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Abstract

There are two sets of agents: buyers B and sellers S . Each type of agent is allowed
to trade with as many agents on the opposite side it wishes. Agents' decision process is
determined by a market price system p , where p = (p(s; b); (s; b) 2 S � B) . Namely, a
seller s solves the task maxB�B [p(s;B)� c(s;B)] , where c(s;B) is the cost incurred by
seller s when he contracts with a set B of buyers. A buyer b , similarly, will solve for
maxS�S [u(S; b)� p(S; b)] , where u(S; b) is the utility of buyer b after contracting with
S sellers.

We examine the existence of competitive equilibrium in this market. We show that
equilibria exist in those markets in which all the goods on sale are pure substitutes, or
in which all goods are pure complements or �nally in which there are appropriate combi-
nations of substitutes and complements. We also establish results about the structure of
the sets of equilibrium prices and allocations. We show that the substitution and comple-
mentarity requirements are intimately related with the discrete convexity (or concavity)
requirements imposed on the corresponding cost and utility functions of the market agents.
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1. Introduction

We consider here a two-sided market, in which agents are divided in two complementary
groups, say, sellers S and buyers B . We allow here both that a seller trade with a few buyers
and that a buyer trade with a few sellers. Trades between agents belonging to a same group
are forbidden. A trade between a seller s and a buyer b consists in the transfer (from s to
b ) of some given item (s; b) (and, possibly, of a transfer of money from b to s ). This market
is a market with "indivisible" goods since a trade between a pair of agents involves at most a
single item1 (either agents conclude a deal or they do not). We shall assume here that utility
is transferable, and that money transfers between agents are allowed.

In this paper, we study the issue of existence of competitive equilibrium and investigate
the structures of the sets of equilibrium prices and allocations. To talk about competitive
outcomes in this market, we shall have to assume that for every item potentially transferred
from s to b a price p(s; b) emerged. This price system p = (p(s; b)) determines buyers'
demand schedules, on the one hand, and sellers' supply schedules, on the other. We de�ne a
competitive equilibrium in the standard way.

In markets with indivisible goods, equilibria need not to obtain in the many-to-many case
in contrast to the one-to-one setup. We give conditions to warrant existence of competitive
equilibrium. Roughly speaking, we require some kind of "discrete convexity" of utilities.
Namely, we show that there exist competitive equilibria in markets in which all goods are
pure substitutes, or in which all goods are pure complements, or �nally in which there are
speci�c combinations of substitutes and complements.

Let us now brie�y recall some salient aspects of two-sided market models and discuss
within this setup the substitutes and complements cases.

The early studies of two-sided markets models focused on one-to-one setups: - the as-
signment problem (Koopmans and Beckmann (1957), Shapley and Shubik (1972)) and - the
marriage matching problem (Gale and Shapley (1962)). In both these setups, no require-
ments were needed for the existence of solutions, moreover sets of solutions exhibited lattice
structures. As we shall point out later on, the gross substitution property was automatically
satis�ed in this setup.

In a one-to-many (even a many-to-many) framework, Crawford and Knoer (1981) proved
existence of equilibrium imposing the separability of utility or production functions under
capacity constraints. Kelso and Crawford (1982) introduced the gross substitution property
to establish existence in the one-to-many subcase. Gul and Stacchetti (1999) proposed two
conditions equivalent to the gross substitution property. They claim that gross substitution is
necessary and su�cient to ensure existence of Walrasian equilibria. This is a slight overstate-
ment. As it turns out, Danilov, Koshevoy, and Murota (1998) show that discrete concavity is
the appropriate condition. Moreover, gross substitution is one particular instance of discrete
concavity. We clarify this relationship in the present work. We show �rst that GS -functions
(in a boolean context2) are nothing else than polymatroidal (PM ) concave functions. If we

1A more general setup might be one in which trades between opposed agents would involve a few commodi-
ties, possibly divisible.

2We call boolean the context in which agents are allowed to consume or produce no more than one item of
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allow agents to consume or produce eventually more than one item of a given type, then the
GS condition turns out to be weaker than the PM condition and yet too weak for existence.

The case of pure complements also has a respectable tradition in the economic literature
and it turns out it is also an instance of discrete concavity. We shall not dwell too deeply upon
this issue now. But we can recall, for instance, that Samuelson (1947) associated the idea of
complementarity with that of supermodularity (see Topkis (1978)). We follow this practice.
Some time ago Danilov, Koshevoy, and Sotskov (1994, 1997) relied upon sub/supermodularity
conditions to prove the existence of equilibria in an economy with intellectual (or informa-
tional) goods.

In the present work, we shall also establish existence in a mixed case in which the market
goods are partitioned in two groups. The goods of the �rst group are mutual substitutes,
and the goods of the second are mutual complements. It will be important here that buyers
(consumers) and sellers (producers) have consensual views about this partition in the sense
that they all agree about which goods are substitutes and which are complements. This
requirement will be called the Compatibility Principle. In the job market model of Kelso and
Crawford (1982), the Compatibility Principle will spell as follows. The workers perceive the
�rms as substitutes, thus by compatibility, �rms should perceive the workers as substitutes as
well.

2. A two-sided market model

Let there be two (�nite) sets of agents S and B . We shall call them sellers and buyers3.
Each agent is allowed to form a partnership (or a deal) with agents from the opposite side.
Moreover, an agent can have as many partners as he wants. In other words, we are in a
many-to-many setup. We introduce the following de�nition which incidentally accounts for
this multiplicity of possible deals.

De�nition A matching is an arbitrary subset � � S �B . Denote by �(b) = fs; (s; b) 2 �g
and �(s) = fb; (s; b) 2 �g .

An elementary deal consists in a transfer of at most one item (s; b) from the seller s to
the buyer b 4. When buyer b gets hold of a set S � S of items, his utility increases by the
amount u(S; b) . Similarly, when seller s assigns his items to a set B � B of buyers, he
experiences a loss of utility. In our opinion, it is convenient to view sellers as producers. The
production cost of a set B of items for s is denoted by c(s;B) .

a given type.
3Of course, we can think of them as "�rms and workers" (like in Kelso and Crawford (1982) or Roth (1984)),

or as "colleges and students" (like in Gale and Shapley (1962)), or, if we allow ourselves to pursue the allegory
of marriage, as "men and women" (though, in promiscuous marriages), �nally, as "service-providing facilities
and customers".

4One can assume that the goods o�ered by a given seller are somewhat similar: one seller supplies houses,
another - cars, the third planes, and so on.... Furthermore, we assume that each buyer needs no more than
one item of any given type.
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It seems rather natural to pose both that c(s; ;) = 0 and u(;; b) = 0 . We de�ne now the
total gain of matching � to be equal to the sum of buyers' gains minus the sum of sellers'
production costs,

v(�) =
X
b

u(�(b); b) �
X
s

c(s; �(s)):

De�nition A core outcome (or stable outcome) is a pair (�; x) , where � is some matching
and x : N = S [B ! R is a vector of agents utilities, which satisfy the following conditions:

1. v(�) = x(N) ,

2. For any coalition K = (S [ B) � N and for any matching �0 � S � B , we have
x(K) � v(�0) .

We de�ne x(K) =
P

k2K x(k) . In particular, x(i) � 0 for each agent i 2 N .

Example 1 Empty core with heterogeneous buyers. We consider a market with two sellers
s; s0 and two buyers b; b0 . Seller s has two bottles of gin g; g0 on sale. Seller s0 has two
bottles of tonic water t; t0 on sale. The cost functions of s (resp. s0 ) are:

c(s; g) = c(s; g0) = 0; c(s; fg; g0g) = +1 (or 100);

c(s0; t) = c(s0; t0) = 0; c(s0; ft; t0g) = +1 (or 100):

In this example, the items produced by anyone of the sellers are perfect substitutes with respect
to production. Moreover each seller has a capacity constraint: he can sell (and produce) at
most one bottle.

The utility functions of the buyers are:

u(b; g) = u(b; t) = 0; u(s; fg; tg) = 1;

u(b0; g0) = u(b0; t0) = 1; u(b0; fg0; t0g) = 1:

We notice that b likes to consume gin and tonic together and thus for him these goods are
complements. The second buyer b0 will be happy to drink just anything. He is indi�erent
with respect to gin, tonic, and gin & tonic.

Easy computations show that: v(fs; s0; bg) = 1 [a] , v(fs; b0g) = 1 [b] , v(fs0; b0g) = 1 [c]
and v(fs; s0; b; b0g) = 1 [d] .

Suppose that x is a payo� vector in the core. Then from [a] and [d], we have x(b0) = 0 .
From [b] and [d], we have x(s0) = x(b) = 0 . From [c] and [d], we have x(s) = x(b) = 0 . Thus
x � 0 . This contradicts the Pareto optimality of x .

Example 2 The separable case. In the separable (or additive) case, seller s 's cost function
c(s;B) is given as the sum c(s; b) over b 2 B (we de�ne the utility of a buyer b in a similar
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fashion). Any trade is then decomposed in a series of separate and elementary trades (s; b) .
Now, clearly, a trade (s; b) obtains as soon as u(s; b) � c(s; b) ; the buyer b then transfers
the amount of money p(s; b) to the seller s , and u(s; b) � p(s; b) � c(s; b) .

Each deal (s; b) is concluded at a price p(s; b) . We can always assume that the price
p(s; b) of an item (s; b) would lie in between u(s; b) and c(s; b) even if the deal (s; b) does
not �nally materialize. Thus p = (p(s; b)) is the market price system at equilibrium. The
stable outcomes coincide with the competitive allocations at equilibrium in this separable case.

It is now time to de�ne what is a competitive equilibrium in this setup. Let there be a
price system (p(s; b); s 2 S; b 2 B) , in our market. The seller s solves the following problem

max [p(s;B)� c(s;B)]; for B � B; (1)

while the buyer b solves for

max [u(S; b) � p(S; b)]; for S � S: (2)

We have an equilibrium when the solutions to (1) and (2) are consistent. More precisely,

De�nition An equilibrium is a pair (�; p) , where � is a matching and p = (p(s; b)) is a
price system such that �(s) solves (1), for each s 2 S , and �(b) solves (2), for each b 2 B .

The competitive allocations belong to the core. Precisely, given a pair (�; p) , we de�ne
the utility x(s) of seller s to be x(s) = p(s; �(s))� c(s; �(s)) (and similarly for buyer b ).

Proposition 1. Given an equilibrium (�; p) , the pair (�; x) is a stable outcome.

The proof is standard, thus omitted.

The converse of this Proposition is not true as shown in the following example.

Example 3 Core without equilibria. Again there are two sellers and two buyers. The buyers
are as in Example 1: the �rst buyer desires gin and tonic together, the second will be happy
with either. However the cost functions are di�erent. Now the production cost of the �rst
bottle is equal to 1 , while the second bottle is produced at no cost. This context obtains in
the case of informational goods in which typically the cost of producing the �rst specimen is
signi�cantly larger than that of duplicates (Danilov, Koshevoy, and Sotskov (1994)).

It is easy to see that v(K) = 0 for any coalition K . Thus the core consists of the unique
point (0; 0; 0; 0) .

Let us show that there is no equilibrium. Suppose that the equilibrium prices of seller s 's
items are equal to p; p0 and that those of seller s0 are equal to q; q0 . Since an equilibrium
allocation is stable, it yields a net surplus of 0 to every agent on the market. We have
therefore the following system of inequalities:
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1: p � 1; p0 � 1; p+ p � 1
2: q � 1; q0 � 1; q + q � 1
3: 0 � p; 0 � q; 1 � p+ q
4: 1 � p0; 1 � q0; 1 � p0 + q0:

The inequalities 0 � p , 1 � p0 and p + p0 � 1 give p = 0 and p0 = 1 . Similarly,
0 � q , 1 � q0 and q + q0 � 1 give q = 0 and q0 = 1 . However this is never compatible with
1 � p+ q .

Examples 1 and 3 show that, in contrast to the one-to-one setup, equilibria need not obtain
in the many-to-many setup. In the sequel, we provide the conditions which warrant existence
of equilibrium (and, consequently, of stable outcomes5). We consider two main conditions.
The �rst is the gross substitution condition as introduced by Kelso and Crawford (1982)6.
The second is the polar (in some sense) condition of complementarity. We shall consider the
case of substitutes and that of complements separately and then brie�y discuss a mixed case.
We start with a few generalities about the existence and the structure of the set of equilibria
in the transferable setup.

3. Generalities about equilibria

In the transferable case, the existence issue is related to an optimization problem. To this
end, we aggregate all buyers into a single consumer and all sellers into a single producer.

Namely, let 
 = S � B . Consider the following two function U and C on the set 2
 :

U(�) =
X
b

u(�(b); b); C(�) =
X
s

c(s; �(s));

where � � 
 is a matching. U(�) is the aggregate utility derived from � , and C(�) is
the aggregate production cost of � . We are interested in the aggregate surplus U � C . The
maximum of this function is equal to v(N) . The set of optimal matchings is denoted by M .
Proposition 1 states that any equilibrium matching belongs to M . An optimal matching will
be a competitive allocation, whenever it can be supported by some price system p .

A price p supports a matching �� with respect to consumption if U(�) � U(��) �
p(�) � p(��) . That is: p is a supergradient to U at the point �� . Similarly, a price p

5The conditions under which stable outcomes can be decentralized remain yet to be found. Some results
were obtained by Kaneko (1982), Quinzii (1984) and Kelso and Crawford (1982).

6Of course, the notion of gross substitutability was formulated and investigated long ago. (One can trace
it back to Hicks. Morishima, Negishi, Arrow and Hahn, and many others made important contributions.)
The classical de�nition has been formulated in the case of single-valued demands. In economies with indivis-
ible commodities, demands at certain prices are unavoidably multi-valued. Thus one has to provide for an
appropriate formulation of this condition. Note that Polterovich and Spivak (1982) proposed an alternative
formulation to that of Kelso and Crawford (1982).
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supports a matching �� with respect to production if C(�) � C(��) � p(�) � p(��) . That
is: p is a subgradient to U at the point �� . Of course, p supports �� with respect
to consumption and production if and only if p separates the functions U � U(��) and
C � C(��) , that is,

U � U(��) � p� p(��) � C � C(��):

Proposition 2 A pair (��; p) is an equilibrium if and only if p separates the functions

U � U(��) and C � C(��) .

Proof Suppose that (��; p) is an equilibrium. Then, for every buyer b , the following in-
equality holds,

u(�; b) � p(�; b) � u(��(b); b) � p(��(b); b):

Adding these inequalities, we obtain U(�)� p(�) � U(��)� p(��) . Similarly for C .

Conversely, suppose that p supports �� with respect to consumption, thus U(�)�U(��) �
p(�)� p(��) . This inequality is equivalent to the following series of inequalities

u(�; b) � u(��(b); b) � p(�; b)� p(��(b); b); b 2 B:

Each inequality implies that ��(b) is optimal for buyer b at the price p(�; b) . Similarly for
the sellers. �

Corollary The set of equilibria has the form M�P , where P is the set of prices separating

the functions U and C + v(N) .

The set P can be empty, as in Example 1 and 3. In order to exhibit a linear functional
p separating the "osculating" functions U and C +max(U �C) (that is in order to exhibit
a "sandwich") some kind of "concavity" requirement is needed for the functions U and �C .
Danilov and Koshevoy (2000) (and, see also Danilov, Koshevoy, and Murota (1998)) develop
this point at length. We give here some �avor of their work, restraining ourselves to functions
given on the boolean lattice 2
 .

First, let us identify the set 2
 with the set f0; 1g
 in the vector space R
 . To this end,
we associate the characteristic vector 1A : 
! R ,

1A(!) =

�
1; ! 2 A
0; ! =2 A:

to every subset A � 
 .

The functions U and C are now de�ned on the set of vertices of the unit cube Q :=
[0; 1]
 = co(f0; 1g
 . Denote by co(U) the concavi�cation of U , i.e., the minimal concave
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function on the cube Q which is superior or equal to U . Obviously, co(U)(X) = U(X) at
every vertex X of Q . A price system p is viewed, thus, as the linear functional on the space
R

 , which is equal to p(!) at the point 1! . Now to any linear functional p 2 (R
)� , we

associate the convex set,

D(U; p) := Argmaxfco(U)� pg

in the cube Q . It is an integer polytope. (A polytope is integer if its vertices are integer.)
This polytope will be called a cell (or an a�nity area) of the function U 7. The cell D(U; p)
is the set of points of Q , for which the function co(U) coincides with the a�ne function
p+max(U � p) .

Lemma If D(U; p) is a cell of U , and D0 is a face of D(U; p) , then D0 is also a cell of

U .

Proof The face D0 is the set of points in D(U; p) , where a certain linear functional q on
R

 attains its maximum. Then D0 = D(U; p� "q) , where " is a small and positive number.

�

The following proposition shows that the crucial reason for the existence of a linear func-
tional separating U and C ("a sandwich") is that the intersections of cells of the functions
U and �C are integer polytopes.

Proposition 3 (Sandwich) Let U and C be functions on 2
 , and let C � U . Suppose

that, for every p , the intersection of the polytopes D(U; p) and D(�C; p) is an integer
polytope. Then U and C are separated by some linear functional.

Proof Since C � U , we have U � C � 0 . We prove the following stronger claim.

Claim coU + co(�C) � 0:

Let x be an arbitrary point in the cube Q . Let D be a cell of U containing x , and D0

be a cell of �C containing x as well. The intersection D \ D0 is an integer polytope by
assumption. Let X1; � � � ;Xn be the vertices of this polytope. Then x is obtained as a convex
combination of these vertices, x =

P
i
�iXi , where �i � 0 , and

P
i
�i = 1 . We assert that

co(U)(x) =
P

i
�i U(Xi) and co(�C)(x) = �

P
i
�i C(Xi) . We prove the �rst equality (the

second is obtained similarly).

Since co(U) is a�ne on D and X1; : : : ; Xn 2 D , then co(U)(x) =
P

i
�ico(U)(Xi) .

However co(U) coincides with U at the vertices of the cube Q , therefore co(U)(Xi) = U(Xi)
and
P

i
�iU(Xi) = co(U)(x) .

Now,

co(U)(x) + co(�C)(x) =
X
i

�i U(Xi)�
X
i

�i C(Xi) =
X
i

�i [U(Xi)� C(Xi)] � 0:

7Actually it is a cell of co(U) . For brevity, we write "cell of U ".
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This terminates the proof of our claim.

Let us return to the proof of Proposition 3. We have the following inequality co(U) +
co(�C) � 0 , that is �co(�C) � co(U) .

The function on the left side of this inequality is convex, while that on the right side is
concave. By a classical separation of convex sets argument, there exists both a linear function
q and a real � such that

�co(�C) � q + � � coU:

Since co(U) � U , q(X) + � � U(X) for any integer point X of Q . Similarly, C(X) �
q(X) + � , for any integer point X in Q . �

Remark 1. If, in Proposition 3, the function U is monotone, then there exists a monotone
separating functional p . To start with, note that co(U) is a monotone function on the cube
Q . Now instead of considering co(U) , we consider its monotone extension F on the whole
positive orthant R
+ . It is de�ned as follows: F (x) = co(U)(min(x;1
)) . F is concave and
is everywhere (in the cube Q ) inferior or equal to �co(�C) . In this case, any separating
functional p will be non-negative.

Remark 2. The theory of Discrete Concavity (Danilov and Koshevoy (2000)) characterizes
the classes of discrete functions for which Proposition 3 holds true. In the next section, we
show that GS -functions form a class of discrete concavity on the boolean cube.

4. The Gross Substitution Property

Let 
 be an arbitrary �nite set of items. We identify here a bundle to a subset A � 
 .
A utility function is a mapping u : 2
 ! R for which u(;) = 0 . A price functional is the
simplest example of such a map. Let p : 
 ! R represent a price schedule. Then the value
of a bundle A for the price schedule p is given by p(A) =

P
a2A p(a) .

Given a utility function u and a price p , the net utility derived from A is de�ned by
u(A)� p(A) . A consumer with utility u selects the bundles yielding the highest possible net
utility at prices p . Denote by D(u; p) the set of optimal bundles, that is:

D(u; p) = fA � 
; u(A)� p(A) � u(A0)� p(A0) for any A0 � 
g:

D(u; p) is the demand set at the price p . (Henceforth, we shall drop the parameter u when
no confusion is possible.)

De�nition (Kelso and Crawford) The utility function u is said to generate gross substi-
tutable demands or (in short) is a GS-function if, for any pair of prices p; q , such that q � p ,
and for any A 2 D(p) , there exists B 2 D(q) such that f! 2 A; p(!) = q(!)g � B .
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In other words: suppose that in the process of going from the price system p to the
price system q , some prices increase, while others remain unchanged. If some item ! was
demanded at prices p , and if ! 's price stayed put in q , then it might be demanded at
prices q .

One can expect that this property hold true when the items in 
 are substitutable. Intu-
itively, this excludes the complementarity-type relationship between goods, that is evidenced
in such commodity bundles as the bundle "key and key-lock" or the bundle "left and right
glove". Incidentally Gul and Stacchetti (1999) formalize the absence of complementarity be-
tween goods in their Single Improvement property.

De�nition (Gul and Stacchetti) Suppose A =2 D(p) , hence A does not maximize u�p .
Then there exists a better bundle B (with u(B)�p(B) > u(A)�p(A) ), such that jA�Bj � 1
and jB �Aj � 1 . A utility function u which satis�es this condition for all p is said to have
the SI -property.

In other words, if the bundle A is not optimal at prices p , then a better bundle B can be
found, which is derived from A by performing any of the following three operations: removing
an item from A , or adding an item to A , or �nally doing both. Thus we may improve upon
a bundle by performing these elementary operations.

Gul and Stacchetti (1999) in their Theorem 1 prove that the GS and SI properties are
equivalent. We, in turn, propose an alternative characterization of the GS -property. To this
end, we introduce the following notions.

De�nition (i) A root in the space R
 is any of the vectors 1a;1a � 1b , where a; b 2 
 .

(ii) A convex polytope in the space R

 is a g-polymatroid if any of its edges is parallel to

some root.

(iii) A function u , de�ned on the set 2
 , is called PM-concave if its cells are g-polymatroids.

Theorem 1 A function on the set 2
 is a GS-function if and only if it is PM-concave.

Proof Suppose that u is a GS -function. Let us check that each edge of a cell of u is parallel
to some root, and this for each cell. Consider a given edge. According to Lemma 1, we can
assume that this edge is some cell D(co(u); p) of the function co(u) . Let this edge connect
the two vertices 1A and 1B of the cube Q . Then the bundles A and B are the only
optimal bundles at the price p . As B 6= A , we can assume that there exists b0 2 B nA . Let
us slightly increase the price of item b0 . Then at this resulting price system p0 , bundle A
remains the sole optimal bundle. B which isn't optimal any more, is nevertheless preferred
to any other non-optimal bundle. By the SI -property, bundle A can be obtained from bundle
B provided one performs one of the following elementary operations: removing some item b ,
or removing some b and adding some a . This means that the vectors 1A and 1B di�er by
a root.

Conversely, suppose u is a PM -function. Let us check that the SI property holds. Let
A be a suboptimal bundle at prices p . Given a root r , denote by d(r) the derivative of
function co(u)� p at the point A in the direction r . By PM -concavity of co(u) , d(r) > 0 ,
for some root r . This is because the edges of the cells of co(u) are parallel to roots.
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Inequality d(r) > 0 implies that the (open) segment (A;A + r) intersects some cell D
of u . Since, both the (closed) segment [A;A+ r] and D are integral g-polymatroids, by the
Edmonds-Frank theorem (below), their intersection is an integral polytope namely [A;A+r] .
Now this implies that the function co(u)�p is a�ne on this segment. In particular, the value
of this function at the point B := A+ r is larger than its value at the point A . �

Remark 1. The functions considered above, were given on the vertices of the unit cube. But
it would be more appropriate to develop the theory of GS and PM functions for functions
de�ned on the whole of the lattice Z


 of integer points of R
 . We expose this theory in
Danilov, Koshevoy, and Lang (2001).

Remark 2. Up to now, following in this Gul and Stacchetti (1999), we considered only those
functions on 2
 , whose values were �nite. But there are good reasons to consider functions
which may take in�nite values. In particular, when dealing with "utility" functions, it is
convenient to consider the value �1 . Similarly when we are dealing with "cost functions",
we'd like to consider the value +1 . Of course, the cells of u , in this case, will cover the
convex hull of its e�ective domain co(dom(u)) , and not the whole cube Q . Theorem 1 still
holds in this case.

Theorem 2 (Sandwich theorem) Let U and �V be PM-concave functions on f0; 1g
 .

Suppose that V � U . Then there exists a linear functional p and a real number � such that

V � p+ � � U .

This result (proven �rst by Murota (1996)) follows from both Proposition 3 and the poly-
matroid intersection theorem given below (see, for instance, Frank and Tardös (1988)).

Theorem (Edmonds-Frank) The intersection of two integer g -polymatroids 8 is an inte-

ger polytope.

5. Markets with pure substitutes

Let us return to our two-sided market whose sellers s 2 S have cost functions c(s; �) on
2B , and whose buyers b 2 B have utility functions u(�; b) on 2S . We impose the following
assumption.

Assumption (Gross Substitution) u(�; b) is a GS-function for every buyer b 2 B and

�c(s; �) is a GS-function for every seller s 2 S .

Theorem 3 A two-sided market in which the Gross Substitution Assumption is satis�ed has

equilibria.

Proof We prove existence by an aggregation argument. Let U and C be the aggregate
utility and cost functions on 2
 , where 
 = S � B . We assert that U and �C are both
GS -functions. Indeed,

8Note that Edmonds and Frank de�ne a g-polymatroid as a polytope given by speci�c linear inequalities
(see Frank and Tardös (1988)). Their de�nition and the one given above are equivalent (see Danilov and
Koshevoy (2000)).
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D(U; p) =
Y
b

D(u(�; b); p(�; b));

and similarly for �C . It is straightforward to check that D(U; p) satis�es the gross substi-
tution property. It is done either by referring to the de�nition or by checking that the edges
of the associated polytope co(D(U; p)) =

Q
b
co(D(u(�; b); (p(b))) have the required form.

Now all follows from Proposition 2, Theorem 1 and Theorem 2. �

We are now ready to state two assertions about the structures of the set of equilibrium
prices and of the set of equilibrium allocations. From Corollary 1, we know that the set of
equilibria has the form M�P . If �� 2M and p� 2 P then

M = Argmax(U � p�) \Argmax(p� � C);
P = @coU(��) \ �@co(�C)(��):

Here @ denotes the superdi�erential of a concave function. Recall that the superdi�erential
of a function at a point is the set of all supergradients to this function at this point.

Moreover the sets M and P are endowed with speci�c structures.

De�nition We say that a subset M � 2
 is in-between-convex set if, given any two elements
�� and ��� such that �� � ��� , it contains all intermediate � as well (that is it contains all
� such that �� � � � ��� )9.

Theorem 4 In a two-sided market satisfying the Gross Substitution Assumption,

a) M is an in-between-convex subset of 2
 and

b) P is a sublattice of R
 .

Proof a) Since the intersection of in-between-convex subsets is in-between-convex, it su�ces
to prove that Argmax(U � p) is in-between-convex. The function U � p is a GS -function,
thus is submodular (Gul and Stacchetti (1999), Lemma 6). Then to get assertion a) it su�ces
to prove that the set of maxima of a submodular function f is in-between-convex.

Indeed, let �� and ��� be two maxima of f and let �� � � � ��� . Denote by �0 =
(��� � �) [ �� . Clearly, � \ �0 = �� and � [ �0 = ��� . Then, on the one hand,

f(�) � f(��) = f(���) and f(�0) � f(��) = f(���):

On the other hand, by submodularity,

f(�) + f(�0) � f(� \ �0) + f(� [ �0) = f(��) + f(���) � f(�) + f(�0):

9Analogously, this notion can be formulated for any ordered set.
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The inequalities hold with equality. In particular, � also belongs to Argmax(f) .

b) The intersection of sublattices is a sublattice, thus we need only prove that @f(x) is a
sublattice for every PM -concave function f . Without loss of generality, we may assume that
x = 0 and that the function f is homogeneous (of degree one). One-dimensional cells of this
function, i.e. rays, are generated by roots. Hence the superdi�erential is given by a system
of linear inequalities of the form c(a) � p(a) � c0(a) or of the form c(a; b) � p(a) � p(b) �
c0(a; b) , where c(a); c0(a); : : : are constants. Every inequality of this kind de�nes a sublattice,
as well as the whole system. �

To conclude this section, we discuss a few examples of GS -functions (or alternatively of
PM -concave functions).

Example 4 Consider a seller which can not produce more than one item, i.e., his cost c(B)
equals +1 as soon as B contains more than one element. Then �c is PM -concave because
its cells are g -polymatroids. Indeed, the cells of c are faces of the unit simplex, whose vertices
are constituted by 0 and the basis vectors 1b , for b 2 B .

If all sellers are of this type (as are the workers in Kelso and Crawford (1982)) the gross
substitution property is ful�lled automatically on the sellers' side. The market economy has
competitive equilibria if moreover we require gross substitution on the buyers' side.

Example 5 Consider now a buyer who is not eager to consume more than one item. His
utility then takes the form,

u(S) = max
s2S

u(s):

The function u is PM -concave. This holds because the monotone extention of a PM -concave
function is PM -concave.

Therefore the gross substitution property is automatically ful�lled on the buyers' side if all
buyers are of this type. If, on top, we require gross substitution on the sellers' side, we have
existence. Note that Kaneko (1982) considered the particular subcase in which cost functions
were additive.

Observe, �nally, that if sellers cannot produce more than one item and buyers have no
need for more than one item, then the gross substitution property is ful�lled automatically
on both sides of the market and clearly competitive equilibria always obtain in this kind of
two-sided market. Actually this is the market investigated by Shapley and Shubik (1972).

Example 6 Any separable (or additive, or linear) function on 2
 is a GS -function. This
explains why the market in Example 2 has competitive equilibria.

We can devise a more interesting instance in which separable functions are used, like in
Crawford and Knoer (1981). They consider separable cost functions with capacity constraints.
Let l be a linear function and k capacity constraint. A cost function with capacity constraint
is a function c which coincides with l as long as jBj � k , and is equal to +1 elsewhere.
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(Example 4 can be viewed as a special case of capacity constraint, where the capacity is
k = 1 .) Crawford and Knoer (1981) proved existence of equilibria in this context. Of course,
their result is clari�ed when one realizes that such functions are PM -concave. (More generally,
any PM -concave function to which we impose a capacity constraint remains a PM -concave
function.)

Example 7 Bevia, Quinzii, and Silva (1999) considered another interesting case. They
showed that a function of the form

P
b
ub(xb) + �(

P
b
xb) , where � is a concave function

of one variable, is a GS -function. When �(t) is equal to 0 for t � k and is equal to �1
for t > k , we are back to the discussion in Example 6.

The previous examples we considered, are particular cases of a more general construction
(see Danilov, Koshevoy, and Murota (1998) or Danilov and Lang (2000)) which we describe
now. Suppose T is a family of subsets of 
 . This family is called laminar if, for every
A; B 2 T , one of the three conditions hold: A � B , B � A or A \ B = ; . Consider now
the collection of concave functions of one variable �A , indexed by A 2 T . We construct the
new function U on the boolean set 2
 de�ning, for X � 
 , that

U(X) =
X
A2T

�A(jX \Aj):

Then U is a PM -concave function.

One can also use the fact that the (in�mal) convolution of PM -concave functions is a PM -
function to derive new PM -concave functions. Other, in order to check the GS property, one
can use the following characterization: u is GS i� its Fenchel conjugate u� is supermodular
(Danilov and Lang (2000)).

6. Markets with pure complements

We consider now the polar case to a market with substitutes, that of a market with pure
complementary goods. Recall that if u is a GS -function, then it is submodular and thus
has "decreasing marginal utility". Conversely, a supermodular function u has "increasing
marginal utility". This means that the di�erence

u(A)� u(A n a)

is a monotone function of A � 
 , which means that the increment of utility derived from
adding an item a to a bundle A is greater the larger the bundle A . This property of the
utility function points out to the existence of some complementarity among the goods added-
to-the-bundle and those entering-the-bundle. We require submodularity of cost functions to
model complementarity in the production processes.

We impose here the following assumption.
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Assumption (Complementarity) u(�; b) is a supermodular function for every buyers
b 2 B and c(s; �) is a submodular function for every seller s 2 S .

Theorem 5 Consider a two-sided market in which the Complementarity assumption is sat-

is�ed. Then

a) this market has equilibria,

b) the set M of equilibrium allocations is a sublattice of 2
 ,

c) the set P of equilibrium prices is an in-between-convex subset of R
 .

Proof The proof is very similar to that which was developed in the pure substitutes case.
The aggregate utility function U is clearly supermodular, while the aggregate cost function
C is submodular. The appropriate version of Proposition 3, which states the existence of
a separation between supermodular and submodular functions, used here, is due to Frank
(1982) (or else see Danilov, Koshevoy, and Sotskov (1994)). The existence of a separation
again rests on the shape of the cells of the relevant functions. We only discuss the matter
for the supermodular function U . Its concavi�cation co(U) is linear over simplexes of the
standard triangulation of the unit cube Q = [0; 1]
 . Namely, let � be a weak order on the set

 . The corresponding simplex �(�) consists of all monotone maps (
; �) ! [0; 1] . These
simplexes (�(�)) constitute the standard simplicial decomposition of the cube Q when �
runs through the set of all weak orders on 
 . (The same holds true for the function �C .)
The intersection of any of these simplexes is also a simplex of this standard triangulation, thus
it is an integer polytope. This completes the proof of Frank's Sandwich Theorem and thus
proves point a) .

We obtain assertion b) by remarking that the set of maxima of a supermodular function
is a sublattice.

For what concerns point c) , then P is the intersection of two superdi�erentials (of the
functions U and �C ) at any optimal matching �� . The intersection of in-between-convex
sets is in-between-convex. Thus we only need to show the following lemma.

Lemma The superdi�erential of a supermodular function is in-between-convex.

Proof Let f be a supermodular function and p0 � p00 be two supergradients to f at a point
x . We have to check that, for any p such that p0 � p � p00 , there holds

f(y)� f(x) � p(y)� p(x): (3)

Since p0 and p00 are subgradients, there holds

f(y _ x)� f(x) � p0(y _ x)� p0(x)

and
f(y ^ x)� f(x) � p00(y ^ x)� p00(x):

Now, y _ x � x and p � p0 imply p0(y _ x) � p0(x) � p(y _ x) � p(x) , and y ^ x � x and
p � p00 imply p00(y ^ x)� p00(x) � p(y ^ x)� p(x) . Thus, we have

f(y _ x)� f(x) + f(y ^ x)� f(x) � p(y _ x)� p(x) + p(y ^ x)� p(x): (4)
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Since p is a modular function p(y_x)+p(y^x) = p(y)+p(x) holds, thus (4) can be rewritten
as follows

f(y _ x) + f(y ^ x)� 2f(x) � p(y)� p(x): (5)

From (5) and from supermodularity of f , i.e. f(y) + f(x) � f(y _ x) + f(y ^ x) , we obtain

f(y)� f(x) = f(y) + f(x)� 2f(x) � f(y _ x) + f(y ^ x)� 2f(x) � p(y)� p(x):

Therefore, (3) is veri�ed. This completes the proof of the lemma and hence of point c) . �

In contrast to PM -concave functions, supermodular functions have already a respectable
tradition in economics. They appear in the context of convex cooperative games (a concept
due to Shapley (1971)) as well as in a number of inventory problems (see Topkis (1978)).

We give here a few examples of sub/supermodular functions and suggest how they can be
constructed. The task is slightly simpler than in the case of PM -concave functions, for the set
of supermodular functions forms a convex cone. It is not di�cult to devise supermodular func-
tions depending on two or three variables; summing such functions yields new supermodular
functions.

We can examine another application of this summation principle. Let � be a non-negative
function on 2
 . De�ne the function u on 2
 , where, for A � 
 ,

u(A) =
X
B�A

�(B):

u is a supermodular function.

Finally, it is simple to construct anonymous supermodular functions. Let � be a mono-
tone convex function of a single variable. Then the function U on 2
 , U(A) = �(jAj) , is
supermodular. More: we can substitute the number of elements j � j by an arbitrary positive
measure on 
 (see Shapley (1971)).

The functions just de�ned above are particular instances of the following observation: the
composition �ÆU of a monotone supermodular function U with a monotone convex function
� is supermodular (Topkis (1978), see also Lovász (1983)).

7. Markets with both substitutes and complements

We consider now the following mixed case in which part of the goods on sale are substitutes,
whereas the remainder are complements. To this end, we assume that the sellers are divided
into two groups Ss and Sc . The goods supplied by sellers of the �rst group are mutual
substitutes, whereas those supplied by the sellers of the second group are mutual complements.
We impose the following three conditions on both utility and cost functions:

Assumption (The Compatibility Principle)
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(Ss) the function �c(s; �) is PM-concave for any s 2 Ss ;

(Sc) the function �c(s; �) is supermodular for any s 2 Sc ;

(B) the utility function u(�; b) of any buyer b is a sum of a PM-concave function us(�; b)
of variables from the set Ss and a supermodular function uc(�; b) of variables from the

set Sc .

Theorem 6 A two-sided market satisfying the Compatibility Principle has equilibria.

Proof The rationale of the proof is again the same as in the preceding cases. The aggregate
utility function U is the sum of two functions Us and Uc , where the �rst is a PM -concave
function of the variables in the set Ss�B , while the second is a supermodular function of the
variables in the set Sc�B . The cells of U are Cartesian products of two types of polytopes :
integer polymatroids in the space R

Ss�B and simplexes of the standard triangulation of the
unit cube in the space RSc�B .

The aggregate cost function C is similarly the sum of a PM -convex function of the vari-
ables in the set Ss � B and of a submodular function of the variables in the set Sc � B .
There, as well, the cells of �C are Cartesian products of two types of polytopes : integer
polymatroids in the space RSs�B and simplexes of the standard triangulation of the unit cube
in the space RSc�B .

The intersection of two such cells is an integer polytope. Therefore, the Proposition 3
obtains for the functions U and C , whence existence of equilibria. �

One readily sees that the set M of equilibrium matchings is the cartesian product of an
in-between-convex subset of 2Ss�B and of a sublattice in 2Sc�B . The set P of equilibrium
prices is the cartesian product of a sublattice of RSs�B and of an in-between-convex subset
of RSc�B .

The same results hold true in the more general context, in which the set 
 of all goods
is partionned into two groups - a group of substitutes and a group of complements. In this
case, we also need to make use of a modi�ed Compatibility Principle, which imposes that
if two goods are substitutes with respect to consumption purposes, then they should be so
with respect to production purposes, and identically for complements. Nevertheless, we have
no satisfactory explanation about why the set of goods could turn out to be partionned in
such a way. Last, this principle of compatibility justi�es the recourse to a gross substitution
argument in Kelso and Crawford's one-to-many job matching model. Indeed. Since workers
are allowed to work for a single �rm only, their cost functions are of the GS -type (see Example
4). The principle of compatibility requires that utility functions of �rms (actually their gross
product functions) be of the GS -type as well. Similarly, when buyers need at most one item,
then their utility functions are of the GS -type (see Example 5). In contrast, observe that
the Compatibility Principle is in fact (and not surprisingly so) violated in Examples 1 and 3,
where we fail to exhibit a competitive equilibrium.
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