
Topics on the Border of Economics and Computation November 13, 2005

Lecture 3

Lecturer: Noam Nisan Scribe: Maor Ben-Dayan

1 Introduction

In today lecture we will continue to explore the use of randomized algorithms in zero sum
games, last week we started the analysis of binary game trees. We’ve seen that evaluating
a game tree with 4 leaves becomes easier using a randomized algorithm compared to deter-
ministic algorithms. The evaluation is easier when considering the hardest game tree for the
given algorithm. When given a deterministic algorithm used by a player, the tree designer
could plan a tree that would force the player to check all 4 leaves, but given a randomized
algorithm, the tree designer cannot devise a tree that would require the algorithm more
than 3 checks of the leaves (in the expected sense) in order to evaluate the game.

Theorem 1 the expected number of leaves needed by the randomized algorithm (shown last
week) to fully evaluate an alternating binary game tree with n leaves is nlog43.

Proof: Let h denote the number of moves each of the 2 players does during the game
then n = 22h, since the height of the tree is 2h.

We will prove the theorem by induction over h. We will denote the expected number of
leaves the algorithm check for a tree of height 2h by T (h).

For h = 0 the tree is composed of a single leaf so the algorithm only have to look at this
single leaf and we have T (0) = 1.

3-1

Figure 1: Alternating game tree of height 2h

in Figure 1 we can see a tree of height 2h. By the induction assumption we need to look at
an expected T (h− 1) leaves for each of the 4 subtrees of height 2(h− 1) we get (according
to the theorem we proved last week) T (h) ≤ 3T (h− 1), hence T (h) ≤ 3h and since n = 4h

we get T (h) = nlog43

Remark In the proof above we didn’t use information that can be gained about the tree
while scanning the 4 subtrees. by using that kind of information we can gain a tight lower
bound on the number of leaves we need to look at. This bound is approximately n0.74 as
opposed to nlog43 ≈ n0.79 we’ve shown.

Open Problem 1 The above algorithm is the most efficient algorithm there is for evalu-
ating game trees.

We’ll now look at a non alternating game tree of height 2h. The game which it describes is
the following:
Player 1 has h consecutive moves, in each move he can make one of 2 possible choices. Once
player 1 is done, player 2 also gets a series of h consecutive moves. Figure 2 is a diagram of
such a game tree.

3-2

Figure 2: Non alternating game tree of height 2h

It’s possible to look at the non-alternating game as the following matrix:

Each of the 2h rows in the matrix describes one possible move made by player A and each
of the 2h columns describes one of the possible series of moves made by player B. each
entry in the matrix contain the reward of player A from the game.

3-3

What is the purpose of A in the described game ? Since we’re dealing with a binary game
player A must find a row filled with ones. How hard can it be ?

Remember, our analysis tries to find the hardest matrix for the algorithm given the best
randomized algorithm. In other words, We are playing a game in which we will pick a
randomized algorithm and an evil adversary will provide the hardest possible matrix for
our algorithm. We would like to pick an algorithm for which the provided matrix will be
the easiest (will require the exploration of the least expected number of cells to provide
player A’s move).

Let’s look at a matrix randomly filled with {0, 1} (each cell has been drawn i.i.d with

p(1) = 0.5). this matrix has a very small probability (= 2h(
1
2
)2

h
) of containing a row full

of ones. A randomized algorithm trying to locate a row of ones in the matrix will have to
(with probability very close to 1) check all n rows (since, with high probability, he won’t
find an all ones row). In order to establish that a certain row is not all 1s it will have
to check an expected 2 cells (each cell in the row has probability of 1

2 to be 1 or 0). To
summarize, given a random binary matrix, the expected number of cells any randomized
algorithm will have to check is ≈ 2h · 2 which is much less than the number of cells in the
matrix (2h · 2h).

The above matrix is not, however, the hardest input matrix, we will now prove that ran-
domized algorithms cannot do much better than a deterministic one in the non-alternating
game.

Theorem 2 Any randomized algorithm operating on a ∨2h∧2h tree (non-alternating game
tree of n = 4h leaves) should check, at least, an expected n

2 leaves.

Proof: Let Arand be the set of all randomized algorithms for solving our problem, M the
set of all 2h × 2h binary input matrices (remember, 1 means player A won, and 0 means
player B won) and T (a) the distribution of all possible series of ”coin tosses” of algorithm
a ∈ Arand. Using these, we would like to show that min

a∈Arand

max
m∈M

Exp
∼T (a)

(cells checked) ≥ n
2 .

By using Yao’s theorem we have min
a∈Arand

max
m∈M

Exp
t∼T (a)

(cells in M checked by a) ≥
max

D
min

a∈Adet

Exp
∼D

(cells checked) where D is some distribution over M. All we have to

do is show that max
D

min
a∈Adet

Exp
∼D

(cells checked) ≥ n
2 .

Note: we made our task easier by restricting ourselves to deterministic algorithms but
made our lives ”harder” by having to analyze the expected behavior on a hard distribution
of input matrices rather then the worst case behavior on a single hard matrix.

Let us look at a few distributions of input matrices and find a lower bound for the number
of cells a deterministic algo. will have to check.

3-4

Distribution No. 1

let m ∼ Uniform(M1) where M1 ⊂ M is the set of all the input matrices with a single
row of 1s and the rest of the matrix filled with 0s. Our algorithm have to find the 1s row
and verify that it is, in fact, filled with 1s (the algorithm does not know anything about the
distribution).

Every algorithm which is looking for a row of 1s in a matrix will have to look at an expected
2h

2 rows until reaching the all 1s row. For each 0 filled row, the algorithm has to check a
single cell, for the last row the algorithm will have to look at all the 2h cells in order to verify
that the row is indeed filled with 1s. All in all the expected number of cells a deterministic
algorithm will have to check is ≥ 2h + 2h

2 .

Distribution No. 2

let m ∼ Uniform(M2) where M2 ⊂ M is the set of all the input matrices with a single row
of 1s and the rest of the cells filled, half with 0s and half with 1s.

As before, the algorithm will have to look at an expected 2h

2 rows until reaching the all
1s row and for the last row the algorithm will have to look at all the 2h cells. For each
of the other rows checked, the algorithm has to check an expected 2 cells until finding a
0. All in all the expected number of cells a deterministic algorithm will have to check is
≥ 2h + 22h

2 = 2(2h) = 2
√

n.

Distribution No. 3

let m ∼ Uniform(M3) where M3 ⊂ M is the set of all the input matrices with one cells in
each row containing 0 and the other cells containing 1. For every matrix drawn from M3

the algorithm has to output 0 (player B can ensure a victory), however, any deterministic
algorithm which always gives the correct answer (for matrices in and out of the distribution
support) will have to check all the rows (and find all the 0s in the matrix) before answering.

In order to find a ’0’ in a specific row, the algorithm will have to check an expected 2h

2 =
√

n
2 .

Since all the rows are i.i.d knowledge of the other rows does not help the algorithm in
performing on any row in the matrix, therefore, any deterministic algorithm will need to
check an expected

∑
2hrows

2h

2 = 2h 2h

2 = n
2 cells.

Proof conclusion

If we choose D = M3 we get that every deterministic algorithm, and specifically the best
deterministic algorithm will have to check an expected number of cells which is greater than
n
2 which is what we wanted to show.

3-5

2 Nash equilibrium

Before formally defining Nash equilibrium we will first examine few games and analyze
them. As always we will denote the players 1 . . . n, player i will have a set of pure strategies
Si and a utility function ui : S1 × S2 × · · · × Sn → R.

2.1 Prisoner’s Dilemma

In the prisoner’s dilemma game, there are two players. Each has two choices, namely
cooperate or defect. Each must make the choice without knowing what the other will do.
The player’s payoffs are shown in the following matrix:

column player (II)

rows player (I)
cooperate defect

cooperate -1,-1 -10,0
defect 0,-10 -9,-9

The first number in each cell is the reward of player 1 and the second is the reward of player
2 if the game ends in that cell. Using the above notations we can describe the prisoners
dilemma as a 2 players game where: S1 = S2 = {cooperate, defect} and, for example,
u1(cooperate, defect) = −10

What should player 1 do, cooperate or defect ? It is easy to see that no matter what the
player 2 does it is better for player 1 to defect since his utility will be greater. The same
holds for player 2. In this case we say that the defection strategy dominates the cooperation
strategy for both players. To put it in a formal way, we have: Notation For ui (the
ith player’s utility function) the following are different notations of the same: ui(

→
x) ↔

ui(x1, . . . , xn) ↔ ui(xi, x−i) x−i = (x1, . . . , xi−1, , xi+1, . . . , xn) In other words x−i

denotes the strategies of all the player other than player i.

Definition 3 Dominating strategy

We say that strategy xi strongly dominates strategy yi if: ∀x−i ui(xi, x−i) > ui(yi, x−i).

We say that strategy xi weakly dominates strategy yi if: ∀x−i ui(xi, x−i) ≥ ui(yi, x−i) and
∃x−i such that ui(xi, x−i) > ui(yi, x−i)

2.2 Battle of the sexes

Another 2 players game in which a loving couple wants to go to the movies together, Surely
they want to go together, but alas, as it sometimes happens, the boy wants to see the latest

3-6

action film and the girl wants to watch a romantic one. The couple’s utility function can
be described by the following matrix:

Boy

Girl
action romance

action 1,2 0,0
romance 0,0 2,1

In this game there is no dominating strategy for any of the players (check !). However we
can clearly see that the 2 players would like to cooperate in order to maximize their utilities.

Definition 4 Best reaction

xi will be called ”best reaction to x−i” if ∀yi ui(xi, x−i) ≥ ui(yi, x−i)

Definition 5 Nash equilibrium

x1, . . . , Xn will be said to be in a Nash equilibrium if for every i ∈ {1, . . . , n} xi is a best
reaction to x−i.

In other words, x1, . . . , Xn are in a Nash equilibrium if, given that for all 1 ≥ i ≥ n player
i plays xi, no player wants to change their strategy.

We can look at a Nash equilibrium as a socially stable convention, that is, If everybody is
acting in a certain way and the system is in a Nash equilibria, no one will want to change
the way he/she acts.

In game theory it is assumed that games will always find their way to a Nash equilibrium
(since this is a stable state). We will, however, be interested in ways of finding (or reaching)
a Nash equilibrium in games and the complexity of algorithms which finds such equilibriums.

3-7

