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Abstract

We describe a Fourier-theoretic formula for the probability of ratio-
nal outcomes for a social choice function on three alternatives. Several
applications are given.

1 Introduction

The Condorcet “Paradox” demonstrates that the majority rule can lead to a
situation in which the society prefers A on B , B on C and C on A. Arrow’s
Impossibility Theorem (1951) asserts that under certain conditions if there
are at least three alternatives, then every non-dictatorial social choice gives
rise to a non-rational choice function, namely there exists a profile such that
the social choice is not rational.

A profile is a finite list of linear orders on a finite set of alternatives.
(We will consider the case of three alternatives.) We consider social choice
functions which, given a profile of n order relations R; on a set X of m alter-
natives, yield an asymmetric relation R on the alternatives for the society.
Thus, R = F(R1, Ry, ... R,) where F is the social choice function. If aR;b
we say that the ¢-th individual prefers alternative a over alternative b. If
aRb we say that the society prefers alternative a over alternative b. The
social choice is rational if R is an order relation on the alternatives.

A principal condition for social choice functions: “Independence of Ir-
relevant Alternatives” asserts that for every two alternatives a and b the
society’s choice between a and b depends only on the individual preferences
between these two alternatives. In other words, the set {i : aR;b} determines
whether aRb.



There is an extensive literature on the probability of non-rational out-
comes in voting schemes when individual preferences are uniform and inde-
pendent (see Gehrlein (1997)). We will consider this probability for general
social choice functions on three alternatives.

Our main result is a Fourier-theoretic formula for the probability of
non-rational outcomes for an arbitrary social choice function on three alter-
natives. Several applications are given two of which we will mention here. A
social choice function is neutral if it is invariant under permutations of the
alternatives. We call a neutral social choice function symmetric if the choice
is invariant under some transitive group of permutations on {1,2,...,n}.
(Note: the social choice need not be invariant under all permutations of the
individuals.) For example, an electoral voting system (such as that in the
the United States of America) in which all states have the same number of
voters and electors is symmetric.

Theorem 1.1. The probability of a rational outcome for a symmetric social
choice on three alternatives is less than 0.9192.

The second application demonstrates that if the outcomes of a neutral
social choice function for random profiles are rational with high probability
then the social choice is approximately a dictatorship.

Theorem 1.2. There exists an absolute constant K such that the following
assertion holds: For every € > 0 and for every neutral social choice function
if the probability that the social choice is non-rational is smaller than €, then
there exists a dictator such that for every pair of alternatives the probability
that the social choice differs from the dictator’s choice is smaller than K -¢.

This theorem relies on a result which is proved in Friedgut, Kalai and
Naor (2001) concerning Boolean functions whose spectrum is concentrated
on the first two “levels”.

For general references on social choice theory see Fishburn (1973), Sen
(1986) and Peleg (1984).

2 Fourier expansion on the discrete cube

Consider the discrete cube Q, = {0,1}" endowed with the uniform prob-
ability measure P. We will identify elements in 2, with subsets S of

[n] ={1,2,...,n}.
For two real functions f and g defined on €2, their inner product is

< f,9>=Y_27"f(S)g(S).



The 2-norm of f is thus equal to: ||f]o = V< J,f > = (3. 27"f2(8))/2.
The Cauchy-Schwarz inequality asserts that

< fr9 >< £ l2llgll2-

For a real function defined on {0, 1}" consider the Fourier-Walsh expan-
sion of f,
f=73_ [(S)us,
SCln]

where, ug(T) = (—1)/°"Tl. Since the 2" functions ug form an orthogonal
basis for the space of real functions on €, f(S) =< f,ug >.
The Parseval formula asserts that ||f]|2 = > P(S ), and more generally,

< f,9>=> F(9)3(9).

Let f be a Boolean function defined on €2,,, namely f : Q, — {0,1}. In
this case f is simply a characteristic function of a subset A of ,. Denote
by P(A) = |A|/2" and note that in this case the Parseval formula asserts
that:

17113 =P(4) =" 74(9).

Note that f(0) =< f,up >= P(A) since ug(S) = 1 for every S. We will
write u; for ug;.

3 The probability of irrational social choice for
three alternatives

Consider a social choice function which, given a profile of n order relations
R;, 1 = 1,2,...,n on three alternatives, yields an asymmetric relation R
for the society. Thus R = F(Ri, Ra,... Ry,) where F' is the social choice
function. aR;b indicates that the ¢-th individual prefers alternative a over
alternative b. aRb indicates that the society prefers alternative a over al-
ternative b. The social preference relations are not assumed to be rational
(=order relations).

Let a, b and ¢ be the alternatives. The social preference between a and
b depends only on the individual preferences between a and b and therefore
can be described by a Boolean function f of n variables z1,z2...x, as
follows: Set z; = 1 if aR;b and z; = 0 otherwise. In addition, let aRb
if and only if f(x1,...z,) = 1. Similarly, let ¢ = g(y1,v2,...,yn) and



h = h(z1,22,...,2,) be the Boolean functions which describe the society’s
preferences between b and ¢ and between ¢ and a, respectively.

~

Let p1 = P{z : f(z) = 1} (= f(0)), p2 = P{z : g(z) = 1} (= 5(0)) and
p3 =P{z : h(z) =1} (= h(0)).

We will call the social choice function balanced if p1 = ps = p3 = 1/2.

We will now consider a Boolean function on 3n variables z1,...,Z,,
Yly-onsYny Zlye--y2n. (Write £ = (z1,22,...,Zn), ¥y = (Y1,Y2,---,Yn) and
z=(21,22,---,2n))

Let ¥ (=¥3(n)) be the subset of the 3n-dimensional discrete cube cor-
responding to these variables which arise from a rational profile namely
where each of the triples (x;,;, 2;) is not equal to (0,0,0) or (1,1,1) for
i=1,2,...n. Note that P(¥) = (6/8)".

We will introduce the following notation: For real functions f,g on Q,
let

<< frg>>= Y F(S)F(S)(-1/3)5" (3.1)
0£SC[n]

Let W = W (f,g,h) be the probability of obtaining a non-rational out-
come from profiles of the n individuals when the individual preferences are
uniform on the six orderings of the alternatives and independent. First, note
that

=P{U} - Y 27(f(2)g(y)h(z) + (1 — f(2))(1 — g())(1 — h(2)))-
(z,y,2)ET

Indeed, the outcome of the social choice function which is described by
f(x), g(y) and h(z) is rational if and only if the vector (f(z),g(y),h(z))
is not equal to (1,1,1) and not to (0,0,0). Therefore, if the social choice
function yields an order relation for the society, then f(z)g(y)h(z) + (1 —
f(2))(1 —g(y))(1 — h(2) = 0 and if it yields a non-rational outcome, then

f(@)g(y)h(z) + (1 — f(2))(1 - g(y))(1 — h(z) = 1.

Theorem 3.1.
W(f,g,h) = (1 = p1)(1 = p2)(1 — p3) + p1p2p3— (3-3)
—(<< fog>>+ << g,h>>+ << h, f >>)/3.

Proof of the theorem: Let A = A, = Xy and B = f(z)g(y)h(z). We
need to compute the inner product of A and B and we will carry out this
computation using the Fourier transform.



> 27 f()g(y)h(z) =< A, B >=>_ A(u)B(u). (3.4)

(%,y,2)€P

It is left to determine the Fourier coefficients of A and B. In our case the
Fourier coefficients are indexed by 0-1 vectors of length 3n or equivalently
by subsets of the variables. In our case, we have 3n variables: z1,...,Zn,
Yly---5Yn and 2z1,...,2,. We represent subsets of these 3n variables by a
triple (S1, S2, S3) of subsets of [n]. S; will correspond to a subset of the n
variables z;, 1 = 1,...,n and similarly So and S3 will correspond to the y;’s
and z;’s, respectively.

We start with the Fourier coefficients of B. For three subsets Si, S
and S3 of [n] let B (S1,S2,S3) be the Fourier coefficients that correspond to
S1,52,853. The multiplicative form of B, B(z,y,z) = f(z)g(y)h(z), implies
a similar multiplicative form for the Fourier coefficients:

B(S1, 82, 83) = F(S1)3(S2)(S3)-

Note that A also has a multiplicative structure as the product of n
expressions. W3(n) is simply the Cartesian product of n copies of ¥3(1).
Direct computation for n = 1 shows that 121\1((2)) =3/4, A\l(U) = —1/4 when
[U| = 2 and A;(U) = 0 otherwise. It follows that A(Sy,S2,S3) is a product
of n expressions one for each ¢, ¢ = 1,2,...,n. The contribution of 7 is
given by the Fourier coefficients of A;, namely it is 3/4 if ¢ does not belong
to S1, So and Ss, it is —1/4 if i belongs to two out of the three S;’s and
it is 0 otherwise. In summary, A\(Sl,SQ,Sg) = 0 unless the triple of sets
(81,52, S3) is special, i.e. every index ¢ belongs to zero or two sets S; and
for special triples:

A\(Sl, So, S3) = (_1/4)|S1U52U53\ (3/4)n—|5’1u52u53|.

It follows that

32,2 (2)g(y)h(z) =
=" F(51)5(S2)h(Ss) (—1/4) S105205s/ (3 /)= 11052055

where the the right hand side is summed over all special triples (S, S2,53).
The theorem follows when we evaluate Y (f(2)g(y)h(z)+(1— f(a))(1—

~

9(y))(1 = h(2))) and take into account that 1A= )(S) = —f(S) if S # 0

and (1 - £)(0) = 1 - F(0).
This completes the proof. [J



Note that if f = g = h then Relation (3.3) reduces to
W=+ (1-p)>=Y FAS)(-1/3)571). (3.5)
S#0

In this case, p = p1 = ps = p3.

4 The probability of the Condorcet Paradox

4.1 A rough computation

Consider the case in which n = 2m+1 is odd and f, g and h are the majority
function. Let G(n,3) be the probability of a rational outcome in this case
and let G(3) = lim,,_,o, G(n,3). It is known that

G(3) =3/4+ (3/(2-m)) - ArcSin(1/3) ~ .91226.

Gulibaud stated this formula without a proof in a footnote of a paper
in the 1960’s. Many people have since reproduced the result (see Gehrlein
(1997)). R

Define d,,, = 2erl]/‘?({k}) The value of f({k}) is (*”)272™"! and
therefore

dy = ((Qm) 9-2m1)2 (9 4 1),

m

Note that d, is a decreasing sequence which tends to 1/2x. Since
fAQ—xz1,...,1 —z,) =1— f(z1,...,2p), (4.1)
it follows that f(S) = 0 whenever |§| > 0 is even.

Proposition 4.1.
0.9092 < G(3) < 0.9192

Proof: Relation 3.3 asserts that in our case the probability of non-
rational outcomes is given by

14— 3 P8 (-1/3)5 1,

S#0

It follows directly that

—G(3,n) < 1/4 — dp. (4.2)



and therefore, 1 — G(3) < 1/4 —1/2m.
On the other hand,

n

YAPS) 15128y =1/2= F20) = Y fA({k}) = 1/4— dn

k=1

and therefore,
1-GB3,n)<1/4—dp—(1/4-4dy)/9 = (4.3)
=2/9—-8/9d,, <2/9—-8/9-1/2m.

4.2 Gulibaud’s formula

The Fourier coefficients of the majority function are known and we will
briefly present them here. Let n = 2m +1. By Levenshtein’s (1995) formula
46, we have

m
2" f(k) = Kns(k) = Komm(k —1).
5=0
Here K, ; is the s’th Krawchouk polynomial on n points. Now,
Komm(z) = (=1)"2" /ml(z — 1)(z — 3)...(z — 2m + 1)
and substituting we obtain,
F20k) = (1/24742) (22 ) ()2 (k — 2)2(k — 4)?...(k — 2m)®.

This leads finally to

Y AF(9) 1 18] = kY = 1/2'™F (2mo+1) [k @) <(kk__1)1/2> ((;nm—_kk:l)l/?)'

For k fixed and n tending to infinity this expression tends to ((kk__l)l/2)2*k*1k*17r*1.
It follows that

1—G@3)=1/4— i (2;) 2 %120+ 1) - 1 m - (1/3)% =

1=0

=1/4—1/27 —1/108% — 1/2160r .. ..



5 Symmetric social choice on three alternatives

5.1 Symmetric forms of social choice

Recall that a neutral social choice function is symmetric if the choice is
invariant under some transitive group of permutations on {1,2,...,n}.

Theorem 5.1. For a symmetric social choice on three alternatives the prob-
ability of a rational outcome is less than 0.9192

Proof: Neutrality implies that f = g = h and that f satisfies f (1-—
z1,1 —xz9,...,1 —xz,) =1— f(z1,29,...,zy,). It follows that f(S)=0if S
is even and non-empty. R

Symmetry among the voters implies that the Fourier coefficients f({k})
are equal for £k =1,2,...,n.

At this point all that is required is the fact that if a Boolean func-

~

tion is symmetric then "y _, |f({k})| is maximized by its value on the ma-

jority function. This follows at once from the fact that Y, | f({k}) =
Yscin 27" f(S)(2[S] — n). Therefore the sum of the Fourier coefficients,

~

> f({k}), is maximized for the majority function and so is its absolute
value.

Under the assumption that all the Fourier coefficients f({k}) are equal
the absolute value of each is maximized for the majority function.

It follows that the probability of a non-rational outcome is at least

1/4 = dpy — (1/4 — dy) /9 = 2/9 — 8/9dy, > 2/9 — 8/9 - 1/2r.

O

This argument applies even if f,g and h are distinct as long as they
satisfy relation 4.1.

It appears to be true that under the conditions of Theorem 5.1 the
probability for a rational outcome is always at most G(3). For this we need:

Conjecture 5.1. 37 g < P(S) is maximized for every fixed k, when n tends
to infinity, for the majority function.

See Bourgain (2001) for a related result.

It follows from Theorem 5.1 that the probability that a symmetric social
choice on 3m alternatives leads to a rational outcome is at most 0.91™ and
therefore it rapidly approaches zero. (Problem: How rapidly?)

Another immediate consequence of relation (3.3) is the following propo-
sition (which also deserves a direct combinatorial proof):



Proposition 5.2. 1. If the social choice is neutral (invariant under permu-
tations of the alternatives) then the probability of a rational outcome is at
least 3/4.

2. If the social choice is balanced (namely, p1 = pa = p3 = 1/2), then
the probability of a rational outcome is at least 2/3.

Proof: 1. This follows from the fact that since f, g and h satisfy relation
(4.1), all their Fourier coefficients vanish for even sized sets. An example
of equality is the following. The ordering between a and b is determined
according to one individual, the ordering between b and ¢ by a second indi-
vidual and the ordering between ¢ and a by a third individual.

2. If p1 = po = p3 = 1/2, the smallest possible value of << f,g >> is
obtained if all the contributions are coming from a single set S containing
two elements. An example of equality is obtained when aRb holds precisely
when this is the preference of one out of the two first voters and the same
holds for bRc and cRa. (This example is not entirely kosher since it violates
the condition that if all members of the society prefer a on b, then so does
the society. However, if we add this condition and let n grow we obtain
a sequence of kosher examples for which the probability of rational choice
approaches 2/3.)0

It may also be true that if f,¢g and h are monotone and p; = po =
ps = 1/2 then the probability of a rational outcome is at least 3/4. To
show this we need to prove that for monotone Boolean functions f and g,
<< f,g >> is non-negative. This seems to be related to the FKG inequality
(which asserts that when f and g are monotone, Z@#SC[n] f(Sg(s) > 0.)
Talagrand (1996) may be relevant in this context.

6 A Fourier-theoretic proof of Arrow’s theorem
(under neutrality)

There several proofs for Arrow’s theorem in the literature and a large num-
ber of extensions and variations. Many of the proofs are similar to Arrow’s
original one and use direct and simple combinatorial arguments (see, for ex-
ample, Geanakoplos (1997)). Baryshnikov (1997) found a topological proof
for Arrow’s theorem in a context which unified combinatorial impossibility
theorems with topological social choice theory, an area initiated by Chichilin-
sky (1972). Saari (1997) presented a geometric proof.

There is no loss of generality to assume for Arrow’s theorem that the
number of alternatives is three. The theorem makes the following assump-



tion stated in our language on the social choice: f(z,z,...,2) = z for
z = 0,1 and this condition holds also for g and h.

We will make the further assumption that f, ¢ and h are balanced,
namely that p = p1 = po = p3 = 1/2. This is the case if the social choice is
neutral, i.e. invariant under permutations of the alternatives.

We require the following lemma:

~

Lemma 6.1. If f is a Boolean function and if f(S) =0 when |S| > 1 then
f=0orf=1or f(x1,22,...,%n) = z; for some i or f(x1,%2,...,Tp) =
1 — z; for some 1.

Proof 1: Let p = ||f||2 = P{z : f(z) = 1}. f(#) = p and therefore
ZP({Z}) = p — p%. Assume that p > 1/2, otherwise replace f with 1 — f.

~

JFrom the convexity of the function ¢(t) = #2 it follows that > [f({i})] >

/P — p? with equality only if there is one non-zero f(i).
Suppose that p # 0,1. Let z be a vector which is 1 for every i with

~ ~

f({i}) <0 and 0 otherwise. Then f(z) =p+ > |f({i})| > p+ +/p —p? and

~

the only way that this equals 1 is if p = 1/2 for one value of 4, f({i}) = 1/2

and all other f({j})’s are zero.
Proof 2 (by Ehud Friedgut): f is of the form

f=c+ Z ]/”\(z)uZ

Since f is Boolean,

c=fhi=IfE=2¢+) Fi)*
Using this and the fact that for i # j uju; = ug; ;1, we have that

0=72—f =2 2~ Df(ui + D F0) [ (ugisy-
i i#]
From the uniqueness of the Fourier expansion we conclude that f(z)f( j)=0

for i # j, hence for at most one value of 7 f(i) # 0, and if there exists such

an ¢ then
1 1

O

Proof of Arrow’s theorem under neutrality: We use the notation
of Section 3. Let

F=> F(Sus and f'=3" F(8)(~1/3) " u(s).
0#£S 0#£S

10



Similarly define g,g', h,h’. Note that ||f||2 = 1/4 and ||f'||2 < 1/4 with
equality only if all non-zero Fourier coefficients f(S ) are for |S| < 1. (For
the general case ||f||3 = p1 — p?.)

Now, << f,g >> is by the Cauchy-Schwarz inequality at most /(]| f[|3)|/g/13-
This quantity is at most 1/4 with equality only if f’ is proportional to g and
hence f' = f = g. This happens only if all the Fourier coefficients of f are
on the 0 and 1 levels and since f is not constant and f(0,0,...,0) = 0 by
lemma 6.1, f = g = z; for some .

Therefore, for W = 0 we require that << f,g >> + << f,h >> + <<
g,h >>= 3/4 and it follows that f = z;, ¢ = z; and h = z; and that
t=j=k O

Remark: I do not have a proof along these lines for the general case of
Arrow’s theorem or for a stability result in the non-balanced case. We need
to show that << f,g >> 4+ << g,h >> 4+ << f,h >>= 3p1paps + 3(1 —
p1)(1 — p2)(1 — p3) can occur only if p; = p2 = p3 = 1/2. Our argument
shows that this is the case when

VP11 = p1)pa(1 — pa) + VP2 (1 — p2)p3(1 — ps) + v/p1(1 — p1)ps(1 — p3) <

< 3p1p2ps + 3(1 — p1)(1 — p2)(1 — ps3).
(This inequality fails, for example, for p; = ps = 1/5 and p3 = 1.)
For the general case improved upper bounds on the strange “inner prod-
uct” << f,g >> (in terms of p; and ps) are needed.

7 Stability of Arrow’s theorem

Lemma 6.1 can be extended to the following description of Boolean functions
whose spectrum is concentrated on the first two levels:

Theorem 7.1. If f is a Boolean function, ||f||3 = p and z'fz|5|>1 P(S) <4
then either p < K'6 or p > 1 — K'§ or ||f(x1,72,---,2n) — z;||3 < K& for
some i or ||f(x1,T2,..-,2n) — (1 —3;)||3 < K§ for some i.

Here, K' and K are absolute constants. Two proofs will be given in
Friedgut, Kalai and Naor (2001).

Equipped with Theorem 7.1, our proof for Arrow’s theorem yields, with
minor changes, the following result:

Theorem 7.2. For every e > 0 and for every balanced social choice function
on three alternatives, if the probability that the social choice is non-rational
is smaller than € than there is a dictator such that the probability that the
social choice differs from the dictator’s choice is smaller than K - e.

11



It follows that for balanced social choice functions the following assertion
holds: For every e > 0, as the number of alternatives tends to infinity, if

e For every pair of alternatives there is no dictator such that the proba-
bility that the social choice differs from the dictator’s choice is smaller
than e,

then
e The probability for a rational outcome tends to zero.

(This is due to the fact that for every triple of the alternatives, the
probability of a rational outcome is bounded away from 1 and disjoint triples
are independent.)

8 Concluding remarks

8.1 More alternatives and an interesting graph invariant

Extending our formula from three to more alternatives leads naturally to
the problem of identifying the Fourier coefficients for the analog of W3 for
more than three alternatives.

Given a directed graph D on the vertex set 1,2,...,n, for every permu-
tation m on [n] consider the number of inversions of = among the edges of D,
namely the number of directed edges i — j such that 7 (i) > 7w (j). Denote
this number by ip(w). Call a permutation even if ip(7) is even and odd
otherwise. Let sg(D) be the difference between the number of odd permu-
tations on the graph minus the number of even permutations. Note that up
to a sign this number depends only on the underlying undirected graph G.

When there are m alternatives, the Fourier coeflicients of the character-
istic function of ¥,,, are indexed by graphs G on n vertices and are given up
to a constant factor by sg(G).

Brendan McKay suggested recording the inversion number statistics as
follows: For a directed graph D with n vertices define g(D,z) = 1/n! -
>, axz* where aj, is the number of permutations m, with i (D) = k. |sg(G)|
is equal to n! - |g(D, —1)| which only depends on the underlying undirected
graph. The parameters sg(G) and ¢g(D, z) appear to be of independent inter-
est. Compare also Foata and Zeilberger (1996) and White and Williamson
(2001).

12



8.2 The superiority of majority

It will be interesting to use the Fourier-theoretic approach to study the old
question regarding the probability that a given alternative is preferred over
any other by more than half the voters. When the number of alternatives
is larger than three, the Fourier-theoretic formulas are quite messy. It is
known that for a fixed number of voters, if the number of alternatives tends
to infinity, the probability of such a preferred alternative existing tends
to zero. Bell (1981) proved that the tournament representing the social
preferences has a Hamiltonian cycle with probability that tends to one as the
number of alternatives tends to infinity. Precise probabilistic computations
seem challenging.

For arbitrary symmetric social choice functions, we conjecture that the
probability that there is an alternative which is preferred on all others tends
to zero as the number of alternatives tends to infinity. It may be true that
the probability of a Hamiltonian cycle for the social preferences tends to one
when the number of alternatives tends to infinity. For these conjectures to
hold perhaps all that is needed is that the social choice does not coincide
with a dictatorship with probability of at least 1 — ¢. For the symmetric
case, it may even be true that these probabilities are maximized for the case
of majority.

I do not have a counterexample to the following bold conjecture:

Conjecture 8.1. Let X be a set of m alternatives and let the number of indi-
viduals 7 be an odd integer. Let n be an arbitrary probability distribution
on the set of orderings on X. Consider random profiles where the order
relations for the individuals are drawn independently according to n. For
a symmetric social choice function F', let p(F') be the probability that F
leads to a rational social choice. Then p(F) is maximized for the majority
function.

Finally, consider neutral social choice functions where the influence of
each individual is prescribed (see, Kahn, Kalai and Linial (1988)). It may be
true that in this case the “most rational” social choice functions (in terms of
the probability for a rational outcome) are those based on weighted majority
functions.

8.3 Relation to PCP

The following remark is based on collaboration with Ehud Friedgut, Shmuel
Safra and Uri Zwick. There are interesting connections between Theorems
3.1,7.1 and the theory of probabilistically checkable proofs and especially a

13



certain test developed by Hastad (1999). Compare also with Parnas, Ron
and Samorodnitsky (2000).

Hastad described a probabilistic test, based on sampling three values of
a function f which allows to distinguish between a Boolean function which
is a dictatorship and a Boolean function whose value is not determined with
high probability by a bounded number of variables.

Our main result can be seen as a probabilistic test for checking, based
on sampling one instance for each of three balanced Boolean functions f,g
and h, whether all these functions are determined (at least approximately)
by a single variable z;.

Consider a social choice function as above and ask the following question:
What is the probability for the uniform distribution over rational preferences
of the individuals that aRb and bRc or bRa and cRb? For a dictatorship the
answer is 1/3. Using a similar arguments to those used here it follows that if
the social choice function is not close to being a dictatorship then the answer
is larger than and bounded away from 1/3. If f = g this yields a probabilistic
test based on sampling two values f(z) and f(y) for dictatorship. (Here,
the distribution of x and ¥ is given by the following: the probabilities for
(z4,9:) to be (0,0),(0,1),(1,0),(1,1) are (1/6, 1/3, 1/3, 1/6), respectively.)

We intend to study further possible applications for hardness of approx-
imations.
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