus");
 }
 public void visit(Chrysanthemum c) {
 System.out.println("Bee and Chrysanthemum");
 }
}

class FlowerGenerator {
 public static Flower newFlower() {
 switch((int)(Math.random() * 3)) {
 default:
 case 0: return new Gladiolus();
 case 1: return new Renuculus();
 case 2: return new Chrysanthemum();
 }
 }
}

public class BeeAndFlowers extends UnitTest {
 List flowers = new ArrayList();
 public BeeAndFlowers() {
 for(int i = 0; i < 10; i++)
 flowers.add(FlowerGenerator.newFlower());
 }
 public void test() {

 // It's almost as if I had a function to
 // produce a Flower string representation:
 StringVal sval = new StringVal();
 Iterator it = flowers.iterator();
 while(it.hasNext()) {
 ((Flower)it.next()).accept(sval);
 System.out.println(sval);
 }
 // Perform "Bee" operation on all Flowers:
 Bee bee = new Bee();
 it = flowers.iterator();
 while(it.hasNext())
 ((Flower)it.next()).accept(bee);
 }
 public static void main(String args[]) {
 new BeeAndFlowers().test();
 }
} ///:~

Exercises
1. Create a business-modeling environment with three types of

Inhabitant: Dwarf (for engineers), Elf (for marketers) and Troll
(for managers). Now create a class called Project that creates the
different inhabitants and causes them to interact() with each
other using multiple dispatching.

2. Modify the above example to make the interactions more detailed.
Each Inhabitant can randomly produce a Weapon using
getWeapon(): a Dwarf uses Jargon or Play, an Elf uses
InventFeature or SellImaginaryProduct, and a Troll uses Edict
and Schedule. You must decide which weapons “win” and “lose”
in each interaction (as in PaperScissorsRock.java). Add a battle()
member function to Project that takes two Inhabitants and
matches them against each other. Now create a meeting()
member function for Project that creates groups of Dwarf, Elf and
Manager and battles the groups against each other until only
members of one group are left standing. These are the “winners.”

3. Modify the above example to replace the double dispatching with
a table lookup instead, using a structure similar to
TransitionTable.java. Notice how much easier it is to reconfigure
the system. When is it more appropriate to use this approach vs.
hard-coding the dynamic dispatches? Can you create a system
that has the simplicity of use of the dynamic dispatch but uses a
table lookup?

12: Pattern
refactoring

The remainder of the book will look at the process of solving a problem
by applying design patterns in an evolutionary fashion. That is, a first cut
design will be used for the initial solution, and then this solution will be
examined and various design patterns will be applied to the problem
(some of which will work, and some of which won’t). The key question
that will always be asked in seeking improved solutions is “what will
change?”

This process is similar to what Martin Fowler talks about in his book
Refactoring: Improving the Design of Existing Code1 (although he tends to
talk about pieces of code more than pattern-level designs). You start with
a solution, and then when you discover that it doesn’t continue to meet
your needs, you fix it. Of course, this is a natural tendency but in
computer programming it’s been extremely difficult to accomplish with
procedural programs, and the acceptance of the idea that we can refactor
code and designs adds to the body of proof that object-oriented
programming is “a good thing.”

Simulating the trash
recycler

The nature of this problem is that the trash is thrown unclassified into a
single bin, so the specific type information is lost. But later, the specific
type information must be recovered to properly sort the trash. In the
initial solution, RTTI (described in Chapter 12 of Thinking in Java, 2nd
edition) is used.

1 Addison-Wesley, 1999.

This is not a trivial design because it has an added constraint. That’s what
makes it interesting—it’s more like the messy problems you’re likely to
encounter in your work. The extra constraint is that the trash arrives at
the trash recycling plant all mixed together. The program must model the
sorting of that trash. This is where RTTI comes in: you have a bunch of
anonymous pieces of trash, and the program figures out exactly what
type they are.

//: c12:recyclea:RecycleA.java
// Recycling with RTTI.
import java.util.*;
import java.io.*;
import com.bruceeckel.test.*;

abstract class Trash {
 private double weight;
 Trash(double wt) { weight = wt; }
 abstract double getValue();
 double getWeight() { return weight; }
 // Sums the value of Trash in a bin:
 static void sumValue(Collection bin) {
 Iterator e = bin.iterator();
 double val = 0.0f;
 while(e.hasNext()) {
 // One kind of RTTI:
 // A dynamically-checked cast
 Trash t = (Trash)e.next();
 // Polymorphism in action:
 val += t.getWeight() * t.getValue();
 System.out.println(
 "weight of " +
 // Using RTTI to get type
 // information about the class:
 t.getClass().getName() +
 " = " + t.getWeight());
 }
 System.out.println("Total value = " + val);
 }
}

class Aluminum extends Trash {
 static double val = 1.67f;
 Aluminum(double wt) { super(wt); }
 double getValue() { return val; }

 static void setValue(double newval) {
 val = newval;
 }
}

class Paper extends Trash {
 static double val = 0.10f;
 Paper(double wt) { super(wt); }
 double getValue() { return val; }
 static void setValue(double newval) {
 val = newval;
 }
}

class Glass extends Trash {
 static double val = 0.23f;
 Glass(double wt) { super(wt); }
 double getValue() { return val; }
 static void setValue(double newval) {
 val = newval;
 }
}

public class RecycleA extends UnitTest {
 Collection
 bin = new ArrayList(),
 glassBin = new ArrayList(),
 paperBin = new ArrayList(),
 alBin = new ArrayList();
 public RecycleA() {
 // Fill up the Trash bin:
 for(int i = 0; i < 30; i++)
 switch((int)(Math.random() * 3)) {
 case 0 :
 bin.add(new
 Aluminum(Math.random() * 100));
 break;
 case 1 :
 bin.add(new
 Paper(Math.random() * 100));
 break;
 case 2 :
 bin.add(new
 Glass(Math.random() * 100));

 }
 }
 public void test() {
 Iterator sorter = bin.iterator();
 // Sort the Trash:
 while(sorter.hasNext()) {
 Object t = sorter.next();
 // RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t);
 if(t instanceof Paper)
 paperBin.add(t);
 if(t instanceof Glass)
 glassBin.add(t);
 }
 Trash.sumValue(alBin);
 Trash.sumValue(paperBin);
 Trash.sumValue(glassBin);
 Trash.sumValue(bin);
 }
 public static void main(String args[]) {
 new RecycleA().test();
 }
} ///:~

In the source code listings available for this book, this file will be placed
in the subdirectory recyclea that branches off from the subdirectory c12
(for Chapter 12). The unpacking tool takes care of placing it into the
correct subdirectory. The reason for doing this is that this chapter
rewrites this particular example a number of times and by putting each
version in its own directory (using the default package in each directory
so that invoking the program is easy), the class names will not clash.

Several ArrayList objects are created to hold Trash references. Of course,
ArrayLists actually hold Objects so they’ll hold anything at all. The
reason they hold Trash (or something derived from Trash) is only
because you’ve been careful to not put in anything except Trash. If you
do put something “wrong” into the ArrayList, you won’t get any
compile-time warnings or errors—you’ll find out only via an exception at
run time.

When the Trash references are added, they lose their specific identities
and become simply Object references (they are upcast). However,
because of polymorphism the proper behavior still occurs when the
dynamically-bound methods are called through the Iterator sorter, once
the resulting Object has been cast back to Trash. sumValue() also uses
an Iterator to perform operations on every object in the ArrayList.

It looks silly to upcast the types of Trash into a container holding base
type references, and then turn around and downcast. Why not just put
the trash into the appropriate receptacle in the first place? (Indeed, this is
the whole enigma of recycling). In this program it would be easy to
repair, but sometimes a system’s structure and flexibility can benefit
greatly from downcasting.

The program satisfies the design requirements: it works. This might be
fine as long as it’s a one-shot solution. However, a useful program tends
to evolve over time, so you must ask, “What if the situation changes?”
For example, cardboard is now a valuable recyclable commodity, so how
will that be integrated into the system (especially if the program is large
and complicated). Since the above type-check coding in the switch
statement could be scattered throughout the program, you must go find
all that code every time a new type is added, and if you miss one the
compiler won’t give you any help by pointing out an error.

The key to the misuse of RTTI here is that every type is tested. If you’re
looking for only a subset of types because that subset needs special
treatment, that’s probably fine. But if you’re hunting for every type inside
a switch statement, then you’re probably missing an important point, and
definitely making your code less maintainable. In the next section we’ll
look at how this program evolved over several stages to become much
more flexible. This should prove a valuable example in program design.

Improving the design
The solutions in Design Patterns are organized around the question
“What will change as this program evolves?” This is usually the most
important question that you can ask about any design. If you can build
your system around the answer, the results will be two-pronged: not only
will your system allow easy (and inexpensive) maintenance, but you
might also produce components that are reusable, so that other systems

can be built more cheaply. This is the promise of object-oriented
programming, but it doesn’t happen automatically; it requires thought
and insight on your part. In this section we’ll see how this process can
happen during the refinement of a system.

The answer to the question “What will change?” for the recycling system
is a common one: more types will be added to the system. The goal of the
design, then, is to make this addition of types as painless as possible. In
the recycling program, we’d like to encapsulate all places where specific
type information is mentioned, so (if for no other reason) any changes
can be localized to those encapsulations. It turns out that this process also
cleans up the rest of the code considerably.

“Make more objects”
This brings up a general object-oriented design principle that I first heard
spoken by Grady Booch: “If the design is too complicated, make more
objects.” This is simultaneously counterintuitive and ludicrously simple,
and yet it’s the most useful guideline I’ve found. (You might observe that
“making more objects” is often equivalent to “add another level of
indirection.”) In general, if you find a place with messy code, consider
what sort of class would clean that up. Often the side effect of cleaning
up the code will be a system that has better structure and is more flexible.

Consider first the place where Trash objects are created, which is a
switch statement inside main():

 for(int i = 0; i < 30; i++)
 switch((int)(Math.random() * 3)) {
 case 0 :
 bin.add(new
 Aluminum(Math.random() * 100));
 break;
 case 1 :
 bin.add(new
 Paper(Math.random() * 100));
 break;
 case 2 :
 bin.add(new
 Glass(Math.random() * 100));
 }

This is definitely messy, and also a place where you must change code
whenever a new type is added. If new types are commonly added, a
better solution is a single method that takes all of the necessary
information and produces a reference to an object of the correct type,
already upcast to a trash object. In Design Patterns this is broadly referred
to as a creational pattern (of which there are several). The specific pattern
that will be applied here is a variant of the Factory Method. Here, the
factory method is a static member of Trash, but more commonly it is a
method that is overridden in the derived class.

The idea of the factory method is that you pass it the essential
information it needs to know to create your object, then stand back and
wait for the reference (already upcast to the base type) to pop out as the
return value. From then on, you treat the object polymorphically. Thus,
you never even need to know the exact type of object that’s created. In
fact, the factory method hides it from you to prevent accidental misuse. If
you want to use the object without polymorphism, you must explicitly
use RTTI and casting.

But there’s a little problem, especially when you use the more
complicated approach (not shown here) of making the factory method in
the base class and overriding it in the derived classes. What if the
information required in the derived class requires more or different
arguments? “Creating more objects” solves this problem. To implement
the factory method, the Trash class gets a new method called factory. To
hide the creational data, there’s a new class called Messenger that carries
all of the necessary information for the factory method to create the
appropriate Trash object (we’ve started referring to Messenger as a design
pattern, but it’s simple enough that you may not choose to elevate it to
that status). Here’s a simple implementation of Messenger:

class Messenger {
 int type;
 // Must change this to add another type:
 static final int MAX_NUM = 4;
 double data;
 Messenger(int typeNum, double val) {
 type = typeNum % MAX_NUM;
 data = val;
 }
}

A Messenger object’s only job is to hold information for the factory()
method. Now, if there’s a situation in which factory() needs more or
different information to create a new type of Trash object, the factory()
interface doesn’t need to be changed. The Messenger class can be
changed by adding new data and new constructors, or in the more
typical object-oriented fashion of subclassing.

The factory() method for this simple example looks like this:

 static Trash factory(Messenger i) {
 switch(i.type) {
 default: // To quiet the compiler
 case 0:
 return new Aluminum(i.data);
 case 1:
 return new Paper(i.data);
 case 2:
 return new Glass(i.data);
 // Two lines here:
 case 3:
 return new Cardboard(i.data);
 }
 }

Here, the determination of the exact type of object is simple, but you can
imagine a more complicated system in which factory() uses an elaborate
algorithm. The point is that it’s now hidden away in one place, and you
know to come to this place when you add new types.

The creation of new objects is now much simpler in main():

 for(int i = 0; i < 30; i++)
 bin.add(
 Trash.factory(
 new Messenger(
 (int)(Math.random() * Messenger.MAX_NUM),
 Math.random() * 100)));

A Messenger object is created to pass the data into factory(), which in
turn produces some kind of Trash object on the heap and returns the
reference that’s added to the ArrayList bin. Of course, if you change the
quantity and type of argument, this statement will still need to be

modified, but that can be eliminated if the creation of the Messenger
object is automated. For example, an ArrayList of arguments can be
passed into the constructor of a Messenger object (or directly into a
factory() call, for that matter). This requires that the arguments be parsed
and checked at run time, but it does provide the greatest flexibility.

You can see from this code what “vector of change” problem the factory
is responsible for solving: if you add new types to the system (the
change), the only code that must be modified is within the factory, so the
factory isolates the effect of that change.

A pattern for prototyping
creation

A problem with the design above is that it still requires a central location
where all the types of the objects must be known: inside the factory()
method. If new types are regularly being added to the system, the
factory() method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and
move all of the information about the type—including its creation—into
the class representing that type. This way, the only thing you need to do
to add a new type to the system is to inherit a single class.

To move the information concerning type creation into each specific type
of Trash, the “prototype” pattern (from the Design Patterns book) will be
used. The general idea is that you have a master sequence of objects, one
of each type you’re interested in making. The objects in this sequence are
used only for making new objects, using an operation that’s not unlike the
clone() scheme built into Java’s root class Object. In this case, we’ll name
the cloning method tClone(). When you’re ready to make a new object,
presumably you have some sort of information that establishes the type
of object you want to create, then you move through the master sequence
comparing your information with whatever appropriate information is in
the prototype objects in the master sequence. When you find one that
matches your needs, you clone it.

In this scheme there is no hard-coded information for creation. Each
object knows how to expose appropriate information and how to clone

itself. Thus, the factory() method doesn’t need to be changed when a
new type is added to the system.

One approach to the problem of prototyping is to add a number of
methods to support the creation of new objects. However, in Java 1.1
there’s already support for creating new objects if you have a reference to
the Class object. With Java 1.1 reflection (introduced in Chapter 12 of
Thinking in Java, 2nd edition) you can call a constructor even if you have
only a reference to the Class object. This is the perfect solution for the
prototyping problem.

The list of prototypes will be represented indirectly by a list of references
to all the Class objects you want to create. In addition, if the prototyping
fails, the factory() method will assume that it’s because a particular Class
object wasn’t in the list, and it will attempt to load it. By loading the
prototypes dynamically like this, the Trash class doesn’t need to know
what types it is working with, so it doesn’t need any modifications when
you add new types. This allows it to be easily reused throughout the rest
of the chapter.

//: c12:trash:Trash.java
// Base class for Trash recycling examples.
package c12.trash;
import java.util.*;
import java.lang.reflect.*;

public abstract class Trash {
 private double weight;
 public Trash(double wt) { weight = wt; }
 public Trash() {}
 public abstract double getValue();
 public double getWeight() { return weight; }
 // Sums the value of Trash given an
 // Iterator to any container of Trash:
 public static void sumValue(Iterator it) {
 double val = 0.0f;
 while(it.hasNext()) {
 // One kind of RTTI:
 // A dynamically-checked cast
 Trash t = (Trash)it.next();
 val += t.getWeight() * t.getValue();
 System.out.println(
 "weight of " +

 // Using RTTI to get type
 // information about the class:
 t.getClass().getName() +
 " = " + t.getWeight());
 }
 System.out.println("Total value = " + val);
 }
 // Remainder of class provides
 // support for prototyping:
 public static class PrototypeNotFoundException
 extends Exception {}
 public static class CannotCreateTrashException
 extends Exception {}
 private static List trashTypes =
 new ArrayList();
 public static Trash factory(Messenger info)
 throws PrototypeNotFoundException,
 CannotCreateTrashException {
 for(int i = 0; i < trashTypes.size(); i++) {
 // Somehow determine the new type
 // to create, and create one:
 Class tc = (Class)trashTypes.get(i);
 if (tc.getName().indexOf(info.id) != -1) {
 try {
 // Get the dynamic constructor method
 // that takes a double argument:
 Constructor ctor = tc.getConstructor(
 new Class[]{ double.class });
 // Call the constructor
 // to create a new object:
 return (Trash)ctor.newInstance(
 new Object[]{new Double(info.data)});
 } catch(Exception ex) {
 ex.printStackTrace(System.err);
 throw new CannotCreateTrashException();
 }
 }
 }
 // Class was not in the list. Try to load it,
 // but it must be in your class path!
 try {
 System.out.println("Loading " + info.id);
 trashTypes.add(Class.forName(info.id));
 } catch(Exception e) {

 e.printStackTrace(System.err);
 throw new PrototypeNotFoundException();
 }
 // Loaded successfully.
 // Recursive call should work:
 return factory(info);
 }
 public static class Messenger {
 public String id;
 public double data;
 public Messenger(String name, double val) {
 id = name;
 data = val;
 }
 }
} ///:~

The basic Trash class and sumValue() remain as before, except that
SumValue() is now made more generic by taking an Iterator as an
argument. The rest of the class supports the prototyping pattern. You first
see two inner classes (which are made static, so they are inner classes
only for code organization purposes) describing exceptions that can
occur. This is followed by an ArrayList called trashTypes, which is used
to hold the Class references.

In Trash.factory(), the String inside the Messenger object id (a different
version of the Messenger class than that of the prior discussion) contains
the type name of the Trash to be created; this String is compared to the
Class names in the list. If there’s a match, then that’s the object to create.
Of course, there are many ways to determine what object you want to
make. This one is used so that information read in from a file can be
turned into objects.

Once you’ve discovered which kind of Trash to create, then the reflection
methods come into play. The getConstructor() method takes an
argument that’s an array of Class references. This array represents the
arguments, in their proper order, for the constructor that you’re looking
for. Here, the array is dynamically created using the Java 1.1 array-
creation syntax:

new Class[] {double.class}

This code assumes that every Trash type has a constructor that takes a
double (and notice that double.class is distinct from Double.class). It’s
also possible, for a more flexible solution, to call getConstructors(),
which returns an array of the possible constructors.

What comes back from getConstructor() is a reference to a Constructor
object (part of java.lang.reflect). You call the constructor dynamically
with the method newInstance(), which takes an array of Object
containing the actual arguments. This array is again created using the
Java 1.1 syntax:

new Object[]{new Double(Messenger.data)}

In this case, however, the double must be placed inside a wrapper class
so that it can be part of this array of objects. The process of calling
newInstance() extracts the double, but you can see it is a bit confusing—
an argument might be a double or a Double, but when you make the call
you must always pass in a Double. Fortunately, this issue exists only for
the primitive types.

Once you understand how to do it, the process of creating a new object
given only a Class reference is remarkably simple. Reflection also allows
you to call methods in this same dynamic fashion.

Of course, the appropriate Class reference might not be in the trashTypes
list. In this case, the return in the inner loop is never executed and you’ll
drop out at the end. Here, the program tries to rectify the situation by
loading the Class object dynamically and adding it to the trashTypes list.
If it still can’t be found something is really wrong, but if the load is
successful then the factory method is called recursively to try again.

As you’ll see, the beauty of this design is that this code doesn’t need to be
changed, regardless of the different situations it will be used in
(assuming that all Trash subclasses contain a constructor that takes a
single double argument).

Trash subclasses
To fit into the prototyping scheme, the only thing that’s required of each
new subclass of Trash is that it contain a constructor that takes a double
argument. Java reflection handles everything else.

Here are the different types of Trash, each in their own file but part of the
Trash package (again, to facilitate reuse within the chapter):

//: c12:trash:Aluminum.java
// The Aluminum class with prototyping.
package c12.trash;

public class Aluminum extends Trash {
 private static double val = 1.67f;
 public Aluminum(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

//: c12:trash:Paper.java
// The Paper class with prototyping.
package c12.trash;

public class Paper extends Trash {
 private static double val = 0.10f;
 public Paper(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

//: c12:trash:Glass.java
// The Glass class with prototyping.
package c12.trash;

public class Glass extends Trash {
 private static double val = 0.23f;
 public Glass(double wt) { super(wt); }

 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

And here’s a new type of Trash:

//: c12:trash:Cardboard.java
// The Cardboard class with prototyping.
package c12.trash;

public class Cardboard extends Trash {
 private static double val = 0.23f;
 public Cardboard(double wt) { super(wt); }
 public double getValue() { return val; }
 public static void setValue(double newVal) {
 val = newVal;
 }
} ///:~

You can see that, other than the constructor, there’s nothing special about
any of these classes.

Parsing Trash from an external file
The information about Trash objects will be read from an outside file.
The file has all of the necessary information about each piece of trash on a
single line in the form Trash:weight, such as:

//:! c12:trash:Trash.dat
c12.trash.Glass:54
c12.trash.Paper:22
c12.trash.Paper:11
c12.trash.Glass:17
c12.trash.Aluminum:89
c12.trash.Paper:88
c12.trash.Aluminum:76
c12.trash.Cardboard:96
c12.trash.Aluminum:25
c12.trash.Aluminum:34
c12.trash.Glass:11

c12.trash.Glass:68
c12.trash.Glass:43
c12.trash.Aluminum:27
c12.trash.Cardboard:44
c12.trash.Aluminum:18
c12.trash.Paper:91
c12.trash.Glass:63
c12.trash.Glass:50
c12.trash.Glass:80
c12.trash.Aluminum:81
c12.trash.Cardboard:12
c12.trash.Glass:12
c12.trash.Glass:54
c12.trash.Aluminum:36
c12.trash.Aluminum:93
c12.trash.Glass:93
c12.trash.Paper:80
c12.trash.Glass:36
c12.trash.Glass:12
c12.trash.Glass:60
c12.trash.Paper:66
c12.trash.Aluminum:36
c12.trash.Cardboard:22
///:~

Note that the class path must be included when giving the class names,
otherwise the class will not be found.

To parse this, the line is read and the String method indexOf() produces
the index of the ‘:’. This is first used with the String method substring()
to extract the name of the trash type, and next to get the weight that is
turned into a double with the static Double.valueOf() method. The
trim() method removes white space at both ends of a string.

The Trash parser is placed in a separate file since it will be reused
throughout this chapter:

//: c12:trash:ParseTrash.java
// Parse file contents into Trash objects,
// placing each into a Fillable holder.
package c12.trash;
import java.util.*;
import java.io.*;

public class ParseTrash {
 public static void
 fillBin(String filename, Fillable bin) {
 try {
 BufferedReader data =
 new BufferedReader(
 new FileReader(filename));
 String buf;
 while((buf = data.readLine())!= null) {
 String type = buf.substring(0,
 buf.indexOf(':')).trim();
 double weight = Double.valueOf(
 buf.substring(buf.indexOf(':') + 1)
 .trim()).doubleValue();
 bin.addTrash(
 Trash.factory(
 new Trash.Messenger(type, weight)));
 }
 data.close();
 } catch(Exception e) {
 e.printStackTrace(System.err);
 // Change to an unchecked exception, for
 // ease of coding, but the unit test
 // mechanism will still be triggered:
 throw new RuntimeException();
 }
 }
 // Special case to handle Collection:
 public static void
 fillBin(String filename, Collection bin) {
 fillBin(filename, new FillableCollection(bin));
 }
} ///:~

In RecycleA.java, an ArrayList was used to hold the Trash objects.
However, other types of containers can be used as well. To allow for this,
the first version of fillBin() takes a reference to a Fillable, which is
simply an interface that supports a method called addTrash():

//: c12:trash:Fillable.java
// Any object that can be filled with Trash.
package c12.trash;

public interface Fillable {
 void addTrash(Trash t);
} ///:~

Anything that supports this interface can be used with fillBin. Of course,
Collection doesn’t implement Fillable, so it won’t work. Since Collection
is used in most of the examples, it makes sense to add a second
overloaded fillBin() method that takes a Collection. Any Collection can
then be used as a Fillable object using an adapter class:

//: c12:trash:FillableCollection.java
// Adapter that makes a Collection Fillable.
package c12.trash;
import java.util.*;

public class FillableCollection
implements Fillable {
 private Collection c;
 public FillableCollection(Collection cc) {
 c = cc;
 }
 public void addTrash(Trash t) {
 c.add(t);
 }
} ///:~

You can see that the only job of this class is to connect Fillable’s
addTrash() method to Collection’s add(). With this class in hand, the
overloaded fillBin() method can be used with a Collection in
ParseTrash.java:

 public static void
 fillBin(String filename, Collection bin) {
 fillBin(filename, new FillableCollection(bin));
 }

This approach works for any container class that’s used frequently.
Alternatively, the container class can provide its own adapter that
implements Fillable. (You’ll see this later, in DynaTrash.java.)

Recycling with prototyping
Now you can see the revised version of RecycleA.java using the
prototyping technique:

//: c12:recycleap:RecycleAP.java
// Recycling with RTTI and Prototypes.
import c12.trash.*;
import java.util.*;
import com.bruceeckel.test.*;

public class RecycleAP extends UnitTest {
 Collection
 bin = new ArrayList(),
 glassBin = new ArrayList(),
 paperBin = new ArrayList(),
 alBin = new ArrayList();
 public RecycleAP() {
 // Fill up the Trash bin:
 ParseTrash.fillBin(
 "../trash/Trash.dat", bin);
 }
 public void test() {
 Iterator sorter = bin.iterator();
 // Sort the Trash:
 while(sorter.hasNext()) {
 Object t = sorter.next();
 // RTTI to show class membership:
 if(t instanceof Aluminum)
 alBin.add(t);
 if(t instanceof Paper)
 paperBin.add(t);
 if(t instanceof Glass)
 glassBin.add(t);
 }
 Trash.sumValue(alBin.iterator());
 Trash.sumValue(paperBin.iterator());
 Trash.sumValue(glassBin.iterator());
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 new RecycleAP().test();
 }
} ///:~

All of the Trash objects, as well as the ParseTrash and support classes,
are now part of the package c12.trash, so they are simply imported.

The process of opening the data file containing Trash descriptions and
the parsing of that file have been wrapped into the static method
ParseTrash.fillBin(), so now it’s no longer a part of our design focus.
You will see that throughout the rest of the chapter, no matter what new
classes are added, ParseTrash.fillBin() will continue to work without
change, which indicates a good design.

In terms of object creation, this design does indeed severely localize the
changes you need to make to add a new type to the system. However,
there’s a significant problem in the use of RTTI that shows up clearly
here. The program seems to run fine, and yet it never detects any
cardboard, even though there is cardboard in the list! This happens
because of the use of RTTI, which looks for only the types that you tell it to
look for. The clue that RTTI is being misused is that every type in the
system is being tested, rather than a single type or subset of types. As you
will see later, there are ways to use polymorphism instead when you’re
testing for every type. But if you use RTTI a lot in this fashion, and you
add a new type to your system, you can easily forget to make the
necessary changes in your program and produce a difficult-to-find bug.
So it’s worth trying to eliminate RTTI in this case, not just for aesthetic
reasons—it produces more maintainable code.

Abstracting usage
With creation out of the way, it’s time to tackle the remainder of the
design: where the classes are used. Since it’s the act of sorting into bins
that’s particularly ugly and exposed, why not take that process and hide
it inside a class? This is the principle of “If you must do something ugly,
at least localize the ugliness inside a class.” It looks like this:

TrashSorter
Aluminum ArrayList

Paper ArrayList

Glass ArrayList

ArrayList of
Trash Bins

The TrashSorter object initialization must now be changed whenever a
new type of Trash is added to the model. You could imagine that the
TrashSorter class might look something like this:

class TrashSorter extends ArrayList {
 void sort(Trash t) { /* ... */ }
}

That is, TrashSorter is an ArrayList of references to ArrayLists of Trash
references, and with add() you can install another one, like so:

TrashSorter ts = new TrashSorter();
ts.add(new ArrayList());

Now, however, sort() becomes a problem. How does the statically-coded
method deal with the fact that a new type has been added? To solve this,
the type information must be removed from sort() so that all it needs to
do is call a generic method that takes care of the details of type. This, of
course, is another way to describe a dynamically-bound method. So
sort() will simply move through the sequence and call a dynamically-
bound method for each ArrayList. Since the job of this method is to grab
the pieces of trash it is interested in, it’s called grab(Trash). The structure
now looks like:

boolean grab(Trash)

Aluminum ArrayList

boolean grab(Trash)

Paper ArrayList

boolean grab(Trash)

Glass ArrayList

TrashSorter

ArrayList of
Trash Bins

TrashSorter needs to call each grab() method and get a different result
depending on what type of Trash the current ArrayList is holding. That
is, each ArrayList must be aware of the type it holds. The classic
approach to this problem is to create a base “Trash bin” class and inherit
a new derived class for each different type you want to hold. If Java had a
parameterized type mechanism that would probably be the most
straightforward approach. But rather than hand-coding all the classes
that such a mechanism should be building for us, further observation can
produce a better approach.

A basic OOP design principle is “Use data members for variation in state,
use polymorphism for variation in behavior.” Your first thought might be
that the grab() method certainly behaves differently for an ArrayList
that holds Paper than for one that holds Glass. But what it does is strictly
dependent on the type, and nothing else. This could be interpreted as a
different state, and since Java has a class to represent type (Class) this can
be used to determine the type of Trash a particular Tbin will hold.

The constructor for this Tbin requires that you hand it the Class of your
choice. This tells the ArrayList what type it is supposed to hold. Then the
grab() method uses Class BinType and RTTI to see if the Trash object
you’ve handed it matches the type it’s supposed to grab.

Here is the whole program. The commented numbers (e.g., (*1*)) mark
sections that will be described following the code.

//: c12:recycleb:RecycleB.java
// Adding more objects to the recycling problem.
import c12.trash.*;

import java.util.*;
import com.bruceeckel.test.*;

// A container that admits only the right type
// of Trash (established in the constructor):
class Tbin implements Fillable {
 private Collection list = new ArrayList();
 private Class type;
 public Tbin(Class binType) { type = binType; }
 public void addTrash(Trash t) { list.add(t); }
 public boolean grab(Trash t) {
 // Comparing class types:
 if(t.getClass().equals(type)) {
 list.add(t);
 return true; // Object grabbed
 }
 return false; // Object not grabbed
 }
 public Iterator iterator() {
 return list.iterator();
 }
}

class TbinList extends ArrayList { //(*1*)
 boolean sort(Trash t) {
 Iterator e = iterator();
 while(e.hasNext()) {
 Tbin bin = (Tbin)e.next();
 if(bin.grab(t)) return true;
 }
 return false; // bin not found for t
 }
 void sortBin(Tbin bin) { // (*2*)
 Iterator e = bin.iterator();
 while(e.hasNext())
 if(!sort((Trash)e.next()))
 System.out.println("Bin not found");
 }
}

public class RecycleB extends UnitTest {
 Tbin bin = new Tbin(Trash.class);
 TbinList trashBins = new TbinList();
 public RecycleB() {

 // Fill up the Trash bin:
 ParseTrash.fillBin(
 "../trash/Trash.dat", bin);
 trashBins.add(new Tbin(Aluminum.class));
 trashBins.add(new Tbin(Paper.class));
 trashBins.add(new Tbin(Glass.class));
 // add one line here: (*3*)
 trashBins.add(new Tbin(Cardboard.class));
 }
 public void test() {
 trashBins.sortBin(bin); // (*4*)
 Iterator e = trashBins.iterator();
 while(e.hasNext()) {
 Tbin b = (Tbin)e.next();
 Trash.sumValue(b.iterator());
 }
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 new RecycleB().test();
 }
} ///:~

1. TbinList holds a set of Tbin references, so that sort() can iterate
through the Tbins when it’s looking for a match for the Trash
object you’ve handed it.

2. sortBin() allows you to pass an entire Tbin in, and it moves
through the Tbin, picks out each piece of Trash, and sorts it into
the appropriate specific Tbin. Notice the genericity of this code: it
doesn’t change at all if new types are added. If the bulk of your
code doesn’t need changing when a new type is added (or some
other change occurs) then you have an easily-extensible system.

3. Now you can see how easy it is to add a new type. Few lines must
be changed to support the addition. If it’s really important, you
can squeeze out even more by further manipulating the design.

4. One method call causes the contents of bin to be sorted into the
respective specifically-typed bins.

Multiple dispatching
The above design is certainly satisfactory. Adding new types to the
system consists of adding or modifying distinct classes without causing
code changes to be propagated throughout the system. In addition, RTTI
is not “misused” as it was in RecycleA.java. However, it’s possible to go
one step further and take a purist viewpoint about RTTI and say that it
should be eliminated altogether from the operation of sorting the trash
into bins.

To accomplish this, you must first take the perspective that all type-
dependent activities—such as detecting the type of a piece of trash and
putting it into the appropriate bin—should be controlled through
polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of
elements that were all of a particular type. But whenever you find
yourself picking out particular types, stop and think. The whole idea of
polymorphism (dynamically-bound method calls) is to handle type-
specific information for you. So why are you hunting for types?

The answer is something you probably don’t think about: Java performs
only single dispatching. That is, if you are performing an operation on
more than one object whose type is unknown, Java will invoke the
dynamic binding mechanism on only one of those types. This doesn’t
solve the problem, so you end up detecting some types manually and
effectively producing your own dynamic binding behavior.

The solution is called multiple dispatching, which means setting up a
configuration such that a single method call produces more than one
dynamic method call and thus determines more than one type in the
process. To get this effect, you need to work with more than one type
hierarchy: you’ll need a type hierarchy for each dispatch. The following
example works with two hierarchies: the existing Trash family and a
hierarchy of the types of trash bins that the trash will be placed into. This
second hierarchy isn’t always obvious and in this case it needed to be
created in order to produce multiple dispatching (in this case there will
be only two dispatches, which is referred to as double dispatching).

Implementing the double dispatch
Remember that polymorphism can occur only via method calls, so if you
want double dispatching to occur, there must be two method calls: one
used to determine the type within each hierarchy. In the Trash hierarchy
there will be a new method called addToBin(), which takes an argument
of an array of TypedBin. It uses this array to step through and try to add
itself to the appropriate bin, and this is where you’ll see the double
dispatch.

Trash

addToBin(TypedBin[])

Aluminum

addToBin(TypedBin[])

Paper

addToBin(TypedBin[])

Glass

addToBin(TypedBin[])

Cardboard

addToBin(TypedBin[])

TypedBin

add(Aluminum)
add(Paper)
add(Glass)
add(Cardboard)

AluminumBin

add(Aluminum)

PaperBin

add(Paper)

GlassBin

add(Glass)

CardboardBin

add(Cardboard)

The new hierarchy is TypedBin, and it contains its own method called
add() that is also used polymorphically. But here’s an additional twist:
add() is overloaded to take arguments of the different types of trash. So an
essential part of the double dispatching scheme also involves
overloading.

Redesigning the program produces a dilemma: it’s now necessary for the
base class Trash to contain an addToBin() method. One approach is to
copy all of the code and change the base class. Another approach, which
you can take when you don’t have control of the source code, is to put the
addToBin() method into an interface, leave Trash alone, and inherit

new specific types of Aluminum, Paper, Glass, and Cardboard. This is
the approach that will be taken here.

Most of the classes in this design must be public, so they are placed in
their own files. Here’s the interface:

//: c12:doubledispatch:TypedBinMember.java
// An interface for adding the double
// dispatching method to the trash hierarchy
// without modifying the original hierarchy.

interface TypedBinMember {
 // The new method:
 boolean addToBin(TypedBin[] tb);
} ///:~

In each particular subtype of Aluminum, Paper, Glass, and Cardboard,
the addToBin() method in the interface TypedBinMember is
implemented, but it looks like the code is exactly the same in each case:

//: c12:doubledispatch:DDAluminum.java
// Aluminum for double dispatching.
import c12.trash.*;

public class DDAluminum extends Aluminum
 implements TypedBinMember {
 public DDAluminum(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

//: c12:doubledispatch:DDPaper.java
// Paper for double dispatching.
import c12.trash.*;

public class DDPaper extends Paper
 implements TypedBinMember {
 public DDPaper(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {

 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

//: c12:doubledispatch:DDGlass.java
// Glass for double dispatching.
import c12.trash.*;

public class DDGlass extends Glass
 implements TypedBinMember {
 public DDGlass(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

//: c12:doubledispatch:DDCardboard.java
// Cardboard for double dispatching.
import c12.trash.*;

public class DDCardboard extends Cardboard
 implements TypedBinMember {
 public DDCardboard(double wt) { super(wt); }
 public boolean addToBin(TypedBin[] tb) {
 for(int i = 0; i < tb.length; i++)
 if(tb[i].add(this))
 return true;
 return false;
 }
} ///:~

The code in each addToBin() calls add() for each TypedBin object in the
array. But notice the argument: this. The type of this is different for each
subclass of Trash, so the code is different. (Although this code will
benefit if a parameterized type mechanism is ever added to Java.) So this

is the first part of the double dispatch, because once you’re inside this
method you know you’re Aluminum, or Paper, etc. During the call to
add(), this information is passed via the type of this. The compiler
resolves the call to the proper overloaded version of add(). But since tb[i]
produces a reference to the base type TypedBin, this call will end up
calling a different method depending on the type of TypedBin that’s
currently selected. That is the second dispatch.

Here’s the base class for TypedBin:

//: c12:doubledispatch:TypedBin.java
// A container for the second dispatch.
import c12.trash.*;
import java.util.*;

public abstract class TypedBin {
 Collection c = new ArrayList();
 protected boolean addIt(Trash t) {
 c.add(t);
 return true;
 }
 public Iterator iterator() {
 return c.iterator();
 }
 public boolean add(DDAluminum a) {
 return false;
 }
 public boolean add(DDPaper a) {
 return false;
 }
 public boolean add(DDGlass a) {
 return false;
 }
 public boolean add(DDCardboard a) {
 return false;
 }
} ///:~

You can see that the overloaded add() methods all return false. If the
method is not overloaded in a derived class, it will continue to return
false, and the caller (addToBin(), in this case) will assume that the

current Trash object has not been added successfully to a container, and
continue searching for the right container.

In each of the subclasses of TypedBin, only one overloaded method is
overridden, according to the type of bin that’s being created. For
example, CardboardBin overrides add(DDCardboard). The overridden
method adds the trash object to its container and returns true, while all
the rest of the add() methods in CardboardBin continue to return false,
since they haven’t been overridden. This is another case in which a
parameterized type mechanism in Java would allow automatic
generation of code. (With C++ templates, you wouldn’t have to explicitly
write the subclasses or place the addToBin() method in Trash.)

Since for this example the trash types have been customized and placed
in a different directory, you’ll need a different trash data file to make it
work. Here’s a possible DDTrash.dat:

//:! c12:doubledispatch:DDTrash.dat
DDGlass:54
DDPaper:22
DDPaper:11
DDGlass:17
DDAluminum:89
DDPaper:88
DDAluminum:76
DDCardboard:96
DDAluminum:25
DDAluminum:34
DDGlass:11
DDGlass:68
DDGlass:43
DDAluminum:27
DDCardboard:44
DDAluminum:18
DDPaper:91
DDGlass:63
DDGlass:50
DDGlass:80
DDAluminum:81
DDCardboard:12
DDGlass:12
DDGlass:54
DDAluminum:36

DDAluminum:93
DDGlass:93
DDPaper:80
DDGlass:36
DDGlass:12
DDGlass:60
DDPaper:66
DDAluminum:36
DDCardboard:22
///:~

Here’s the rest of the program:

//: c12:doubledispatch:DoubleDispatch.java
// Using multiple dispatching to handle more
// than one unknown type during a method call.
import c12.trash.*;
import java.util.*;
import com.bruceeckel.test.*;

class AluminumBin extends TypedBin {
 public boolean add(DDAluminum a) {
 return addIt(a);
 }
}

class PaperBin extends TypedBin {
 public boolean add(DDPaper a) {
 return addIt(a);
 }
}

class GlassBin extends TypedBin {
 public boolean add(DDGlass a) {
 return addIt(a);
 }
}

class CardboardBin extends TypedBin {
 public boolean add(DDCardboard a) {
 return addIt(a);
 }
}

class TrashBinSet {
 private TypedBin[] binSet = {
 new AluminumBin(),
 new PaperBin(),
 new GlassBin(),
 new CardboardBin()
 };
 public void sortIntoBins(Collection bin) {
 Iterator e = bin.iterator();
 while(e.hasNext()) {
 TypedBinMember t =
 (TypedBinMember)e.next();
 if(!t.addToBin(binSet))
 System.err.println("Couldn't add " + t);
 }
 }
 public TypedBin[] binSet() { return binSet; }
}

public class DoubleDispatch extends UnitTest {
 Collection bin = new ArrayList();
 TrashBinSet bins = new TrashBinSet();
 public DoubleDispatch() {
 // ParseTrash still works, without changes:
 ParseTrash.fillBin("DDTrash.dat", bin);
 }
 public void test() {
 // Sort from the master bin into
 // the individually-typed bins:
 bins.sortIntoBins(bin);
 TypedBin[] tb = bins.binSet();
 // Perform sumValue for each bin...
 for(int i = 0; i < tb.length; i++)
 Trash.sumValue(tb[i].c.iterator());
 // ... and for the master bin
 Trash.sumValue(bin.iterator());
 }
 public static void main(String args[]) {
 new DoubleDispatch().test();
 }
} ///:~

TrashBinSet encapsulates all of the different types of TypedBins, along
with the sortIntoBins() method, which is where all the double
dispatching takes place. You can see that once the structure is set up,
sorting into the various TypedBins is remarkably easy. In addition, the
efficiency of two dynamic method calls is probably better than any other
way you could sort.

Notice the ease of use of this system in main(), as well as the complete
independence of any specific type information within main(). All other
methods that talk only to the Trash base-class interface will be equally
invulnerable to changes in Trash types.

The changes necessary to add a new type are relatively isolated: you
modify TypedBin, inherit the new type of Trash with its addToBin()
method, then inherit a new TypedBin (this is really just a copy and
simple edit), and finally add a new type into the aggregate initialization
for TrashBinSet.

The Visitor pattern
Now consider applying a design pattern that has an entirely different
goal to the trash sorting problem.

For this pattern, we are no longer concerned with optimizing the
addition of new types of Trash to the system. Indeed, this pattern makes
adding a new type of Trash more complicated. The assumption is that
you have a primary class hierarchy that is fixed; perhaps it’s from
another vendor and you can’t make changes to that hierarchy. However,
you’d like to add new polymorphic methods to that hierarchy, which
means that normally you’d have to add something to the base class
interface. So the dilemma is that you need to add methods to the base
class, but you can’t touch the base class. How do you get around this?

The design pattern that solves this kind of problem is called a “visitor”
(the final one in the Design Patterns book), and it builds on the double
dispatching scheme shown in the last section.

The visitor pattern allows you to extend the interface of the primary type
by creating a separate class hierarchy of type Visitor to virtualize the
operations performed upon the primary type. The objects of the primary

type simply “accept” the visitor, then call the visitor’s dynamically-
bound method. It looks like this:

Trash

accept(Visitor)

Aluminum

accept(Visitor v) {
 v.visit(this);
}

Visitor

visit(Aluminum)
visit(Paper)
visit(Glass)

PriceVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Paper

accept(Visitor v) {
 v.visit(this);
}

Glass

accept(Visitor v) {
 v.visit(this);
}

Etc.WeightVisitor

visit(Aluminum) {
 // Perform Aluminum-
 // specific work
}
visit(Paper) {
 // Perform Paper-
 // specific work
}
visit(Glass) {
 // Perform Glass-
 // specific work
}

Now, if v is a Visitable reference to an Aluminum object, the code:

PriceVisitor pv = new PriceVisitor();
v.accept(pv);

uses double dispatching to cause two polymorphic method calls: the first
one to select Aluminum’s version of accept(), and the second one within
accept() when the specific version of visit() is called dynamically using
the base-class Visitor reference v.

This configuration means that new functionality can be added to the
system in the form of new subclasses of Visitor. The Trash hierarchy
doesn’t need to be touched. This is the prime benefit of the visitor
pattern: you can add new polymorphic functionality to a class hierarchy
without touching that hierarchy (once the accept() methods have been
installed). Note that the benefit is helpful here but not exactly what we
started out to accomplish, so at first blush you might decide that this isn’t
the desired solution.

But look at one thing that’s been accomplished: the visitor solution
avoids sorting from the master Trash sequence into individual typed
sequences. Thus, you can leave everything in the single master sequence
and simply pass through that sequence using the appropriate visitor to
accomplish the goal. Although this behavior seems to be a side effect of
visitor, it does give us what we want (avoiding RTTI).

The double dispatching in the visitor pattern takes care of determining
both the type of Trash and the type of Visitor. In the following example,
there are two implementations of Visitor: PriceVisitor to both determine
and sum the price, and WeightVisitor to keep track of the weights.

You can see all of this implemented in the new, improved version of the
recycling program.

As with DoubleDispatch.java, the Trash class is left alone and a new
interface is created to add the accept() method:

//: c12:trashvisitor:Visitable.java
// An interface to add visitor functionality
// to the Trash hierarchy without
// modifying the base class.
import c12.trash.*;

interface Visitable {
 // The new method:
 void accept(Visitor v);

} ///:~

Since there’s nothing concrete in the Visitor base class, it can be created
as an interface:

//: c12:trashvisitor:Visitor.java
// The base interface for visitors.
import c12.trash.*;

interface Visitor {
 void visit(Aluminum a);
 void visit(Paper p);
 void visit(Glass g);
 void visit(Cardboard c);
} ///:~

A Reflective Decorator
At this point, you could follow the same approach that was used for
double dispatching and create new subtypes of Aluminum, Paper, Glass,
and Cardboard that implement the accept() method. For example, the
new Visitable Aluminum would look like this:

//: c12:trashvisitor:VAluminum.java
// Taking the previous approach of creating a
// specialized Aluminum for the visitor pattern.
import c12.trash.*;

public class VAluminum extends Aluminum
 implements Visitable {
 public VAluminum(double wt) { super(wt); }
 public void accept(Visitor v) {
 v.visit(this);
 }
} ///:~

However, we seem to be encountering an “explosion of interfaces:” basic
Trash, special versions for double dispatching, and now more special
versions for visitor. Of course, this “explosion of interfaces” is arbitrary—
one could simply put the additional methods in the Trash class. If we

ignore that we can instead see an opportunity to use the Decorator
pattern: it seems like it should be possible to create a Decorator that can be
wrapped around an ordinary Trash object and will produce the same
interface as Trash and add the extra accept() method. In fact, it’s a
perfect example of the value of Decorator.

The double dispatch creates a problem, however. Since it relies on
overloading of both accept() and visit(), it would seem to require
specialized code for each different version of the accept() method. With
C++ templates, this would be fairly easy to accomplish (since templates
automatically generate type-specialized code) but Java has no such
mechanism—at least it does not appear to. However, reflection allows
you to determine type information at run time, and it turns out to solve
many problems that would seem to require templates (albeit not as
simply). Here’s the decorator that does the trick2:

//: c12:trashvisitor:VisitableDecorator.java
// A decorator that adapts the generic Trash
// classes to the visitor pattern.
import c12.trash.*;
import java.lang.reflect.*;

public class VisitableDecorator
extends Trash implements Visitable {
 private Trash delegate;
 private Method dispatch;
 public VisitableDecorator(Trash t) {
 delegate = t;
 try {
 dispatch = Visitor.class.getMethod (
 "visit", new Class[] { t.getClass() }
);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 public double getValue() {
 return delegate.getValue();
 }

2 This was a solution created by Jaroslav Tulach in a design patterns class that I
gave in Prague.

 public double getWeight() {
 return delegate.getWeight();
 }
 public void accept(Visitor v) {
 try {
 dispatch.invoke(v, new Object[]{delegate});
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
} ///:~

[[Description of Reflection use]]

The only other tool we need is a new type of Fillable adapter that
automatically decorates the objects as they are being created from the
original Trash.dat file. But this might as well be a decorator itself,
decorating any kind of Fillable:

//: c12:trashvisitor:FillableVisitor.java
// Adapter Decorator that adds the visitable
// decorator as the Trash objects are
// being created.
import c12.trash.*;
import java.util.*;

public class FillableVisitor
implements Fillable {
 private Fillable f;
 public FillableVisitor(Fillable ff) { f = ff; }
 public void addTrash(Trash t) {
 f.addTrash(new VisitableDecorator(t));
 }
} ///:~

Now you can wrap it around any kind of existing Fillable, or any new
ones that haven’t yet been created.

The rest of the program creates specific Visitor types and sends them
through a single list of Trash objects:

//: c12:trashvisitor:TrashVisitor.java
// The "visitor" pattern with VisitableDecorators.

import c12.trash.*;
import java.util.*;
import com.bruceeckel.test.*;

// Specific group of algorithms packaged
// in each implementation of Visitor:
class PriceVisitor implements Visitor {
 private double alSum; // Aluminum
 private double pSum; // Paper
 private double gSum; // Glass
 private double cSum; // Cardboard
 public void visit(Aluminum al) {
 double v = al.getWeight() * al.getValue();
 System.out.println(
 "value of Aluminum= " + v);
 alSum += v;
 }
 public void visit(Paper p) {
 double v = p.getWeight() * p.getValue();
 System.out.println(
 "value of Paper= " + v);
 pSum += v;
 }
 public void visit(Glass g) {
 double v = g.getWeight() * g.getValue();
 System.out.println(
 "value of Glass= " + v);
 gSum += v;
 }
 public void visit(Cardboard c) {
 double v = c.getWeight() * c.getValue();
 System.out.println(
 "value of Cardboard = " + v);
 cSum += v;
 }
 void total() {
 System.out.println(
 "Total Aluminum: $" + alSum + "\n" +
 "Total Paper: $" + pSum + "\n" +
 "Total Glass: $" + gSum + "\n" +
 "Total Cardboard: $" + cSum);
 }
}

class WeightVisitor implements Visitor {
 private double alSum; // Aluminum
 private double pSum; // Paper
 private double gSum; // Glass
 private double cSum; // Cardboard
 public void visit(Aluminum al) {
 alSum += al.getWeight();
 System.out.println("weight of Aluminum = "
 + al.getWeight());
 }
 public void visit(Paper p) {
 pSum += p.getWeight();
 System.out.println("weight of Paper = "
 + p.getWeight());
 }
 public void visit(Glass g) {
 gSum += g.getWeight();
 System.out.println("weight of Glass = "
 + g.getWeight());
 }
 public void visit(Cardboard c) {
 cSum += c.getWeight();
 System.out.println("weight of Cardboard = "
 + c.getWeight());
 }
 void total() {
 System.out.println("Total weight Aluminum:"
 + alSum);
 System.out.println("Total weight Paper:"
 + pSum);
 System.out.println("Total weight Glass:"
 + gSum);
 System.out.println("Total weight Cardboard:"
 + cSum);
 }
}

public class TrashVisitor extends UnitTest {
 Collection bin = new ArrayList();
 PriceVisitor pv = new PriceVisitor();
 WeightVisitor wv = new WeightVisitor();
 public TrashVisitor() {
 ParseTrash.fillBin("../trash/Trash.dat",
 new FillableVisitor(

 new FillableCollection(bin)));
 }
 public void test() {
 Iterator it = bin.iterator();
 while(it.hasNext()) {
 Visitable v = (Visitable)it.next();
 v.accept(pv);
 v.accept(wv);
 }
 pv.total();
 wv.total();
 }
 public static void main(String args[]) {
 new TrashVisitor().test();
 }
} ///:~

In Test(), note how visitability is added by simply creating a different
kind of bin using the decorator. Also notice that the FillableCollection
adapter has the appearance of being used as a decorator (for ArrayList)
in this situation. However, it completely changes the interface of the
ArrayList, whereas the definition of Decorator is that the interface of the
decorated class must still be there after decoration.

Note that the shape of the client code (shown in the Test class) has
changed again, from the original approaches to the problem. Now there’s
only a single Trash bin. The two Visitor objects are accepted into every
element in the sequence, and they perform their operations. The visitors
keep their own internal data to tally the total weights and prices.

Finally, there’s no run time type identification other than the inevitable
cast to Trash when pulling things out of the sequence. This, too, could be
eliminated with the implementation of parameterized types in Java.

One way you can distinguish this solution from the double dispatching
solution described previously is to note that, in the double dispatching
solution, only one of the overloaded methods, add(), was overridden
when each subclass was created, while here each one of the overloaded
visit() methods is overridden in every subclass of Visitor.

More coupling?
There’s a lot more code here, and there’s definite coupling between the
Trash hierarchy and the Visitor hierarchy. However, there’s also high
cohesion within the respective sets of classes: they each do only one thing
(Trash describes Trash, while Visitor describes actions performed on
Trash), which is an indicator of a good design. Of course, in this case it
works well only if you’re adding new Visitors, but it gets in the way
when you add new types of Trash.

Low coupling between classes and high cohesion within a class is
definitely an important design goal. Applied mindlessly, though, it can
prevent you from achieving a more elegant design. It seems that some
classes inevitably have a certain intimacy with each other. These often
occur in pairs that could perhaps be called couplets; for example,
containers and iterators. The Trash-Visitor pair above appears to be
another such couplet.

RTTI considered harmful?
Various designs in this chapter attempt to remove RTTI, which might
give you the impression that it’s “considered harmful” (the
condemnation used for poor, ill-fated goto, which was thus never put
into Java). This isn’t true; it is the misuse of RTTI that is the problem. The
reason our designs removed RTTI is because the misapplication of that
feature prevented extensibility, while the stated goal was to be able to
add a new type to the system with as little impact on surrounding code
as possible. Since RTTI is often misused by having it look for every single
type in your system, it causes code to be non-extensible: when you add a
new type, you have to go hunting for all the code in which RTTI is used,
and if you miss any you won’t get help from the compiler.

However, RTTI doesn’t automatically create non-extensible code. Let’s
revisit the trash recycler once more. This time, a new tool will be
introduced, which I call a TypeMap. It contains a HashMap that holds
ArrayLists, but the interface is simple: you can add() a new object, and
you can get() an ArrayList containing all the objects of a particular type.
The keys for the contained HashMap are the types in the associated
ArrayList. The beauty of this design (suggested by Larry O’Brien) is that

the TypeMap dynamically adds a new pair whenever it encounters a
new type, so whenever you add a new type to the system (even if you
add the new type at run time), it adapts.

Our example will again build on the structure of the Trash types in
package c12.Trash (and the Trash.dat file used there can be used here
without change):

//: c12:dynatrash:DynaTrash.java
// Using a Map of Lists and RTTI
// to automatically sort trash into
// ArrayLists. This solution, despite the
// use of RTTI, is extensible.
import c12.trash.*;
import java.util.*;
import com.bruceeckel.test.*;

// Generic TypeMap works in any situation:
class TypeMap {
 private Map t = new HashMap();
 public void add(Object o) {
 Class type = o.getClass();
 if(t.containsKey(type))
 ((List)t.get(type)).add(o);
 else {
 List v = new ArrayList();
 v.add(o);
 t.put(type,v);
 }
 }
 public List get(Class type) {
 return (List)t.get(type);
 }
 public Iterator keys() {
 return t.keySet().iterator();
 }
}

// Adapter class to allow callbacks
// from ParseTrash.fillBin():
class TypeMapAdapter implements Fillable {
 TypeMap map;
 public TypeMapAdapter(TypeMap tm) { map = tm; }
 public void addTrash(Trash t) { map.add(t); }

}

public class DynaTrash extends UnitTest {
 TypeMap bin = new TypeMap();
 public DynaTrash() {
 ParseTrash.fillBin("../trash/Trash.dat",
 new TypeMapAdapter(bin));
 }
 public void test() {
 Iterator keys = bin.keys();
 while(keys.hasNext())
 Trash.sumValue(
 bin.get((Class)keys.next()).iterator());
 }
 public static void main(String args[]) {
 new DynaTrash().test();
 }
} ///:~

Although powerful, the definition for TypeMap is simple. It contains a
HashMap, and the add() method does most of the work. When you
add() a new object, the reference for the Class object for that type is
extracted. This is used as a key to determine whether an ArrayList
holding objects of that type is already present in the HashMap. If so, that
ArrayList is extracted and the object is added to the ArrayList. If not, the
Class object and a new ArrayList are added as a key-value pair.

You can get an Iterator of all the Class objects from keys(), and use each
Class object to fetch the corresponding ArrayList with get(). And that’s
all there is to it.

The filler() method is interesting because it takes advantage of the
design of ParseTrash.fillBin(), which doesn’t just try to fill an ArrayList
but instead anything that implements the Fillable interface with its
addTrash() method. All filler() needs to do is to return a reference to an
interface that implements Fillable, and then this reference can be used as
an argument to fillBin() like this:

ParseTrash.fillBin("Trash.dat", bin.filler());

To produce this reference, an anonymous inner class (described in Chapter
8 of Thinking in Java, 2nd edition) is used. You never need a named class to
implement Fillable, you just need a reference to an object of that class,
thus this is an appropriate use of anonymous inner classes.

An interesting thing about this design is that even though it wasn’t
created to handle the sorting, fillBin() is performing a sort every time it
inserts a Trash object into bin.

Much of class DynaTrash should be familiar from the previous
examples. This time, instead of placing the new Trash objects into a bin
of type ArrayList, the bin is of type TypeMap, so when the trash is
thrown into bin it’s immediately sorted by TypeMap’s internal sorting
mechanism. Stepping through the TypeMap and operating on each
individual ArrayList becomes a simple matter:

 Iterator keys = bin.keys();
 while(keys.hasNext())
 Trash.sumValue(
 bin.get((Class)keys.next())iterator());

As you can see, adding a new type to the system won’t affect this code at
all, nor the code in TypeMap. This is certainly the smallest solution to the
problem, and arguably the most elegant as well. It does rely heavily on
RTTI, but notice that each key-value pair in the HashMap is looking for
only one type. In addition, there’s no way you can “forget” to add the
proper code to this system when you add a new type, since there isn’t
any code you need to add.

Summary
Coming up with a design such as TrashVisitor.java that contains a larger
amount of code than the earlier designs can seem at first to be
counterproductive. It pays to notice what you’re trying to accomplish
with various designs. Design patterns in general strive to separate the
things that change from the things that stay the same. The “things that
change” can refer to many different kinds of changes. Perhaps the change
occurs because the program is placed into a new environment or because
something in the current environment changes (this could be: “The user

wants to add a new shape to the diagram currently on the screen”). Or, as
in this case, the change could be the evolution of the code body. While
previous versions of the trash sorting example emphasized the addition
of new types of Trash to the system, TrashVisitor.java allows you to
easily add new functionality without disturbing the Trash hierarchy.
There’s more code in TrashVisitor.java, but adding new functionality to
Visitor is cheap. If this is something that happens a lot, then it’s worth
the extra effort and code to make it happen more easily.

The discovery of the vector of change is no trivial matter; it’s not
something that an analyst can usually detect before the program sees its
initial design. The necessary information will probably not appear until
later phases in the project: sometimes only at the design or
implementation phases do you discover a deeper or more subtle need in
your system. In the case of adding new types (which was the focus of
most of the “recycle” examples) you might realize that you need a
particular inheritance hierarchy only when you are in the maintenance
phase and you begin extending the system!

One of the most important things that you’ll learn by studying design
patterns seems to be an about-face from what has been promoted so far
in this book. That is: “OOP is all about polymorphism.” This statement
can produce the “two-year-old with a hammer” syndrome (everything
looks like a nail). Put another way, it’s hard enough to “get”
polymorphism, and once you do, you try to cast all your designs into that
one particular mold.

What design patterns say is that OOP isn’t just about polymorphism. It’s
about “separating the things that change from the things that stay the
same.” Polymorphism is an especially important way to do this, and it
turns out to be helpful if the programming language directly supports
polymorphism (so you don’t have to wire it in yourself, which would
tend to make it prohibitively expensive). But design patterns in general
show other ways to accomplish the basic goal, and once your eyes have
been opened to this you will begin to search for more creative designs.

Since the Design Patterns book came out and made such an impact,
people have been searching for other patterns. You can expect to see
more of these appear as time goes on. Here are some sites recommended
by Jim Coplien, of C++ fame (http://www.bell-labs.com/~cope), who is one
of the main proponents of the patterns movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki
http://c2.com/ppr
http://www.bell-labs.com/people/cope/Patterns/Process/index.html
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called
PLOP, that produces a published proceedings, the third of which came
out in late 1997 (all published by Addison-Wesley).

Exercises
1. Add a class Plastic to TrashVisitor.java.

2. Add a class Plastic to DynaTrash.java.

3. Create a decorator like VisitableDecorator, but for the multiple
dispatching example, along with an “adapter decorator” class like
the one created for VisitableDecorator. Build the rest of the
example and show that it works.

13: Projects
A number of more challenging projects for you to solve.
[[Some of these may turn into examples in the book, and
so at some point might disappear from here]]

Rats & Mazes
First, create a Blackboard (cite reference) which is an object on which
anyone may record information. This particular blackboard draws a
maze, and is used as information comes back about the structure of a
maze from the rats that are investigating it.

Now create the maze itself. Like a real maze, this object reveals very little
information about itself — given a coordinate, it will tell you whether
there are walls or spaces in the four directions immediately surrounding
that coordinate, but no more. For starters, read the maze in from a text
file but consider hunting on the internet for a maze-generating algorithm.
In any event, the result should be an object that, given a maze coordinate,
will report walls and spaces around that coordinate. Also, you must be
able to ask it for an entry point to the maze.

Finally, create the maze-investigating Rat class. Each rat can
communicate with both the blackboard to give the current information
and the maze to request new information based on the current position of
the rat. However, each time a rat reaches a decision point where the maze
branches, it creates a new rat to go down each of the branches. Each rat is
driven by its own thread. When a rat reaches a dead end, it terminates
itself after reporting the results of its final investigation to the blackboard.

The goal is to completely map the maze, but you must also determine
whether the end condition will be naturally found or whether the
blackboard must be responsible for the decision.

An example implementation by Jeremy Meyer:

//: c13:Maze.java

import java.util.*;
import java.io.*;
import java.awt.*;

public class Maze extends Canvas {
 private Vector lines; // a line is a char array
 private int width = -1;
 private int height = -1;
 public static void main (String [] args)
 throws IOException {
 if (args.length < 1) {
 System.out.println("Enter filename");
 System.exit(0);
 }
 Maze m = new Maze();
 m.load(args[0]);
 Frame f = new Frame();
 f.setSize(m.width*20, m.height*20);
 f.add(m);
 Rat r = new Rat(m, 0, 0);
 f.setVisible(true);
 }
 public Maze() {
 lines = new Vector();
 setBackground(Color.lightGray);
 }
 synchronized public boolean
 isEmptyXY(int x, int y) {
 if (x < 0) x += width;
 if (y < 0) y += height;
 // Use mod arithmetic to bring rat in line:
 byte[] by =
 (byte[])(lines.elementAt(y%height));
 return by[x%width]==' ';
 }
 synchronized public void
 setXY(int x, int y, byte newByte) {
 if (x < 0) x += width;
 if (y < 0) y += height;
 byte[] by =
 (byte[])(lines.elementAt(y%height));
 by[x%width] = newByte;
 repaint();
 }

 public void
 load(String filename) throws IOException {
 String currentLine = null;
 BufferedReader br = new BufferedReader(
 new FileReader(filename));
 for(currentLine = br.readLine();
 currentLine != null;
 currentLine = br.readLine()) {
 lines.addElement(currentLine.getBytes());
 if(width < 0 ||
 currentLine.getBytes().length > width)
 width = currentLine.getBytes().length;
 }
 height = lines.size();
 br.close();
 }
 public void update(Graphics g) { paint(g); }
 public void paint (Graphics g) {
 int canvasHeight = this.getBounds().height;
 int canvasWidth = this.getBounds().width;
 if (height < 1 || width < 1)
 return; // nothing to do
 int width =
 ((byte[])(lines.elementAt(0))).length;
 for (int y = 0; y < lines.size(); y++) {
 byte[] b;
 b = (byte[])(lines.elementAt(y));
 for (int x = 0; x < width; x++) {
 switch(b[x]) {
 case ' ': // empty part of maze
 g.setColor(Color.lightGray);
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),
 canvasWidth/width,
 canvasHeight/height);
 break;
 case '*': // a wall
 g.setColor(Color.darkGray);
 g.fillRect(
 x*(canvasWidth/width),
 y*(canvasHeight/height),
 (canvasWidth/width)-1,
 (canvasHeight/height)-1);

 break;
 default: // must be rat
 g.setColor(Color.red);
 g.fillOval(x*(canvasWidth/width),
 y*(canvasHeight/height),
 canvasWidth/width,
 canvasHeight/height);
 break;
 }
 }
 }
 }
} ///:~

//: c13:Rat.java

public class Rat {
 static int ratCount = 0;
 private Maze prison;
 private int vertDir = 0;
 private int horizDir = 0;
 private int x,y;
 private int myRatNo = 0;
 public Rat(Maze maze, int xStart, int yStart) {
 myRatNo = ratCount++;
 System.out.println("Rat no." + myRatNo +
 " ready to scurry.");
 prison = maze;
 x = xStart;
 y = yStart;
 prison.setXY(x,y, (byte)'R');
 new Thread() {
 public void run(){ scurry(); }
 }.start();
 }
 public void scurry() {
 // Try and maintain direction if possible.
 // Horizontal backward
 boolean ratCanMove = true;
 while(ratCanMove) {
 ratCanMove = false;
 // South
 if (prison.isEmptyXY(x, y + 1)) {
 vertDir = 1; horizDir = 0;

 ratCanMove = true;
 }
 // North
 if (prison.isEmptyXY(x, y - 1))
 if (ratCanMove)
 new Rat(prison, x, y-1);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = -1; horizDir = 0;
 ratCanMove = true;
 }
 // West
 if (prison.isEmptyXY(x-1, y))
 if (ratCanMove)
 new Rat(prison, x-1, y);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = 0; horizDir = -1;
 ratCanMove = true;
 }
 // East
 if (prison.isEmptyXY(x+1, y))
 if (ratCanMove)
 new Rat(prison, x+1, y);
 // Rat can move already, so give
 // this choice to the next rat.
 else {
 vertDir = 0; horizDir = 1;
 ratCanMove = true;
 }
 if (ratCanMove) { // Move original rat.
 x += horizDir;
 y += vertDir;
 prison.setXY(x,y,(byte)'R');
 } // If not then the rat will die.
 try {
 Thread.sleep(2000);
 } catch(InterruptedException ie) {}
 }
 System.out.println("Rat no." + myRatNo +
 " can't move..dying..aarrgggh.");
 }

} ///:~

The maze initialization file:

//:! c13:Amaze.txt
 * ** * * ** *
 *** * ******* * ****
 *** ***
 ***** ********** *****
 * * * * ** ** * * * ** *
 * * * * ** * * * * **
 * ** * **
 * ** * ** * ** * **
 *** * *** ***** * *** **
 * * * * * *
 * ** * * * ** * *
///:~

Other maze resources
A discussion of algorithms to create mazes as well as Java source code to
implement them:

http://www.mazeworks.com/mazegen/mazegen.htm

A discussion of algorithms for collision detection and other
individual/group moving behavior for autonomous physical objects:

http://www.red3d.com/cwr/steer/

XML Decorator
Create a pair of decorators for I/O Readers and Writers that encode (for
the Writer decorator) and decode (for the reader decorator) XML.

http://www.mazeworks.com/mazegen/mazegen.htm
http://www.red3d.com/cwr/steer/

	Preface
	Introduction
	1: The pattern concept
	What is a pattern?
	Pattern taxonomy
	The singleton
	Classifying patterns
	The development challenge
	Exercises

	2: Unit Testing
	Write tests first
	A very simple framework
	Writing tests
	White-box & black-box tests
	Running tests
	Automatically executing tests
	Exercises

	3: Building application frameworks
	Template method

	4:Fronting for an implementation
	Proxy
	State
	StateMachine
	Tools
	Exercises

	X: Iterators: decoupling algorithms from containers
	Type-safe iterators

	5: Factories: encapsulating object creation
	Simple Factory method
	Polymorphic factories
	Abstract factories
	Exercises

	6: Function objects
	Command
	Strategy
	Chain of responsibility
	Exercises

	7: Changing the interface
	Adapter
	Fa?ade
	Package as a variation of Fa?ade

	Exercises

	8: Table-driven code: configuration flexibility
	Table-driven code using anonymous inner classes

	9: Interpreter/�Multiple Languages
	Interpreter
	Motivation
	Python overview
	Built-in containers
	Functions
	Strings
	Classes
	Inheritance

	Creating a language
	Configuring Jython

	Generating documentation
	Controlling the interpreter
	Putting data in
	Getting data out
	Multiple interpreters

	Controlling Java from Jython
	Using Java libraries
	Inheriting from Java library classes

	Creating Java classes with Jython
	Building the Java classes from the Python code

	Summary
	Exercises

	10: Callbacks
	Observer
	Observing flowers

	A visual example of observers
	Exercises

	11: Multiple dispatching
	Visitor, a type of multiple dispatching
	Exercises

	12: Pattern refactoring
	Simulating the trash recycler
	Improving the design
	“Make more objects”

	A pattern for prototyping creation
	Trash subclasses
	Parsing Trash from an external file
	Recycling with prototyping

	Abstracting usage
	Multiple dispatching
	Implementing the double dispatch

	The Visitor pattern
	A Reflective Decorator
	More coupling?

	RTTI considered harmful?
	Summary
	Exercises

	13: Projects
	Rats & Mazes
	Other maze resources

	XML Decorator

