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Abstract. This paper studies a setting where a principal needs to mo-
tivate teams of agents whose efforts lead to an outcome that stochas-
tically depends on the combination of agents’ actions, which are not
directly observable by the principal. In [1] we suggest and study a basic
“combinatorial agency” model for this setting. In this paper we expose
a somewhat surprising phenomenon found in this setting: cases where
the principal can gain by asking agents to reduce their effort level, even
when this increased effort comes for free. This phenomenon cannot occur
in a setting where the principal can observe the agents’ actions, but we
show that it can occur in the hidden-actions setting. We prove that for
the family of technologies that exhibit “increasing returns to scale” this
phenomenon cannot happen, and that in some sense this is a maximal
family of technologies for which the phenomenon cannot occur. Finally,
we relate our results to a basic question in production design in firms.

1 Introduction

Background: Combinatorial Agency
The well studied principal-agent problem deals with how a “principal” can

motivate a rational “agent” to exert costly effort towards the welfare of the
principal. The difficulty in this model is that the agent’s action (i.e. whether
he exerts effort or not) is unobservable by the principal and only the final out-
come, which is probabilistic and also influenced by other factors, is observable.
“Unobservable” here is meant in a wide sense that includes “not precisely mea-
surable”, “costly to determine”, or “non-contractible” (meaning that it can not
be upheld in “a court of law”). This problem is well studied in many contexts
in classical economic theory and we refer the reader to introductory texts on
economic theory for background (e.g. [11] Chapter 14). The solution is based on
the observation that a properly designed contract, in which the payments are
contingent upon the final outcome, can influence a rational agent to exert the
required effort.

In [1] we initiated a general study of handling combinations of agents rather
than a single agent. While much work was previously done on motivating teams
of agents [8, 13, 9, 3], our emphasis in [1] was on dealing with the complex com-
binatorial structure of dependencies between agents’ actions.

In the general model presented in [1], each of n agents has a set of possible
actions, the combination of actions by the players results in some outcome, where



this happens probabilistically. The main part of the specification of a problem
in this model is a function that specifies this distribution for each n-tuple of
agents’ actions (“the technology”). Additionally, the problem specifies the prin-
cipal’s utility for each possible outcome, and for each agent, the agent’s cost for
each possible action. The principal motivates the agents by offering to each of
them a contract that specifies a payment for each possible outcome of the whole
project, with the goal of maximizing his expected net utility. Key here is that
the actions of the players are non-observable and thus the contract cannot make
the payments directly contingent on the actions of the players, but rather only
on the outcome of the whole project.

Given a set of contracts, the agents will each optimize his own utility; i.e.,
will choose the action that maximizes his expected payment minus the cost of
the action. Since the outcome depends on the actions of all players together, the
agents are put in a game here and are assumed to reach a Nash Equilibrium (NE).
The principal’s problem is that of designing the optimal contract: i.e. the vector
of contracts to the different agents that induce an equilibrium that will optimize
his expected utility from the outcome minus his expected total payment.

We refer the reader to our earlier paper [1] for further motivation and details.
Several other papers study different issues in the combinatorial agency model.
Mixed strategies were studied in [2], while [6] studied random audits. In this
paper we deal with a rather surprising (to us) phenomena that we have discovered
in this model: the possible advantage of “throwing away” some free agents’ effort
(effort increase with no increase in cost).

Our Results
We focus on the case of two possible outcomes (“binary outcome”): either

the project succeeds (generating value v to the principal) or fails (value 0). We
generalize the model of [1] and allow for more than two actions for each agent.
In this multiple-actions setting it is natural to assume that each agent has a
linear order over his actions that corresponds to the actions’ cost, and that more
effort (according to the linear order) does not decrease the project’s probability
of success. An agent wastes free labor if he plays an action for which there exists
another action with the same cost and is better according the linear order (as the
project’s success probability can increase with no increase in the agent’s cost).
A contract wastes free labor if at least one of the agents plays an action that
wastes free labor. Is it possible that the principal’s optimal contract will waste
free labor? In the observable-actions case the principal can never gain by such a
waste. Somewhat surprisingly, in the hidden-actions case we are able to present
an example for which the principal can gain by wasting free-labor (Section 3).
The fundamental reason for that is that free labor increases free riding, and
reduces the motivation of other agents to exert effort.

To measure the principal’s loss from using free labor we define the Price of
Free-Labor (POFL). POFL is defined to be the worse ratio (over all values v)
between the principal’s utility in the optimal contract and the best contract that
must use all free labor (Section 4). Our goal is to characterize technologies for
which free labor is never wasted. We show that for technologies that exhibit
“increasing returns to scale (IRS)”, free labor is never wasted (Section 5). Infor-
mally, the IRS property ensures that an increase in effort of all agents but one
increases the marginal contribution of that agent due to an increase in his effort.
An example for such a technology is the AND technology in which agents are
perfect complements, each agent has a sub-task and the project succeeds only



if all agents succeed in their sub-tasks. Thus, the IRS condition is sufficient to
ensure that free labor is not wasted. Is it also necessary? It is easy to construct
arbitrary technologies that do not exhibit IRS yet do not waste free labor.4

Therefore we focus on a natural and large family of technologies: “structured
technologies”, and aim to prove a complementary result for a natural form of
free labor in that family.

In a “structured technology” each agent has a sub-task to perform and the
project’s success is a deterministic Boolean function of the set of successful
sub-tasks. The success of a sub-task executed by an agent is determined inde-
pendently and stochastically as a function of his effort. If he exert no effort he
bears no cost and the success probability is low, while if he exerts effort the cost
is positive and the success probability is higher. Free labor is introduced by the
principal’s ability to remove agents altogether. Suppose that a given technology
function specifies the underlying technological feasibility, but now the range of
possible technologies that the principal can apriori choose among is given by the
sub-technologies of the given one. I.e. the principal can apriori choose a subset of
the agents and completely removing the others – in which case all the subtasks
of the removed agents will surely fail.5 Removed agents as well as agents that
do not exert effort bear no cost. If an agent supply some positive success prob-
ability for his sub-task without any effort then removing the agent corresponds
to a waste of free labor.

We ask the following question: for which technology functions a waste of free
labor will never occur (independent of the exact parameters of the agents’ success
probabilities in their sub-tasks) ? We show that any structured technology will
waste free labor for some choice of parameters, with a single exception: for the
AND function, with any choice of parameters, free labor should always be used.

Finally, we draw a connection between this phenomenon and the much dis-
cussed question of process-based (PB) vs. function-based (FB) division of la-
bor [10, 12, 14]: Suppose that a firm produces a product (task) that is composed
of two parts (sub-tasks): A and B. Two workers (agents) A1 and A2 can each
perform a sub-task of type A and two other workers B1 and B2 can each per-
form a sub-task of type B. One can consider two natural ways of organizing the
production in the firm:

– Function based: Two “divisions”, each consisting of one agent of each type.
The project succeeds if at least one division is successful. The success here
can be represented by (A1 AND B1) OR (A2 AND B2).

– Process based: Two “divisions”, each consisting of two agents of the same
type. In this case there is an “A division” (with A1, A2) and a “B division”
(with B1, B2). The success here can be represented by (A1 OR A2) AND
(B1 or B2).

Notice that the process-based organization is superior in terms of probability
of success: the function-based alternative simply discards the possibility of suc-
cess due to (A1 AND B2) OR (A2 AND B1). Yet, our results show that in an
agent-based setting with hidden actions, the function-based approach may still
be superior due to lower level of possible free-riding. We discuss the connection

4 Actually, if each action has a different cost this holds trivially.
5 One could assign different costs to the different sub-technologies, but we just look

at the simplest question without any associated costs.



to the issue of free labor at Section 7. This result seems to be in line with the
main intuitive reasons for choosing function-based organization (see [14]).

Due to lack of space we defer all proofs to the full version of the paper (which
can be found on the authors’ web sites).

2 Model and Preliminaries

Our main interest is in the simple “binary action, binary outcome” scenario
where each agent has two possible actions (”exert effort” or ”shirk”) and there
are two possible outcomes (”failure”, ”success”). In order to study phenomena
in this setting, we will need to work within a more general model in which agents
have general actions, but the outcome is still binary. This falls within the general
framework of [1], and generalizes the “binary action” sub-model.

A principal employs a set of agents N of size n. Each agent i ∈ N has
a possible set of actions Ai, and a cost (effort) ci(ai) ≥ 0 for each possible
action ai ∈ Ai (ci : Ai → <+). The actions of all players determine, in a
probabilistic way, a “contractible” outcome, o ∈ {0, 1}, where the outcomes 0
and 1 denote project failure and success, respectively (binary-outcome). The
outcome is determined according to a success function t : A1× . . .×An → [0, 1],
where t(a1, . . . , an) denotes the probability of project success where players play
with the action profile a = (a1, . . . , an) ∈ A1×. . .×An = A. We use the notation
(t, c(·)) to denote a technology (a success function and a cost function for each
agent).

The principal’s value of a successful project is given by a scalar v > 0, where
he gains no value from a project failure. The idea is that the actions of the
players are unobservable, but the final outcome o is observed by him and others,
and he may design enforceable contracts based on this outcome. We assume that
the principal can pay the agents but not fine them (known as the limited liability
constraint). The contract to agent i is thus given by a scalar value pi ≥ 0 that
denotes the payment that i gets in case of project success. If the project fails,
the agent gets no money.

Given this setting, the agents have been put in a game, where the utility
of agent i under the profile of actions a = (a1, . . . , an) is given by ui(a) =
pi·t(a)−ci(ai). As usual, we denote by a−i ∈ A−i the (n−1)-dimensional vector of
the actions of all agents excluding agent i. i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an).
The agents will be assumed to reach Nash equilibrium, if such an equilibrium
exists. The principal’s likes to design the contracts pi as to maximize his own
expected utility u(a, v) = t(a) · (v −∑

i∈N pi), where the actions a1, . . . , an are
at Nash-equilibrium. In the case of multiple Nash equilibria, in our model we
let the principal choose the desired one, and “suggest” it to the agents, thus
focusing on the “best” Nash equilibrium.6

As we wish to concentrate on motivating agents, rather than on the coordi-
nation between agents, we assume that more effort by an agent always leads to a
better probability of success. Formally, we assume that the actions of each agent
are ordered according to the amount of effort, i.e. for any i there is a linear order
Âi on Ai that is consistent with the costs, ai Âi a′i ⇒ ci(ai) ≥ ci(a′i), and the

6 A variant, which is similar in spirit to “strong implementation” in mechanism design,
and discussed here, would be to take the worst Nash equilibrium, or even, stronger
yet, to require that only a single equilibrium exists.



success function t is monotone non-decreasing, ∀i ∈ N, ∀a−i ∈ A−i we have that
ai Âi a′i ⇒ t(ai, a−i) ≥ t(a′i, a−i). We also assume that t(a) > 0 for any a ∈ A.
We denote ai ºi a′i if ai Âi a′i or ai = a′i.

We start with the characterization of Nash equilibrium in this setting.

Observation 1 The profile of actions a ∈ A is a Nash equilibrium 7 under the
payments (p1, p2, . . . , pn) (agent i is paid pi ≥ 0 if the project succeeds and 0 if
not) if and only if for any agent i ∈ N the payment pi satisfies 8

maxa′
i
≺iai

ci(ai)− ci(a′i)
ti(ai, a−i)− ti(a′i, a−i)

≤ pi ≤ mina′
i
Âiai

ci(a′i)− ci(ai)
ti(a′i, a−i)− ti(ai, a−i)

Moreover, to get the lowest cost payments that induce a ∈ A as a Nash
equilibrium, the lower bound weak inequality must hold as equality.

Given the technology and the value v of the principal from a successful
project, the principal’s goal is to maximize his utility, i.e. to determine a profile
of actions a ∈ A, which gives the highest utility u(a, v) in equilibrium, as cal-
culated above. We call a profile of actions a ∈ A that maximizes the principal’s
utility for the value v, an optimal contract for v. A simple but crucial observa-
tion, generalizing a similar one in [1], shows that the optimal contract exhibits
some monotonicity properties in the value.

Lemma 1. (Monotonicity lemma): For any technology (t, c(·)) the expected
utility of the principal at the optimal contracts, the success probability of the op-
timal contracts, and the expected payment of the optimal contract, are all mono-
tonically non-decreasing with the principal’s value v.

A similar lemma also holds in the observable-actions case, and is also showed
there.

The principal can determine the action profile played by the agents in equi-
librium by changing the agents’ contracts (payment in case of success). As the
value of v increases, the principal may change the profile of actions obtained at
the equilibrium. It turn out that it is helpful to look at values v in which there
is a change in the contracted action profile, and we call such points (values)
“transition points”.

Definition 1. v ∈ <+ is a transition point for technology (t, c(·)) if for any
ε1 > 0 and ε2 > 0, the set of optimal contracts for the value v − ε1 is different
from the set of optimal contracts for the value v + ε2.

Some of the results in this paper will be related to success functions for
which the marginal contribution of any agent is non-decreasing in the effort of
the other agents, we say that in such a case the function exhibits increasing
returns to scale. Formally, for two action profiles a, b ∈ A we denote b º a if for
all j, bj ºj aj .
7 Note that, unlike in the Boolean action case studied in [1], it is possible that some

profile of actions cannot be a Nash equilibrium with any payments, as no payments
satisfy all these conditions.

8 If t is not strictly monotone, it might be that for some a′i it holds that ti(ai, a−i) =
ti(a

′
i, a−i). In this case for a ∈ A to be a NE, it must be the case that ci(a

′
i) ≥ ci(ai).

In this case we interpret the above conditions as follows. The upper bound inequality
holds for any pi ≥ 0 (as ci(a

′
i) ≥ ci(ai) for any a′i Âi ai). The lower bound inequality

holds if for a′i ≺i ai, ci(a
′
i) = ci(ai).



Definition 2. A technology success function t exhibits (weakly) increasing re-
turns to scale (IRS) if for every i, and every b º a

ti(bi, b−i)− ti(ai, b−i) ≥ ti(bi, a−i)− ti(ai, a−i)

If a technology success function exhibits IRS we also say that the technology
exhibits IRS.

2.1 Structured Technology Functions

Much of our focus will be on technology functions whose structure can be de-
scribed easily as being derived from independent agent sub-tasks – called struc-
tured technology functions. This subclass will first give us some natural examples
of technology functions, and will also provide a succinct and natural way to rep-
resent technology success functions.

In a structured technology function, each individual succeeds or fails in his
own “sub-task” independently. The project’s success or failure deterministically
depends, maybe in a complex way, on the set of successful sub-tasks. Thus we
will assume a monotone Boolean function f : {0, 1}n → {0, 1} which denotes
whether the project succeeds as a function of the success of the n agents’ tasks.

A model with a structured technology success function is a special case of
the binary-outcome, binary-action model [1]. In this model, the action space of
each agent has two possible actions: 0 (shirk) and 1 (exert effort). The cost of
shirking is 0, while the cost of exerting effort is ci > 0.

A structure technology function t is defined by t(a1, . . . , an) being the prob-
ability that f(x1, . . . , xn) = 1 where the bits x1, . . . , xn are chosen according to
the following distribution: if ai = 0 then xi = 1 with probability γi ∈ [0, 1) (and
xi = 0 with probability 1− γi); otherwise, i.e. if ai = 1, then xi = 1 with proba-
bility δi > γi (and xi = 0 with probability 1− δi). We denote x = (x1, . . . , xn).

The question of the representation of the technology function is now reduced
to that of representing the underlying monotone Boolean function f . In the most
general case, the function f can be given by a general monotone Boolean circuit.
An especially natural sub-class of functions in the structured technologies setting
would be functions that can be represented as a read-once network – a graph
with a given source and sink, where every edge is labeled by a different player.
The project succeeds if the edges that belong to player’s whose task succeeded
form a path between the source and the sink9.

A few simple examples should be in order here:

1. The ”AND” technology: f(x1, . . . , xn) is the logical conjunction of xi (f(x) =∧
i∈N xi). Thus the project succeeds only if all agents succeed in their tasks.

This is shown graphically as a read-once network in Figure 1(a).
2. The ”OR” technology: f(x1, . . . , xn) is the logical disjunction of xi (f(x) =∨

i∈N xi). Thus the project succeeds if at least one of the agents succeed in
their tasks. This is shown graphically as a read-once network in Figure 1(b).

3. The ”Or-of-Ands” (OOA) technology: f(x1, . . . , xn) is the logical disjunction
of conjunctions. Thus the project succeeds if in at least one clause all agents
succeed in their tasks. This is shown graphically as a read-once network in

9 One may view this representation as directly corresponding to the project of deliv-
ering a message from the source to the sink in a real network of computers, with the
edges being controlled by selfish agents.



Fig. 1. Graphical representations of (a) AND and (b) OR technologies.

Figure 2(a) The simplest case is the one in which there are nc clauses, each
of length nl; n = nc · nl (thus f(x) =

∨nc

j=1(
∧nl

k=1 xj
k)).

4. The ”And-of-Ors” (AOO) technology: f(x1, . . . , xn) is the logical conjunc-
tion of disjunctions. Thus the project succeeds if at least one agent from
each disjunctive-form-clause succeeds in his tasks. This is shown graphically
as a read-once network in Figure 2(b) The simplest case is the one in which
there are nc clauses of equal length nl (thus f(x) =

∧nl

j=1(
∨nc

k=1 xj
k)).

Fig. 2. Graphical representations of (a) OOA and (b) AOO technologies.

A success function t is called anonymous if it is symmetric with respect
to the players. I.e. t(a1, . . . , an) depends only on

∑
i ai. A technology (t, c) is

anonymous if t is anonymous and the cost c is identical to all agents (there
exists a c such that for any agent i, ci = c). Of the examples presented above,
if we assume that the cost c is identical to all agents and that there exists a γ
such that for any agent i, γi = 1− δi = γ, then the AND and OR technologies
are anonymous (while for nl, nc ≥ 2, the AOO and OOA technologies are not
anonymous).

2.2 Sub-Technologies

The model of structured technologies (from [1]) presented above assumes that
the technology function is exogenously given. In this paper we wish to ask how
would the principal choose the technology function, had he had control over it.
Obviously, this question is not interesting in its unrestricted form since the prin-
cipal will always choose a technology in which all agents succeed with probability
1 with no cost. Yet, this question turns out to be interesting under reasonable
restrictions, and it also connected to the issue of free labor. In this paper we



suggest to study the ”removal” model in which the principal is allowed to re-
move an agent, thus ensuring he will certainly fail in his sub-task (instead of
succeeding with low probability γi). It seems natural to assume that if an agent
is removed his cost of action is still 0.

In the “removal” model, we formally introduce the possibility of removing an
agent as follows. We change the set of actions of any agent i to be Ai = {∅, 0, 1},
with 1 Âi 0 Âi ∅. The additional ∅ action is the action for which the agent does
not participate (“removed”), and has 0 cost. If agent i is removed (ai = ∅ and
the cost to i is 0) his task will always fail, that is, xi = 1 with probability 0. By
removing the set of agents S the principal essentially fixes xi = 0 for any i ∈ S,
and this creates a restricted Boolean function f |S=0 on the bits of the rest of
the agents (Sc). We call such a restricted function a sub-technology.

In terms of the graphical representation as a read-once network as in Fig-
ures 1, this simply means that we allow the principal to erase, ex-ante, some of
the edges. Equivalently, originally, choosing the right subset of agents to con-
tract with was determining which agent i succeeds with probability δi, where the
others succeeded with probability γi. Now, the principal can decide, within the
group of non-contracted agents, a group that succeed with probability 0 rather
than γi.

Note that by not removing an agent (and not contracting with him) the
principal essentially get some ”free labor” as with the same cost of 0 he get an
increase in success probability. Observe that this model introduces free labor
only for the lowest cost (0 cost) actions. This is so as for any strictly monotonic
technology, it is impossible to induce Nash equilibrium in which an agent chooses
a non-zero cost action that wastes his free labor (By Observation 1 if a ∈ A is
a Nash Equilibrium under p, and a′i Âi ai with ti(a′i, a−i) > ti(ai, a−i) then it
must be the case that ci(a′i) > ci(ai).)

3 Free-Labor might be Costly: an Example

For the ”removal” model the following example demonstrates that the principal
might be better off not using all free labor. It shows that for some OR technology
with two agents, for some values the principal is better off removing one agent
(discarding his free labor) and contracting with the other.

Example 1. Consider an anonymous OR technology with two agents (n = 2),
c = 1 and γ = 1− δ = 0.2. The optimal contract is obtained when the principal
contracts with no agent for 0 ≤ v ≤ 3.65..., with one agent for 3.65... ≤ v ≤
118.75, and with both agents for v ≥ 118.75. However, if we allow the principal
to ex-ante remove agents from the network, then, for example, when v = 4,
the principal obtains a utility of more than 1.867 if the other agent does not
participate, compared to a utility of 1.61, if the other agent does participate. It
turns out that for 3.04... ≤ v ≤ 118.75, the optimal contract is achieved when
the principal contracts with a single agent and removes the second one.

Obviously, this example strikes us as counter-intuitive because there is unuti-
lized “free-labor” – the principal prefers that the second agent will not participate
despite the fact that he increases the probability of success with no additional
cost. Yet, free labor increases free riding which results with a lower utility for
the principal overall.



We note that the phenomena of costly free labor has also been identified in
work on selfish routing [5, 7] and in hiring teams with no hidden-actions [4].

In what follows, we will formally define the concept of free-labor and study
technologies in which free labor is always used and technologies in which it does
not.

4 The Price of Free-Labor (POFL)

We next like to define a measure of the loss to the principal due to not be able
to discard free labor. We begin by formally defining the meaning of wasting free
labor.

Recall that our focus here is on motivating agents, rather than on the co-
ordination between agents, thus, we are only interested in (weakly) monotone
success functions. That is:

∀i ∈ N, ∀a−i ∈ A−i ai Âi a′i ⇒ t(ai, a−i) ≥ t(a′i, a−i)

Definition 3. For a given agent i, action ai ∈ Ai wastes free-labor if there
exists an action a′i ∈ Ai, such that a′i Âi ai while c(a′i) = c(ai).

Note that if ai wastes free labor then it is possible to (weakly) improve the
project success by moving to a′i with no increase in cost. The contract a ∈ A
wastes free labor if for some agent i, action ai wastes free-labor. The two action
profiles a′ ∈ A and a ∈ A correspond to the same costs if for any agent i,
c(a′i) = c(ai).

Definition 4. Given a technology (t, c(·)) with agents’ action spaces A1, . . . , An,
the sub-technology that utilizes all free-labor is the technology (t, c(·)) with agents’
action spaces A′1, . . . , A

′
n, obtained by restricting the action space for each agent

i to the set of actions that does not waste free labor, that is
A′i = {ai ∈ Ai|ai does not waste free-labor}.

The sub-technology that utilizes all free-labor restricts each agent to actions
that do no waste free-labor. In the particular case of structured technologies
with the ”removal” model, this means that no agent is ever removed.

We are now ready to define the measure on the damage to the principal if he
is restricted to the sub-technology that utilizes all free-labor.

Definition 5. The price of free-labor POFL(t, c(·)) of a technology (t, c(·)) is
defined as the ratio between the principal’s utility under the optimal contract, and
the principal’s utility under the optimal contract in the case that he is restricted
to the sub-technology that utilizes all free-labor.

Formally, for a given value v, let a∗(v) ∈ A1 × . . . × An = A be an optimal
contract for v in A, and let e∗(v) ∈ A′1 × . . . × A′n = A′ be an optimal contract
for v in the sub-technology that utilizes all free-labor (with action spaces A′ as
defined in Definition 4). The price of free-labor is defined to be

POFL(t, c(·)) = Supv>0
u(a∗(v), v)
u(e∗(v), v)

By definition we need to find the supremum over a continuum of values. Yet,
we are able to show that the POFL is obtained at one of finitely many important
points, the transition points between optimal contracts.



Lemma 2. For any technology (t, c(·)) with finite action spaces (|Ai| < ∞ for
all i ∈ N) the price of free-labor is obtained at a transition point (of either the
original technology or the sub-technology with no waste of free-labor).

Note that the lemma implies that the POFL is obtained, and that it is obtained
at a finite positive value.

5 Technologies with Trivial POFL

In this section we consider general technologies and identify a set of technologies
for which the POFL is 1, and no free-labor is ever wasted. We need one additional
technical condition. A cost function ci : Ai → <+ has finite image if there exists
a number K < ∞ such that |Image(ci)| < K. This means that there are only
finitely different possible costs for all the actions10. A technology (t, c(·)) has
finite cost image if for any i ∈ N , the cost function ci(·) has a finite image.

Theorem 1. For any technology (t, c(·)) that exhibits IRS and has finite image,
the price of free-labor is 1. That is, for any value v, there exists an optimal
contract (out of A) that does not waste any free labor.

The theorem presents a family of technologies for which the price of free-
labor is trivial. A natural question is at what extend this family is maximal.
In the next section we show that for structured technologies it is maximal in
a sense. Specifically, we show that for any function that is not AND (which
ensures IRS), there are parameters such that the price is not trivial.

6 Sub-Technologies: Only AND Ensures Trivial POFL

In the previous section we have seen that technologies that exhibit IRS have
trivial POFL. It is easy to show that AND technology exhibits IRS (even in the
”removal” model).

Observation 2 The AND technology exhibits IRS.

From Theorem 1 we derive the following corollary.

Corollary 1. The price of free-labor for AND technology in the “removal”
model is trivial (1).

For the “removal” model we can actually present a weaker condition than
IRS that ensures that there exists an optimal contract that is non-excluding
(all agents participate, none removed). The new condition requires that for any
agent i, the increase in success probability when he changes his action from
shirking to exerting effort, (weakly) increases when all removed agents are added
(becoming participating agents). This condition (which is formally defined and
discussed at the full version of the paper) is sufficient to ensure the existence of
an optimal contract that is non-excluding. Which structured technologies satisfy
this condition? A technology is determined by the Boolean success function and
the parameters of the agents. We are interested in finding with functions ensures
that the technology has trivial POFL for any choice of agents’ parameters.
10 The actions space Ai may still be infinite.



We show that the AND function is the only monotone function which ensures
that POFL is trivial, out of all technologies that are based on a Boolean function.
That is, given any monotone Boolean function that is not an AND function,
there exist values for γi and δi such that the POFL is greater than 1. This is a
result of the fact that any non-AND function has an OR function “embedded” in
it, and for OR, by Example 1, there exists a constant ζ > 1 such that POFL > ζ.

Lemma 3. Let f : {0, 1}n → {0, 1} for n ≥ 2 be a monotone Boolean function
that is not constant and not a conjunction of some subset of the input bits.
Then there exists an assignment to all but two of the bits such that the restricted
function is a disjunction of the two bits.

Finally we present the main result of this section, showing that the AND
function is the only function that ensures trivial POFL.

Corollary 2. Let f be any monotone Boolean function that is not constant and
not a conjunction of some subset of the input bits (an AND function). Then
there exists a set of parameters {γi, δi}i∈N such that the POFL of the structured
technology with the above parameters (and identical cost c = 1) is greater than
ζ, for some constant ζ > 1.

7 Process-based vs. Function-based Technologies

We now present another natural example that may be viewed as having implica-
tions on the controversy of process-based (PB) versus function-based (FB) team
formation approaches [10, 14]. In the PB approach, each member of the team is
in charge of a different stage in the production process of a single product, and
the product is successfully produced only if all stages have succeeded in at least
one team. In contrast, an FB team accommodates agents who all work on the
same stage of the production process, and the product is successfully produced
if there was at least one successful agent in each stage.

The PB and FB approaches can be represented by the OOA and AOO net-
works, respectively. Clearly, in the FB approach the product will be produced
with higher probability (since in the PB approach, a failure of a single stage
determines a failure of his team’s product). However, in the hidden-actions case
the principal sometimes favor PB teams due to the high level of free-riding in
FB teams, as demonstrated in the following example.

Fig. 3. A network that exhibits Braess-like paradox. As µ changes from 0 to 1, the
network moves from Process-Based to Function-Based (and from OOA to AOO).



Example 2. Consider the network demonstrated in Figure 3, where the middle
edge connects the middle points of the upper and lower paths, and has a success
probability of η. Both the OAA and the AOO networks with nl = 2 and nc = 2
are special cases of this network with η = 0 and η = 1, respectively.

Clearly, the probability that a message sent from node s reaches node t is
better when η = 1; namely, in the AOO network. This implies that for sufficiently
large value of v, AOO is better for the principal. Nevertheless, due to the high
level of free-riding in the AOO network compared to OOA, there exist values
for which the optimal contract under the OOA network achieves a better utility
than the AOO network. For example, in the case that for all i, γi = 1− δi = 0.2,
ci = 1, and v = 110, the optimal contract in the AOO network is to contract
with one agent from each OR-component, which yields utility of 74.17..., while
in the OOA network, the optimal utility level is 75.59.., which is achieved when
contracting with all four agents.

One can think of the edge that succeeds with probability η as an edge that is
controlled by an agent with cost of 0 to supply both η = 0 and η = 1. Our
example above can be viewed as showing that the principal is better off wasting
the free labor of that agent as for the presented paraments he prefers that agent
to take the action with η = 0 (although the agent can supply η = 1 with no
additional cost) as it decreases free riding by the other agents.
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