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Abstract

A strong equilibrium (Aumann 1959) is a pure Nash equilibrium which is resilient to deviations
by coalitions. We define the strong price of anarchy to be the ratio of the worst case strong
equilibrium to the social optimum.

We study the strong price of anarchy in two settings, one of job scheduling and the other of
network creation. In the job scheduling game we show that for unrelated machines the strong price
of anarchy can be bounded as a function of the number of machines and the size of the coalition.
For the network creation game we show that the strong price of anarchy is at most 2. In both
cases we show that a strong equilibrium always exists, except for a well defined subset of network
creation games.

1 Introduction

Much of the classical work in scheduling and optimization has been centered on finding efficient
algorithms, in the sense that they optimize a certain global function (also called social optimum). The
recent interest in computational game theory is based, in part, on the recognition that one should
consider not only the global optimization, but also the incentives of the agents involved. A selfish
agent is motivated by optimizing its own utility rather than reaching the social optimum. An obvious
question is the quality of the solution reached in this way, but first we need to define what is an
acceptable solution (i.e., our solution concept) for selfish agents.

When considering the agent’s incentives, game theory proposes a variety of solution concepts,
where Nash equilibrium is the most popular. In a Nash equilibrium no agent can improve its utility
by unilaterally changing its action. Clearly, it is reasonable to assume that a state where some agent
can unilaterally improve its utility is not sustainable. However, when no unilateral deviations are
profitable, it does not necessarily imply that the solution is sustainable, since other types of deviations
might be possible. Aumann [3] proposed the notion of a strong equilibrium, where no coalition can
deviate and improve the utility of every member of the coalition (while possibly lowering the utility of
players outside the coalition). This implies that every strong equilibrium is a Nash equilibrium, but
clearly the converse does not hold. In cases where a strong equilibrium exists, it seems that it should
be very robust. Unfortunately, there are many games in which no strong equilibrium exists.

A major question for performing optimization and scheduling with selfish agents regards the quality
of the solutions. The Price of Anarchy (PoA) [12] considers the ratio between the cost of the worst
Nash equilibrium and the optimum (i.e., minimal social cost). We define the strong price of anarchy
(SPoA) to be the ratio of the worst strong equilibrium and the optimum. Since the strong equilibria
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are a subset of the Nash equilibria, the SPoA can be at most that of the PoA (assuming there exists
some strong equilibria). In our definition we also consider the size of the coalition as a parameter and
define k-SPoA to be the ratio of the worst Nash equilibrium which is immune to coalitions of size up
to k and the social optimum.1 We claim that this is a natural restriction, since in many settings the
coalition size may be bounded.

In this work we consider two different sets of games. The first is derived from job scheduling,
where each player controls a single job and selects the machine on which the job is run. The cost to
the player is the load on the machine it selected while the social cost is the makespan (the maximal
load on any machine). The second game is a network creation game [7]. In this game the players can
be viewed as nodes in a graph. Each player (node) buys links (to other nodes) at the cost of α per
link. The set of edges in the resulting graph is the union of the links that the players (nodes) bought.
The cost to the player is the cost of the links it bought plus the sum of the distances to all the nodes
(players) in the resulting graph. The social cost is the sum of the players’ costs (the social welfare).

For the job scheduling game we consider mostly the model of unrelated machines (namely, the load
of a job is a function of the machine it is scheduled on). While it is rather simple to show that for
unrelated machines the PoA is unbounded (see [4]), we show that the SPoA is bounded as a function of
the number of players and machines. More specifically, we show that: (1) For m machines the worst-
case SPoA is at most 2m− 1 and at least m (and for 2 machines the SPoA is 2.) (2) For m machines
and n players the worst-case k-SPoA is at most O(nm2/k) and at least Ω(n/k). Moreover, we show
that a strong equilibrium always exists, and some optimal solution is also a strong equilibrium.

For the network creation game [7, 1] we show that for most values of α there is some strong
equilibrium. Specifically, for α ∈ (0, 1] we show that the clique is a strong equilibrium and for α ≥ 2
the star is a strong equilibrium. For α ∈ (1, 2) we show that there is no strong equilibrium in general.
More specifically, we show that there is no strong equilibrium when the coalition size is at least 3 and
the number of players is at least 6. We show that for either a smaller number of players (four or less)
or smaller coalitions (size at most 2) there always exists a strong equilibrium.

Previous work has already bounded the PoA of the network creation game [7, 1]. Roughly, for
α = O(

√
n) and α = Ω(n log n) the PoA is constant. For α ∈ [

√
n, n] the PoA is O(α2/3/n1/3) and for

α ∈ [n, n log n] the PoA is O(n2/α). We show that for any α ≥ 2 the SPoA is at most 2.
The Price of Stability (PoS) [2] is the ratio of the best Nash equilibrium to the social optimum.

Similarly, one can define the Strong Price of Stability (SPoS) as the ratio of the best strong equilibrium
and the optimum. Our existence results show that for both job scheduling and network creation the
SPoS is 1, since there exists an optimal solution which is a strong equilibrium.

The vast literature on strong equilibrium has focused both on pure strategies and pure deviations
(e.g., [10, 11, 13, 5]). This has been mainly motivated by the fact that the strong equilibrium is already
a solution concept that does not exist in many cases and allowing mixed deviations would only further
reduce it. The only exception is [15] where correlated deviations are considered. We show that in
the job scheduling setting, once we allow mixed deviations by coalitions, in many cases no strong
equilibrium exists (in contrast to pure deviations, where always some strong equilibrium exists). More
specifically, in the case of mixed strategies and deviations, for m ≥ 5 identical machines and n > 3m
identical jobs, there is no mixed strong equilibrium with respect to mixed deviations.
Related Work: A related solution concept is a coalition-proof Nash equilibrium [5], where the
deviation by the coalition needs to be resilient to deviations by subsets of the coalition. This implies
that the coalition-proof Nash equilibrium includes any strong equilibrium but rules out many Nash
equilibria. Coalitions have been also considered from the mechanism design perspective. Group-
strategyproof mechanisms [14, 8] are mechanisms that induce agents to truthfully reveal their private

1Namely, no coalition of at most k players can deviate and improve the utility of every player in the coalition.
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Figure 1: Illustration of the k-SE hierarchy (the set k-SE represents all the NE which are also k-SE).

information in dominant strategy, where coalitions have no incentive to form.
The notion of coalitions was also studied recently by [9], but from a different perspective. In their

setting, a coalition is exogenously given and the coalition acts to maximize its total utility as if it
were a single player. For example, in their setting, a coalition composed of all the users, by definition,
achieves the social optimum.

2 Model

In this section we provide general notations and definitions, while in Sections 3.1 and 4.1 we provide
the notations and definitions for the specific games we study.

A game is denoted by a tuple G =< N, (Si), (ci) >, where N is the set of players, Si is the finite
action space of player i ∈ N , and ci is the cost function of player i.

We denote by n = |N | the number of players. The joint action space of the players is S =
×n

i=1Si. For a joint action s ∈ S we denote by s−i the actions of players j 6= i, i.e., s−i =
(s1, . . . , si−1, si+1, . . . , sn). Similarly, for a set of players Γ we denote by s−Γ the actions of play-
ers j 6∈ Γ. The cost function of player i maps a joint action s ∈ S to a real number, i.e., ci : S → R.
Nash Equilibrium (NE): A joint action s ∈ S is a pure Nash Equilibrium if no player i ∈ N
can benefit from unilaterally deviating from his action to another action, i.e., ∀i ∈ N ∀a ∈ Si :
ci(s−i, a) ≥ ci(s).
Resilience to coalitions: A pure joint action of a set of players Γ ⊂ N (also called coalition)
specifies an action for each player in the coalition, i.e., γ ∈ ×i∈ΓSi. A joint action s ∈ S is not resilient
to a pure deviation of a coalition Γ if there is a pure joint action γ of Γ such that ci(s−Γ, γ) < ci(s)
for every i ∈ Γ (i.e., the players in the coalition can deviate in such a way that each player reduces its
cost). A pure Nash equilibrium s ∈ S is resilient to pure deviation of coalitions of size k, if there is
no coalition Γ of size at most k, such that s is not resilient to a pure deviation by Γ.

Definition 2.1 A k-strong equilibrium (k-SE) is a pure Nash equilibrium that is resilient to pure
deviation of coalitions of size at most k.

Clearly, a k-SE is a refinement of NE. Let Φ(G, k) be the set of k-strong equilibria of the game
G. By definition, for any k, Φ(G, k) ⊆ Φ(G, k − 1) (see Figure 1). Note that Φ(G, 1) coincides with
the set of NE, and Φ(G,n) coincides with the classical notion of a strong equilibrium introduced by
Aumann in [3].

Note that while in Nash equilibria we can restrict attention to pure deviations, this is not true
for k-strong equilibrium, when k ≥ 2. The conceptual reason is that we need to guarantee that each
player in the coalition would benefit from the deviation. In Section 3.4 we show an example in which

3



a coalition can benefit from a mixed deviation, yet in any pure deviation some player in the coalition
does not benefit. (We defer the definition of a mixed deviation to the above section.)

In order to study the strong price of anarchy we need to define the social cost of a game G.
Abstractly, there is a function fG such that the social cost of s ∈ S is fG(s). The optimal social cost
is OPT (G) = mins∈S fG(s). In the cases discussed in this paper the social cost is a simple function of
the costs of the players. More specifically, we discuss the linear case, i.e., fG(s) =

∑n
i=1 ci(s), and the

maximum, i.e., fG(s) = maxn
i=1 ci(s). Next we define the strong price of anarchy (SPoA).

Definition 2.2 Let Φ(G, k) be the set of k-strong equilibria of the game G. If Φ(G, k) 6= ∅ then the
k-strong price-of-anarchy (k-SPOA) is the ratio between the maximal cost of a k-strong equilibrium
and the social optimum, i.e., (maxs∈Φ(G,k) fG(s))/OPT (G) .

Similarly, we define the strong price of stability (SPoS).

Definition 2.3 Let Φ(G, k) be the set of k-strong equilibria of the game G. If Φ(G, k) 6= ∅ then the
k-strong price-of-stability (k-SPoS) is the ratio between the minimal cost of a k-strong equilibrium and
the social optimum, i.e., (mins∈Φ(G,k) fG(s))/OPT (G) .

We denote by SPoA the n-SPoA, and by SPoS the n-SPoS, allowing any size of a coalition. (Note
that both SPoA and SPoS are defined only if some strong equilibrium exists.)

3 Job Scheduling

In our job scheduling scenario there are m machines and n players (where each player controls a single
job). In the job scheduling terminology, we will focus on unrelated machines, but also refer to identical
machines. The missing proofs of this section appear in Appendix A.

3.1 Job Scheduling Model

A job scheduling setting is characterized by the tuple < M,N, (wi(J)) >, where M = {M1, . . . ,Mm}
is the set of machines, N = {1, . . . , n} is the set of players (jobs) and wi(J) is the weight of player
J ∈ N on machine Mi ∈ M . A job scheduling setting has identical machines if for every Mi,Mi′ ∈ M
and J ∈ N , we have wi(J) = wi′(J). In identical machine settings we will use w(J) to denote the
weight of J (on any machine).

A job scheduling game has N as the set of players. The action space SJ of player J ∈ N are all
the individual machines, i.e., SJ = M . The joint action space is S = ×n

J=1SJ . In a joint action s ∈ S
player J selects machine sJ as its action. We denote by Bs

i the set of players on machine Mi in the
joint action s ∈ S, i.e., Bs

i = {J : sJ = Mi}. The load of a machine Mi, in the joint action s ∈ S,
is the sum of the weights of the players that chose machine Mi, that is Li(s) =

∑

J∈Bs
i
wi(J). For a

player J ∈ N , let cJ (s) be the load that player J observes in the joint action s, i.e., cJ(s) = Li(s),
where sJ = Mi. A job scheduling game is characterized by a tuple < N,S, (cJ ) >.

In job scheduling games the objective function (i.e., the social cost) is the makespan, which is
the load on the most loaded machines (or equivalently, the highest load some player observes).
Formally, makespan(s) = maxJ cJ(s). A social optimum minimizes the makespan, i.e., OPT =
mins makespan(s). Thus, the strong price of anarchy (SPoA) in job scheduling games is the ratio
between the makespan of the worst SE and the minimal makespan.
Notation: We define wmin(J) = mini wi(J). We denote by min(J) the index of a machine on which
player J has weight wmin(J), i.e., min(J) = arg mini wi(J) (if there is more than one such machine
then select an arbitrary one). In addition, we denote by OPT (J) the action of job J under a social
optimum OPT .
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3.2 Equilibrium Existence

In this section we prove that in the job scheduling game, for any coalitions of size k, there is a k-SE,
i.e., there exists a NE that is resilient to coalitions of size k (for any k ≤ n). Our proof technique is
similar to Even-Dar et al. [6], that proved that any sequence of improvement steps, in a job scheduling
game, converges to a NE. We first define a complete order on the joint actions.

Definition 3.1 A vector (l1, l2, . . . lm) is smaller than (l̂1, l̂2, . . . l̂m) lexicographically if for some i,
li < l̂i and lk = l̂k for all k < i. A joint action s is smaller than s′ lexicographically if the vector of
machine loads L(s), sorted in non increasing order, is smaller lexicographically than L(s′), sorted in
non increasing order. We denote this by s ≺ s′.

The following lemma would be helpful in establishing the lexicographic order of two joint actions.

Lemma 3.2 Consider two joint actions s and s′ such that the load vectors L(s) and L(s′) differ only
in the loads of machines in a set M ′ ⊆ M . If for each Mi ∈ M ′, Li(s) < maxk {Lk(s

′)|Mk ∈ M ′} then
s ≺ s′.

We now prove that the lexicographically minimal assignment is a k-SE.

Theorem 3.3 In any job scheduling game, the lexicographically minimal joint action s is a k-SE
equilibrium, for any k.

Proof: Lemma A.1 in the Appendix shows that s is a NE. To show that s is a k-SE, assume by
contradiction that there is a coalition Γ of size k ≤ n that can deviate such that each member of the
coalition strictly decreases its observed load. (Let Γ be the smallest size of such a coalition.) Let the
resulting joint action after the deviation be s′. Let M(Γ, s) =

⋃

J∈Γ {sJ} be the set of machines that
the coalition Γ chooses in the joint action s.

We first note that if there is a job J ∈ Γ that does not migrate, i.e. sJ = s′J , then the set of jobs
Γ \ {J} also forms a coalition, contradicting the minimality of Γ. Therefore, for every jobs J ∈ Γ we
have sJ 6= s′J .

We show that for every machine in Mi ∈ M(Γ, s) that a job J ∈ Γ wishes to leave there is a job
J ′ ∈ Γ that wishes to migrate to that machine, and vice versa, which implies that M(Γ, s) = M(Γ, s′).
We have to consider two cases. In the first case there is a machine that some job J ∈ Γ migrates to,
but no job J ′ ∈ Γ migrates from. Such a case would contradict the fact that s is a NE. The second
case is that there is a machine that some job J ∈ Γ migrates from, but no job J ′ ∈ Γ migrates to.
Such a case would contradict the minimality of Γ.

We now have that only machines in M ′ = M(Γ, s) = M(Γ, s′) change their loads. For each machine
in Mi ∈ M ′ there is at least one job J ∈ Γ that wishes to migrate to it, i.e., s′J = Mi. Since each job
J ∈ Γ benefits from the coalition deviation, the new load on each machine Mi ∈ M ′ must be strictly
lower than LsJ

(s) , and therefore strictly lower than maxk {Lk(s)|Mk ∈ M ′}. By Lemma 3.2, this
implies that s′ ≺ s, contradicting the minimality of s.

An immediate corollary from the fact that a lexicographically minimal joint strategy is a k-SE, is
that the k-Strong Price of Stability (k-SPoS) for job scheduling games is 1.

It is shown in [6] that any job scheduling game is a potential game. However, while Theorem 3.3
holds for any job scheduling game, it does not hold in general for any potential game. For example,
the prisoner’s dilemma game is a potential game, but the only NE in this game is not Pareto efficient,
and therefore is not resilient to a coalition of both players. Thus, the prisoner’s dilemma game has no
SE.

5



The requirement that every member in a coalition strictly benefits from the deviation is a crucial
assumption for the correctness of Theorem 3.3. If we relax the condition and require only that some
member improves its cost and no other member of the coalition would lose from the deviation, there
are job scheduling games that do not have any SE. 2

3.3 Strong Price of Anarchy

In this section we study the SPoA in scenarios with identical and unrelated machines. For identical
machines, it is known that PoA ≤ 2 [12], while for unrelated machines, the PoA may be unbounded
[4]. Consider the following motivating example for unrelated machines.

Example 3.4 Consider m ≥ 2 machines and n = m jobs, where wi(Ji) = ǫ for all 1 ≤ i ≤ m, and
wi(Jj) = 1 for all i 6= j. The joint action (1, 2, . . . ,m) has a minimal makespan of ǫ (and is also a
NE). However, the joint action (m, 1, 2, . . . ,m− 1) is also a NE and has a makespan of 1. Therefore,
the PoA is at least 1/ǫ, which can be arbitrarily large. However the only joint action that is resilient
to a coalition of all the players is (1, 2, . . . ,m), and therefore in this example the SPoA is 1, which is
significantly smaller than the PoA.

Example 3.4 motivates using the SPoA solution concept for unrelated machines. We now prove
our main results for the job scheduling games, showing that the strong price of anarchy is bounded in
the unrelated machine setting. We start with the following straightforward relationship between OPT
and the weights.

Claim 3.5 For any job scheduling game with unrelated machines, the following inequalities hold:

OPT ≥ max
J

wmin(J) (1)

OPT ≥ 1

m

∑

J

wmin(J) (2)

where OPT = mins∈S maxi Li(s).

We first bound the SPoA for games with two machines.

Theorem 3.6 For any job scheduling game with 2 unrelated machines and n jobs, SPoA ≤ 2.

We next introduce some notations that will be useful. For simplicity, for the rest of this section
we will assume WLOG that given a joint action s, the machine indices are sorted in a non-decreasing
order of the loads under s, i.e., L1(s) ≤ · · · ≤ Lm(s).

Definition 3.7 We denote it by Mi 7→s Mj , if there is a job J such that Mj = min(J), sJ = Mi and
i ≥ j. Two machines Mi and Mj , i ≥ j, are connected under the joint action s if ∃i′, j′, such that
i′ ≥ i, j ≥ j′, and Mi′ 7→s Mj′. Let Cm(s) = {Mm, . . . ,Mℓ} denote the maximal suffix of machines,
such that Mi+1 is connected to Mi under joint action s. (See figure 2.)

By the definition of Cm(s) and the relation Mi 7→s Mj we have,

2For example, consider the following setting: there are two identical machines, and three identical unit jobs. Clearly,
in a NE, a pair of jobs is on one machine and the third job is on the other. However, under the relaxed improvement
requirement, no equilibrium is 2-SE: The pair of jobs on the same machine can form a coalition where one job migrates
to the other machine, while the other job does not change machines. After the deviation, the migrating job remains with
a load of 2, while the load observed by the idle job in the coalition decreases from 2 to 1.
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Figure 2: Illustration of Cm.

Claim 3.8 For every job J such that sJ ∈ Cm(s) we have min(J) ∈ Cm(s).

The following lemma bounds the difference between loads of machines in Cm(s), under a NE s.

Lemma 3.9 Let s be a NE. If Mi 7→s Mj then Li(s) ≤ Lj(s)+OPT . In addition, for any i, j ∈ Cm(s)
we have Li(s) ≤ Lj(s) + (m − 1)OPT

Proof: Since s is a NE, for each J ∈ Bs
i we have Li(s) ≤ Lj(s) + wj(J). From the definition of

Mi 7→s Mj , there exists J ∈ Bs
i for which Mj = min(J). From Inequality (1), wj(J) ≤ OPT , and we

get: Li(s) ≤ Lj(s) + OPT .
By consecutive applications of this argument, the load of Mm and Mℓ, the least loaded machine

in Cm, cannot differ by more than (m − 1)OPT . Therefore, for any two machines Mi and Mj in Cm,
Li(s) ≤ Lj(s) + (m − 1)OPT .

Theorem 3.10 For any job scheduling game with m unrelated machines and n jobs, SPoA ≤ 2m−1.

Proof: Let s be an arbitrary joint action that is a SE. Recall that we assume WLOG that the machines
are sorted in a non-decreasing order of the loads.

If for some Mi ∈ Cm(s) we have Li(s) ≤ m · OPT then by Lemma 3.9 Lm(s) ≤ (2m − 1) · OPT ,
and we are done. Otherwise, ∀i ∈ Cm(s), Li(s) > m ·OPT . We will show that such a joint action s is
not resilient to a deviation of a coalition. Consider the joint action s′, where for J ∈ Cm(s) we have
s′J = min(J), and for J /∈ Cm(s) we have s′J = sJ . This implies that the coalition Γ includes all the
jobs scheduled in s on machines in Cm(s), i.e., Γ = ∪Mi∈Cm(s)B

s
i .

Recall that by Claim 3.8 we have min(J) ∈ Cm(s) . By Inequality (2), Li(s
′) ≤ m · OPT < Li(s),

for any Mi ∈ Cm(s). Therefore, each job J ∈ Cm(s) is strictly better off under s′.
The following theorem shows that the SPoA might be linear in the number of machines m.

Theorem 3.11 There exists a job scheduling game with m unrelated machines for which SPoA ≥ m.

Next, we derive bounds for coalitions whose size is smaller than n. We first present a lower bound
for two machines.

Theorem 3.12 There exists a job scheduling game with 2 unrelated machines and n jobs, s.t. k-SPoA ≥
n
2k .
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Proof: Consider the following job scheduling game. Let w1(Ji) = 1 and w2(Ji) = 1/(n − 1),
for 2 ≤ i ≤ n, and let w1(J1) = 2k and w2(J1) = n − 1 + k + ǫ. In this game OPT (J1) = M1

and OPT (J2) = · · ·OPT (Jn) = M2, which yields a cost of 2k. The joint action s1 = M2 and
s2 = · · · = sn = M1 is a k-SE. (To see that it is a k-SE note that if J1 migrates to M1 the new load is
n+2k. This implies that at least k +1 jobs have to migrate from M1 in order that it will be beneficial
for J1 to migrate to M1). Therefore, k-SPoA ≥ n−1+k+ǫ

2k ≥ n
2k .

Example 3.4 presents a NE for which the PoA is unbounded. Since the same example is resilient
to any coalition of size at most m − 1, it implies that the (m − 1)-SPoA is unbounded. The following
theorem bounds the k-SPoA for coalitions of size k ≥ m.

Theorem 3.13 For any job scheduling game with m unrelated machines and n jobs, for any k ≥ m,
k-SPoA ≤ 2nm

z + 4m, where z = ⌊k/m⌋.

For identical machines, we show that the SPoA does not improve on the PoA.

Theorem 3.14 There exists a job scheduling game with m identical machines and n jobs, s.t. SPoA ≥
2

1+ 1

m

.

3.4 Mixed Deviations and Mixed Equilibrium

A natural extension of the SE solution concept would be to consider mixed strategies and deviations.
A mixed strategy is a distribution over the action space, and similarly, a mixed coalition deviation
assigns a new mixed strategy to every player in the coalition.

If players are only allowed to deviate unilaterally (as in NE), it is known that allowing mixed
and pure deviations is equivalent. In contrast to NE, a pure SE might not be preserved when mixed
deviations are allowed.3 We will show that when mixed deviations are allowed, many job scheduling
games do not have a SE.

We will use the notation πJ(i) to denote the probability that player J chooses machine Mi and let
the joint strategy be π = (π1, . . . , πn). The following example shows a pure SE, in a job scheduling
game, which is not preserved when mixed deviations are allowed:

Example 3.15 Consider 2 identical machines and 3 unit jobs, J1, J2 and J3. In any NE with pure
strategies, two jobs are assigned to one machine, while the third is assigned to the other machine.
Clearly, this is also a SE. WLOG, we assume J1 and J2 are assigned to M1, and J3 to M2 in s.

Consider a coalition Γ consisting of J1 and J2, where the mixed deviations are π1 = π2 = (3
4 , 1

4 ).
The original load on M1 in s is 2. After the deviation, J1 and J2 observe an expected load of 17

8 . Since
both players improve their costs, there is no pure NE that is a 2-SE.

Although Example 3.15 shows that there is no pure SE when mixed deviations are allowed, in the
above example there is a mixed SE.4 However, in many cases allowing mixed deviations by a coalition
eliminates all NE. The following theorem proves that this occurs even for identical machines and unit
size jobs.

Theorem 3.16 For m ≥ 5 identical machines and n > 3m unit jobs, there is no 4-SE when mixed
deviations are allowed.

3Rozenfeld and Tennedholtz [15] consider an even stronger solution concept of correlated equilibria, and have shown
that in a congestion game, it is possible that there is no strong correlated equilibrium in mixed strategies.

4The SE has π1 = (1, 0), π2 = (0, 1) and π3 = (1/2, 1/2).
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Theorem 3.16 required that the coalitions would be of size 4, in order to demonstrate deviations
with unit size jobs. The following theorem shows that with weighted jobs, there are settings where
even coalitions of size as small as 2 eliminate all NE.

Theorem 3.17 There exists a job scheduling game with 2 identical machines and 3 jobs, where no
joint mixed strategy is a 2-SE, when mixed deviations are allowed.

4 Network Creation

In this section we study a network creation game which was introduced by Fabrikant et al. [7]. The
game models the tradeoff of the agents (nodes) between buying links (edges) and reducing the distances
to other nodes. In this section we discuss both the existence of a SE and the SPoA. The missing proofs
of this section appear in Appendix B.

4.1 Network Creation Model

In the network creation game, there are n players, each of which is associated with a separate network
vertex. The players buy edges to other nodes and the resulting network is an undirected graph. The
cost of each player consists of two components. First, a player pays a cost of α > 0 per edge it buys.
Second, a player incurs a distance cost equal to the sum of the distances to the other nodes.

Formally, we represent the set of players by a vertex set V = {1, . . . , n}. For a player v ∈ V , an
action sv ∈ Sv is a subset of the edges that include v, i.e., sv ⊂ {(v, u)|u ∈ V \ {v}}. The action set
of player v is Sv, which is the union of all the possible actions sv.

Given a joint action s = (s1, . . . , sn), let the resulting graph G(s) = (V,E) consists of the edge set
E =

⋃

v∈V sv. Let δs(v,w) be the length of the shortest path between v and w in G(s).
The cost for a player v under joint action s is cv(s), and is composed from two parts. The buying cost

is Bs(v) = α|sv|, which charges α for each edge v buys. The distance cost is Dists(v) =
∑

w∈V δs(v,w).
The cost for player v is cv(s) = Bs(v) + Dists(v). When clear from the context we will omit the
subscript s and use δ(v,w), B(v), and Dist(v) rather than δs(v,w), Bs(v), and Dists(v), respectively.

For a joint action s ∈ S, let the social cost be the total cost of all players, i.e., cost(s) =
∑

v∈V cv(s),
and the optimal social cost is OPT = mins∈S cost(s).
Remark: In our analysis it will sometimes be convenient to assume that the edges have a direction.
A directed edge (v,w) indicates that the player v buys an edge to w.

4.2 Equilibrium Existence

It was shown in [7] that for α < 1 the clique is the social optimum and also the unique NE. For
1 < α < 2, the clique is the social optimum, but it is no longer a NE, and the star is the worst NE.
Finally, for α ≥ 2, the star is the social optimum, and also a NE, but not a unique one. In this section
we analyze the existence of SE for the different values of α. Our main positive result is that for any
α ≥ 2 there is a SE.

Theorem 4.1 Let s∗ be a joint action where s∗r = ∅ and s∗v = {(v, r)}, for v 6= r (i.e., G(s∗) is a star
in which all the nodes buy edges to the root r). For α ≥ 2, the joint action s∗ is a SE.

Proof: For contradiction, assume there exists a coalition Γ and a deviation s′, in which all nodes in Γ
strictly gain from a deviation to s′. Clearly, r 6∈ Γ, since in s∗ the root r has the lowest possible cost
(it does not buy any edges and enjoys the minimum possible distance cost, i.e., distance of 1 to all
nodes). For any node v ∈ Γ, let xv denote the number of its new outgoing edges, and yv denote the
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number of its new incoming edges. Obviously, all the new edges originate from nodes in the coalition.
Thus, it must hold that

∑

v∈Γ xv ≥ ∑

v∈Γ yv. We separate the analysis to two cases:
Case (a): There exists a node v for which xv > yv. If v does not remove its original edge to r, the

change in v’s cost is αxv − (xv + yv) ≥ αxv − 2xv + 1 which is positive for α ≥ 2 (which implies that
the cost of v increased). If v removes its edge to r, the change in v’s cost is αxv − (xv + yv)−α + 1 ≥
αxv − 2xv + 2 − α = (xv − 1)(α − 2) ≥ 0, since x ≥ 1 and α ≥ 2.

Case (b): For every v ∈ Γ, xv = yv. If v does not remove its original edge to r, B(v) increases by
αxv, and Dist(v) decreases by xv + yv. Therefore, v’s cost change is αxv − (xv + yv) = (α− 2)xv ≥ 0,
since α ≥ 2. Thus, if xv = yv, v may improve its cost only if it removes the edge to r. However, if
all the nodes in Γ remove their edges to r, the only way for v to remain connected to r (to prevent a
distance cost of ∞) is to buy an edge to a node u 6∈ Γ. In such a case,

∑

v∈Γ xv >
∑

v∈Γ yv, hence,
there exists a node v ∈ Γ for which xv > yv.
In each case, some v ∈ Γ does not strictly gain from joining the coalition, and therefore s∗ is a SE.

An immediate corollary from the above theorem is that for any α ≥ 2 we have SPoS = 1.
Theorem 4.1 shows that for α ≥ 2, there exists a star that is a SE. Similarly, we can show that a

star in which the root buys edges to all the nodes is also a SE (proof omitted). We conjecture that
for α ≥ 2, any star is a SE, regardless of how the edges are bought (we can prove this conjecture only
for α ≥ (n − 2), see Theorem B.8 in the appendix).

Theorem 4.2 For α < 1, s is a SE iff G(s) is a clique. For α = 1, if G(s) is a clique, then s is a
SE.

Proof: For α < 1 every NE is a clique [7], which implies that if s is a SE then G(s) is a clique. For
the other direction (which applies to α ≤ 1), consider a joint action s such that G = G(s) is a clique.
Suppose that there exists a coalition Γ that deviates to s′, such that the obtained graph is G′ = G(s′),
which is possibly not a clique. Let x denote the number of edges that are “missing” from the clique,
i.e., x = |EG| − |EG′ |. (If G′ is a clique then x = 0.) For each missing edge, there exists a node
v ∈ Γ whose buying cost, B(v), decreased by α ≤ 1. Thus

∑

v∈Γ B(v) decreased by exactly αx ≤ x.
However, for each missing edge, there exists at least one node in Γ whose distance cost increased by 1.
Thus,

∑

v∈Γ Dist(v) increased by at least x. Therefore, the sum of the costs for nodes in the coalition
has not decreased. Therefore, there exists a node u ∈ Γ such that B(u) + Dist(u) has not decreased.
In contradiction to the assumption that every v ∈ Γ gains from the deviation to s′.

A direct corollary from Theorem 4.2 is that for α ≤ 1 we have SPoS = 1.
We next show that for α ∈ (1, 2) there is no SE (even if we limit the coalition size to 3).

Theorem 4.3 For any α ∈ (1, 2), and any n ≥ 7, there does not exist any 3-SE.

The proof of Theorem 4.3 is quite involved and appears in Appendix B. In the following, we will
attempt to give a very high level view of the proof. Consider a graph G(s) that has an independent
set of size at least 3. We can build a coalition composed of three nodes from the independent set,
each buying one edge (and thus forming a triangle). Each node paid α < 2 and its distance to the
other two nodes is reduced by at least 2. Therefore, all the three nodes gain from this deviation. So
our first observation is that in any 3-SE there cannot exist an independent set of size 3 (Lemma B.1).
Next we show that there cannot exist any triangle in G(s) (Lemma B.3). Based on those two lemmas,
we show that the degree of each node must be at least n − 3 (Lemma B.4). Finally, we show that in
such a graph, the removal of any edge is beneficial to its buyer. (The complete proof is Appendix B.
In the full version of the paper we show that the theorem holds for n = 6 as well.)

To complete the analysis for α ∈ (1, 2), it is easy to see that for n = 2 any single edge is a SE, and
for n = 3 any tree is a SE. In addition, one can verify that for n = 4, any ring in which each node
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buys a single edge is a SE. For n = 5, we show in the appendix (Theorem B.5) that there does not
exist any SE. Interestingly enough, while coalitions of size 3 or more excludes any SE, we show in the
appendix (theorem B.7) that 2-SE do exist for any number of players.

4.3 Strong Price of Anarchy

In this section we bound the SPoA for α ≥ 2.5

Similarly to [1], we first show that the PoA is dominated by the distance cost.

Lemma 4.4 Let s be a NE. For any node v we have cost(s) ≤ (n − 1)(2α + n − 1 + Dist(v)).

Our main result is the following.

Theorem 4.5 For any α ≥ 2 and any n, we have SPoA≤ 2.

The proof of Theorem 4.5 follows directly from the next two lemmas.

Lemma 4.6 Let s be a NE. Assume that for every node v, such that sv 6= ∅, we have that Dist(v) >
3n − 5. Then s is not a SE.

Proof: Let Γ be the set of all nodes v that bought some edge in s, i.e., Γ = {v|sv 6= ∅}. We will show
that Γ can deviate, such that all its members would benefit from a deviation. In the deviation we
build a tree T in which each node in Γ buys at most the same number of edges as in s and it strictly
reduces the distances to other nodes, i.e., every v ∈ Γ lowers its cost in the deviation.

Assume that there is some node r 6∈ Γ. Let T be the following tree. The root of the tree is r. The
nodes in the first level are the nodes in Γ. The nodes in the second level are the remaining n− |Γ| − 1
nodes. Each node in Γ buys an edge to the root r and at most |sv| − 1 edges to nodes in the second
level (the leaves). Clearly the number of edges that each node in Γ bought can only decrease. To see
that we have enough edges to connect all the n − |Γ| − 1 leaves, note that in s at least n − 1 edges
are bought (otherwise some node is disconnected, and all the nodes have infinite cost). We need only
n − 1 edges to connect all the nodes in T , so we have a sufficient number of edges.

Fix a node v ∈ Γ. The distances Dist(v) in T is at most 1 + 2(|Γ| − 1) + 3(n − |Γ| − 1) ≤ 3n − 5,
since |Γ| ≥ 1. Hence, node v improved on its distance cost in s and did not increase its buying cost.
Therefore, in this case, s is not a SE.

In the case in which there is no r 6∈ Γ we can select any node to be the root and the remaining
nodes will buy an edge to it. Since all the nodes bought at least one edge, the cost of buying edges
can only decrease per node. The distances of a node v is now at most 2(n− 2) + 1 ≤ 3n− 5 for n ≥ 2,
hence v improved on its distance cost in s.

Lemma 4.7 Let s be a NE. Assume that for some node v, such that sv 6= ∅, we have that Dist(v) ≤
3n − 5. Then cost(s)

cost(OPT ) ≤ 2.

Proof: By Lemma 4.4 we have that

cost(s) ≤ (n − 1)(2α + n − 1 + Dist(v)) ≤ (n − 1)(2α + n − 1 + 3n − 5) = 2(n − 1)(α + 2n − 3)

For OPT we have

cost(OPT ) = α(n − 1) + (n − 1) (2(n − 2) + 1) + (n − 1) = (n − 1)(α + 2n − 2)

and the ratio is at most 2.
5Recall that for α < 1 the clique is the only SE. For α = 1, it is easy to see that PoA < 2, since in any NE the

distance between any two nodes cannot exceed 2. For α ∈ (1, 2) we do not have any SE for n ≥ 5.
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A Job Scheduling

Lemma 3.2 Consider two joint actions s and s′ such that the load vectors L(s) and L(s′) differ only
in the loads of machines in a set M ′ ⊆ M . If for each Mi ∈ M ′, Li(s) < maxk {Lk(s

′)|Mk ∈ M ′} then
s ≺ s′.
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Proof: Let SL(s) and SL(s′) denote the vectors L(s) and L(s′) sorted in a non-increasing order,
respectively. Let k′ = arg maxk {Lk(s

′)|Mk ∈ M ′} and k = arg maxk {Lk(s)|Mk ∈ M ′} be the index
of the most loaded machine from M ′ in L(s′) and L(s), respectively. In the sorted load vectors SL(s)
and SL(s′), the smallest index that differs between the vectors is of a machine that has a load of
Lk′(s′) in SL(s′), and Lk(s) in SL(s). Since Lk′(s′) < Lk(s), SL(s) is lexicographically smaller than
SL(s′), and s ≺ s′.

Lemma A.1 The lexicographically minimal joint action s is a NE.

Proof: For contradiction, assume that there exists a job J , where sJ = Mi, that can benefit from
deviating to s′J = Mk. Let s′ denote the joint action after J deviates. Since wi(J) > 0 , we have
Li(s

′) < Li(s). Since J benefits from the deviation, we have Lk(s
′) < Li(s). Therefore, Li(s) >

max {Li(s
′), Lk(s

′)}. Since L(s) and L(s′) differ only in the loads on Mi and Mk, by Lemma 3.2 we
have s′ ≺ s, which contradicts the minimality of s.

Theorem 3.6 For any job scheduling game with 2 unrelated machines and n jobs, SPoA ≤ 2.
Proof: Let s be a SE and, WLOG, L2(s) ≥ L1(s). In the case that for every J ∈ Bs

2 we have
w2(J) ≤ w1(J), by Inequality (2), L2(s) ≤ 2OPT , and we are done. Otherwise, there exists some
J ∈ Bs

2 such that w2(J) > w1(J). Since s is a SE, it is in particular a NE, which means that no job on
M2 can gain by unilaterally migrating to M1. Therefore, L2(s) ≤ L1(s) + w1(J). By Inequality (1),
we get:

L2(s) ≤ L1(s) + OPT (3)

The following are the possible cases relating OPT , L1(s) and L2(s):

1. if L1(s) ≤ L2(s) < OPT , this is impossible (a contradiction to the minimality of OPT ).

2. if OPT < L1(s) ≤ L2(s), then s is not resilient to a coalition of size n (since by deviating to
OPT all the players strictly gain).

3. If L1(s) ≤ OPT ≤ L2(s), then from Inequality (3), we get: L2(s) ≤ L1(s) + OPT ≤ 2OPT .

Taking the maximum over all cases, we get: SPoA ≤ 2.

Theorem 3.11 There exists a job scheduling game with m unrelated machines and n jobs, s.t.
SPoA ≥ m.
Proof: Consider a job scheduling game with m jobs and m unrelated machines, where for each
job Jℓ, ℓ = 2, . . . ,m: wℓ(Jℓ) = ℓ, wℓ−1(Jℓ) = 1, and wi(J) = ∞ for i 6= J, J − 1. For job J1,
w1(J1) = wm(J1) = 1, and wi(1) = ∞, for i 6= 1,m, . The joint action that achieves social optimum
is: OPT (Jℓ) = Mℓ−1 for ℓ = 2, . . . ,m, and OPT (J1) = Mm, which yields a makespan of 1. However,
the following joint action s has a cost of m: for ℓ = 1, . . . ,m, sJℓ

= Mℓ. (To see that s is a SE note
that for any coalition Γ the player with the lowest index can not lower its cost from a deviation of
players in Γ.) Since the makespan of s is m we have that SPoA ≥ m.

The following theorem bounds the k-SPoA. Note that the proof Theorem 3.11 also shows that
m-SPoA ≥ m. Therefore we have to concentrate on coalitions of size k ≥ m.

Theorem 3.13 For any job scheduling game with m unrelated machines and n jobs, for any k ≥ m,
k-SPoA ≤ 2nm

z + 4m, where z = ⌊k/m⌋.
Proof: We first present and prove the following lemma
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Lemma A.2 Fix a joint action s and a machine Mi. If for every subset Γ ⊆ Bs
i , |Γ| ≤ z, the following

inequality holds:
∑

J∈Γ

wi(J) −
∑

J∈Γ

wmin(J) ≤ β

then, Li(s) ≤ m · OPT + ⌈n
z ⌉β.

Proof: Let Γ1 = {J ∈ Bs
i |Mi = min(J)} and Γ2 = {J ∈ Bs

i |Mi 6= min(J)}. Partition Γ2 into

ℓ = ⌈ |Γ2|
z ⌉ subsets Γ2,l of size at most z. By the assumption in the lemma, for every subset Γ2, l:

∑

J∈Γ2,l

wi(J) ≤
∑

J∈Γ2,l

wmin(J) + β

Summing over all l, we get:

ℓ
∑

l=1

∑

J∈Γ2,l

wi(J) ≤
ℓ

∑

l=1

∑

J∈Γ2,l

wmin(J) + ℓβ

Therefore,

Li(s) =
∑

J∈Bs
i

wi(J) =
∑

J∈Γ1

wi(J) +
∑

J∈Γ2

wi(J) ≤
∑

J∈Γ1

wi(J) +

ℓ
∑

l=1

∑

j∈Γ2,l

wmin(J) + ℓβ

However by Inequality (2),
∑

J∈Γ1
wi(J)+

∑

l

∑

j∈Γ2,l
wmin(J) ≤ m ·OPT . Therefore,

∑

J∈Bs
i
wi(J) ≤

m · OPT + ℓβ.
We continue with the proof of the theorem. Consider the set Cm(s). If there exists a machine

Mi ∈ Cm(s) such that for every subset Γ ⊂ Bs
i , |Γ| ≤ z,

|
∑

J∈Γ

wi(J) −
∑

J∈Γ

wmin(J)| ≤ (2m − 1)OPT,

then, by Lemma A.2, Li(s) ≤ m · OPT + (n
z + 1)(2m − 1)OPT , and by Lemma 3.9, Lm(s) ≤

Li(s) + (m − 1)OPT , and we get

Lm(s) ≤ (4m − 2)OPT +
n

z
(2m − 1)OPT ≤ (

2nm

z
+ 4m)OPT. (4)

Otherwise, for every machine Mi ∈ Cm(s), there exists a subset Γi ⊂ Bs
i , where |Γi| ≤ z, for which

|
∑

J∈Γi

wi(J) −
∑

J∈Γi

wmin(J)| > (2m − 1)OPT. (5)

We show that in this case the joint action s is not a k-SE. Consider the following joint action s′: for
J /∈ ⋃

i Γi, sJ = s′J , and for J ∈ ⋃

i Γi, s′J = min(J) (i.e., in joint action s′ each job from the Γi sets
chooses its minimal work machine). Let Li(s\Γi) denote the load of machine i excluding the jobs in Γi.
That is, Li(s\Γi) = Li(s)−

∑

J∈Γi
wi(J). By Inequality (5), Li(s\Γi) < Li(s)−(2m−1)OPT , and by

Inequality (2), Li(s
′) ≤ Li(s\Γi)+m·OPT . Thus, for every Mi ∈ Cm(s), Li(s

′) < Li(s)−(m−1)OPT .
By Lemma 3.9, for every Mi,Mj ∈ Cm(s), Li(s) ≤ Lj(s) + (m − 1)OPT , therefore, Li(s

′) < Lj(s).
This implies that s is not resilient to deviation of the coalition Γ =

⋃

i Γi, where |Γ| ≤ zm ≤ k.

Theorem 3.14 There exists a job scheduling game with n jobs and m identical machines, s.t. SPoA ≥
2

1+ 1

m

.
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Proof: Consider the following game of n = 2m jobs running on m machines:

w(J1) = · · · = w(Jm) = 1 and w(Jm+1) = · · · = w(J2m) =
1

m

The optimum is to have one job of weight 1 and one job of weight 1
m on each machine, which yields a

makespan of 1 + 1
m . Consider the joint action s as follows:

∀i ∈ 1, . . . ,m − 2, si = Mi, sm−1 = sm = Mm−1, and sm+1 = . . . = s2m = Mm

Clearly, the first m − 2 jobs can not gain from any deviation, since each is alone on a machine. Since
the load on the first m − 2 machines is 1, no other job can gain from migrating to these machines.
Therefore we can concentrate on the last two machines.

For one of the two jobs on Mm−1 to improve its load, it needs to migrate alone to Mm and have at
least one unit job from Mm migrate back to Mm−1. However, a job in Mm would gain from migrating
to Mm−1 only if both jobs on Mm−1 migrate to Mm. This implies that the joint action s is resilient
to deviation of coalitions of any size. Since the makespan of s is 2, we have that SPoA ≥ 2

1+ 1

m

.

Mixed Deviations

In the remainder of this appendix we discuss the case of mixed deviations. We start with the following
lemma which greatly limits the structure of a mixed SE.

Lemma A.3 Given a k-SE with mixed strategies π, for some k ≥ 2, let J1 and J2 be two jobs with
strictly mixed strategies. The supports of π1 and π2 must be disjoint.

Proof: For contradiction, assume the jobs J1 and J2 have strictly mixed strategies and their supports
intersect. We will show that π is not resilient to a coalition of J1 and J2.

Suppose that the supports of J1 and J2 intersect by at least two machines, WLOG, let M1 and
M2 denote these machines. Consider the following mixed deviation π′ for a coalition of J1 and J2:

π′
1 = (π1(1) + π1(2), 0, π1(3), π1(4), . . . , π1(m))

π′
2 = (0, π2(1) + π2(2), π2(3), π2(4), . . . , π2(m))

The strategies of other jobs in π′ are the same as in π. In π, J1 is indifferent between machines M1

and M2, since π is a NE. Therefore, by having machine M2 removed from the support of J2, the
expected load observed by J1 in π′ is reduced by (π1(1) + π1(2))π2(1)w1(J2). Similiarly, the expected
load observed by J2 in π′ is reduced by (π2(1) + π2(2))π1(2)w2(J1). Therefore, both jobs benefit from
the deviation, and therefore π is not resilient to coalitions of size 2.

Suppose the supports of J1 and J2 intersect in exactly one machine. WLOG, let M1 denote the
machine only in the support of J1, M2 denote the machine only in the support of J2 and M3 denote
the machine in the intersection of the supports. (M1 and M2 exists since both π1 and π2 are strictly
mixing.) Let ρ = 1

2 min {π1(3), π2(3)}. Consider the following mixed deviation π′ for a coalition of J1

and J2:

π′
1 = (π1(1) + ρ, 0, π1(3) − ρ, π1(4), . . . , π1(m))

π′
2 = (0, π2(2) + ρ, π2(3) − ρ, π2(4), . . . , π2(m))

The strategies of other jobs in π′ are the same as in π. Let β(q) = (q − ρ)ρ. The expected load
observed by J1 in π′ is reduced by β(π1(3))w3(J2) and the expected load of J2 in π′ is reduced by
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β(π2(3))w3(J1). Again, both jobs benefit from the deviation, contradicting the assumption that π is
a 2-SE.

Theorem 3.16 For m ≥ 5 identical machines and n > 3m unit jobs, there is no 4-SE, if mixed
deviations are allowed.
Proof: We first consider equilibria with pure strategies. Since all jobs are unit sized, the only
equilibrium with pure strategies is when the load on each machines is either ⌊ n

m⌋ or ⌈ n
m⌉.

Let k = ⌈ n
m⌉. Since n > 3m, there exists a machine with at least 4 jobs assigned to it. WLOG,

assume M1 is one of these machines, and J1, J2, J3, J4 are four of the jobs that chose it.
Consider the following mixed deviation of these jobs:

π1 =

(

1

2
,
1

2
, 0, 0, 0, 0, . . . , 0

)

π2 =

(

1

2
, 0,

1

2
, 0, 0, 0, . . . , 0

)

π3 =

(

1

2
, 0, 0,

1

2
, 0, 0, . . . , 0

)

π4 =

(

1

2
, 0, 0, 0,

1

2
, 0, . . . , 0

)

The strategies of the remaining jobs are unchanged. In the original joint strategy, the load observed
by each of these jobs is k. The expected load observed by each of the first four jobs In π is at most
1 + (k−2.5)+k

2 = k − 1
4 . Since all jobs in the coalition benefit from the deviation, no pure NE in this

setting is a 4-SE.
We now consider equilibria with mixed strategies. Clearly, the expected load on each machine has

to be between k−1 and k. By Lemma A.3, on each machine there is at most one job that has a mixed
strategy.

WLOG, assume M1 is the most loaded machine. If there are 4 jobs that purely choose M1 as their
strategy, then the same deviation described for the pure case holds for these jobs. Otherwise, k = 4
and there are 3 jobs that purely choose M1, and another job that has a mixed strategy and M1 is in
its support vector. WLOG, assume J1 is the job on M1 that has a mixed strategy and that M2 is
one of the other machines in its support. Let p denote the probability that J1 chooses M1. We also
assume that the other jobs that choose M1 are J2, J3 and J4 (the expected load on M1 is 3 + p).

Consider the following mixed deviation π of these jobs:

π1 =
(p

2
, 1 − p

2
, 0, 0, 0, 0, . . . , 0

)

π2 =

(

1

2
, 0,

1

2
, 0, 0, 0, . . . , 0

)

π3 =

(

1

2
, 0, 0,

1

2
, 0, 0, . . . , 0

)

π4 =

(

1

2
, 0, 0, 0,

1

2
, 0, . . . , 0

)

The strategies of the remaining jobs are unchanged. In the original joint strategy, the load observed
by J1 is 4, and the deviation decreases it to 1 +

(p
2 · (3 − 5

2) +
(

1 − p
2

)

3
)

= 4 − 3p
4 . As for the other

jobs in the coalition, in the original joint strategy, the expected load observed by each job is 3 + p. In
π, the expected load observed by each job is at most 1 + (1+p/2)+(3+p)

2 = 3 + 3p
4 . Since all jobs in the

coalition benefit from the deviation, no mixed NE in this setting is a 4-SE.

Theorem 3.17 There exists a job scheduling game on 2 identical machines and 3 jobs, where no
joint mixed strategy is a 2-SE, when mixed deviations are allowed.
Proof: Consider 2 identical machines and 3 jobs with weights w(J1) = 1− ǫ, w(J2) = 1, w(J3) = 1+ ǫ,
where ǫ is a small value that will be determined later. In a pure NE, J1 and J2 are assigned to the
same machine, while J3 is assigned alone. WLOG, we assume J1 and J2 are assigned to M1, and J3

to M2.
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Figure 3: α ∈ (1, 2). (a) Illustration of a triangle and connected nodes. (b) The nodes of a pentagon can
improve by buying a pentagram.

Consider the following mixed deviation π of J1 and J2:

π1 =

(

3

4
,
1

4

)

π2 =

(

3

4
,
1

4

)

.

The load on M1 in the original assignment is 2 − ǫ. After the deviation, J1 observes an expected
load of 1 − ǫ + 3

4 · 3
4 + 1

4

(

1 + ǫ + 1
4

)

= 17
8 − 3

4ǫ, while J2 observes an expected load of 1 + 3
4 · 3

4(1 −
ǫ) + 1

4

(

1 + ǫ + 1
4(1 − ǫ)

)

= 17
8 − 3

8ǫ. For any 0 < ǫ < 1
5 both jobs improve their observed load, and

therefore there is no pure NE that is a 2-SE.
It remains to show that no mixed NE is resilient to coalitions of size 2. By Lemma A.3 it is

sufficient to consider only NE where each machine is included in at most the support of one job that
plays a strictly mixed strategy. Since there are only 2 machines, there can be only one job J that is
using a strictly mixed strategy (otherwise there will be intersecting supports). In any mixed NE, J
needs to be indifferent between M1 and M2, which is impossible, since the other two jobs have different
weights.

B Network Creation

Theorem 4.3 For any α ∈ (1, 2), and any n ≥ 7, there does not exist any 3-SE.
Proof: We first establish the following sequence of lemmas.

Lemma B.1 For α ∈ (1, 2), in any 3-SE, there does not exist any independent set of size 3 in G(s),
where s is a SE.

Proof: For contradiction, assume that there exists an independent set I ≥ 3. Let Γ ⊂ I be any
subsets of three nodes, s.t., |Γ| = 3. For a deviation, let the nodes in Γ form a triangle in which each
node buys a single edge. In the original graph, G(s), ∀v, u ∈ Γ, v 6= u, we had δ(v, u) ≥ 2. Therefore,
for each v ∈ Γ, the distance cost, Dist(v), decreased by at least 2 after the deviation. Since B(v)
increased only by α < 2, each v ∈ Γ lowered its cost by deviating.

Lemma B.2 For α ∈ (1, 2), in any NE s, if there exists a set of nodes U that form a clique in G(s),
then if u1 ∈ U buys the edge to u2 ∈ U , there must exists a node w2 that is directly connected to u2

but not to any other node u ∈ U \ {u2}.

17



Proof: Suppose there does not exist such w2, we will show that u1 strictly gains by removing (u1, u2),
contradicting the assumption that s is a NE. For any v ∈ V \ U , if the shortest path from u1 to v
does not go through any node in U \ {u1}, then δ(u1, v) is not affected by the removal. Otherwise,
since the diameter of the graph cannot exceed 2 (for α ∈ (1, 2)), v must be directly connected to some
xv ∈ U \ {u1}. By our assumption, v must be directly connected to some u ∈ U \ {u1, u2}, but then,
δ(u1, v) is not affected by the removal either. We conclude that if u1 unilaterally deviates, and does
not buy the edge (u1, u2), then its distance cost, Dist(u1), increases by only 1, while its buying cost,
B(u1), decreases by α > 1, thus its cost strictly decreases.

We use the above lemma to prove that a 3-SE cannot include triangles.

Lemma B.3 For α ∈ (1, 2), in any 3-SE s, there does not exist any triangle in G(s).

Proof: Suppose that the set of nodes U = {u1, u2, u3} forms a triangle. It is easy to see that in any
triangle, there must exists a node u ∈ U that buys exactly one edge. Assume WLOG that u2 buys
the edge (u2, u3), and u1 buys the edge (u1, u2) (see Figure 3(a)). We will show that u2 strictly gains
by removing the edge (u2, u3).

For any v ∈ V \ U , if the shortest path from u2 to v does not go through u1 or u3, then removing
(u2, u3) does not affect δ(u2, v). Otherwise, v must be directly connected to either u1 or u3 (for any
two nodes v1, v2 ∈ V , it must hold that δ(v1, v2) ≤ 2, otherwise, since α < 2, each one of these nodes
gain by buying the edge between them). If it is directly connected to u1, then again, removing (u2, u3)
does not affect δ(u2, v). Otherwise, v is directly connected to u3, but not to u1 or u2. By Lemma B.2,
there exists a node w2 that is directly connected to u2 but not to u1 or u3. Thus, by Lemma B.1, v
must be directly connected to node w2, otherwise {v, u1, w2} form an independent set of size 3. So
δ(u2, v) remains 2 and is not affected by the deviation. Therefore, Dist(u2) increases only by 1 (since
δ(u2, u3) increases by 1), and B(u2) decreases by α > 1, so it implies that u2 strictly gains.

Using the above lemmas, we derive a lower bound on the degree of each node in any 3-SE. Let
deg(v,G) be the degree of node v in the graph G.

Lemma B.4 For α ∈ (1, 2), in any 3-SE s, for every v, we have deg(v,G(s)) ≥ n − 3.

Proof: For contradiction suppose that there exists a node v such that deg(v,G(s)) ≤ n − 4. Then,
there are at least 3 nodes that are not directly connected to v. By Lemma B.1, these nodes must
form a clique, otherwise, there is an independent set of size 3. However, this is a contradiction to
Lemma B.3.

We now complete the proof of the theorem. By Lemma B.4, the degree of each node in any 3-SE
must be at least n − 3. Then, for n ≥ 7, any edge removal can strictly decrease the cost of the node
that bought it. Consider the edge (w, u). If w removes the edge, B(w) decreases by α > 1. We claim
that Dist(w) increases only by 1 (i.e., the only effect is that δ(w, u) increases from 1 to 2). To see
this, note that for n ≥ 7, if the degree of any node is at least n − 3, then after removing (w, u), their
degrees are at least n − 4, and since for any n ≥ 7, it holds that n − 4 + n − 4 > n − 2, they must
have a common neighbor. In addition, for any node u′ 6= w, u, both w and u′ must have a common
neighbor, since n − 4 + n − 3 > n − 2 (where n − 3 and n − 4 are the minimal respective degrees of
u′ and w). Therefore, by removing the edge (w, u), Dist(w) increases by 1, while B(w) decreases by
α > 1, so w strictly gains from the removal.

Theorem B.5 For α ∈ (1, 2), n = 5, 6, there does not exist any n-SE.

Proof: In our proof we use the following lemma.

Lemma B.6 For α ∈ (1, 2), in any n-SE S, there does not exist any pentagon in G(s).
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Proof: Suppose that there exist a pentagon (u1, u2, u3, u4, u5, u1) (the directions of the edges do
not matter). First note that by Lemma B.3, there cannot exist any other edge between these nodes
(otherwise, it forms a triangle). But then, the nodes of the pentagon can strictly gain by buying
a pentagram (u1, u3), (u3, u5), (u5, u2), (u2, u4), (u4, u1) (see figure 3(b)), since for each node u, B(u)
increases by α < 2, but Dist(u) decreases by 2.

Since we consider n ≤ 6, by lemmas B.3 and B.6, there do not exist odd cycles (i.e., cycles of size
3 or 5). Thus, the graph must be a bipartite graph. But then, there must exists an independent set
of size 3, in contradiction to Lemma B.1.

Theorem B.7 Let s∗ be a joint action where sr = ∅ and sv = {(v, r)}, for v 6= r (i.e., G(s∗) is a star
in which all the nodes buy edges to the root r). For α ∈ (1, 2) and any n, the joint action s∗ is a 2-SE.

Proof: Obviously, s∗ is resilient to coalitions of size 1 since it is a NE [7]. We next show that it is
resilient to any coalition of size 2. First note that since the root (r) does not buy any edges and enjoys
the minimum possible distance cost, it will not belong to any coalition. For any other two nodes u1, u2,
we show that there does not exist a graph G′ = G(s′) they can form in which both nodes gain. In any
such coalition, there must exist a edge between u1 and u2; otherwise, each one of them can deviate
unilaterally, in contradiction to the fact that s∗ is a NE. Suppose WLOG that u1 bought the edge
(u1, u2). Since α < 2 the distance between any two nodes is at most 2 (in any NE). This implies that
for any node v, other than u2 and r, the only way node u1 can decrease the distance to it to 1 is by
buying the edge (u1, v). But since α > 1 this will result in a net loss. Therefore, we will assume that
u1 does not buy any edges to nodes other than r or u2. We have two cases involving nodes u2 and r:
Case (a): u1 does not remove the edge (u1, r). Then, the buying cost increases by α > 1, while the
distance cost decreases only by 1. Such a deviation results in a net loss for u1. Case (b): u1 removes
the edge (u1, r). Then, the buying cost does not change and the total distance does not decrease.
Thus, u1 did not gain from the deviation. Therefore, there is no coalition of size 2 where both players
gain from the deviation.

Theorem B.8 Let s be a joint action such that G(s) is a star. For α ≥ n − 2, s is an n-SE.

Proof: As in the proof of Theorem 4.1, for any node v ∈ Γ, let xv and yv denote the respective
numbers of its new outgoing and new incoming edges. Obviously, all the new edges originate from
nodes in the coalition. Thus, it must hold that

∑

v∈Γ xv ≥ ∑

v∈Γ yv. If r 6∈ Γ, we show that the star
is a SE for α ≥ 2, and if r ∈ Γ, we show that the star is a SE for α ≥ n − 2.

Case (a): The root, r, does not belong to the coalition Γ. In this case we claim that Γ would be
also a deviation for s∗, where s∗r = ∅ and s∗v = {(v, r)}, for v 6= r (i.e., G(s∗) is a star in which all the
nodes buy edges to the root r). This is since every node in Γ has a higher cost in s∗ compared to s.
Therefore, the fact that s is an n-SE follows from Theorem 4.1.

Case (b): The root, r, belongs to the coalition Γ. Let X denote the set of nodes to which r buys
new edges, and let Y denote the set of nodes from which r removes edges. Since in the original star
r has the minimum possible distance cost, r will join the coalition only if α|X| < α|Y |. That is,
|X| < |Y |. For any coalition, each node v ∈ Y must be connected to the graph after the deviation. We
will show that there does not exist a coalition in which all the nodes that belong to Y stay connected,
and thus reach a contradiction. For a node v 6= r, buying a new edge costs α ≥ n−2, while it can gain
no more than n− 2 in distance cost (since in the original graph it had a distance cost of 1 + 2(n− 2)).
Thus, the only nodes that might gain from buying new edges are nodes in X (since they removed
their edge from r). However, using the same reasoning, they will not buy more than a single edge.
Therefore, in order for the set of nodes Y to be connected to the graph, it must hold that |X| ≥ |Y |,
contradicting the assumption that since r ∈ Γ we have that |X| < |Y |.

19



Theorem 4.4 Let s be a NE. For any node v we have cost(s) ≤ (n − 1)(2α + n − 1 + Dist(v)).
Proof: The proof follows a similar proof in [1], with minor modifications. Fix v and consider the
shortest path tree T (v). For any vertex u ∈ V , let Eu be the number of tree edges bought by u in
T (v). Clearly, v bought only tree edges while other vertices may have bought non-tree edges. We now
prove that for every vertex u 6= v,

cu(s) ≤ α(Eu + 1) + Dists(v) + n − 1 − δs(v, u) (6)

Since s is a NE, cu(s) is lower bounded by the following alternative action: Vertex u discards all
non-tree edges, and buys an additional edge to v. The new cost for buying edges is α(Eu + 1). Since
only non-tree edges were deleted, the distance between u and any other vertex w 6= u is at most
1 + δs(v,w). Summing over all vertices except for u, the new distance cost for u yields the bound in
equation 6. Since the number of tree edges is n− 1, summing over all n− 1 vertices u 6= v and adding
cv(s) = αEv + Dists(v) completes the proof.

20


