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1 Introduction

We characterize dominant-strategy incentive compatibility of deterministic social

choice functions in a model with multi-dimensional types, private values, and quasi-

linear preferences. We show that incentive compatibility is characterized by a simple

monotonicity property of the social choice function. This property, termed weak

monotonicity (W-Mon), requires the following: if changing one agent’s type (while

keeping the types of other agents fixed) changes the outcome under the social choice

function, then the resulting difference in utilities of the new and original outcomes

evaluated at the new type of this agent must be no less than this difference in util-

ities evaluated at his original type. In effect W-Mon requires that the social choice

function be sensitive to changes in differences in utilities.

It is well known that when agents have multi-dimensional types, characterizations

of incentive compatibility are complex. For one-dimensional types, Myerson (1981)

showed that a random allocation function in a single-object auction is Bayesian in-

centive compatible if and only if it is a subgradient of a convex function, which is

equivalent to the requirement that each buyer’s probability of obtaining the object is

non-decreasing in his type. In multi-dimensional environments, while the subgradi-

ent condition is still necessary and sufficient for Bayesian incentive compatibility, it is

not equivalent to a simple monotonicity requirement.2 The subgradient condition is

equivalent to the “cyclic monotonicity” condition in Rochet (1987), which is difficult

to interpret and use.

Our contribution is to show that when the incentive-compatibility requirement is

strengthened to dominant strategy and only deterministic mechanisms are considered,

then incentive compatibility in a multi-dimensional types setting is characterized by

W-Mon, which is a simple and intuitive condition that generalizes the concept of a

non-decreasing function from one to multiple dimensions. As discussed in Section 5,

2See, for example, Rochet (1987), McAfee and McMillan (1988), Williams (1999), Krishna and

Perry (1997), Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and Moldovanu (2001), Krishna

and Maennar (2001), and Milgrom and Segal (2002).
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the contrast between W-Mon and cyclic monotonicity is the following: the latter

is a requirement on every finite selection of type vectors from the domain whereas

W-Mon is the same requirement but only for every pair of type vectors. Although

cyclic monotonicity is usually stronger and more complicated than W-Mon, in our

setting the two turn out to be equivalent. Thus our paper helps delineate the bound-

aries of multi-dimensional models which permit a characterization that is a simple

generalization of Myerson’s monotonicity condition.

While other types of monotonicity conditions have been used to characterize

dominant-strategy implementability, because we consider smaller domains, these are

not sufficient in our model. Maskin monotonicity is a characterization for non-

quasilinear settings such as voting models (see Muller and Satterthwaite (1977), and

Dasgupta, Hammond, and Maskin (1979)). In quasilinear environments with a com-

plete domain, Roberts (1979) showed that a monotonicity condition called positive

association of differences (PAD) is necessary and sufficient for dominant-strategy in-

centive compatibility. Roberts’ complete-domain assumption rules out free disposal

and the absence of allocative externalities, and therefore also all environments with

private goods such as auctions. In our environment, Roberts’ PAD condition imposes

no restrictions as all social choice functions satisfy it. W-Mon is the appropriate char-

acterization for the much more restrictive domain of preferences that we consider, one

that permits private goods. Chung and Ely (2002) give another characterization for

restricted quasilinear environments, which we discuss in Section 5.

Our simplification of the constraint set for incentive compatibility should be help-

ful in applications such as finding a revenue-maximizing auction in the class of de-

terministic dominant-strategy auctions. Our characterization also bears upon appli-

cations where the mechanism designer is interested in efficiency rather than revenue,

such as finding a second-best, dominant-strategy, budget-balanced, double auction.

Further, it is well known that because of its computational complexity the Vickrey-

Clarke-Groves auction is impractical for selling more than a small number of ob-

jects. Several papers investigate computationally feasible (but inefficient) auctions in
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private-values settings (see Nisan and Ronen (2000), Lehman et al. (1999), and Holz-

man and Monderer (2004)). Characterizing the set of incentive-compatible auctions

facilitates the selection of an auction that is computationally feasible.

The notion of incentive compatibility in our paper is dominant strategy, which

is equivalent to requiring Bayesian incentive compatibility for all possible priors (see

Ledyard (1978)). Thus, it is not necessary to assume that agents have priors over

the types of all agents (let alone mutual or common knowledge of such priors) for the

mechanisms considered here. This weakening of common-knowledge assumptions is

in the spirit of the Wilson doctrine (see Wilson (1987)).

In our formulation, we take as primitive a preference order for each agent over the

set of outcomes. These orders may be null, partial, or complete, and may differ across

agents. We show that W-Mon characterizes dominant-strategy implementability in

two environments: (i) when the underlying preference order is partial and a rich-

domain assumption holds, and (ii) when the preference order is complete and utilities

are bounded. The first environment includes multi-object auctions and the second

includes multi-unit auctions with diminishing marginal utilities as special cases. We

first prove results for single-agent models, with extensions to many agents being

straightforward.

The paper is organized as follows. The characterization of incentive compatibility

for a single-agent model is developed in Sections 2 and 3. In Section 4, we extend

this characterization many agents. We discuss connections to previous literature in

Section 5. The proofs are in an Appendix. A few related examples and results are in

the Supplementary Materials to this paper, Bikhchandani et al. (2006).

2 A single-agent model

Let A = {a1, a2, ..., aK} be a finite set of possible outcomes. We assume that the agent

has quasilinear preferences over outcomes and (divisible) money. The agent’s type,
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which is his private information, determines his utility over outcomes. The utility of

an agent of type V over outcome a and money m is:

U(a, m, V ) = U(a, V ) + m, a ∈ A.

It is convenient to assume that the agent’s initial endowment of money is normalized

to zero and he can supply any (negative) quantity required. We will sometimes write

V (a), V ′(a) instead of U(a, V ), U(a, V ′) respectively. The domain of V is D ⊆ <K
+ ,

with the kth coordinate of type V being V (ak), this type’s utility for outcome ak.

A social choice function f is a function from the agent’s report to an outcome

in the set A. (The social choice function is deterministic in that the agent’s report

is not mapped to a probability distribution on A.) As we are interested in truth-

telling social choice functions, by the revelation principle we restrict attention to

direct mechanisms. Thus, f : D → A. We assume, without loss of generality, that

f is onto A. A payment function p : D → < is a function from the agent’s reported

type to a money payment by the agent. A social choice mechanism (f, p) consists of

a social choice function f and a payment function p.

A social choice mechanism is truth-telling if truthfully reporting his type is optimal

(i.e., is a dominant strategy) for the agent:

U(f(V ), V )− p(V ) ≥ U(f(V ′), V )− p(V ′), ∀V, V ′ ∈ D. (1)

A social choice function f is truthful if there exists a payment function p such that

(f, p) is truth-telling; p is said to implement f .

Consider the following restriction. A social choice function f is weakly monotone

(W-Mon) if for every V, V ′,

U(f(V ′), V ′) − U(f(V ), V ′) ≥ U(f(V ′), V ) − U(f(V ), V ). (2)

If f satisfies W-Mon, then the difference in the agent’s utility between f(V ′) and

f(V ) at V ′ is greater than or equal to this difference at V .

W-Mon is a simple and intuitive condition on social choice functions. In effect, it
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is a requirement that the social choice function be sensitive to changes in differences

in utilities. It is easy to see that W-Mon is a necessary condition for truth-telling:

Lemma 1 If (f, p) is a truth-telling social choice mechanism then f is W-Mon.

Proof: Let (f, p) be a truth-telling social choice mechanism. Consider two types V

and V ′ of the agent. By the optimality of truth-telling at V and V ′ respectively, we

have

U(f(V ), V )− p(V ) ≥ U(f(V ′), V )− p(V ′)

and U(f(V ′), V ′)− p(V ′) ≥ U(f(V ), V ′)− p(V )

These two inequalities imply that

U(f(V ′), V ′)− U(f(V ), V ′) ≥ p(V ′)− p(V )

≥ U(f(V ′), V )− U(f(V ), V ).

Hence f satisfies W-Mon. Q.E.D.

Next, we obtain conditions on D, the domain of the agent’s types, under which

W-Mon is sufficient for truth-telling.

3 Sufficiency of W-Mon

If the domain of the agent’s types, D, is not large enough then W-Mon is not sufficient

for truth-telling. This is clear from the following example.

Example 1: There are three outcomes a1, a2, and a3. The agent’s type is a vector

representing his utilities for these outcomes. The agent has three possible types:

V 1 = (0, 55, 70), V 2 = (0, 60, 85), V 3 = (0, 40, 75). That is, V 1(a1) = 0, V 1(a2) = 55,

and V 1(a3) = 70 and so on. The domain of types is D = {V 1, V 2, V 3}.

The social choice function f(V 1) = a1, f(V 2) = a2, and f(V 3) = a3 is W-Mon on

the set D because:

V 2(a2)− V 2(a1) = 60 − 0 ≥ 55 − 0 = V 1(a2)− V 1(a1)
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V 3(a3)− V 3(a2) = 75 − 40 ≥ 85 − 60 = V 2(a3)− V 2(a2)

V 1(a1)− V 1(a3) = 0 − 70 ≥ 0 − 75 = V 3(a1)− V 3(a3)

However, there is no payment function that implements f . Suppose that the agent

pays p1 at report V 1, p2 at report V 2, and p3 at report V 3. Without loss of generality,

let p1 = 0. For truth-telling we must have p2 ≥ 55, else type V 1 would report V 2.

Similarly, p3 − p2 ≥ 25 else type V 2 would report V 3. Therefore, we must have

p3 ≥ 80. But then type V 3 would report V 1.

Even if the domain of types is connected, W-Mon is not sufficient for truthfulness.

Let D̂ be the sides of the triangle with corners V 1, V 2, and V 3 defined above. Let

[V i, V j) denote the half-open line segment joining V i to V j. The allocation rule f̂ is as

follows: f̂(V ) = a1, ∀V ∈ [V 1, V 3), f̂(V ) = a2, ∀V ∈ [V 2, V 1), and f̂(V ) = a3, ∀V ∈

[V 3, V 2). It may be verified that f̂ satisfies W-Mon but there are no payments that

induce truth-telling under f̂ . 4

Requiring W-Mon on a larger domain (than in the example) strengthens this

condition. To this end, we define order-based preferences over the possible outcomes.

Order-based domains: We restrict attention to domains D ⊆ RK
+ . In certain

contexts, regardless of his type, the agent has an order of preference over some of the

outcomes in the set A. In a multi-object auction, for instance, where an outcome is

the bundle of objects allocated to the agent, if a` ⊂ ak, then under free disposal it is

natural that the agent prefers ak to a` and V (a`) ≤ V (ak) for all V ∈ D. Therefore,

we take as a primitive the finite set of outcomes A and a (weak) order � on it. This

order may be null, partial, or complete.

A type V is consistent with respect to (A,�) if ak � a` implies V (ak) ≥ V (a`). A

domain of types D is consistent with respect to (A,�) if every type in D is consistent

with respect to (A,�). We will sometimes write domain D on (A,�) to mean D is

consistent with respect to (A,�).

If � is null then D is an unrestricted domain in the sense that for any ak, a` ∈ A,

there may exist V, V ′ ∈ D such that V (ak) > V (a`) and V ′(ak) < V ′(a`). If, instead,
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� is a partial order then D is a partially ordered domain: for any ak, a` ∈ A if

ak � a`, then V (ak) ≥ V (a`) for all V ∈ D. If � is a complete order then D is a

completely ordered domain: for any ak, a` ∈ A either V (ak) ≥ V (a`) for all V ∈ D or

V (ak) ≤ V (a`) for all V ∈ D depending on whether ak � a` or ak � a`.

Examples:

(i) As already mentioned, in a multi-object auction the set of outcomes A is a list

of possible subsets of objects that the agent might be allocated. The order � is the

partial order induced by set inclusion.

(ii) A multi-unit auction is a special case of a multi-object auction in which all objects

are identical. Let the outcomes be the number of objects allocated to the agent. Thus,

for any ak, a` ∈ A either ak ≤ a` or a` ≤ ak; accordingly either ak � a` or ak � a`

and � is a complete order.

(iii) Another special case is when the agent has assignment-model preferences over

K − 1 heterogeneous objects. Let the outcome a1 denote no object assigned to the

agent, and let ak+1, k = 1, 2, ..., K − 1, denote the assignment of the kth object to

the agent. The allocation of more than one object to the agent is not permitted. The

underlying order is ak � a1, for all k ≥ 2, and ak 6� a`, for all k, ` ≥ 2, k 6= `. 4

In an auction, there is an outcome at which the agent does not get any object;

the utility of this outcome is 0 for all types of the agent. The proofs in Section 3.2

(but not in Section 3.1) require the existence of such an outcome.

The following definitions will be needed in the sequel. The inverse of a social

choice function f is

Y (k) ≡ {V ∈ D | f(V ) = ak},

where the dependence of Y on f is suppressed for notational simplicity. For any

k, ` ∈ {1, 2, ..., K}, define

δk` ≡ inf{V (ak)− V (a`) |V ∈ Y (k)}. (3)

Note that δkk = 0.
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Next, we prove sufficiency of W-Mon for partially ordered domains.

3.1 Partially ordered domains

Recall that the set of outcomes is A = (a1, a2, ..., aK). Throughout Section 3.1 we

make the following assumption on the domain of types.

Rich-domain assumption: Let D be a domain of types on (A,�). Then D is rich

if every V ∈ RK
+ that is consistent with (A,�) belongs to D.

Thus, if � is null then D = <K
+ . If, instead, � is a partial order then D is the

largest subset of <K
+ satisfying inequalities V (ak) ≥ V (a`) whenever ak � a` for all

ak, a` ∈ A. It is easily verified that the formulations of the auction examples of the

previous section admit rich domains.

Next, we define a payment function that implements a social choice function f

satisfying W-Mon on a rich domain. Relabelling the outcomes if necessary, let aK be

an outcome which is maximal under �.3 As D is rich, for each a` ∈ A there exists a

V ∈ D such that V (aK) > V (a`). Consider the payment function

pk ≡ −δKk, ∀k = 1, 2, ..., K. (4)

That is, if the agent reports V ∈ Y (k) then the outcome ak is selected by f and the

agent pays pk. The next result shows that this payment function enforces incentives

between aK and any other outcome a`.

Lemma 2 Let f be a social choice function that is W-Mon. For any a` ∈ A and

V ∈ D,

(i) If V (a`)− p` < V (aK)− pK then f(V ) 6= a`.

(ii) If V (a`)− p` > V (aK)− pK then f(V ) 6= aK.

This leads to the main result for partially ordered domains.

3In a multi-object auction, aK is any maximal subset (with respect to set inclusion) in the range

of the mechanism. Thus, if the outcome at which all objects are allocated to the agent is in the

range of the mechanism then this outcome is aK .
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Theorem 1 A social choice function on a rich domain is truthful if and only if it is

weakly monotone.

As already observed, the smaller the domain of types on which the social choice

function satisfies W-Mon, the weaker the restriction imposed by W-Mon. Therefore,

next we investigate whether W-Mon is sufficient for truth-telling when the domain

is not rich, in particular the domain is bounded. To obtain a sufficiency result with

smaller-domain assumptions, we make the stronger assumption that the underlying

order is complete.

3.2 Completely ordered domains

The order � on the set of outcomes is complete. That is, for any ak, a` ∈ A, either

ak � a` or a` � ak but not both. (If all types of the agent are indifferent between two

outcomes, then we can combine these two outcomes into one.) Thus, for any domain

D consistent with (A,�) either V (ak) ≥ V (a`) for all V ∈ D or V (a`) ≥ V (ak) for

all V ∈ D. We label the outcomes such that ak � ak−1. Define for each type V the

marginal (or incremental) utility of the kth outcome over the (k − 1)th outcome:

vk ≡ V (ak)− V (ak−1) ≥ 0, k = 1, 2, ..., K.

For notational simplicity, we have K+1 outcomes rather than K. Further, we assume

that the utility of outcome a0 is the same for each type in D, and we normalize

V (a0) ≡ 0, ∀V ∈ D.

A multi-unit auction has a completely ordered domain, with the number of units

allocated to the buyer being the outcomes. Therefore, we denote the set of outcomes

as A = {0, 1, 2, ..., K} (rather than {a0, a1, ..., aK}). It is convenient to define the

agent’s type in terms of marginal utilities v = (v1, v2, ..., vK) for each successive unit

(rather than total utilities V = (V (1), V (2), ..., V (K)). The social choice and pay-

ment functions map marginal utilities to an outcome k = 0, 1, ..., K and to payments

respectively. The inverse social choice function Y (·) maps integers k = 0, 1, ..., K to

subsets of types (in marginal utility space).
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In this setting, the W-Mon inequality (2) may be restated as follows. A social

choice rule f is W-Mon if for every v and v′,

If f(v′) > f(v) then
f(v′)∑

`=f(v)+1

v′` ≥
f(v′)∑

`=f(v)+1

v`. (5)

Suppose that f is the allocation rule of a multi-unit auction and that the agent is

allocated more units by the mechanism when his (reported) type is v′ than when it

is v. If f is W-Mon then the agent’s valuation at v′ for the additional units allocated

at v′ is at least as large as his valuation at v.

The domain in Example 1 is completely ordered but W-Mon is not sufficient for

truthfulness; therefore, we need a larger domain. The following assumption encom-

passes both bounded utilities and diminishing marginal utilities.4

Bounded-domain assumption: There exist constants v̄k ∈ (0,∞), k = 1, 2, ..., K,

such that the domain of agent types, D, satisfies either (A) or (B) below:

A. D = ΠK
k=1[0, v̄k]

B. D is the convex hull of points (v̄1, v̄2, ..., v̄k−1, v̄k, 0, ..., 0), k = 0, 1, ..., K.

The assumption that v̄k < ∞ for all k is not essential, but does simplify the

proofs. Domain assumption A does not restrict the marginal utilities to be decreas-

ing (or increasing). We do not specifically assume that v̄k ≥ v̄k+1, but when this

inequality holds for all k and domain assumption B is satisfied, then we have dimin-

ishing marginal utilities; that is, vk ≥ vk+1 for all v ∈ D. Under domain assumption B,

v = (v1, v2, ..., vK) ∈ D if and only if 0 ≤ v` ≤ v̄`, ∀` and

v`

v̄`

≥ v`+1

v̄`+1

` = 1, 2, ..., K − 1. (6)

We note that a straightforward modification in the proofs extends our results to

the case of increasing marginal utilities, i.e., when D is the convex hull of points

(0, 0, ...0, v̄k, v̄k+1, ..., v̄K), k = 0, 1, ..., K. The assumption of increasing marginal util-

ities obtains when the objects are complements, such as airwave spectrum rights.

4The domain of types is referred to by D rather than D as types now specify marginal utilities

rather than total utilities.
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Recalling the definition in (3), note that

δk k−1 = inf{vk | v ∈ Y (k)}

(7)

δk−1 k = − sup{vk | v ∈ Y (k − 1)}.

Next, a “tie-breaking at boundaries” assumption, TBB, is invoked to deal with

difficulties at the boundary of the domain.

Tie-breaking at boundaries (TBB): A social choice function f satisfies TBB if:

(i) vk > 0 for all v ∈ Y (k), and

(ii) vk < v̄k for all v ∈ Y (k − 1).

Consider TBB(i). If δk k−1 > 0 then TBB(i) imposes no restriction. If, instead,

δk k−1 = 0 then there exists a sequence vn ∈ Y (k) such that limn→∞ vn
k = 0; the

existence of a point v ∈ Y (k) at which vk = δk k−1 = 0 is precluded by TBB(i).

Similarly, TBB(ii) imposes no restriction if −δk−1 k < v̄k, and if, instead, −δk−1 k = v̄k

it requires that for any v ∈ Y (k − 1), we have vk < v̄k.

First, we prove sufficiency of W-Mon and TBB (Lemmas 3 and 4) for truth-

telling. We then show (Lemma 5) that (i) for any W-Mon social choice function f

there exists a social choice function f ′ that satisfies W-Mon and TBB and agrees

with f almost everywhere, and (ii) the money payments which truthfully implement

f ′ also truthfully implement f .

The next lemma will be used to define payment functions that implement f .

Lemma 3 Let f be a social choice function on a completely ordered, bounded domain.

If f satisfies W-Mon and TBB then v̄k ≥ δk k−1 = −δk−1 k ≥ 0 for all k.

It is clear from (7) that v` ≥ δ` `−1 for any v ∈ Y (`) and v′` ≤ −δ`−1 ` for any

v′ ∈ Y (`− 1). This, together with Lemma 3, implies that v′` ≤ −δ`−1 ` = δ` `−1 ≤ v`.

In other words, the hyperplane v` = δ` `−1 weakly separates Y (`) and Y (`−1). Hence,

for any payment function that implements f the difference in the payments at points
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in Y (`) and Y (` − 1) must be δ` `−1. Therefore, consider the following payment

function:

pk ≡


∑k

`=1 δ` `−1, if ` = 1, 2, ..., K

0, if ` = 0.
(8)

The preceding discussion implies that, under this payment function, any type v ∈ Y (`)

has no incentive to misreport his type in Y (` − 1) or Y (` + 1). That the agent has

no incentive to misreport his type under this payment function is proved in the next

lemma.

Lemma 4 A social choice function on a completely ordered, bounded domain is truth-

ful if it satisfies W-Mon and TBB.

The next lemma allows one to dispense with TBB in the sufficient condition for

truth-telling.

Lemma 5 If a social choice mechanism f satisfies W-Mon then there exists an al-

location mechanism f ′ which satisfies W-Mon and TBB such that f(v) = f ′(v), for

almost all v ∈ D. Moreover, the payment function p′k defined as in (8) with respect

to f ′ truthfully implements f .

Lemma 5 assures us that given any social choice function f that satisfies W-Mon

we can construct another social choice function f ′ which is W-Mon and TBB. By

Lemma 4, f ′ is truthful and by Lemma 5 the payment function which implements

f ′ also implements f . Thus, W-Mon is sufficient for truth-telling. This leads to the

main result for completely ordered domains.

Theorem 2 A social choice function on a completely ordered bounded domain is

truthful if and only if it is weakly monotone.

An alternative characterization for the single-agent completely ordered domain

model is through the payment function rather than the social choice function. Con-

sider a multi-unit auction with one buyer. The allocation rule “induced” by any

increasing payment function (pk ≥ pk−1 ≥ 0) is implementable. We note that this
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characterization becomes considerably more complex when one considers two or more

buyers. This is because each buyer’s payment function will, in general, depend on oth-

ers’ reported types and for each vector of types, it must be verified that the induced

allocation rule does not distribute more units than are available. Our characteriza-

tion based on W-Mon is easily generalized to multi-agent settings, both for completely

ordered and partially ordered domains.

4 Extension to multiple agents

We extend the results of the single-agent model to multiple agents, with each agent

having private values over the possible outcomes. For concreteness, we use the set-up

of Section 3.1; an identical argument extends the results of Section 3.2.

There are i = 1, 2, ..., n agents and the finite set of outcomes is A = {a1, a2, ..., aL}.

Agent i’s type is denoted by Vi = (Vi1, Vi2, ..., Vi`, ..., ViL), where each Vi ∈ Di ⊆ <L
+.

The characteristics of all the agents are denoted by V = (V1, V2, ..., Vi, ..., Vn).5 The

private-values assumption is that each agent’s utility function depends only on his

type. Thus, when the types are V = (Vi, V−i), agent i’s utility over the outcome a

and m units of money is Ui(a, m, (Vi, V−i)) = Ui(a, Vi) + m, a ∈ A.

The outcome set A is endowed with (partial) orders, �i, i = 1, 2, ..., n, one for

each agent. The domain of agents’ types, D = D1 × D2 × . . . × Dn, is consistent

with (A, �1,�2, ...,�n) if each Di, the domain of agent i’s types, is consistent with

(A,�i). Further, D is rich if each Di is rich (as defined in Section 3.1).

In an auction, A represents the set of possible assignments of objects to agents

(buyers). If buyer i cares only about the objects allocated to him, then the partial

order �i is determined by set inclusion on the respective allocations to buyer i at

a, a′ ∈ A. Thus, a ∼i a′, (i.e., Ui(a, Vi) = Ui(a
′, Vi), ∀Vi ∈ Di) whenever a and a′

5In a departure from the notation of Section 3, V now refers to a profile of utilities for n agents

rather than for a single agent.
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allocate the same bundle of objects to buyer i.

A social choice function f is a mapping from the domain of all agents’ (reported)

types onto A, f : D → A. For each agent i there is a payment function pi : D → <.

Let p = (p1, p2, ..., pn). The pair (f, p) is a social choice mechanism. A social choice

mechanism is dominant-strategy incentive compatible if truthfully reporting one’s type

is a dominant strategy for each agent. That is, for every i, Vi, V ′
i , V−i,

Ui(f(Vi, V−i), Vi)− pi((Vi, V−i)) ≥ Ui(f(V ′
i , V−i), Vi)− pi(V

′
i , V−i). (9)

A social choice function f is dominant-strategy implementable if there exist payment

functions p such that (f, p) is dominant-strategy incentive compatible.

The following definition generalizes weak monotonicity to a multiple-agent setting.

A social choice function f is weakly monotone (W-Mon) if for every i, Vi, V ′
i , V−i,

Ui(f(V ′
i , V−i), V ′

i )− Ui(f(Vi, V−i), V ′
i ) ≥ Ui(f(V ′

i , V−i), Vi) − Ui(f(Vi, V−i), Vi). (10)

Observe that the requirement of dominant strategy, (9), is the same as requiring

truth-telling (i.e. (1)) for each agent i, for each value of V−i. Further, (10) is equivalent

to requiring (2) for each agent i, for each value of V−i. Thus, Theorem 1 (and similarly

also Theorem 2) generalize:

Theorem 3

(i) A social choice function on a rich domain is dominant-strategy implementable if

and only if it is weakly monotone.

(ii) A social choice function on a completely ordered, bounded domain is dominant-

strategy implementable if and only if it is weakly monotone.

5 Relationship to earlier work

In his seminal paper, Myerson (1981) showed that a necessary and sufficient condition

for Bayesian incentive compatibility of a single-object auction is that each buyer’s
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probability of receiving the object is non-decreasing in his reported valuation.6 Several

authors, including Rochet (1987), McAfee and McMillan (1988), Williams (1999),

Krishna and Perry (1997), Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and

Moldovanu (2001), Krishna and Maennar (2001), and Milgrom and Segal (2002), have

extended Myerson’s analysis to obtain necessary and sufficient conditions for Bayesian

incentive-compatible mechanisms in the presence of multi-dimensional types. These

results are easily adapted to dominant-strategy mechanisms.

To place our results in the context of this earlier work, let G be a (random)

social choice function that maps the domain of agents’ types D to a probability

distribution over the set of outcomes A = {a1, a2, . . . , aL}. Thus, for each V ∈ D,

G(V ) = (g1(V ), g2(V ), ..., g`(V ), ..., gL(V )) is a probability distribution. Recall that

the payment functions are p = (p1, p2, ..., pn). A social choice mechanism (G, p)

induces the following payoff function for agent i:

Πi(Vi, V−i) ≡ G(Vi, V−i) · Vi − pi(Vi, V−i),

where x · y denotes the dot product of two vectors x and y. Dominant-strategy

incentive compatibility implies that for all i, Vi, V ′
i , V−i,

Πi(Vi, V−i) ≥ G(V ′
i , V−i) · Vi − pi(V

′
i , V−i)

= Πi(V
′
i , V−i) + G(V ′

i , V−i) · (Vi − V ′
i ), (11)

=⇒ Πi(Vi, V−i) = max
V ′

i

{G(V ′
i , V−i) · Vi − pi(V

′
i , V−i)}

As Πi( ·, V−i) is the maximum of a family of linear functions, it is a convex function

of Vi. Further, for each i and V−i, G( ·, V−i) is a subgradient of Πi( ·, V−i). This leads

to the following characterization: A social choice function G is dominant-strategy

implementable if and only if for each V−i, G( ·, V−i) is a subgradient of a convex

function from Di to <.

6Myerson characterized Bayesian incentive compatibility when agents’ types are one dimensional;

simple modifications to his proofs yield a similar characterization for dominant-strategy incentive

compatibility. Myerson’s characterization coincides with W-Mon applied to one-dimensional types.
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A function G( ·, V−i) : Di → <L, Di ⊆ <L, is cyclically monotone if for every finite

selection V j
i ∈ Di, j = 1, 2, ...,m, with V m+1

i = V 1
i ,

m∑
j=1

V j
i · [G(V j

i , V−i)−G(V j+1
i , V−i)] ≥ 0. (12)

A function is a subgradient of a convex function if and only if it is cyclically monotone

(Rockafellar (1970, p. 238)). Thus, cyclic monotonicity of the social choice function

also characterizes dominant-strategy implementability. The rationalizability condi-

tion of Rochet (1987) generalizes the cyclic-monotonicity characterization of incentive

compatibility to settings where the utility function is possibly non-linear.

W-Mon is a weaker condition than cyclic monotonicity. To see this, note that if

m = 2 then (12) may be restated as [G(V ′
i , V−i) − G(Vi, V−i)] · (V ′

i − Vi) ≥ 0 for all

Vi, V ′
i . This is the same as (10), with Ui(G(Vi, V−i), Vi) = G(Vi, V−i) · Vi, etc. Thus,

W-Mon requires the inequality in (12) only for every pair of types whereas Rochet’s

cyclic-monotonicity condition requires this inequality for all finite selections of types.

For one-dimensional types, cyclic monotonicity is equivalent to W-Mon, which

is equivalent to a non-decreasing subgradient function (Rockafellar (1970, p. 240)).

Hence, Myerson’s characterization of incentive compatibility as a non-decreasing allo-

cation function. W-Mon, which generalizes the concept of a non-decreasing function,

does not characterize incentive compatibility in a multi-dimensional setting with ran-

dom mechanisms; the more complex condition of cyclic monotonicity is needed. Our

contribution is to show that when one restricts attention to deterministic social choice

functions, dominant-strategy incentive compatibility is characterized by W-Mon.

Although our characterization is significantly simpler, the restriction to determin-

istic mechanisms may be an important limitation. Manelli and Vincent (2003) and

Thanassoulis (2004) show that a multi-product monopolist can strictly increase profits

by using a random, rather than deterministic, mechanism. Example S1 in the Sup-

plementary Materials establishes that for random social choice functions W-Mon is

not sufficient for dominant-strategy implementability.7 Whether there is an intuitive

7We are grateful to an anonymous referee for this example.
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condition, which in conjunction with W-Mon, is sufficient for incentive compatibility

of random social choice functions is an open question.

Chung and Ely (2002) obtain a characterization of dominant-strategy imple-

mentability of random social choice functions which they call pseudo-efficiency. When

restricted to deterministic social choice functions, pseudo-efficiency requires that there

exist real-valued functions wi(a, Vi) such that for each V ,

f(V ) ∈ arg max
a∈A

(
Ui(a, Vi) + wi(a, Vi)

)
, ∀i.

For deterministic social choice functions over a finite set of outcomes, W-Mon must

be equivalent to pseudo-efficiency. The definition of the latter involves an existential

quantifier which makes it hard to verify.

Roberts (1979) characterizes deterministic dominant-strategy mechanisms in qua-

silinear environments with a “complete” domain. Roberts identifies a condition called

positive association of differences (PAD) which is satisfied by a social choice function

f if for all V = (V1, V2, . . . , Vn) and V ′ = (V ′
1 , V

′
2 , . . . , V

′
n)

if Ui(f(V ), V ′
i )− Ui(a, V ′

i ) > Ui(f(V ), Vi)− Ui(a, Vi), ∀a 6= f(V ), ∀i,

then f(V ′) = f(V ). (13)

An allocation rule f is an affine maximizer if there exist constants γi ≥ 0, with at

least one γi > 0, and a function U0 : A → < such that

f(V ) ∈ arg max
a∈A

(
U0(a) +

n∑
i=1

γiUi(a, Vi)
)
.

Roberts (1979) shows that f is a (deterministic) dominant-strategy mechanism if and

only if f satisfies PAD if and only if f is an affine maximizer.

What is the relationship between Roberts’ work and ours? The fundamental

difference is that Roberts assumes an unrestricted domain of preferences while we

operate in a restricted domain. In particular, Roberts requires that for all a ∈ A, any

real number α, and any agent i, there exists a type Vi of agent i such that Ui(a, Vi) = α.

Thus, taking (A, �1,�2, . . . ,�n) and the domain of types as primitives of the two
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models, in Roberts’ model �i is a null order and Di = <L for each agent i, whereas we

allow each �i to be a non-null (even complete) order and the corresponding Di to be

a strict subset of <L
+. We note that Di = <L, for all i, is essential for Roberts’ results.

Thus, an auction or any mechanism that allocates (private) goods does not satisfy

Roberts’ domain assumptions as they preclude free disposal and no externalities in

consumption. Indeed, in an auction with two or more buyers PAD is vacuous in that

all mechanisms satisfy PAD.8 W-Mon, however, is not vacuous in this setting and

is the appropriate condition for incentive compatibility.9 Because a smaller domain

(than Roberts’) is sufficient for our characterization, one may suspect that W-Mon is

stronger than PAD. This is proved in Lemma S1 in the Supplementary Materials. An

important difference between these two conditions is that PAD impose restrictions

on the social choice function only for changes in types of all players, while W-Mon

imposes restrictions for changes in one player’s type.10 Thus, W-Mon and PAD are

not equivalent. Further, because of the domain restrictions inherent in our model,

our result is not a consequence of Roberts’ characterization.

It may be useful conceptually to draw an approximate parallel with the results

on dominant-strategy incentive compatibility in various domains. According to the

Gibbard-Satterthwaite Theorem, dominant-strategy implementability is equivalent to

dictatorship in an unrestricted domain (subject to a range assumption). In the qua-

silinear model (with otherwise unrestricted domain), Roberts showed that dominant-

strategy implementability, PAD, and the existence of affine maximizers are equiva-

lent. In the more restricted economic environments of auctions, where agents care

only about their private consumption, the equivalence of these three concepts breaks

8Let a differ from f(V ) in the allocation to exactly one buyer. Then the hypothesis in (13) is

false as the strict inequality holds for at most one and not for all buyers.
9In our search for conditions that might be necessary and sufficient on even smaller domains than

considered here, we examined two conditions that strengthen W-Mon in a natural way. However,

neither of these two conditions is necessary. See Example S3 in Supplementary Materials.
10As already noted, in multi-agent models PAD does not imply W-Mon. Example S2 in the

Supplementary Materials presents a single-agent example in which a social choice function satisfies

PAD but not W-Mon; this mechanism is, of course, not truth-telling.
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down. The domain restrictions inherent in auctions imply that the class of dominant-

strategy incentive-compatible allocation rules is smaller than those satisfying PAD

and larger than the set of affine maximizers. If PAD is strengthened to W-Mon, then

we recover equivalence between dominant-strategy implementability and W-Mon.11

Although it is stronger than PAD, W-Mon is much weaker than cyclic monotonic-

ity which has been used to characterize incentive compatibility in multi-dimensional

settings (Rochet (1987)).
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Appendix

The following lemma is used in the proofs.

Lemma 6 For any social choice choice function f and ak, a`, ar ∈ A we have:

(i) If ak � a` then δrk ≤ δr`.

(ii) W-Mon implies that δk` ≥ −δ`k.

Proof: (i) As V (ak) ≥ V (a`) for all V , including V ∈ Y (r), we have V (ar)−V (ak) ≤

V (ar)− V (a`), ∀V ∈ Y (r). Therefore, δrk ≤ δr`.

(ii) By W-Mon, V (ak)− V (a`) ≥ V ′(ak)− V ′(a`), ∀V ∈ Y (k), V ′ ∈ Y (`). Thus,

δk` = inf{V (ak)− V (a`) |V ∈ Y (k)} ≥ sup{V (ak)− V (a`) |V ∈ Y (`)}

= − inf{V (a`)− V (ak) |V ∈ Y (`)} = −δ`k

Q.E.D.

Proof of Lemma 2: We first show that pk is finite. Clearly, pK = 0. If aK � ak

then δKk ≥ 0 and pk ≤ 0. If aK 6� ak, k 6= K, then select V ′ ∈ Y (k). W-Mon implies

that ∞ > V (aK)−V (ak) ≥ V ′(aK)−V ′(ak) > −∞ for any V ∈ Y (K), and therefore

−δKk and hence pk is finite.

(i) By definition, pK = 0 and p` = −δK`. Therefore, V (a`) − V (aK) < −δK` ≤ δ`K ,

where the second inequality follows from Lemma 6(ii). The definition of δ`K implies

that f(V ) 6= a`.

(ii) In the other direction, V (aK)−V (a`) < pK−p` = δK` implies f(V ) 6= aK . Q.E.D.

Proof of Theorem 1: In view of Lemma 1, we need only show sufficiency of W-Mon.

In particular, we show that the payment function defined in (4) truthfully implements

any social choice function f which is W-Mon. Suppose to the contrary that there

exists k∗, k and V ∈ Y (k∗) such that V (ak∗) − pk∗ < V (ak) − pk. Lemma 2(i) and

(ii) imply that k 6= K and k∗ 6= K respectively (else it would contradict V ∈ Y (k∗)).

Further, Lemma 2(i) implies that V (ak∗) − pk∗ ≥ V (aK) − pK (= V (aK)). Choose a
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γ > 0 and a small enough ε > 0 such that

V (ak∗) + ε− pk∗ < V (aK) + γ − pK < V (ak)− pk.

Note that γ > ε. Define T = {ak∗} ∪ {a` ∈ A | a` � ak∗ and V (a`) = V (ak∗)}. Let V ′

be the following type:

V ′(ar) ≡


V (ar) + ε, if ar ∈ T\{aK}

V (ar) + γ, if ar = aK

V (ar), otherwise.

We verify the consistency of V ′ with �. If a`′ � a` and a` ∈ T , a`′ 6∈ T , a`′ 6= aK then

select ε > 0 small enough so that V ′(a`′) = V (a`′) ≥ V (a`) + ε = V ′(a`). If aK � a`,

a` ∈ T , then as γ > ε, we have V ′(aK) ≥ V ′(a`) if V (aK) ≥ V (a`). Further, aK was

chosen so that a` 6� aK for any ` 6= K.

The consistency of V ′ and the rich-domain assumption implies that V ′ ∈ D.

By Lemma 6(i), pk∗ ≤ p` for any a` ∈ T . Therefore, as V ′(a`) = V ′(ak∗), for all

a` ∈ T\{aK}, we have

V ′(a`)− p` ≤ V ′(ak∗)− pk∗ < V ′(aK)− pK , ∀a` ∈ T\{aK}.

Thus, ak 6∈ T and Lemma 2(i) implies that f(V ′) 6= a` for any ` ∈ T\{aK}. As

V ′(aK)−pK < V ′(ak)−pk, f(V ′) 6= aK by Lemma 2(ii). Thus, f(V ′) = ak′ 6∈ T∪{aK}.

But then,

0 = V ′(ak′)− V (ak′) < V ′(ak∗)− V (ak∗) = ε

which violates W-Mon. Q.E.D.

Proof of Lemma 3: By Lemma 6(ii) and the fact that v̄k ≥ vk ≥ 0 for all v ∈ D,

we have v̄k ≥ δk k−1 ≥ −δk−1 k ≥ 0.

Let vk ≡ (v̄1, v̄2, ..., v̄k, 0, ..., 0) for any k = 0, 1, 2, ..., K (with v0 ≡ (0, 0, ..., 0) ).

Observe that under either bounded-domain assumption A or B, vk ∈ D. Thus,

vk ∈ Y (q) for some q = 0, 1, ..., K. TBB(i) implies that vk 6∈ Y (q) for any q > k,

and TBB(ii) implies that vk 6∈ Y (q) for any q < k. Therefore, vk ∈ Y (k). Next,

let v(t) = (1 − t)vk−1 + tvk, t ∈ [0, 1], be a point on the straight line joining vk
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and vk−1, k ≥ 1. Observe that v(t) = (v̄1, ..., v̄k−1, tv̄k, 0, ..., 0) ∈ D, ∀t ∈ [0, 1]. Thus,

v(t) ∈ Y (q) for some q. TBB implies that v(t) ∈ Y (k−1)∪Y (k). Because vk(t) = tv̄k

increases in t, there exists a t∗ ∈ [0, 1] such that v(t) ∈ Y (k − 1) for all t < t∗ and

v(t) ∈ Y (k) for all t > t∗. Thus,

t∗v̄k = lim
t↑t∗

vk(t) ≤ −δk−1 k ≤ δk k−1 ≤ lim
t↓t∗

vk(t) = t∗v̄k

Hence, δk k−1 = −δk−1 k. Q.E.D.

Proof of Lemma 4: W-Mon implies that

If
q∑

`=f(v)+1

v′` <
q∑

`=f(v)+1

v`, ∀q > f(v) then f(v′) ≤ f(v). (14)

If
f(v)∑

`=q+1

v′` >
f(v)∑

`=q+1

v`, ∀q < f(v) then f(v′) ≥ f(v). (15)

Observe that if v′, v, satisfy the hypotheses in (14) and (15) then f(v′) = f(v).

First, we prove that for any k = 0, 1, 2, ..., K,

{
v ∈ D|

k∑
`=q

v` ≥
k∑

`=q

δ` `−1, ∀q ≤ k,
q∑

`=k+1

v` ≤
q∑

`=k+1

δ` `−1, ∀q > k
}
⊆ cl[Y (k)]. (16)

There are two cases to consider. Note that Case B below arises only if domain

assumption B holds and (6) is violated by (δ1 0, δ2 1, ..., δK K−1).

Case A: (δ1 0, δ2 1, ..., δK K−1) ∈ D.

Consider the point v̂k(ε) = (δ1 0 + ε1, ..., δk k−1 + εk, δk+1 k − εk+1, ..., δK − εK) where

ε1, ε2, ..., εK satisfy the following conditions:

(i) If [q ≤ k and δq q−1 = v̄q] or [q > k and δq q−1 = 0] then εq = 0.

(ii) If [q ≤ k and δq q−1 < v̄q] or [q > k and δq q−1 > 0] then εq > 0.

As (δ1 0, δ2 1, ..., δK K−1) ∈ D, there exist ε1, ε2, ..., εK satisfying (i) and (ii) above

such that v̂k(ε) ∈ D. (Under domain assumption B, the εq’s must be chosen to ensure

that v̂k(ε) satisfies (6).) Consider any q < k. If δq+1 q < v̄q+1 then as v̂k
q+1(ε) > δq+1 q,

we know that v̂k(ε) 6∈ Y (q). If, instead, δq+1 q = v̄q+1 then (as εq+1 = 0) we have

v̂k
q+1(ε) = v̄q+1. Thus, TBB(ii) implies that v̂k(ε) 6∈ Y (q). Similarly, TBB(i) implies
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that v̂k(ε) 6∈ Y (q) for q > k. Hence v̂k(ε) ∈ Y (k). Therefore, (14) and (15) imply

that12

{
v ∈ D |

k∑
`=q

v` >
k∑

`=q

(δ` `−1 + ε`), ∀q ≤ k,
q∑

`=k+1

v` <
q∑

`=k+1

(δ` `−1 − ε`), ∀q > k
}

⊂ Y (k).

One can construct a sequence (εn
1 , ε

n
2 , ..., ε

n
K) → 0 such that v̂k(εn) ∈ D. Taking limits

as εn → 0, we get{
v ∈ D |

k∑
`=q

v` >
k∑

`=q

δ` `−1, ∀q ≤ k,
q∑

`=k+1

v` <
q∑

`=k+1

δ` `−1, ∀q > k
}

⊂ Y (k),

which in turn implies (16).

Case B: (δ1 0, δ2 1, ..., δK K−1) 6∈ D.

For each k = 0, 1, 2, ..., K define

vk(ε) =
{
v | vq = max[vq+1

v̄q

v̄q+1

, δq q−1 + εq], ∀q < k, δk k−1 + εk ≤ vk ≤ v̄k,

vq = min[vq−1
v̄q

v̄q−1

, δq q−1 − εq], ∀q > k
}
.

Any v ∈ vk(ε) satisfies (6). Thus, provided ε1, ε2, ..., εK satisfy (i) and (ii) defined in

Case A, and are small enough, vk(ε) ⊂ D [ = ∪K
q=0Y (q) ]. For any v ∈ vk(ε), we have

vq ≥ δq q−1 + εq for any q ≤ k; thus vk(ε) ∩ Y (q − 1) = ∅. Similarly, for any q > k,

vk(ε) ∩ Y (q) = ∅. Thus, vk(ε) ⊂ Y (k) for small enough ε`’s . From (14) and (15)

applied to each v ∈ vk(ε), we know that (with the qualification in footnote 12){
v ∈ D | vk > δk k−1 + εk,

k∑
`=q

v` > δk k−1 + εk +
k−1∑
`=q

max[v`+1
v̄`

v̄`+1

, δ` `−1 + ε`], ∀q < k,

q∑
`=k+1

v` <
q∑

`=k+1

min[v`−1
v̄`

v̄`−1

, δ` `−1 − ε`], ∀q > k
}

⊂ Y (k).

Taking limits as (ε1, ε2, ..., εK) → 0, we see that{
v ∈ D | vk > δk k−1,

k∑
`=q

v` > δk k−1 +
k−1∑
`=q

max[v`+1
v̄`

v̄`+1

, δ` `−1], ∀q < k,

12If for some q ≤ k, δ` `−1 = v̄` for all ` = q, q + 1, ..., k then the corresponding strict inequality

in the set on the left hand side is replaced by a weak inequality. A similar change is made if for

some q > k, δ` `−1 = 0 for all ` = q, q + 1, ..., k. In either case, (i) implies that ε` = 0 in the relevant

range. This ensures that the set on the left hand side is non-empty; the inclusion of this set in Y (k)

is implied by TBB together with (14) and (15).
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q∑
`=k+1

v` <
q∑

`=k+1

min[v`−1
v̄`

v̄`−1

, δ` `−1], ∀q > k
}

⊆ Y (k)

and therefore{
v ∈ D | vk ≥ δk k−1,

k∑
`=q

v` ≥ δk k−1 +
k−1∑
`=q

max[v`+1
v̄`

v̄`+1

, δ` `−1], ∀q < k,

q∑
`=k+1

v` ≤
q∑

`=k+1

min[v`−1
v̄`

v̄`−1

, δ` `−1], ∀q > k
}

⊆ cl[Y (k)].

That this last set inclusion is equivalent to (16) follows from the observation that

(6) implies that if δk k−1 +
∑k−1

`=q max[v`+1
v̄`

v̄`+1
, δ` `−1] >

∑k
`=q v` ≥

∑k
`=q δ` `−1 for some

q < k or if
∑k

`=q+1 min[v`−1
v̄`

v̄`−1
, δ` `−1] <

∑k
`=q+1 v` ≤

∑k
`=q+1 δ` `−1 for some q > k,

then v 6∈ D. This establishes (16) for Case B.

Next, suppose that the set inclusion in (16) is strict. In particular, there exists

k, v ∈ cl[Y (k)] such that
∑k

`=q′ v` <
∑k

`=q′ δ` `−1, for some q′ < k. (From the de-

finition of δk k−1 we know that q′ 6= k.) We may assume WLOG that
∑k

`=q v` ≥∑k
`=q δ` `−1, ∀q = q′ + 1, ..., k and that v ∈ Y (k). (If v ∈ cl[Y (k)]\Y (k), then

there exists v′ ∈ Y (k), v′ close to v, such that
∑k

`=q′ v
′
` <

∑k
`=q′ δ` `−1.) There-

fore, vq′ < δq′ q′−1 ≤ v̄q′ and
∑q

`=q′ v` <
∑q

`=q′ δ` `−1, ∀q = q′, q′ + 1, ..., k. Con-

sider the point v̂ ≡ (v̄1, v̄2, ..., v̄q′−1, vq′ + ε̂, vq′+1, ..., vk, 0, ..., 0) where ε̂ > 0 is small

enough that v̂ ∈ D and
∑q

`=q′ v̂` <
∑q

`=q′ δ` `−1, ∀q = q′, q′ + 1, ..., k. Thus, (16)

implies that v̂ ∈ cl[Y (q′ − 1)]. Suppose that v̂ ∈ Y (q′ − 1). But this violates (5) as∑k
`=q′ v̂` >

∑k
`=q′ v` and v ∈ Y (k). If, instead, v̂ ∈ cl[Y (q′ − 1)]\Y (q′ − 1) then there

exists v∗ ∈ Y (q′ − 1) which is arbitrarily close to v̂ and (5) is violated. Thus, for any

v ∈ cl[Y (k)] we have
∑k

`=q v` ≥
∑k

`=q δ` `−1, ∀q ≤ k. A similar proof establishes that

if v ∈ cl[Y (k)] then ∀q > k,
∑q

`=k+1 v` ≤
∑q

`=k+1 δ` `−1. Therefore, the set inclusion in

(16) can be replaced by an equality, i.e.,

cl[Y (k)] =
{

v ∈ D |
k∑

`=q

v` ≥
k∑

`=q

δ` `−1, ∀q ≤ k, &
q∑

`=k+1

v` ≤
q∑

`=k+1

δ` `−1, ∀q > k

}
. (17)

For any v ∈ Y (k) and any q < k,

k∑
`=1

v` −
k∑

`=1

δ` `−1 ≥
q∑

`=1

v` −
q∑

`=1

δ`,`−1 (18)
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⇐⇒
k∑

`=q+1

v` ≥
k∑

`=q+1

δ` `−1.

The last inequality follows from (17). Thus, (18) is true; when v ∈ Y (k) the agent

cannot increase his payoffs by reporting a type v′ ∈ Y (q), q < k. Similarly, (18) is

true for q > k. Thus, the payment function pk defined in (8) implements f . Q.E.D.

Proof of Lemma 5: Before describing a procedure which converts f to an f ′ with

the stated properties, we need the following result.13

Claim: Let f be an allocation rule that is W-Mon but not TBB. That is there exists

vk ∈ Y (k) and vk−1 ∈ Y (k − 1) such that either vk
k = vk−1

k = 0 or vk
k = vk−1

k = v̄k.

Define a new allocation rule which is identical to f except that:

(i) If vk
k = vk−1

k = 0 then allocate k − 1 (instead of k) units at vk.

(ii) If vk
k = vk−1

k = v̄k then allocate k (instead of k − 1) units at vk−1.

Then, the new allocation rule is W-Mon.

Proof: (i) Suppose that vk
k = vk−1

k = 0. At vk the buyer is allocated k − 1 units in

the new allocation rule. Since f is W-Mon, all we need to check is that vk satisfies

W-Mon inequalities in the new allocation rule. Observe that 0 = δk k−1 = vk
k ≤ vk,

∀v ∈ Y (k). Thus vk satisfies the W-Mon inequalities with respect to all v ∈ Y (k).

Therefore, we need to show that for any v ∈ Y (q), q 6= k, k − 1,

k−1∑
`=q+1

vk
` ≥

k−1∑
`=q+1

v`, if q < k − 1 and
q∑

`=k

vk
` ≤

q∑
`=k

v`, if q > k. (19)

From W-Mon of f we know that for any v ∈ Y (q), q 6= k, k − 1,

k∑
`=q+1

vk
` ≥

k∑
`=q+1

v`, if q < k − 1 and
q∑

`=k+1

vk
` ≤

q∑
`=k+1

v`, if q > k.

This, together with vk
k = 0, implies (19).

(ii) The proof is similar. Q.E.D.

13Throughout this proof, Y (·), δk ` are defined with respect to f and Y ′(·), δ′k ` are defined with

respect to f ′.
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Consider any f that satisfies W-Mon. From f we obtain an allocation rule f ′ using

the following procedure. First, let f ′(v) ≡ f(v), ∀v, and then make the following

changes to f ′:

1. Let k = K.

2. If δk k−1 = 0 then for all v ∈ Y (k) such that vk = 0, let f ′(v) = k − 1.

3. Decrease k by 1. If k ≥ 1 then go to step 2; otherwise, go to Step 4.

4. Let k = 1.

5. If −δk−1 k = v̄k then for all v ∈ Y (k − 1) such that vk = v̄k, let f ′(v) = k.

6. Increase k by 1. If k ≤ K then go to step 5; otherwise, stop.

By Lemma 6, δk k−1 ≥ −δk−1 k. Thus, if at Step 2 of the procedure, we transfer

some v from Y (k) to Y ′(k − 1), then in Step 5 we will not transfer any v’s from

Y (k − 1) to Y ′(k), and vice versa. The Claim assures us that each time we make

changes to f ′ in Steps 2 or 5, f ′ continues to satisfy W-Mon; thus the f ′ obtained

at the end of this procedure is W-Mon. By construction, the final f ′ satisfies TBB.

Further, f(v) = f ′(v) for almost all v ∈ D.

Let p′k =
∑k

`=1 δ′` `−1 be the payment function defined in (8) with respect to f ′.

By Lemma 4, p′k implements f ′. We show that for any v ∈ D, assuming truthful

reporting under either mechanism, the buyer’s payoffs are the same under f or f ′

implemented with p′`. Therefore, it must also be optimal to tell the truth when f is

implemented with prices p′`. Let f(v) = k and f ′(v) = k′. We establish that

k∑
`=1

(v` − δ′` `−1) =
k′∑

`=1

(v` − δ′` `−1). (20)

If k = k′, then clearly (20) is true. If, instead, k′ < k then, from the above construc-

tion, v` = δ′` `−1 = 0, ` = k′ + 1, k′ + 2, ..., k. Similarly, if k′ > k then v` = δ′` `−1 = v̄`,

` = k + 1, k + 2, ..., k′. Thus, (20) holds. Therefore, since the prices δ′` `−1 truthfully

implement f ′, they also truthfully implement f . Q.E.D.

27



References

Bikhchandani, S., S. Chatterji, and A. Sen (2003): “Incentive Compati-

bility in Multi-unit Auctions,” working paper, UCLA.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and

A. Sen, (2005): “Supplementary Material for Weak Monotonicity Characterizes De-

terministic Dominant-strategy Implementation,” http://www.xyz.

Chung, K-S. and J. Ely (2002): “Ex-post Incentive-compatible Mechanism

Design,” working paper, Dept. of Economics, Northwestern University.

Dasgupta P., P. Hammond, and E. Maskin (1979): “The Implementation of

Social Choice Rules: Some General Results on Incentive Compatibility,” The Review

of Economic Studies, 46, 185-216.

Holzman, R. and D. Monderer (2004): “Characterization of Ex Post Equilib-

rium in VCG Combinatorial Auctions,” Games and Economic Behavior, 47, 87-103.

Jehiel, P. and B. Moldovanu (2001): “Efficient Design with Interdependent

Valuations,” Econometrica, 69, 1237-1259.

Jehiel, P., B. Moldovanu, and E. Stacchetti (1996): “How (not) to Sell

Nuclear Weapons,” American Economic Review, 86, 814-829.

——— (1999): “Multi-dimensional Mechanism Design for Auctions with Exter-

nalities,” Journal of Economic Theory, 85, 258-293.

Krishna, V. and E. Maenner (2001): “Convex Potentials with an Application

to Mechanism Design,” Econometrica, 69, 1113-1119.

Krishna, V. and M. Perry (1997): “Efficient Mechanism Design”, working

paper, Dept. of Economics, Pennsylvania State University.

Lavi, R., A. Mu’alem, and N. Nisan (2003): “Towards a Characterization of

Truthful Combinatorial Auctions,” working paper, Hebrew University.

28



Ledyard, J. (1978): “Incentive Compatibility and Incomplete Information,”

Journal of Economic Theory, 18, 171-189.

Lehmann, D., L.I. O’Callaghan, and Y. Shoham (1999): “Truth Revela-

tion in Rapid, Approximately Efficient Combinatorial Auctions,” ACM Conference

on Electronic Commerce.

Manelli, A.M. and D.R. Vincent (2003): “Bundling as an Optimal Selling

Mechanism for a Multi-good Monopolist,” working paper.

Maskin, E. (1992): “Auctions and Privatizations,” in Privatization, ed. H.

Siebert. Kiel: Institut fuer Weltwirtshaft der Universitaet Kiel, pp. 115-136.

McAfee, R. P. and J. McMillan (1988): “Multi-dimensional Incentive Com-

patibility and Mechanism Design,” Journal of Economic Theory, 46, 335-54.

Muller, E., and M. Satterthwaite (1977): “The Equivalence of Strong

Positive Association and Strategy-proofness,” Journal of Economic Theory, 14, 412-

418.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice

Sets,” Econometrica, 70, 583-601.

Myerson, R. (1981): “Optimal Auction Design,” Mathematics of Operations

Research, 6, 58-73.

Nisan, N. and A. Ronen (2000): “Computationally Feasible VCG-based Mech-

anisms,” ACM Conference on Electronic Commerce.

Roberts, K. (1979): “The Characterization of Implementable Choice Rules,” in

Aggregation and Revelation of Preferences, J-J. Laffont (ed.), North Holland Publish-

ing Company.

Rochet, J.C. (1987): “A Necessary and Sufficient Condition for Rationalizabil-

ity in a Quasilinear Context,” Journal of Mathematical Economics, 16, 191-200.

29



Rockafellar, R.T. (1970): Convex Analysis, Princeton University Press.

Thanassoulis, J. (2004): “Haggling over Substitutes,” Journal of Economic

Theory, 117, 217-245.

Williams, S. (1999): “A Characterization of Efficient, Bayesian Incentive-compatible

Mechanisms,” Economic Theory, 14, 155-180.

Wilson, R. (1987): “Game-Theoretic Analyses of Trading Processes,” in Ad-

vances in Economic Theory, ed. Truman Bewley. Cambridge: Cambridge University

Press.

30


