
CREW PRAMS and Decision Trees

Noam Nisan 1
Laboratory of Computer Science

M.I.T.
Cambridge, MA 02139

ABSTRACT

This paper gives a full characterization of the
time needed to compute a boolean function
on a CREW PRAM with an unlimited
number of processors.

The characterization is given in terms of
a new complexity measure of boolean func-
tions: the “block sensitivity”. This measure
is a generalization of the well know “critical
sensitivity” measure (see [wl, [CDR], [Si]).
The block sensitivity is also shown to relate
to the boolean decision tree complexity, and
the implication is that the decision tree com-
plexity also fully characterizes the CREW
PRAM complexity. This solves an open
problem of w].

Our results imply that changes in the
instruction set of the processors or in the
capacity of the shared memory cells do not
change by more than a constant factor the
time required by a CREW PRAM to com-
pute any boolean function. Moreover, we

1 This work was done while the author was a student in U.C.
Berkeley, supported by a grant from Digital Equipment Corpora-
tion

even show that a seemingly weaker version
of a CREW PRAM, the CROW PRAM
([DR]), can compute functions as quickly as
a general CREW PRAM. This solves an
open problem of [DR].

Finally, our results have implications
regarding the power of randomization in the
boolean decision tree model. We show that
in this model, randomization may only
achieve a polynomial speedup over deter-
ministic computation. This was known for
Las-Vegas randomized computation; we
prove it also for l-sided error computation (a
quadratic bound) and Z-sided error (a cubic
bound).

1. Introduction

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM O-89791 -307-8/89/0005/0327 $1.50

327

1.1. CREW PRAMS
The PRAM (Parall.el Random Access

Machine) is the “standard” model for parallel
computation, In the PRAM model the pro-
cessors communicate via shared memory
cells. We will be interested in the inherent
limitations of this model that are due to its
basic communication mechanism, and will
thus consider the “ideal” PRAM, a model
that has no other constraints,

An Ideal PRAM consists of an
unbounded number of processors and an
unboounded number of common memory
cells which can be read and written by any
processor. Each processor has it’s own local
memory and possibly unlimited computa-
tional power. A PRAM computes a function
in the following manner: The input is placed
in the common memory cells, and then the
computation proceeds in cycles, at each cycle
each processor may read one memory loca-
tion, do any computation using the informa-
tion it knows, and write any information into
one memory cell. Several variants of the
PRAM model have been defined, which
differ from each other in the way they han-
dle memory access conflicts. Perhaps the
most natural variant, and the one we will be
considering is the CREW PRAM. For a
CREW (Concurrent Read Exclusive Write)
PRAM several processors may read from the
same location at the same time, but two or
more processors may never attempt writing
into the same location at the same time.

A key result bounding the power of
Ideal CREW PRAMS is the following
theorem by Cook, Dwork and Reischuk
[CDR]: Computing the OR function on n
variables by a CREW PRAM takes R(logn)
parallel time. This result is tight since any
function can be computed in log n time on
this model. Actually, [CDR] proved a more
general result as they give a lower bound on
the time needed to compute a function on a
CREW PRAM in terms of the function’s

“sensitivity“.
We consider a generalization of the

“sensitivity” measure: the “block sensitivity”.
We show that the [CDR] lower bound can be
extended to block sensitivity, and, moreover,
that the block sensitivity fully characterizes
the complexity on the Ideal CREW PRAM
model. We achieve this result by further
relating the block sensitivity to the decision
tree complexity, and thus we alternatively
characterize the CREW complexity in terms
of the decision tree complexity.

For a boolean function f , let CREW cf)
denote the CREW PRAM complexity of f
(i.e. the time needed to compute f on an
Ideal CREW PRAM with an unlimited
number of processors and memory cells), let
bs (f) denote the block sensitivity of f , and
let D cf) denote the boolean decision tree
complexity off .
Theorem 1:

CREW cf) = O(logbs cf)) = @(log0 (f))

Moreover, the lower bound holds for an
Ideal PRAM, with unlimited computational
power for each processor, and unlimited
capacity of the common memory cells; while
the upper bound requires only reasonable
power for each processor and l-bit memory
cells. As a corollary we get that the compu-
tational power of a single processor, and the
capacity of the common memory cells does
not make a difference in this model (as long
as we do not limit the number of processors,
and ignore uniformity questions).

These results also apply to a weaker
model than the CREW PRAM: the CROW
PRAM (Concurrent Read Owner Write)
introduced by Dymond and Ruzzo [DR]. For
a CROW PRAM, each memory cell is preas-
signed to some processor who is said to
“own” the memory cell. The only processor
who may write into a memory cell is the
owner, although all processors may read it.
This model is clearly a special case of the

328

CREW model, but we show that the parallel tion of f, the algorithm must always be
time needed to compute a function on this correct, no errors are allowed. For one-sided
model is equal (up to a constant factor) to error computation the algorithm must always
the time needed by a CREW PRAM. Let reject any string not in the language, and
CROW (f) be the parallel time need to com- must accept any string in the language with
pute f by an Ideal CROW PRAM. probability of at least l/2 (Here we identify
Theorem 2:

CROW(f) = @(CREW(f))

This result is particularly surprising as it
is not achieved by simulation, and only
applies to functions on a full domain. We
actually show that a simulation result is
impossible by giving a function on a
partial domain that separates these two
models by a factor of log n.

1.2. Boolean decision trees
The Boolean Decision Tree model is

perhaps the the simplest computational
model for general boolean functions. A
deterministic boolean decision tree computes
a boolean function by repeatedly reading
input bits until the function can be deter-
mined from the bits accessed. The decision
of which bit to read at any time may depend
on the previous bits read, and it determined
by them. The only cost associated with this
computation is the number of bits read, all
other computation is free. The cost of an
algorithm is the number of bits read on the
worst case input, and the deterministic com-
plexity of a function is the cost of the best
deterministic algorithm for this function.

the function f with the language (
x If(x)=1)). A two-sided error algorithm
may err in both cases, but must give the
correct answer with probability of at least
314.

This model has been studied extensively
in several contexts. The complexity of graph
properties in this model has been investi-
gated ([Ro], [RV], [KK], [KSS]). The rela-
tion to Oracle Turing machines has been
pointed out several times ([BI], [Ta], [IN]).
It is also related to sublinear time Turing
Machine computations ([IN]). The random-
ized complexity in this model has also been
studied (WI, WI, [W, [Kl, WW.

In this paper we deal with the, power of
randomization in the boolean decision tree
model. Snir, ([Sn], see also [SW-j), first
showed that randomization “helps”: he exhi-
bited a function with deterministic complex-
ity n, but Las-Vegas (zero-error) randomized
complexity of only 0 (n”*753***). Saks and
Wigderson ([SW]) conjecture that this is the
optimal speedup possible by Randomization,
and were able to prove it for a particular
subclass of functions; for general functions
the conjecture is still open. A more general
result by Blum implies some bounds on the
speedup possible by zero -error randomiza-
tion: zero-error randomized decision tree
algorithms can give at most a quadratic
speedup. In this paper we show that even
allowing error, randomization may only give
a polynomial speedup.

A randomized decision tree algorithm is
also allowed to flip coins in order to deter-
mine the next input bit to be accessed. The
cost of an algorithm is the expected number
of locations examined on the worst case
input. The complexity of a function is the
cost of the best algorithm for this function.
We distinguish between three kinds of proba-
bilistic algorithms: zero error, one-sided error
and two-sided error. In zero error computa-

Let R icf) and R2(f) denote the one
sided error and two sided error probabilistic
complexities of f respectively, and D (f) the
deterministic complexity in the boolean deci-
sion tree model. We show that for any func-

329

tion f :

Theorem 3:

Theorem 4:.

D (f)W? 2(f j3

Impagliazzo and Naor [IN] have con-
sidered the uniform analogue of decision
trees. Using our results, and paralleling
some results in [BI], they showed that, if
P=NP, then DTlME(poly-log)=RTIME(poly-
log). Here RTIME(t) is the class of prob-
lems that can be solved in time t on a ran-
domized TM, even allowing bounded 2-sided
error.

2. Sensitivity and block sensitivity
In this section we will discuss the rela-

tionships between several complexity meas-
ures of boolean functions. The relationships
we show here will then have implications
regarding CREW PRAM complexity and
boolean decision trees. The complexity
measures we consider are the “sensitivity “,
the “block sensitivity “, and the “certificate ”
complexity. We will also mention the rela-
tion of these to the boolean decision tree
complexity.
Notation: let w be a boolean string of length
n , let S be any subset of indices, SC (
1 * * * n), then w(‘) means the string w,
with all bits in S flipped. I.e. WC’) differs
from w exactly on S.
Definition: Let f be a boolean function,
and w any input string, and i any index.
We say f is sensitive to Xi on w if
f (w)#f (w (;I). The sensitivity of f on w ,
s, (f), is the number of locations i such that
f is sensitive to Xi on w . The sensitivity of
f , s (f) is the maximum over all w of the
sensitivity off on w.

The sensitivity of a boolean function
has been discussed in the literature: Simon
[Si] shows that every function that depends
on all its variables has sensitivity of at least
Q(logn). Turan [Tu] showed that all graph
properties have sensitivity of at least R(v).
Cook, Dwork, and Reishuk [CDR], use the
sensitivity of a function to give lower bounds
for the CREW PRAM complexity. What we
do here is consider a generalization of the
sensitivity by allowing several bits to be
flipped together to change the value of the
function.
Definition: Let f be a boolean function, w
any boolean string, and S any subset of
indices. We say that f is sensitive to S on
w if f (W)?f (w@)). The block sensitivity
of f on w, bs, cf) is the largest number t
such that there exists t disjoint sets
&,&, * - * ,S, such that for all lsi It, f is
sensitive to Si on w. The block sensitivity
of f , bs (f) is the maximum over all w of
the block sensitivity off on w .

Our main lemma will be the relation
between the block sensitivity and the
certificate complexity:
Definition: Let f be a boolean function, and
w any input string. A l-certificate (O-
certificate) for f is an assignment to some
subset of the variables that forces the value
of f to 1 (0). The certificate complexity
of f on w , C,,, (f), is the size of the smal-
lest certificate that agrees with w . The
certificate complexity of f , C(f), is the
maximum over all w of C, (f).
The certificate complexity of a function
describes how many bits of the input must
be revealed to you (by someone who knows
all the input bits) in order to convince you of
the value of the function. It may also be
viewed as the nondeterministic complexity in
the boolean decision tree model. The l-
certificates of f are the terms of f , and the
O-certificates of f are the terms of the com-

330

plement off .
We will first mention the obvious rela-

tions between them (see [WI):
Proposition 2.1: For any f :

Proof: The left inequality follows directly
from the definitions, The right inequality fol-
lows from the fact that for any input w, any
certificate for w must include at least one
variable from each set f is sensitive to on
w. n

It turns out that for a large subclass of
functions these three measures of functions
are really equal:
Proposition 2.2: For all monotone functions
f:

s(f)=bs(f)=C(f)
Proof: It is enough to show that
C v)Q (f). Consider a minimal certificate
of size C (f), w.l.0.g. assume it is a l-
certificate. The string which has 1 in every
bit of the certificate and 0 in all other places,
will have sensitivity of C (f). The reason is
that turning off any of the l-bits will change
the value of function to 0. n
The following example shows that for gen-
eral, non-monotone, functions the inequalities
may be strict:
Example 2.3: Let f be the symmetric func-
tion on n variables defined to be true iff
exactly n /2 or n /2+1 of the inputs are 1 (for
simplicity assume that 4 divides n .) for this
function we get that:

s(f)=; bs (f)=f C(f)=n-1

[Ru] exhibits a function with a quadratic gap
between the sensitivity and the block sensi-
tivity; it is still an open problem whether the
gap may be bigger (superpolynomial?).
[WZ] exhibit a function with a polynomial
(but subquadratic) gap between the block

sensitivity and the certificate complexity.
Our main lemma shows that the certificate
complexity may only be polynomially bigger
than the block sensitivity.
Lemma 2.4: For all boolean functions f :

bs (f)2m

Proof: Let w be an input achieving the
certificate complexity, i.e. every certificate
for w is of length of at least C of). Let S1
be some minimal set of indices such that
fWff(W (‘I)), let S2 be another minimal set
disjoint from S1, such that f(~)#f(w(~'),
and in general we pick Si to be a minimal
set disjoint from all previous sets picked
such that f (w)#f (w(“)). We continue pick-
ing these sets until at a certain point no such
set exists, say the last set was S,.

The union of all sets has to be a
certificate for w, since otherwise we could
have picked yet another set that changes the
value of the function when flipped. Thus we
get that:

t
ClSiI 2Cc.f)
i=l

Now we can bound the block sensitivity off
in two ways:
(1) f is sensitive to each Si on w , thus
bs, (f)2 t .
(2) Since for each i, Si is minimal then on
,w f is sensitive to each element in Si,
thus bsw~~i,~)2 I Si I .

So if t >m then (1) gives us the
desired result, otherwise at least one of the
sets has to be of size larger than m and
(2) will give us the result. n

We conclude this section by mentioning
the relation between the certificate complex-
ity, and the boolean decision tree complexity.
This result was independently discovered by
several people, perhaps first by Blum. ([BI])

331

Lemma 2.5:

C(f) 2 D(f) 2 (C(f))2

3. PRAM complexity

3.1. CREW PRAMS
Let CREW (f) denote the parallel time

needed to compute f on a CREW PRAM
with an unbounded number of processors,
each given arbitrary power. [CDR] gave a
general lower bound for CREW(f) in terms
of the sensitivity off . They showed that for
all f :

CREW (f)2log,s (f)

where a is some constant less than 5.
We first note that this result may be

strengthened to give a bound in terms of the
block sensitivity.
Lemma 3.1: for all f :

CREW cf’)rlog,bs (f)

Proof: Let w be an input achieving the
block sensitivity, and let S1,S2, * . - ,S, be
the sets f is sensitive to on w. We define a
new function f’ (X 1X2, + . * X,) as follows:
f (Xl> * * - Jr,) is equal to f(w’) where w’ is
derived from w by flipping all the bits in the
set Si for each i such that Xi=l. It is easy
to see that f’ instantly reduces to f on a
CREW PRAM, and that the sensitivity of f’
on the input 000...000 is C. thus

CREW (f) 2 CREW (f’) 2 log,s (f’) 2

2 log,t = log&s (f)

I
The surprising fact is that lemma 3.1

actually gives a tight lower bound for every
function f ! That will be shown using deci-
sion trees.
Lemma 3.2: A CREW PRAM can simulate
a boolean decision tree of depth d in log2d

time steps (using 2d processors).
Proof: We will have a processor for each
node of the decision tree. In the first step
each processor will read the input variable
that belongs to its node and set up a pointer
to point to the node that should be followed
by this node according to the value of the
input. From now on in each step all the pro-
cessors will use the standard “pointer dou-
bling” method, and repeatedly copy the
pointer of the node they’re pointing to into
their own pointer. It is easy to see that after
log2d steps the root will point to the last leaf
reached in the computation. I

The only thing left to note is that the
upper and lower bound that we gave are
actually to within a constant factor from each
other.
Theorem 1: For all f :

CREW cf) = @(log D (f)) = @(log bs (f))

Proof: Lemmas 2.4 and 2.5 show that D (f)
and bs (f) am polynomially related to each
other; thus the bounds given in lemmas 3.1
and 3.2 are within a constant factor of each
other. n

It should be noted that the upper bound
simulation can be carried out by processors
limited to a reasonable instruction set, and on
memory cells that contain only 1 bit, while
the lower bound derived in [CDR] holds
regardless of the instruction set of the pro-
cessors or the capacity of the memory cells.
As a corollary we get that this model is
insensitive to these issues as long as the
number of processors is not limited.

3.2. CROW PRAMS
An extra bonus to be got from the pre-

vious proof is the equivalence in computa-
tion time between CREW PRAMS and the
seemingly weaker CROW PRAMS. (The
connection between CROW PRAMS and
decision trees was also observed by [Ra]).

332

Let CROW(f) be the time needed to com-
pute f on an ideal CROW PRAM (with an
unlimited number of processors) then we get:
Theorem 2: for any boolean function f :

CROW (f)=O(CREW t-f-))

Proof: The simulation of decision trees
described in the proof to lemma 3.2 can also
be carried out by a CROW PRAM. I

It is interesting to note that this result
does not yield a simulation. The relation
between CREW PRAM complexity and deci-
sion trees is a global one; there does not
exist a correspondence between specific
stages of the computation and parts of the
decision tree. We can actually show that a
CROW PRAM can not simulate a CREW
PRAM step is a constant time! We exhibit a
problem on a partial domain which
separates these two models. Consider the
following “promise” problem: Compute the
OR of n input bits when you are “promised”
that at most one input bit may be 1. A
CREW PRAM with n processors can com-
pute this function in 1 step; a CROW
PRAM, however, can not compute this func-
tion quickly:
Lemma 2.3: A CROW PRAM requires time
Q(Zog n) to compute the OR function even
on this partial domain.
Proof: We say a processor p depends on
input location i at time t, if its state on the
input consisting of all zeroes is different than
its state on the input consisting of a 1 in
location i and zeroes everywhere else, at
time t. (The processors’ state includes its
private memory as well as all memory
owned by it.) A simple induction shows that
at time t each processor can depend on at
most 2’ locations. this is so since in one
time unit a processor may only read 1
memory cell, and after this time unit it can
depend on at most anything it depended on
in the last time step and anything the proces-

sor who owned this memory cell depended
on last time step. Since the answer depends
on all input bits, we get that 2’2n when the
algorithm terminates and the lemma follows.
n

This lemma does not contradict theorem
2, since theorem 2 only holds for functions
on full domains.

4. Probabilistic vs. Deterministic decision
trees

We first relate the one-sided error ran-
domized complexity of a function to its
deterministic complexity.
Theorem 3: For any boolean function f :

This theorem will follow from the following
more general lemma. Let C(l)(f) denote the
certificate complexity of f limited to the l-
instances, i.e. the maximum of C, (f) over
all w&f-l(l).
Lemma 4.1: For any boolean function f :

D tj)12C(‘)cf)Rzcf)

Proof (Sketch): We will build a deterministic
algorithm for f . The deterministic algorithm
for f will start by picking any l-certificate
off of size at most C’(f) and asking all the
variables in it. After this first step we are
left with an induced function on the remain-
ing variables, and the algorithm will recur-
sively solve this induced problem. Our
claim is that after at most Ur2cf) such
stages the induced function would be a con-
stant.

consider the randomized algorithm for
f running on any O-instance, w. The proba-
bility that this algorithm queries some vari-
able in the l-certificate must be at least l/2.
The reason is that without querying some bit
in the l-certificate, the algorithm can not dis-

333

tinguish between w, for which f is 0, and w
with all the bits in the l-certificate flipped to
conform with the l-certificate for which f is
1.

This shows that the ftist stage had
already “shed” away l/2. of a query from the
expected running time of any O-instance.
Thus, after 2R 2(f) stages the running time
for any O-instance must be 0, so the function
must be a constant. n

The previous techniques do not carry
over to the 2-sided error case. In order to
give results here we will need to use our
results concerning the block sensitivity. We
first show that the block sensitivity can serve
as a lower bound for the two-sided error ran-
domized complexity of a function.
Lemma 4.2: For all boolean functions f :

Proof: Let w be the input that achieves the
block sensitivity, and let S $2, * * * ,St be
disjoint sets s.t. f is sensitive to Si on w.
For each lSilt, any randomized algorithm
running on w must query some variable in
Si with probability of at least l/2, since oth-
erwise it can not distinguish between w and
wcsi). Thus the total expected time has to be
at least t/2. n

At this point, by combining lemmas 2.4,
4.1 and 4.2, we immediately get the follow-
ing theorem:
Theorem 4: For any function f :

D (f K8R 2(f I3

5. Acknowledgements
I would like to thank Russell

Impagliazzo for his contributions to the
paper, Amos Fiat, Valerie King and Moni
Naor for many helpful discussions and Avi
Wigderson for pointing out the application to

CROW PRAMS.

6. References

WI

[CDRI

[DRI

[INI

WI

WSI

I34
[Rol

VW

WI

M. Blum and R. Impagliazzo, “Gen-
eric oracles and oracle classes”, 28th
FOCS, 1987.
S. Cook, C. Dwork and R. Reischuk,
“Upper and lower bounds for paral-
lel random access machines without
simultaneous writes”, Siam J. on
Computing, Feb 1986.
P.W. Dymond and W.L. Ruzzo,
“Parallel RAMS with owned global
memory and deterministic context-
free language recognition”, ICALP,
1986.
R. Impagliazzo and M. Naor, “Deci-
sion trees and Downward closures”,
Structure in complexity conference,
1988.
V. King, “The randomized complex-
ity of graph properties”, Manuscript,
1987.
D. J. Kleitman and K. J. Kwiat-
kowski, “Further results on the
Aanderaa-Rosenberg conjecture”, J.
Combinatorial Theory (B) 28, 1980.
J. Kahn, M. Saks and D. Sturtevant,
“A topological approach to evasive-
ness”, Combinatorics 4, 1984.
P. Ragde, personal communication.
A. L. Rosenberg, “On the time
required to recognize properties of
graphs: a problem”, SIGACT news 5
#4, 1973.
D. Rubinstein, personal communica-
tion.
R. Rivest and S. Vuillemin, “On
recognizing graph properties from
adjacency matrices”, Theor. Comp.
Sci. 3, 1978.

334

WI

Pnl

wrl

WI

U’ul

WI

IYa

WI

WI

H. U. Simon, “A tight a(log log n)
bound on the time for parallel
RAM’s to compute nondegenerate
boolean functions”, FCT’83, Lecture
notes in Comp. Sci. 158, 1983.
M. Snir, “Lower bounds for proba-
bilistic linear decision trees”, Theor.
Comp. Sci. 38, 1985.
M. Saks and A. Wigderson, “Proba-
bilistic boolean decision trees and
the complexity of evaluating game
trees”, 27th FOCS, 1986.
G. Tardos, “Query complexity, or
Why is it difficult to seperate
NPAncoNPA from PA by a ran-
dom oracle A ‘I, manuscript, 1987.
G. Turan, “The critical complexity
of graph properties”, Information
Processing letters, 1984.
I. Wegener, “The complexity of
Boolean functions”, pp. 373-410,
John Wiley & sons and B.G.
Teubner, Stuttgard, 1987.
I. Wegener and L. Azdori, “A note
on the relation between critical and
sensitive complexity”, manuscript.
A. Yao, Probabilistic computations:
towards a unified measure of com-
plexity”, 18th FOCS, 1977.
A. Yao, “Lower bounds to random-
ized algorithms for graph proper-
ties”, 28th FOCS, 1987.

335

