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Abstract. Ascending auctions with package bidding and their economic uses 
are explained and the main results of recent FCC-sponsored experiments with 
such auctions are summarized. A benchmark model is formulated that 
accounts for the experimental results. In the benchmark, if each bidder bids 
“straightforwardly” at each round for its potentially most profitable package, 
then the total payoff is approximately maximized by the final allocation—all 
payoff approximations here have error bounds proportional to the bid 
increment. With just two bidders, straightforward bidding strategies constitute 
an approximate equilibrium, but there can also be other equilibria. A bidder 
whose competitors all bid straightforwardly has a best reply that entails 
bidding straightforwardly but with maximal delays, suggesting a concern for 
the auctions time-to-completion. A new class of simple “bid improvement 
rules” is introduced that prevents such delays and accelerates the auction 
without unnecessarily degrading auction performance relative to the 
unmodified benchmark. The results are used to formulate recommendations 
for the FCC auction design.   

1. Introduction 
Large asset sales frequently involve several potentially complementary assets, which 

might be sold individually or as a package. Since the packaging decision can affect both 
the seller’s receipts and the efficiency of the outcome and since the best decision by a 
revenue or efficiency criterion1 generally depends on the bidders’ own preferences, it is 
common for a seller to consult with potential bidders before making its decision.   

Sometimes, auction designs allow bidders a choice of packages on which to bid. For 
example, Cassady (1967) describes a sale of five buildings of a bankrupt real estate firm 
in which three buildings were defined to constitute a “complex.” An ascending auction 
was used with bids taken for the individual buildings as well as for the complex.2  

                                                             
* Stanford University and Harvard University, paul@milgrom.net. I thank Evan Kwerel for the probing 
questions that inspired this research, John Asker for his helpful research assistance in evaluating the 
Cybernomics experiment, Eva Meyersson-Milgrom for surgical jargon-removal, and Lixin Ye for his 
comments on a previous draft.   
1 The revenue and efficiency criteria can lead to quite different choices Palfrey (1983). Milgrom (2000a) 
reports examples in which the sum of total value and auction revenue is constant across packaging 
decisions, so that there is a dollar for dollar trade-off between creating value and raising revenue.   
2 Sometimes, bidders for large packages are required to bid on certain smaller packages as well. An 
example is an auction I designed for selling the power portfolio of the Portland General Electric Company 
(PGE), which was adopted by the company and the Oregon Public Utility Commission. The auction design 
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In the last few years, there has been growing interest in allowing bidders nearly 
complete freedom to name the packages they bid on during the auction and to change 
their choices as the auction unfolds. Unlike the real estate example described above, 
bidders would even be allowed to bid on non-nested, overlapping packages, as for 
example when one bidder bids on a pair of items AB and that same bidder or another bids 
on a pair of items BC. The FCC spectrum auction currently planned for the 700 MHz 
band is such a design. Other examples include proposed auctions for industrial 
procurement on the Internet in which individual sellers may offer all or part of a bill of 
materials and services sought by buyers (Milgrom, 2000b).   

The present study is an exploration of the theory of ascending auctions in which 
bidders are permitted to bid on any packages they wish and to change those packages 
during the course of the auction. Section 2 describes the background for the theory, 
including the developments that have led to the increasing interest in the subject. It 
includes subsections discussing technology, spectrum regulation, generalized Vickrey 
auctions and their advantages and disadvantages for practical use, the theory of the 
simultaneous ascending auction (SAA), and experimental evidence regarding the 
effective limits of the SAA design.  

The analysis begins in Section 3 with the formulation of a benchmark package 
auction design. The analysis in this section employs the assumption that bidders behave 
myopically according to what I call “straightforward” bidding. The environment is 
modeled with the same generality as the generalized Vickrey model and in particular 
covers both substitutes and complements. A theorem establishes the efficiency of the 
outcome when bidding is straightforward and bid increments are sufficiently small. The 
analysis shows that this favorable possibility depends critically on the mutual exclusivity 
of bids made by the same bidder in different rounds and on the possibility of that each 
bidder’s minimum bid on any package depends on that bidder’s own past bids.     

Section 4 investigates bidder incentives to engage in straightforward bidding in the 
benchmark auction design. A theorem shows that with just two bidders, straightforward 
bidding strategies constitute an approximate equilibrium of the benchmark auction game. 
(In this approximation and the ones that follow, the “error” is proportional to the bid 
increments, which are specified by the auctioneer.) Another theorem shows that for a 
bidder interested only in acquiring the whole package of items, straightforward bidding is 
an approximate best reply strategy when others bid straightforwardly. A third theorem 
shows that regardless of the preceding conditions, one strategy that is always an 
approximate best reply to straightforward bidding is “slow straightforward bidding,” 
which is the strategy of passing until bidding by others ceases and then bidding 
straightforwardly until the auction ends.  

If we confine attention to strategies that are eventually straightforward, these findings 
generally coincide with two important results found in laboratory experiments. Compared 
to the SAA, the ascending auction with package bidding (1) leads to more nearly efficient 
equilibrium outcomes and (2) takes many more rounds to reach completion.  

                                                                                                                                                                                     
requires that bidders for the whole package of plants and contracts must also name “decrements” for 
individual power supply contracts on which there are competing individual bids. 
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The need for rules to accelerate ascending auctions is a standard topic in discussions 
of the FCC auctions. The usual approach is to set minimum bids for each package with 
respect to which activity is measured and to apply an “activity rule.”3 The only similar 
rule in the benchmark auction restricts bidders to new bids that exceed their own previous 
high bids on each package.  

Section 5 explores an alternative way to accelerate the auction, based on enhancing 
the bid improvement requirement of the benchmark auction. Traditional minimum bid 
requirements implicitly ascribe a “value” to each package. When such value information 
is available, it can be used instead to assess how each bidder’s bids stand relative to value 
and to specify that bids by some buyer at a new round are acceptable only if the set of 
bids contains one that is better, by that standard, than the best previous bid by that bidder. 
The proposed rule still accelerates the auction, but it entails fewer distortions than a 
minimum bid rule and supports the value-maximizing allocation in a wider range of 
circumstances.  

Section 6 considers more implications of the analysis for the FCC auction design and 
Section 7 concludes by summarizing the reasons to expect more problems with disruptive 
strategic behavior in the FCC auction than in the initial laboratory experiments.  

2. Background 
A variety of developments have contributed to the present drive to develop and 

implement package auctions. These can be grouped into three general categories: rapid 
advances in technology, favorable developments in regulated spectrum markets and 
unregulated Internet exchange markets, and research that highlights the potential benefits 
of package auctions.  

Changing Technology and Markets  
The most important group factors contributing to the new package bidding designs is 

associated with the rapid advance of technology, which enables certain new auction 
designs. To understand the technical challenge, suppose that bidders submit bids for 
overlapping packages. Given these bids, the first step of finding the sets of “consistent” 
bids in which each individual item is included in just one package (“sold just once”) is a 
hard computational problem. Then, the total bid associated with each such package must 
be computed and the revenue-maximizing set of “consistent” bids must be found. All this 
must be done quickly, while bidders sit in front of their individual computer terminals.  

To get an idea of the size of the problem, consider the proposed auction for licenses 
in the 700 Mhz spectrum in the US, which is presently scheduled to be run in the spring 
of 2001. The twelve licenses on offer allow for 4095 distinct combinations involving 
between one and twelve licenses. A decade ago, this number of combinations might have 
overwhelmed users and posed serious computational problems. Now, however, there are 
processors, interfaces, algorithms, and communications systems that make it practical for 

                                                             
3 This is a rule that makes a bidders eligibility for bidding in round t of an auction depend on its level of 
activity, including its standing high bids, in round t-1. See Milgrom (1996) for additional description and 
discussion.  
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users to identify and bid for many combinations, for auctioneers to compute optimal bid 
combinations, and for all to verify and track the progress of the auction, even from 
remote locations.  

Even as technology was advancing, markets were changing in ways that facilitate the 
adoption of sophisticated auction designs. The adoption of US legislation authorizing 
spectrum auctions in 1993 and the bold decision by the Federal Communications 
Commission (FCC) the following year to adopt the computerized simultaneous ascending 
auction (SAA) gave an important boost to advocates of more sophisticated auction 
designs. The perceived successes of spectrum auctions have led some to propose even 
more ambitious designs.  

In Australia, spectrum regulators eager to “let the market decide” all details of the 
allocation initiated a serious discussion about the sale of “postage stamp” sized licenses. 
These would entail very small geographic areas and narrow slivers of bandwidth to be 
licensed and ultimately recombined as desired by spectrum buyers. Those proposals were 
shelved because of concerns that the complementarity among the licenses might make the 
auction and subsequent resale markets perform poorly.  

Shortly afterward, another area of hi-tech applications began to develop as Internet-
based businesses raced to develop electronic markets that could serve the needs of 
business customers. Often, industrial buyers seek to purchase not just single components 
but all the materials and services for a large project, such as a construction project. 
Multiple suppliers may each supply part of the buyer’s needs on terms that may involve 
quantity discounts, which make the buyer’s procurement optimization problem a non-
convex one. If such procurements are to be managed by competitive bidding, then some 
form of package auction will be needed.  

These developments and others have inspired new research by economists, operations 
researchers and computer scientists into the theory and practice of package bidding.  

Vickrey Auctions: Advantages and Disadvantages 
The theory of package bidding, like so much of auction theory, began with the 

seminal paper by William Vickrey (1961). Vickrey devised an auction mechanism for the 
purchase or sale of homogeneous goods. Focusing on the case of a sale, Vickrey’s 
mechanism can be described as follows. Each bidder is asked to report to the auctioneer 
its entire demand or supply schedule for all possible quantities. The auctioneer uses that 
information to select the allocation that maximizes the total value. It then charges each 
buyer a price equal to the lowest bid the buyer could have made to win its part of the final 
allocation, given the other bids. Vickrey showed that it is in each bidder’s interest to 
report or “bid” its actual demand schedule truthfully, regardless of the bids made by 
others. Subsequent work by Clarke (1971) and Groves (1973) demonstrated that a 
generalization of the Vickrey mechanism leads to the same “dominant strategy property” 
in a much wider range of applications. In particular, Vickrey’s conclusion holds when the 
goods are not homogeneous, provided the bids on “all possible quantities” are replaced 
by bids on “all possible packages.” This extension has come to be known as the 
“generalized Vickrey auction.”  
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These discoveries had profound ramifications. For some operations researchers, they 
seemed to reduce the economic problem of auction design to a computational problem. If 
only one could describe and compute values and allocations quickly, it seemed, then the 
generalized Vickrey auction would become a practical solution to a wide range of 
resource allocation problems.  

For economists, Vickrey’s research innovated techniques of analysis and raised 
expectations about the possibilities for designing effective auctions, but also aroused 
certain doubts. How well would the generalized Vickrey auction perform if the 
simplifying assumptions Vickrey used were altered?4 As it has turned out, a closer look 
shows that the generalized Vickrey auction has characteristics that limit its usefulness for 
many applications. Since the objections to the Vickrey design constitute an important part 
of the motivation for devising ascending auctions with package bidding, let us review the 
most important ones.5   

One potential drawback of the Vickrey auction is the sheer number of combinations 
that a bidder may have to evaluate to bid in the auction. For some applications, the 
special structure of the problem restores computational tractability. For others, 
computational issues are becoming less important as technology advances.  

In many cases, however, the valuation of large assets is a people-intensive process, 
the cost of which is not much reduced by advances in technology.6 Potential buyers who 
find it too expensive to investigate every packaging alternative will instead choose a few 
packages to evaluate fully. In these cases, good auction design requires accounting for 
such costs and choices.  

When package evaluation is costly, the choice of packages to evaluate is itself an 
equilibrium problem, because the profitability of a bidder’s choices is affected by the 
other bidders’ choices. For example, suppose the items offered in an auction are 
{ABCD}. It does little good for a bidder to bid for package AB unless someone else is 
bidding either on CD or on C and D separately. In a Vickrey auction, since all valuation 
decisions must be made in advance, bidders must guess about which packages are most 

                                                             
4 Vickrey’s own work expresses doubt about the usefulness of his invention, based on the idea that it would 
be too costly, but that doubt appears to be misplaced. Williams (1999) finds that all Bayesian mechanisms 
that yield efficient equilibrium outcomes lead to the same expected equilibrium payments as the 
generalized Vickrey auctions. This establishes that any tradeoff between payments and efficiency is 
inherent in the problem and not a special consequence of Vickrey’s design.  
5 The following discussion of disadvantages of the Vickrey auction draws heavily from a report to the FCC 
by Charles River Associates and Market Design Inc (1997). The reports to the FCC and related papers were 
presented at a conference sponsored by the FCC, the National Science Foundation, and the Stanford 
Institute for Economic Policy Research. See http://www.fcc.gov/wtb/auctions/combin/papers.html.   
6 Valuing significant business assets involves both investigating the asset itself and creating business plans 
showing how the assets will be used. For example, a bidder hoping to purchase parts of an electrical 
generating portfolio might investigate the physical condition of each plant, the availability of land and 
water for cooling to allow plant expansion, actual and potential transmission capacity, and other physical 
variables. In addition, it will consider labor and contractual constraints, zoning and other regulatory 
constraints, the condition of markets in which power might be sold, partnerships that might enhance the 
asset value, and so on. The final valuation is the result of an optimization over business plans using all this 
information, and tempered by human judgment. While some of these evaluation activities are shared costs 
among packages, others are quite idiosyncratic.  
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relevant and how to allocate their limited evaluation resources. In comparison, a multi-
round ascending auction economizes on the need to guess because at least some bidders 
will be able to adapt their plans based on observations made during the auction.  

Vickrey auctions can promote inefficiency by providing perverse incentives for 
mergers and joint bidding. A simple calculation shows that mergers among bidders in 
Vickrey auctions results in lower prices for the merged firm or joint bidders without 
affecting the prices paid by others. This contrasts sharply with incentives in markets 
where the same price is paid for each unit. In such markets, it is usually the non-
participants who benefit most from any non-efficiency-enhancing merger, which can 
make such mergers hard to arrange. That difference means that Vickrey rules promote 
inefficient mergers relative to alternative market rules. Even if mergers and joint bidding 
can somehow be prohibited, the Vickrey design is still vulnerable to other kinds of 
agreements bidders may make outside the auction, in which bidders agree to adopt Nash 
equilibrium strategies that reduce both the seller’s revenue and the efficiency of the 
outcome.7  

A related characteristic drawback of the Vickrey auction that is often considered a 
drawback is its use of price discrimination: two bidders may pay different prices for 
identical allocations, even when both have made the same bids for those allocations.8 
Such discriminatory prices are sometimes illegal and often regarded as “unfair.”  

The theoretical performance of the Vickrey auction is quite sensitive to some of the 
assumptions of the Vickrey model. Other auction mechanisms have better theoretical 
performance in a variety of circumstances, such as when there are effective limits on 
bidder budgets,9 “common value” uncertainty (Milgrom (1981), Klemperer (1998), or 
endogenous entry decisions (Bulow, Huang and Klemperer (1999)).  

                                                             
7 Indeed, suppose that A’s values are (5,5,5), B’s are (5,5,5) and C’s are (0,0,20). In a Vickrey auction, if 
the bidders play their weakly dominant strategies, C will win the package XY and pay a price of 5+5=10, 
while A and B win nothing and pay nothing. If, however, A and B discuss the matter beforehand without 
C’s knowledge, they could agree to play the (weakly dominated) Nash equilibrium in which A and B each 
bid 100. With those strategies, each wins one item at a price of zero! (I am indebted to Jeremy Bulow for 
suggesting this particularly striking example.)  
8 To illustrate the price discrimination problem, suppose there are three bidders—A, B and C—and two 
items—X and Y. A valuation for a bidder is a triple (x,y,z), specifying how much the bidder would be 
willing to pay for item X alone, item Y alone, and the package XY. If the parties report valuations of 
(12,12,12), (11,11,11), and (0,0,20). The result is that A and B will each be awarded an item (at an efficient 
allocation, either bidder may get either item) at prices of 9 and 8 respectively, even though the items are 
perfect substitutes.  

When the items are not identical, the price discrimination is not so obvious, but the auction outcome is 
not generally “envy free.” Bidders may then prefer the price and allocation assigned to others and may 
complain on that basis.  
9 Che and Gale (1998) compare first-price and second-price auctions in the face of budget constraints, but 
the comparison here is somewhat different in this case. To illustrate, suppose there are two identical items. 
A bidder X has value of 5 for one item and 10 for the pair, but has a budget of just 6, which limits its bids. 
If X has a single competitor with values of 3 for one item and 7 for a pair and bids accordingly, then X 
must bid at least 4 to acquire a single item, as required for efficiency. If, however, X’s competitor has a 
value of 3 for one item or 5 for the pair, then the same bid would cause X to lose one item. It should instead 
bid no more than 2 for one item and 6 for the pair in order to acquire both. Notice that in each case the 
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Finally, the revelation of bidders’ maximum willingness to pay during the auction can 
be problematic (Rothkopf, Teisberg and Kahn (1990)), at least for non-computerized 
auctions in which secure encryption technologies are not available. Winning bidders may 
fear that information revealed by their bids will be used by auctioneers to cheat them or 
by third parties to disadvantage them in some negotiation. Similarly, the public has 
sometimes been outraged when bidders for government assets are permitted to pay 
significantly less than their announced maximum prices in a Vickrey auction (McMillan 
(1994)). A bidder’s motive to conceal its information can destroy the dominant strategy 
property that accounts for much of the appeal of the Vickrey auction.10  

Simultaneous Ascending Auctions 
These drawbacks of the Vickrey auction have created interest in exploring multiple 

round designs in which bidders must pay the amounts of their own winning bids. The 
multiple rounds feature provides feedback to bidders about relevant packages, 
economizes on bidder evaluation efforts, conceals the winning bidder’s maximum 
willingness to pay, and may lead to better performance when common value issues are 
significant. The “pay-your-bid” feature has several possible beneficial effects: it may 
forestall accusations of price discrimination, alleviate problems associated with budget 
constraints, and discourage the type of “collusive” strategies possible in a Vickrey 
auction, in which a bidder increases its own bid solely to reduce a collaborator’s price.  

The simultaneous ascending auction (SAA), which has been employed by the FCC in 
the US for most of its radio spectrum auctions, has the multiple round and pay-your-bid 
characteristics. At the end of each round, there is a standing high bid and bidder on each 
item offered for sale. Initially, the standing high bid for each item is zero11 and the 
standing high bidder is the seller. At each round, bidders may raise the bid by an integer 
number of increments on any items that they wish and the process repeats itself until 
there is a round with no new bids on any item. At that point, bidding on all items is 
closed and the standing high bids determine the prices.  

Although early experimental testing of the SAA demonstrated that it performed well 
in some environments possibly resembling the FCC environment (Plott (1997)), it has a 
variety of theoretical limitations. Perhaps the most important of these is its degraded 
performance in experiments when the items for sale are mutually complementary 
(Ledyard, Porter and Rangel (1997)), a condition that may have applied to the radio 
spectrum auctions (Ausubel, Cramton, McAfee and McMillan (1997)). To explain the 
role of complements in theoretical terms, we compare two different situations.  

                                                                                                                                                                                     
Vickrey price is less than X’s budget, but sincere bidding is nevertheless not optimal for X and indeed X 
has no dominant strategy.  
10 Notice that a similar case can be made against ordinary sealed tenders, since the theoretical bid functions 
are invertible to reveal bidders’ values. In this respect, ascending auctions are theoretically superior to both 
kinds of sealed bid auctions because they better conceal the winning bidder’s valuation.  
11 A reserve price may also be used. 
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In the first situation, the items for sale are mutual substitutes12 for all the bidders. In 
addition, the bid increment is “small” and the initial prices are low enough to attract at 
least one bid during the auction for every item. In such cases, suppose bidders bid 
“straightforwardly” at each round for the items in a package they most prefer at the 
current prices. Then, the final allocation is efficient and the final prices are competitive 
equilibrium prices for an economy with “almost” the same values as the actual economy, 
differing by at most the relevant bid increment (Milgrom, 2000a).13  

The preceding result demonstrates several things. First, despite the non-convexity 
associated with the indivisibility of the items, market-clearing prices do exist when goods 
are substitutes for all bidders. Second, when goods are substitutes, the information 
communicated during the course of the SAA is rich enough to allow the auction 
algorithm to discover equilibrium prices and allocations. Third, the auction algorithm has 
a certain robustness property that allows it to recover from early anomalous bidding 
behavior. Starting from any prices that are sufficiently low, such as the ones that arise 
early in a long auction when bidders may still be exploring how to bid, the sequence of 
prices and allocations under straightforward bidding from that point onward still 
converges to equilibrium prices and an efficient allocation.  

In the second situation, some items are sometimes complements.14 In that case, the 
conclusions change drastically. Indeed, let S denote the set of valuations in which the 
bidders regard the items as substitutes. If T is any strict superset of S and provided that 
there are at least two bidders, there exists a profile of valuations drawn from T such that 
no competitive equilibrium exists.15   

Intuition for this result is provided by Table 1, which tabulates bidder values. In the 
table, bidder 1’s values are an arbitrary set of values in which the two licenses are 
complements. Bidder 2’s values are then constructed so that (1) the items are substitutes 
for bidder 2, (2) the unique efficient outcome is for bidder 1 to win both licenses, (3) the 
total of the prices necessary so that bidder 2 will not want any item exceeds bidder 1’s 
valuation. Together, properties (2) and (3) ensure than no competitive equilibrium exists.   

                                                             
12 The common terms, “net substitutes” and “gross substitutes,” emphasize the distinction between 
compensated and uncompensated demand. Since models of corporate bidders in the FCC auctions 
invariably abstract from wealth effects, compensation is irrelevant for them. The important point here is 
“mutuality”—each good is a substitute for each other good. This mutual substitutes property may be 
defined by supermodularity of the expenditure function, as in Milgrom and Roberts (1991). For an 
alternative formulation that treats preferences as primitives, see Gul and Stacchetti (1999).  
13 To facilitate comparison between this result and the analogous result established below for the package 
auction, it is useful to record the hypothetical bidder values more precisely. For that purpose, let the bid 
increment for item m in the SAA be Im. Let l be a bidder and let Al denote the set of items l acquires in the 
auction. Then, in the hypothetical economy, for any package T, l’s value is ˆ ( ) ( )

l
l l mm A

v T v T I
∉

= − ∑ .  

14 The idea that price formation processes behave drastically differently in the cases of substitutes and 
complements has a long history in economics. Arrow, Bloch and Hurwicz (1959) first established the 
stability of tatonnement in the case of gross substitutes. Milgrom and Roberts (1991) showed that the same 
sort of stability holds over a vast set of discrete and continuous time, synchronous and asynchronous, 
backward- and forward-looking price-setting processes. Scarf (1960) provided examples of global 
instability in the case when the goods are complements, sharply contrasting with the case for substitutes.  
15 This result was first obtained in an early draft of Milgrom (2000a). Shortly afterwards, a draft of Gul and 
Stacchetti (1999) announced a similar result using a different but equivalent definition of substitutes.  
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A bidder in the SAA who perceives complementarities among items in the auction 
that are not perceived by others faces a difficult bidding decision. For example, suppose 
that the bidder’s values of A and B add up to less than its value of the package AB. If the 
bidder decides that it will bid for both A and B until the prices add up to the value of 
package AB, it exposes itself to the risk that it will eventually win just one of the items at 
a price that exceeds its stand-alone value. The result would be a loss for the bidder and 
possibly an inefficient allocation as well. Yet, if the bidder stops bidding any sooner, it 
could be passing up a profitable and efficient outcome. This “exposure problem” is 
inherent to the SAA and makes achieving efficient outcomes problematic. The 1994 
decision by the FCC to adopt a rule permitting bid withdrawals subject to a penalty aimed 
to mitigate this problem, but does not solve it completely.  

Experimental Evaluation of Ascending Auction Designs  
Besides the theory of package bidding, contributions by economic experimenters 

played a crucial role. Particularly influential was a study sponsored by the FCC and 
conducted by Cybernomics (2000) comparing the experimental performance of the SAA 
to that of a particular combinatorial auction called the simultaneous ascending auction 
with package bidding (SAAPB). The major findings of that study are summarized in 
Table 2 below.  

The study was conducted under four experimental conditions. In the first, a bidder’s 
value for any package was equal to the sum of its values for the individual items in the 
package. This condition involves no complementarities. The remaining three conditions 
involved increasing amounts of complementarity, labeled low, medium and high. Bidder 
values were drawn at random for each experimental condition and were used twice, once 
for a group of subjects participating in the non-package auction—the SAA—and once for 
a group participating in the package auction—the SAAPB. Efficiency in the study was 
measured by the ratio of the total value of the allocation resulting from the auction to the 
maximum of that total over all possible allocations.  

The experimental results show several prominent features. First, the measured 
efficiency of the SAA falls off markedly as complementarities increase, but the efficiency 
of the package auction is largely unaffected by complementarity.16 Second, the SAAPB 
took roughly three times as many rounds to reach completion, compared to the SAA. In 
addition, revenues are higher in all conditions for the SAA compared to the SAAPB.  

All experiments require making implementation choices that may affect the 
experimental outcome. For that reason, experimental results are most convincing when 
similar results are obtained under a variety of relevant conditions. For example, the 
Cybernomics experiment involved complementarities only over non-overlapping sets of 
items, contrary to what some have expected to be the case in the 700 Mhz auction. This 
absence of overlaps greatly simplifies the problem of identifying efficient allocations.  

Most importantly for our purposes, that are aspects of the Cybernomics experiment 
that make them likely to under-represent the strategic interactions among bidders that 

                                                             
16 It is interesting that the ascending package auction appears to generate higher efficiency than the SAA 
even when there are no complementarities.  
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might be expected in the FCC auctions. First, the experimental subjects’ lack of 
information about other bidders’ values is not typical of FCC spectrum auctions and may 
make it much harder for them to exploit the strategic opportunities that the auction 
affords. Compounding this is the fact that rounds were relatively short, affording subjects 
little opportunity to evaluate others’ bids and assess the strategic opportunities. Third, the 
relatively long training sessions that subjects required seemed to highlight their difficulty 
in understanding the rules, further limiting their ability to exploit gaps in the rules. Long 
as these sessions were, they fall far short of the preparation undertaken by bidders in the 
FCC auctions, where the stakes are also very much higher. Finally, unlike bidders in the 
FCC auction, subjects in the experiments had no access to expert assistance or to analyses 
that could pinpoint opportunities for strategic bidding.  

Despite these limitations, the long history of successes of various “combinatorial 
auctions” in laboratory settings, beginning with the experiments by Rassenti, Smith and 
Bulfin (1982), makes it important to take the Cybernomics results seriously. In the next 
two sections, we provide a theoretical analysis that seeks to account for the results of the 
Cybernomics experiments and to explore the strategic opportunities that such auctions 
create.  

3. “Straightforward Bidding” in a Package Auction 
Let there be finite sets of items to be sold M={1,…,|M |} and of parties L={0,1,…,|L|}, 

with l=0 designating the “seller” and l=1,…,|L| designating “bidders.” Each individual l 

has a valuation vector 
| |2 1( : , ) −

+= ⊂ ≠ ∅ ∈¡ M

l lAv v A M A  the components of which specify 
the net expected profit it could earn from a business plan using each possible subset of 
M—these subsets are also called “packages.” We also limit and simplify our analysis by 
the following assumptions:   

(i) Private values: each bidder l knows its own value vector vl,  

(ii) No externalities: A bidder’s payoff does not depend on what its competitors 
acquire. 
a. A bidder l that acquires package A and pays price lAb  earns a net payoff of 

−lA lAv b .  
b. A bidder l that acquires nothing and pays nothing earns a net payoff of 

zero.  

(iii) Non-negative marginal values: { } 0−− ≥lA lA mv v  for all l, A, and ∈m A   

(iv) Zero seller values: 0 0≡Av  

In theory, given this framework, the most general relevant kind of package bidding is 
the kind allowed in the generalized Vickrey auction, in which bidders are free to make 
mutually exclusive bids on as many packages of items as they may wish. Such a rule 
imposes no restrictions on what value a bidder may bid for any package and no 
restrictions on what packages the bidder may name.  

Various other rules governing package bidding have been proposed, in which “bids” 
from a single bidder are not required to be mutually exclusive. Allowing such bids in the 
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analysis below would have no consequences, for allowing such bids merely enriches the 
language in which the complete bid vector can be expressed.17  

Within this framework, auctions that permit only bids that are not mutually exclusive 
can be regarded as imposing restrictions on the bidder’s freedom. For example, the SAA 
can be regarded as a package auction in which a bidder who bids on any package is 
required also to bid on every subset of that package using a bid function b that satisfies 
the additivity condition: ( ) ( ) ( )b A B b A b B∪ = +  for every two disjoint packages A and B. 
Adopting this perspective, the bids on individual items are just a convenient way of 
parameterizing bids on all the packages of which the individual items are elements.  

Many more details, including ones that are normally left unspecified in game 
theoretic analyses,18 are needed to complete the rules of the benchmark model. Here are 
the ones that play a role in the analysis of straightforward bidding.  

First, all bids are firm offers. A bidder can never reduce or withdraw a bid it has made 
on any package. Any new bids a bidder makes on package A must exceed zero and must 
also be equal to the bidder’s best old bid on A plus some positive integer number of 
package-specific (and possibly history-dependent) bid increments.  

Second, after each round in the benchmark model, the auctioneer identifies a set of 
“provisional winners,” which is the consistent set of bids (that is, bids on non-
overlapping packages) that entails the highest total price. This calculation enforces the 
mutual exclusivity of bids, that is, each bidder may have only one provisional winner. 
The full history of winning and losing bids are made public after each round.  

Third, the auction continues round by round until there are two consecutive rounds 
with no new bids. The auction then ends and the provisionally winning bids at that time 
become the winning bids in the auction.  

In contrast to the SAA, no “activity rules” are included in the benchmark auction 
analysis. In the SAA, these rules imposed minimum bidding activity levels in each round 
of the auction. Bidders who fail to meet these bidding levels lose some or all of their 
eligibility to continue placing new bids in the auction. Excluding such rules from the 
benchmark auction prepares us to analyze their significance later in the paper.  

Several other differences between the benchmark auction and the SAA merit special 
emphasis. First, the minimum bids can differ among bidders on any item or package. 
Many proposals for package auctions lack this feature, which plays an important role in 
our analysis. Second, a bid that was a losing bid at round t can become a provisional 
winner at later round, such as round t+1. This is illustrated in Table 3 by the bid of 5 by 
bidder Y, which becomes a provisional winner in round R+1 even though it was not one 
in round R. Third, the price of an item or package can decrease from round to round. This 

                                                             
17 Nissan (1999) investigates the expressive power of various “languages” for package bidding, supposing 
that the objective of a bidding language is to express the richest possible set of plausible preferences as 
succinctly as possible.  
18 The details omitted in conventional game theoretic analyses include how long each bidder has to submit 
its bid, the design of the user interface, how much discretion the auctioneer has to make exceptions, and 
many more.    



“Ascending Auctions with Package Bidding,” Paul Milgrom 12 

December 15, 2000 

is illustrated in the table by the fall in the price of Item A from 5 in round R+1 to 4 in 
round R+2. In the SAA, prices for individual items can never fall.  

These are complicating features that make the auction less transparent for onlookers 
and that create certain new strategic bidding issues. Nevertheless, without these features, 
straightforward bidding would not generally lead to such nearly efficient outcomes, as 
described in the next sub-section.  

Package Auctions with Straightforward Bidding 
Let Ht denote the list, or “history” of bids made by all bidders up to and including 

round t. Let ( , )=t
lA l tB B H A  denote the highest bid made by bidder l for package A up to 

time t and let 0 0≡lAB . We assume that the seller sets reserves of zero.19 If a bidder fails to 
make a new bid on a package A in any round, we represent that formally by a repetition 
of the bidder’s previous highest bid on A. Thus, a bidding strategy bl for any bidder l is a 
map from histories to new bids that satisfies the minimum bid restriction that, for every 

package A, 1−> ⇒t t
lA lAb B  1 1min( , )− −≥ +t t t

lA A lA Ab r B I , where 1
1( , )−

−≡t
lA l tI I H A  is the bid 

increment applicable to bidder l for package A at round t. With the convention that 

failures to bid on a package are represented by repetitions of the old bid, we have ≡t t
l lB b  

for all t>0.  

The doubly indexed vector ( ; 1,..., , , )= = ⊂ ≠ ∅lAx x l L A M A  designates a “package 
assignment” or “allocation.” The allocation is “feasible” if: 

 

{ : }
1 for all 

1             for all 

{0,1}                  for all ,

∈ ∈

⊂

≤ ∈

≤ ∈

∈ ∈ ⊂

∑ ∑
∑

lAl L A m A

lAA M

lA

x m M

x l L

x l L A M

 (1) 

The first two sets of constraints say that each item must be allocated at most once 
(possibly to the seller) and each bidder can be allocated only one package. The last allows 
us to interpret xlA=1 as assignment of package A to bidder l and xlA=0 as non-assignment.  

The provisional winning allocation for round t, x*t maximizes the sum of the 
provisionally accepted bids. This sum can be written explicitly or, equivalently, using 
dot-product notation:   

 *

 feasible  feasible
argmax argmaxt t t t t

lA lAl L A M
x x

x B x B x
∈ ⊂

∈ =∑ ∑ i . (2)  

Let us assume that in case there are multiple optima in (2), there is some fixed tie-

breaking rule that depends only on the vector of best bids ( ); ,t t
lAB B l L A M= ∈ ∅ ≠ ⊂ .  

We now investigate the “straightforward” strategy of bidding at each round on the 
package that has the highest profit potential. Professor Charles Plott has called this 

                                                             
19 Any reserve prices { : , }= ⊂ ≠ ∅Ar r A M A  for the seller could be captured by the “seller’s bid 

function” 0 ≡tB r . For simplicity and focus, no analysis of reserve prices is made in this paper.  
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strategy “bidding the gradient” and reported that it is consistent with the behavior of at 
least some subjects in package auction experiments.  

The lowest price that l can bid for any package A at round t is l’s highest bid from the 
previous round if l was the provisional winner, or otherwise that bid plus one increment:  

 
1 * 1

1 1

            if 1

   otherwise

− −

− −

 =
= 

+

t t
lA lAt

lA t t
lA lA

B x
B

B I
 (3) 

Let − t
lA lAv B  be called l’s “potential profit” from a bid on A at round t and let t

lA  be the 
set of packages that maximizes that potential profit and on which the potential profit is 

positive. Then, the straightforward bidding strategy b̂  is the one in which l bids only on 

the packages in t
lA  and makes the minimum bid on each of those.20 As defined here, 

“making the minimum bid” formally includes the possibility of making no new bid if 
either (i) no bid entails positive profits or (ii) the bidder is already the high bidder for the 
unique items in t

lA . In mathematical notation, this may be written as follows:  

 
1

   if ˆ
  otherwise

t t
lA lt

lA t
lA

B A A
b

B −

 ∈= 


 (4) 

Let T denote the final round of the auction. Let * *= Tx x  denote the final allocation. 
Finally, designate each bidder’s profit by ( ) *T

l lA lA lAA M
v B xπ

⊂
= −∑ .  

Theorem 1. Suppose that the seller’s reserve is zero (or “non-binding”). Let S denote 
the set of bidders that adopt the straightforward strategies. Then for any feasible 
allocation x:  

 

* *

*(1 )

T
lA lA lA lAl S A M l S A M

T T
lA lA lA lA lA lAl S A M l S A M

v x B x

v I x x B x

∈ ⊂ ∉ ⊂

∈ ⊂ ∉ ⊂

+

 ≥ − − + 

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

. (5) 

In particular, if all bidders adopt straightforward strategies, 

 * *

 feasible
max (1 )T

lA lA lA lA lA lAl L A M l L A Mx
v x v I x x

∈ ⊂ ∈ ⊂
 ≥ − − ∑ ∑ ∑ ∑ . (6) 

Proof.  Pick a bidder l∈S and a package A. Since bidder l does not improve the bid on 
package A at round T, the following must hold:  

 ( )*1T T
lA lA lA lA lv B I x π− − − ≤ . (7)  

Beginning with (2), for any feasible allocation x, we may calculate as follows: 

 

* * *

* *

0 ( ) ( ) ( )

( ) ( ) Remainder

T T T
lA lA lA lA lA lAl S A M l S A M

T
lA lA lA lA lA lAl S A M l S A M

B x x B x x B x x

B x x v x x

∉ ⊂ ∈ ⊂

∉ ⊂ ∈ ⊂

≥ − = − + −

= − + − +

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

i
 

                                                             
20 This specifies that bidders improve their non-winning bids on any maximally profitable item. A similar 
analysis applies when l bids on only one item at a round.  



“Ascending Auctions with Package Bidding,” Paul Milgrom 14 

December 15, 2000 

Using (7),  

 
( )

*

*

Remainder ( )( )

( ) 1

T
lA lA lA lAl S A M

T T t
l lA lA lA lA lA lAl S A M l S A M

v B x x

v B x I x xπ
∈ ⊂

∈ ⊂ ∈ ⊂

= − −

= − + ≥ − −

∑ ∑
∑ ∑ ∑ ∑

 

Combining these expressions yields (5). Then, (6) follows instantly.  ■ 

The second part of Theorem 1 has an interpretation in terms of competitive 
equilibrium for a hypothetical economy in which the participants trade in “packages 

tailored to individuals.” Let ( ); 1,..., ,T T
lAB B l L A M= = ∅ ≠ ⊂  denote the vector of bidder 

and package-specific bids at the end of the auction when all bidders bid 
straightforwardly. Assume that each agent in the hypothetical economy has no value for 
any package that is not tailored for its use. For packages that are tailored for l, agent l’s 

values are given by *ˆ (1 )T
lA lA lA lAv v I x= − − , that is, they coincide with the actual values for 

the packages actually assigned to the bidder and are one increment less for other 
packages. We complete the hypothetical economy by introducing a firm that can produce 
any feasible allocation of the goods at a cost of zero.  

For this economy, we can verify that the given prices and allocation constitute a 
competitive equilibrium. Indeed, by (2), the auction allocation maximizes the 
hypothetical firm’s net profits at the given profits. Also, by construction of the 
preferences and the definition of straightforward bidding, the hypothetical agents prefer 
their assigned packages at the prices. Hence, the auction outcome is a competitive 
equilibrium of the artificial economy described above, and therefore efficient for it. That 
efficiency conclusion implies inequality (6).  

It is important to note that at this competitive equilibrium, the supporting prices are 
individual specific prices. This fact highlights the difficulty of constructing a package 
auction that is non-discriminatory and yet still supports efficient allocations. We return to 
this issue in section 5.  

Using the discreteness of the goods, Theorem 1 can be used to derive an exact 
optimality conclusion.  

Corollary 2. Suppose each bidder l adopts its straightforward strategy l̂b . For any 

given set of valuations {vl}, there exists 0ε >  such that if 
 feasible
max T

lA lAl L A Mx
I x ε

∈ ⊂
<∑ ∑ , 

then *

 feasible
maxlA lA lA lAl L A M l L A Mx

v x v x
∈ ⊂ ∈ ⊂

=∑ ∑ ∑ ∑ .  

Proof. Let v* denote the maximum total value. The finiteness of the set of feasible 
allocations implies that there exists a highest sub-optimal total value, which we denote by 

v̂ . Choosing * ˆv vε = − , condition (6) implies that * ˆlA lAl L A M
v x v

∈ ⊂
>∑ ∑ , which is 

possible only if the expression is equal to v*. ■ 

According to Theorem 1, if bidders did bid straightforwardly in the Cybernomics 
experiment, levels of efficiency close to 100% would be expected. There are easy 
extensions of these results to the case in which bidders bid straightforwardly but limit 
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their highest bids to achieve some target profit. If the target profits are expressed as a 
fraction p of the value that is equal across bidders, then efficient outcomes will again be 
achieved to “within an adjusted bid increment,” where the adjusted is to divide the total 
bid increment by (1-p). Other nearby variations yield similar results.  

We turn next to an investigation of the bidders’ incentives to adopt straightforward 
strategies or close relatives of straightforward strategies.  

4. Bidders’ Incentives  
One appeal of the straightforward bidding strategy is that a bidder can compute it 

with no information about how many other bidders there may be, what their values are, 
and what strategies they are likely to adopt. To the extent that straightforward strategies 
come close to maximizing expected profits, it is likely that some bidders may adopt them, 
or something similar to them. The calculation of expected profits, however, depends on 
what the bidders know or believe about each other’s values or strategy, so evaluating the 
optimality of straightforward bidding from a bidder’s point of view necessarily involves 
assumptions beyond those employed in the previous section.  

We begin our investigation by testing the set of environments in which 
straightforward bidding by a bidder l is an approximate best reply to straightforward 
bidding by other bidders. If the bidder’s uncertainty is concentrated on environments in 
this class, then straightforward bidding will be at least an approximate best reply for the 
bidder.   

Notation. Let x** denote the total value maximizing allocation and let the following 
symbols denote (1) a measure of the total bid increment, (2) l’s “Vickrey price” for 
package A, and (3) l’s Vickrey profit.  

 

*

 feasible

 feasible  feasible
1

max

max max

max

lA

T
lA lAl L A Mx

V
lA kB kB kB kBk l B M k l B Mx x

x

V
l lA lA

A

I x

P v x v x

v P

ε

π

∈ ⊂

≠ ⊂ ≠ ⊂
=

=

= −

= −

∑ ∑
∑ ∑ ∑ ∑  (8) 

Lemma 3. Suppose all bidders besides l bid straightforwardly. Then the profits earned 

by bidder l using any strategy are bounded above by *V
lπ ε+ .  

Proof. Assume that all bidders except l adopt their straightforward strategies, while l 

adopts some strategy l̂b . Suppose that the result is that l’s final bids are given by the 

vector T
lB . If l acquires package A, then by Theorem 1, maximizing the right-hand side 

of (5) over the feasible allocations x in which l acquires no package leads to:  

 *

 feasible  feasible
1

max max
lA

T
lA kB kB kB kBk l B M k l B Mx x

x

B v x v x ε
≠ ⊂ ≠ ⊂

=

+ ≥ −∑ ∑ ∑ ∑  (9) 

and hence to *T V
lA lAB P ε≥ − . Hence, * *T V V

lA lA lA lA lv B v P ε π ε− ≤ − + ≤ + . ■ 
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Theorem 4. Suppose all bidders besides l bid straightforwardly. Suppose in addition 

that * min( , )ε δ ε<  (where ε  is as defined in Corollary 2). Then, the “pseudo-
straightforward” bidding strategy—in which l bids as if it were straightforward and its 

values were equal to ( )lv A max(0, ( ) )V
l lv A δ π= + − —is a strategy that maximizes l’s 

profit to within δ.  

Proof. If l’s values were given by ( )lv A  and l bid straightforwardly, then by 
Corollary 2, the outcome would be efficient: l would be assigned its efficient package at a 
price entailing a non-negative profit. When l bids the same way with its actual values v, 

the allocation is unchanged but its profit that is higher by V
lπ δ− . ■ 

Theorem 4 can be understood as follows. Bidder l’s Vickrey price for any package A 
is defined to be the lowest value at which the efficient allocation would assign A to l. 

Hence, by theorem 1, if l bids less than the Vickrey price (minus *ε ), it will not acquire A. 
By the same Theorem, if it bids the Vickrey price plus ε* and bids only for A, it can 
acquire package A for that price. That l prefers to acquire its efficient package on such 
terms follows either from the standard analysis of the Vickrey auction or from the First 
Welfare Theorem and the competitive equilibrium interpretation of theorem 1, as 
described earlier.  

The two following corollaries of theorem 4 describe conditions under which 
straightforward bidding leads to the same path of bids during the auction as the strategy 
described in Theorem 4. Indeed, it is obvious that straightforward bidding and modified 
straightforward bidding begin in the same ways, so it is only necessary to check the 
ending conditions of the auction. In each of corollaries 5 and 6 below, verification of the 
ending condition is obvious, so the proofs are omitted.  

Corollary 5. Suppose that there are two bidders and full information and that *ε ε< . 
Then, straightforward bidding is an ε*-equilibrium of the benchmark auction game and 
the ending prices are within ε* of the Vickrey prices.  

The equilibrium described in corollary 5 cannot generally be the only equilibrium of 
the two-bidder auction. For example, suppose that there are two goods for sale and that 
the bidders’ value triples for the two goods and the package are both given by (10,10,30). 
Suppose the bid increment for each good and the package is one. If straightforward 
bidding is an equilibrium (or near-equilibrium), then another equilibrium is described as 
follows. The first bidder opens by bidding 1 for item A and the second opens by bidding 
1 for item B. Each bidder plans to stop bidding if these bids and only these bids are made; 
otherwise each plans to bid straightforwardly for the remainder of the auction. At these 
strategies, there is no point during the auction when any bidder could gain more than a 
single increment by deviating to a different strategy. Thus, this strategy profile is an ε* -
equilibrium, yet it leads to a decidedly inefficient outcome and the low price of 1 for each 
item.  

Corollary 6. Suppose that bidder l has positive value only for the package of the 
whole ( 1 0AA M v≠ ⇒ = ). If the other bidders bid straightforwardly, then bidding 

straightforwardly maximizes bidder l’s payoff to within *ε .  
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The three preceding results stand in striking contrast to the corresponding conclusions 
about the SAA. In the SAA, bidders have systematic incentives to distort their bidding.  
For example, when the items are substitutes, bidders may engage in “demand reduction” 
as discussed by Ausubel and Cramton (1998) and Weber (1996), implicitly favoring 
smaller packages over larger ones. When items are complements, bidders in the SAA 
may have an incentive for demand exaggeration.21  

In the package auction, there are no such incentives for package distortion. 22 If others 
bid straightforwardly using their actual valuation function or some artificial one, then, by 
theorem 4, a bidder’s full information near-best reply coincides with straightforward 
bidding omitting bids that yield profits less than the Vickrey profit of lπ . This strategy 
sets the same profit target for all packages and bids only for the package that holds the 
highest potential profit.  

In practice, bidders normally lack the information needed to compute their Vickrey 
profits, though they may learn something about it during the course of the auction. Put 
differently, the bidder’s concern is that the price it needs to bid to become a provisional 
winner on any given package A may decline during the auction, so a premature high bid 
can result in missed profit opportunities. From this perspective, corollaries 5 and 6 are 
explained by the impossibility in those special cases of any reduction during the auction 
of the relevant prices when competitors bid straightforwardly.   

This preceding paragraph suggests that bidders have an incentive to go slowly, in 
order to avoid making bids early in the auction that will turn out to be unnecessarily high. 
To investigate this possibility, consider the following strategy, which exploits the absence 
of activity rules in the benchmark auction game.  

Definition. The “slow straightforward” bidding strategy for l is to raise l’s bid at 
round t only if both of two conditions hold: there were no new bids at t-1 and l is not a 
provisional winner at t-1. When raising a bid at round t, apply the same formula—(4)—
that defines straightforward bidding.  

Theorem 7. Suppose all bidders except l adopt straightforward strategies and that 
*ε ε< . Then the “slow straightforward” strategy for l maximizes its profit to within *ε .  

Proof. Suppose that l adopted a slow straightforward strategy, but using valuation 
function lv  as defined in the proof of Theorem 4. Repeating our earlier arguments, the 

                                                             
21 Both kinds of incentives are illustrated by the following example. Suppose that there are two bidders and 
ten items. Bidder #1 values each item at $10. Bidder #2 values item 1 at $15 and, contingent upon 
acquiring item 1, values any two additional items at $8 each. The reserve price is $6. Assume that bidder #2 
plans to bid (“myopically”) up to $15 for item 1 and up to $8 each for a second and third item so long as 
the total current price for the three is less than $31. By bidding straightforwardly for all items, bidder #1 is 
likely to acquire 9 items at a price of approximately $8, earning a profit of $18. By withholding demand 
and bidding for just 7 items, it expects a price of $6 and a profit of $28. This strategy exploits the fact that 
the last nine items are substitutes for bidder 2. By jump bidding to $17+ε for item 1 at the first round, it 
expects a price of $6 on the remaining items and a net profit of $29. This exploits the fact that item 1 is a 
complement for the remaining items for bidder 2.  
22 Ausubel (1997) makes a similar observation, arguing heuristically that the terminal point of an ascending 
package auction is likely to coincide with the Nash equilibrium of the corresponding “menu auction” (as 
analyzed by Bernheim and Whinston (1986)).  
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outcome would be efficient and would entail prices for l not exceeding its Vickrey prices 

by more than ε*. Apply lemma 3. ■ 

Not everyone can win at such a waiting game and, indeed, it is not generally possible 
for there to be an equilibrium in which all bidders earn their Vickrey profits. For 
example, suppose that there are two items and three bidders. Let bidder 1’s value triple be 
(20,0,20), bidder 2’s (0,20,20), and bidder 3’s (0,0,10). Then the efficient allocation 
assigns the two items to bidders 1 and 2, respectively. However, the Vickrey prices are 
both zero and the Vickrey profits 20, which cannot be an equilibrium outcome, in view of 
the preferences of bidder 3.  

In the example discussed just above, bidders 1 and 2 are implicitly collaborators in a 
common effort, and they are faced with a free rider problem. Each would like the other to 
bid up to 10, allowing it to win its item at a price close to zero. If the other bidder bids 
straightforwardly, it can achieve that outcome by adopting slow straightforward strategy, 
but both cannot do that. To achieve an efficient outcome, bidders 1 and 2 must somehow 
split the cost of defeating bidder 3, and the auction defines the bargaining protocol 
available to them to solve that problem.   

5. Minimum Bids and Bid Improvement 
Experimental evidence of long auctions combined with the analysis of the previous 

section revealing an incentive for bidders to “go slow” raise concerns about the amount 
of time that may be needed to complete an auction such as the one planned by the FCC. 
Even without strategically motivated slow bidding, straightforward bidding in the 
benchmark auction design can lead to a very slow pace, as bidders cycle through the 
packages one at a time to raise the total bid on each by a single increment.  

To accelerate the pace of the actual auction, various rules have been proposed, 
including primarily activity rules and minimum bids. To be effective and to respect the 
bidders’ computational constraints, any such rule should have two characteristics. First, it 
should ensure that the required minimum bids on all relevant packages rise at every round 
of the auction, at least near the end of the auction.  

Suppose, hypothetically, that the auction were redesigned so that, for each bidder, the 
minimum bid at each round on each package on which it has previously bid is raised by 

the some increment t
lI  that does not depend on the package. Suppose bidders were 

required to bid on all or none of the packages on they had previously bid. The earlier 
analysis of straightforward bidding would apply to such an auction, and the hypothetical 
result of such bidding by all bidders would be approximately efficient. However, in 
addition to the strategic incentives that such an auction would create, it would also 
require that bidders actually evaluate all packages before the auction, rather than using 
the progress of the auction to determine which packages to assess and on which to focus 
the greatest evaluation efforts.  

This discussion leads to our specification of the second desirable characteristic of a 
minimum bid rule. It is that a bidder who discovers, late in the auction, that a certain 
package A on which it has not previously bid may be part of the optimum should not be 
prevented from making a useful bid for that package. Traditional minimum bid rules 
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cannot implement both desired properties. Minimum bids set too low fail to accelerate the 
auction; minimum bids set too high block “new entry” late in the auction.   

To illustrate the problem, suppose that the following values apply to the subset {1,2} 
of a larger set of items for sale. Suppose the valuation sub-vectors 1 2 12( , , )l l lv v v  for 
bidders l=1,2,3 are (8,8,8), (16,16,16) and (0,0,20), and that other bidders are uninterested 
in these items. Late in the auction, after losing out on bidding for what had seemed to be 
potentially more profitable items with indexes 3, 4 and higher, bidder 1 turns its attention 
to the licenses 1 and 2.  

If the minimum bids for items 1 and 2 exceed 8 at the time that bidder 1 first decides 
to bid for these items, then bidder 1 will be blocked and an efficient allocation will not be 
achieved. If, however, the minimum bid is less than 8, then the minimum is not binding 
on bidder 2, who can switch back and forth between the items making new bids and 
extending the auction.  

To solve this problem, I propose a class of alternatives to the minimum bid rule called 
“bid improvement rules,” which work as follows. As in the case of minimum bid rules, 
one first needs a method to assign a tentative value to each package on which a bid might 
be made. To that end, I adopt a variation of the method that DeMartini, Kwasnica, 
Ledyard Porter (1999) had used to establish minimum bids for each package in their 
experiments. The method sets individual item prices to be the dual prices of a linear 
program such as that obtained by maximizing (2) subject to (1), but relaxing the 
constraint that the xlA variables be integers. The dual program is the following one: 

 
,

min
∈ ∈

+∑ ∑t t
m l

t t
m lm M l Lp q

p q  (10) 

     subject to 

 
 for ,

0, 0 for ,

∈
+ ≥ ∈ ⊂

≥ ≥ ∈ ∈

∑ t t t
m l lAm A

t t
m l

p q B l L A M

p q m M l L
 (11) 

The dual variables comprise shadow prices ( ),t tp q , where ( );t t
mp p m M= ∈  is the 

vector of prices for the constraints that each item is sold only once and ( );t t
lq q l L= ∈  is 

the vector of prices for the constraints that each bidder is assigned just one package. In 
case the program has multiple solutions, those solutions form a convex set. The choice 
among the solutions is irrelevant for the analysis that follows.23  

                                                             
23 One possibility is to choose among the dual optimal solutions as follows. Let V* be the minimum value of 
the program. Add the constraint that *

∈ ∈
+ =∑ ∑t t

m lm M l L
p q V  and minimize 

∈∑ t
mm M

p . Let P* be the 

resulting minimum. Add the constraint that *

∈
=∑ t

mm M
p P  and minimize the strictly convex objective 

( )21−−∑ t t
m mm

p p . This computationally easy process always leads to a unique solution for the price vector 
tp .  
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Based on the prices pt, one may compute the following relative value index for each 

package A: t t
A mm A

R p
∈

= ∑ .  Then, the “quality” of bidder l’s best bid after any round t 

may be defined to by maxt t t
l A lA AQ B R= − .  

The bid improvement requirement specifies that a bid t
lb  is acceptable if it improves 

on l’s best previous bid by at least one increment, that is, if it includes some package A 

such that 1 1t t t t
lA A l Ab R Q I− −− − ≥ .24 To ensure activity during the auction, this bid 

improvement rule can be used in conjunction with an activity rule that counts a bidder as 
active at a round when it either makes an acceptable new bid or when it is a provisional 
winner from the previous round. According to the activity rule, as soon as a bidder fails 
to be active in more than N≥0 rounds, it loses its eligibility to make new bids.  

To analyze the impact of such a rule near the end of the auction, consider the 
following linear program, the primal corresponding to dual problem (10)-(11).  

 max
∈ ∈∑ ∑ t

lA lAl L A Mx
B x  (12) 

     subject to 

 

{ : }
1 for all 

1             for all 

0                       for all ,

∈ ∈

⊂

= ∈

≤ ∈

≥ ∈ ⊂

∑ ∑
∑

lAl L A m A

lAA M

lA

x m M

x l L

x l L A M

 (13) 

Theorem 8. Suppose that the bid maximization linear program (maximizing (12) 

subject to (13)) has an integer solution xT and define ( )π
⊂

≡ −∑T T T
l lA lA lAA M

v b x . Consider 

an auction with a bid improvement rule based on 1t t
A AR p≡ ⋅ . Suppose that, at the final 

round T, (i) no unprofitable bids have been made ( 0π ≥T
l ) and (ii) no bidder has 

foregone making an acceptable bid under the bid improveme nt rule that is more 

profitable than its xT-assignment (for each bidder l and package A, T T
A l lA lAR Q v π+ ≥ − ). 

Then, the final auction allocation xT maximizes the (unobserved) total value 

∈ ∈∑ ∑ t
lA lAl L A M

v x over all feasible allocations. Also, setting T T
l l lq Q π= +  for each l∈L, 

(pT,q) is an optimal solution of the dual.  

Proof. Focus first on the total bid maximization program (12)-(13). By assumption, xT 
is an optimal solution of that program and, for some ( ; )λ λ= ∈l l L ≥0 (the prices on the 

one-package-per-bidder constraint), (pT,λ) is an optimal solution of the dual program (10)
-(11). By construction, given pT, λ=QT is the least vector such that (pT,λ) satisfies (11). 
Hence, by inspection of the objective (10), (pT,QT) is an optimal solution of the dual. 
Hence, (xT,pT,QT) satisfy the feasibility and complementary slackness conditions in the 
total bid maximization program and its dual.  

                                                             
24 There may also be additional requirements or alternative bid-quality measures. The original benchmark 
auction can be interpreted as incorporating multiple bid-quality measures and applying the rule that a bid is 
acceptable if it is an improvement according to at least one bid-quality measure.  
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Next turn attention to the (relaxed) total value maximization linear program and its 
dual. By construction, xT is feasible in the program (the constraints are the same as in the 

bid maximization problem) and, by the assumption that T T
A l lA lAR Q v π+ ≥ − , (pT,qT) is 

feasible in the dual. Since the dual prices have been increased relative to the total bid 

maximization problems only for bidders l who acquire items (for whom 1
⊂

=∑ lAA M
x ), 

complementary slackness of (xT,pT,QT) in the (relaxed) total bid maximization programs 
implies complementary slackness of (xT,pT,qT) in the (relaxed) total value maximization 
programs. Hence, xT and (pT,qT) are optimal solutions in the latter pair of programs.  

By hypothesis, xT is integer-valued (actually, {0,1}-valued), so that optimal solution 

of the two linear programs is also a solution of the two integer programs. ■  

In general, the hypothesis of the theorem that the linear program has an integer 
solution will not be satisfied, and in those cases the theorem will not apply as an exact 
result. For practical purposes, the theorem’s primary significance is that it is evidence 
that the bid improvement rule can sometimes preserve bidders’ abilities to begin bidding 
on potentially valuable new packages until the very end of the auction. Because the rule 
requires only that some bid by a bidder at a round meet the acceptability requirement, a 
bidder’s actual ability to begin bidding on such packages and to continue bidding while 
they remain profitable is considerable, even when the theorem itself does not apply. 
Moreover, the rule achieves this flexibility for bidders in a way that still assures that the 
auction will proceed at a brisk pace. As illustrated above, this combination of 
characteristics cannot be duplicated by (non-discriminatory) minimum bids on packages.  

This preceding analysis does not, of course, take account of bidders’ strategic motives 
when faced with a bid improvement rule. The incentive to slow the progress of the 
auction, which we have seen is strong in the benchmark auction, is clearly substantially 
suppressed by the bid improvement rule. Nevertheless, with full information and 
straightforward bidding by competitors, bidders necessarily have strategies that earn their 
Vickrey profits, and no rule can eliminate those strategic possibilities. For a bidder who 
knows its Vickrey profit level, one way to achieve when others bid straightforwardly is to 
bid straightforwardly oneself, but to stop making new bids once the Vickrey profit levels 
have been reached, as described in Theorem 4.  

6. Implications for the FCC Auction Design  
The analysis highlights several important advantages and concerns about package 

bidding. First, the relative absence of incentives to distort packages may help to explain 
the excellent efficiency performance of the auction in some laboratory experiments. 
Second, the incentive for bidders to wait-and-see to learn how much others are bidding 
offers a possible explanation of the relatively long times to completion of the auction in 
the lab.25   

                                                             
25 Even without the “slow” version of straightforward bidding, the benchmark auction would take more 
time than the corresponding SAA, because the rules of the SAA, including especially the activity rule, 
implicitly force bids to be made on many packages at each round, rather than on just one as in the 
benchmark auction. However, both the FCC auction and the lab experiment included an activity rule that 
one might have been expected would lead to a speedy conclusion to the auction.  
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Several of the specific rules of the FCC auction mitigate the problem of delay. One is 
the package activity rule, which is absent in the benchmark model. Activity rules penalize 
bidders who fail to make sufficiently many bids by reducing or removing their eligibility 
to bid in future rounds. Such rules discourage the most obvious “slow” strategies, but 
allow bidders to dally by making other bids that they expect cannot win—a practice that 
has been called “bid parking” or “eligibility parking” in earlier FCC auctions.  

Setting minimum bids more accurately can reduce parking by eliminating bids that 
have little or no chance of winning. However, theory indicates that setting appropriate 
package-specific minimum bids will be difficult, even when the integer problem is no 
concern and bidders behave straightforwardly. In contrast, the bid improvement rule does 
permit the setting of accurate bidder specific minimums in these circumstances.  

The current FCC proposal employs a computationally simple minimum bid rule. The 
proposal also seeks to limit parking by employing an additional rule that sharply limits 
the number of packages on which a bidder may be active during the auction. If bid 
evaluation costs are high then, as discussed earlier, the direct cost of such a restriction is 
likely to be quite small.  

7. Conclusion 
Are the attractive efficiency properties found in experiments with package bidding 

likely to be repeated in a high stakes application like the 700 Mhz auction? Or did they 
result in large part from experimental conditions that favored straightforward bidding 
over more sophisticated strategies? Are bidders in the FCC auction, after spending 
substantial sum on analysis, likely to so bid differently from the experimental subjects 
that very different results should be expected?  

There are good reasons to believe that, if the rules of the experimental setting were 
duplicated exactly, bidders in a real, high stakes auction would bid differently than the 
subjects in the Cybernomics experiment. Indeed, the serious strategic analysis that 
experimental subjects could not make in the allotted time but that some FCC bidders will 
make does reveal unexploited profit opportunities. The “slow” strategies of Theorem 7 
illustrate this, and not just for the benchmark auction. The proof of theorem 7 uses only 
two properties of the auction and the bidders’ strategies. The first is that, taken together, 
the rules and strategies comprise an algorithm to maximize the total value, given any 
history and whatever value is revealed by bidder l’s maximum bids. Any proposed design 
that claims to achieve an efficient allocation under the bidders’ likely strategies 
necessarily has this first property. The second is that the auction is “sufficiently 
dynamic,” so that bidder l can watch the optimization as it progresses. This, too, is a 
feature of all the recent proposals to the FCC. Given these characteristics, the strategies 
that bidders would be inclined to adopt tend to disconfirm the first hypothesis and to lead 
to long auctions.  

The actual FCC rules employ heuristics that aim to avoid the “long auctions” 
conclusion by limiting bidding strategies. These limits are damaging to efficiency in 
some possible environments, even if bidders bidder straightforwardly. Without specific 
information about the environment, it is impossible to know how much damage the 
heuristics may do.  
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In evaluating real designs, we must not forget that trade-offs such as these are often 
unavoidable. The generalized Vickrey auction is the unique auction that makes 
straightforward bidding by all a Nash equilibrium and still leads to efficient allocations 
across a wide range of environments. Any alternative auction that avoids the 
disadvantages of the Vickrey auction necessarily sacrifices that property. 
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Tables 
 

Table 1: Bidder Values 

 Item A Item B Package AB 
Bidder 1 a b a+b+c 
Bidder 2 a+αc b+αc a+b 
The example uses c>0 and 0<α<1. 

 
 

Table 2: Findings of the Cybernomics Experiment 
Complementarity 

Condition: 
None Low Medium High 

Efficiency 
SAA (No packages) 
SAAPB  

 
97% 
99% 

 
90% 
96% 

 
82% 
98% 

 
79% 
96% 

Revenues 
SAA (No packages) 
SAAPB 

 
4631 
4205 

 
8538 
8059 

 
5333 
4603 

 
5687 
4874 

Rounds 
SAA (No packages) 
SAAPB 

 
8.3 
25.9 

 
10 
28 

 
10.5 
32.5 

 
9.5 
31.8 

 
 

Table 3: Sample Rounds in a Package Auction 
 Item A Item B Package AB 

Round R 
Bidder X 4 0 0 
Bidder Y 5 0 0 
Bidder Z 0 0 6 

Provisional Winning Bids - - 6 
Round R+1 

Bidder X 4 2 0 
Provisional Winning Bids 5 2 - 

Round R+2 
Bidder Y 5 6 0 

Provisional Winning Bids 4 6 - 
 


