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ABSTRACT 

This paper gives a full characterization of the 
time needed to compute a boolean function 
on a CREW PRAM with an unlimited 
number of processors. 

The characterization is given in terms of 
a new complexity measure of boolean func- 
tions: the “block sensitivity”. This measure 
is a generalization of the well know “critical 
sensitivity” measure (see [wl, [CDR], [Si]). 
The block sensitivity is also shown to relate 
to the boolean decision tree complexity, and 
the implication is that the decision tree com- 
plexity also fully characterizes the CREW 
PRAM complexity. This solves an open 
problem of w]. 

Our results imply that changes in the 
instruction set of the processors or in the 
capacity of the shared memory cells do not 
change by more than a constant factor the 
time required by a CREW PRAM to com- 
pute any boolean function. Moreover, we 

1 This work was done while the author was a student in U.C. 
Berkeley, supported by a grant from Digital Equipment Corpora- 
tion 

even show that a seemingly weaker version 
of a CREW PRAM, the CROW PRAM 
([DR]), can compute functions as quickly as 
a general CREW PRAM. This solves an 
open problem of [DR]. 

Finally, our results have implications 
regarding the power of randomization in the 
boolean decision tree model. We show that 
in this model, randomization may only 
achieve a polynomial speedup over deter- 
ministic computation. This was known for 
Las-Vegas randomized computation; we 
prove it also for l-sided error computation (a 
quadratic bound) and Z-sided error (a cubic 
bound). 

1. Introduction 
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1.1. CREW PRAMS 
The PRAM (Parall.el Random Access 

Machine) is the “standard” model for parallel 
computation, In the PRAM model the pro- 
cessors communicate via shared memory 
cells. We will be interested in the inherent 
limitations of this model that are due to its 
basic communication mechanism, and will 
thus consider the “ideal” PRAM, a model 
that has no other constraints, 

An Ideal PRAM consists of an 
unbounded number of processors and an 
unboounded number of common memory 
cells which can be read and written by any 
processor. Each processor has it’s own local 
memory and possibly unlimited computa- 
tional power. A PRAM computes a function 
in the following manner: The input is placed 
in the common memory cells, and then the 
computation proceeds in cycles, at each cycle 
each processor may read one memory loca- 
tion, do any computation using the informa- 
tion it knows, and write any information into 
one memory cell. Several variants of the 
PRAM model have been defined, which 
differ from each other in the way they han- 
dle memory access conflicts. Perhaps the 
most natural variant, and the one we will be 
considering is the CREW PRAM. For a 
CREW (Concurrent Read Exclusive Write) 
PRAM several processors may read from the 
same location at the same time, but two or 
more processors may never attempt writing 
into the same location at the same time. 

A key result bounding the power of 
Ideal CREW PRAMS is the following 
theorem by Cook, Dwork and Reischuk 
[CDR]: Computing the OR function on n 
variables by a CREW PRAM takes R(logn ) 
parallel time. This result is tight since any 
function can be computed in log n time on 
this model. Actually, [CDR] proved a more 
general result as they give a lower bound on 
the time needed to compute a function on a 
CREW PRAM in terms of the function’s 

“sensitivity“. 
We consider a generalization of the 

“sensitivity” measure: the “block sensitivity”. 
We show that the [CDR] lower bound can be 
extended to block sensitivity, and, moreover, 
that the block sensitivity fully characterizes 
the complexity on the Ideal CREW PRAM 
model. We achieve this result by further 
relating the block sensitivity to the decision 
tree complexity, and thus we alternatively 
characterize the CREW complexity in terms 
of the decision tree complexity. 

For a boolean function f , let CREW cf ) 
denote the CREW PRAM complexity of f 
(i.e. the time needed to compute f on an 
Ideal CREW PRAM with an unlimited 
number of processors and memory cells), let 
bs (f ) denote the block sensitivity of f , and 
let D cf ) denote the boolean decision tree 
complexity off . 
Theorem 1: 

CREW cf ) = O(logbs cf )) = @(log0 (f )) 

Moreover, the lower bound holds for an 
Ideal PRAM, with unlimited computational 
power for each processor, and unlimited 
capacity of the common memory cells; while 
the upper bound requires only reasonable 
power for each processor and l-bit memory 
cells. As a corollary we get that the compu- 
tational power of a single processor, and the 
capacity of the common memory cells does 
not make a difference in this model (as long 
as we do not limit the number of processors, 
and ignore uniformity questions). 

These results also apply to a weaker 
model than the CREW PRAM: the CROW 
PRAM (Concurrent Read Owner Write) 
introduced by Dymond and Ruzzo [DR]. For 
a CROW PRAM, each memory cell is preas- 
signed to some processor who is said to 
“own” the memory cell. The only processor 
who may write into a memory cell is the 
owner, although all processors may read it. 
This model is clearly a special case of the 
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CREW model, but we show that the parallel tion of f, the algorithm must always be 
time needed to compute a function on this correct, no errors are allowed. For one-sided 
model is equal (up to a constant factor) to error computation the algorithm must always 
the time needed by a CREW PRAM. Let reject any string not in the language, and 
CROW (f ) be the parallel time need to com- must accept any string in the language with 
pute f by an Ideal CROW PRAM. probability of at least l/2 (Here we identify 
Theorem 2: 

CROW(f) = @(CREW(f)) 

This result is particularly surprising as it 
is not achieved by simulation, and only 
applies to functions on a full domain. We 
actually show that a simulation result is 
impossible by giving a function on a 
partial domain that separates these two 
models by a factor of log n. 

1.2. Boolean decision trees 
The Boolean Decision Tree model is 

perhaps the the simplest computational 
model for general boolean functions. A 
deterministic boolean decision tree computes 
a boolean function by repeatedly reading 
input bits until the function can be deter- 
mined from the bits accessed. The decision 
of which bit to read at any time may depend 
on the previous bits read, and it determined 
by them. The only cost associated with this 
computation is the number of bits read, all 
other computation is free. The cost of an 
algorithm is the number of bits read on the 
worst case input, and the deterministic com- 
plexity of a function is the cost of the best 
deterministic algorithm for this function. 

the function f with the language ( 
x If(x)=1 )). A two-sided error algorithm 
may err in both cases, but must give the 
correct answer with probability of at least 
314. 

This model has been studied extensively 
in several contexts. The complexity of graph 
properties in this model has been investi- 
gated ([Ro], [RV], [KK], [KSS]). The rela- 
tion to Oracle Turing machines has been 
pointed out several times ([BI], [Ta], [IN]). 
It is also related to sublinear time Turing 
Machine computations ([IN]). The random- 
ized complexity in this model has also been 
studied (WI, WI, [W, [Kl, WW. 

In this paper we deal with the, power of 
randomization in the boolean decision tree 
model. Snir, ([Sn], see also [SW-j), first 
showed that randomization “helps”: he exhi- 
bited a function with deterministic complex- 
ity n, but Las-Vegas (zero-error) randomized 
complexity of only 0 (n”*753***). Saks and 
Wigderson ([SW]) conjecture that this is the 
optimal speedup possible by Randomization, 
and were able to prove it for a particular 
subclass of functions; for general functions 
the conjecture is still open. A more general 
result by Blum implies some bounds on the 
speedup possible by zero -error randomiza- 
tion: zero-error randomized decision tree 
algorithms can give at most a quadratic 
speedup. In this paper we show that even 
allowing error, randomization may only give 
a polynomial speedup. 

A randomized decision tree algorithm is 
also allowed to flip coins in order to deter- 
mine the next input bit to be accessed. The 
cost of an algorithm is the expected number 
of locations examined on the worst case 
input. The complexity of a function is the 
cost of the best algorithm for this function. 
We distinguish between three kinds of proba- 
bilistic algorithms: zero error, one-sided error 
and two-sided error. In zero error computa- 

Let R icf ) and R2(f ) denote the one 
sided error and two sided error probabilistic 
complexities of f respectively, and D (f ) the 
deterministic complexity in the boolean deci- 
sion tree model. We show that for any func- 
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tion f : 

Theorem 3: 

Theorem 4:. 

D (f )W? 2(f j3 

Impagliazzo and Naor [IN] have con- 
sidered the uniform analogue of decision 
trees. Using our results, and paralleling 
some results in [BI], they showed that, if 
P=NP, then DTlME(poly-log)=RTIME(poly- 
log). Here RTIME(t) is the class of prob- 
lems that can be solved in time t on a ran- 
domized TM, even allowing bounded 2-sided 
error. 

2. Sensitivity and block sensitivity 
In this section we will discuss the rela- 

tionships between several complexity meas- 
ures of boolean functions. The relationships 
we show here will then have implications 
regarding CREW PRAM complexity and 
boolean decision trees. The complexity 
measures we consider are the “sensitivity “, 
the “block sensitivity “, and the “certificate ” 
complexity. We will also mention the rela- 
tion of these to the boolean decision tree 
complexity. 
Notation: let w be a boolean string of length 
n , let S be any subset of indices, SC ( 
1 * * * n ), then w(‘) means the string w, 
with all bits in S flipped. I.e. WC’) differs 
from w exactly on S. 
Definition: Let f be a boolean function, 
and w any input string, and i any index. 
We say f is sensitive to Xi on w if 
f (w )#f (w (;I). The sensitivity of f on w , 
s, (f ), is the number of locations i such that 
f is sensitive to Xi on w . The sensitivity of 
f , s (f ) is the maximum over all w of the 
sensitivity off on w. 

The sensitivity of a boolean function 
has been discussed in the literature: Simon 
[Si] shows that every function that depends 
on all its variables has sensitivity of at least 
Q(logn ). Turan [Tu] showed that all graph 
properties have sensitivity of at least R(v). 
Cook, Dwork, and Reishuk [CDR], use the 
sensitivity of a function to give lower bounds 
for the CREW PRAM complexity. What we 
do here is consider a generalization of the 
sensitivity by allowing several bits to be 
flipped together to change the value of the 
function. 
Definition: Let f be a boolean function, w 
any boolean string, and S any subset of 
indices. We say that f is sensitive to S on 
w if f (W )?f (w@)). The block sensitivity 
of f on w, bs, cf ) is the largest number t 
such that there exists t disjoint sets 
&,&, * - * ,S, such that for all lsi It, f is 
sensitive to Si on w. The block sensitivity 
of f , bs (f ) is the maximum over all w of 
the block sensitivity off on w . 

Our main lemma will be the relation 
between the block sensitivity and the 
certificate complexity: 
Definition: Let f be a boolean function, and 
w any input string. A l-certificate (O- 
certificate) for f is an assignment to some 
subset of the variables that forces the value 
of f to 1 (0). The certificate complexity 
of f on w , C,,, (f ), is the size of the smal- 
lest certificate that agrees with w . The 
certificate complexity of f , C(f), is the 
maximum over all w of C, (f ). 
The certificate complexity of a function 
describes how many bits of the input must 
be revealed to you (by someone who knows 
all the input bits) in order to convince you of 
the value of the function. It may also be 
viewed as the nondeterministic complexity in 
the boolean decision tree model. The l- 
certificates of f are the terms of f , and the 
O-certificates of f are the terms of the com- 
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plement off . 
We will first mention the obvious rela- 

tions between them (see [WI): 
Proposition 2.1: For any f : 

Proof: The left inequality follows directly 
from the definitions, The right inequality fol- 
lows from the fact that for any input w, any 
certificate for w must include at least one 
variable from each set f is sensitive to on 
w. n 

It turns out that for a large subclass of 
functions these three measures of functions 
are really equal: 
Proposition 2.2: For all monotone functions 
f: 

s(f)=bs(f)=C(f) 
Proof: It is enough to show that 
C v)Q (f ). Consider a minimal certificate 
of size C (f ), w.l.0.g. assume it is a l- 
certificate. The string which has 1 in every 
bit of the certificate and 0 in all other places, 
will have sensitivity of C (f ). The reason is 
that turning off any of the l-bits will change 
the value of function to 0. n 
The following example shows that for gen- 
eral, non-monotone, functions the inequalities 
may be strict: 
Example 2.3: Let f be the symmetric func- 
tion on n variables defined to be true iff 
exactly n /2 or n /2+1 of the inputs are 1 (for 
simplicity assume that 4 divides n .) for this 
function we get that: 

s(f)=; bs (f )=f C(f)=n-1 

[Ru] exhibits a function with a quadratic gap 
between the sensitivity and the block sensi- 
tivity; it is still an open problem whether the 
gap may be bigger (superpolynomial?). 
[WZ] exhibit a function with a polynomial 
(but subquadratic) gap between the block 

sensitivity and the certificate complexity. 
Our main lemma shows that the certificate 
complexity may only be polynomially bigger 
than the block sensitivity. 
Lemma 2.4: For all boolean functions f : 

bs (f )2m 

Proof: Let w be an input achieving the 
certificate complexity, i.e. every certificate 
for w is of length of at least C of ). Let S1 
be some minimal set of indices such that 
fWff(W (‘I)), let S2 be another minimal set 
disjoint from S1, such that f(~)#f(w(~'), 
and in general we pick Si to be a minimal 
set disjoint from all previous sets picked 
such that f (w )#f (w(“)). We continue pick- 
ing these sets until at a certain point no such 
set exists, say the last set was S,. 

The union of all sets has to be a 
certificate for w, since otherwise we could 
have picked yet another set that changes the 
value of the function when flipped. Thus we 
get that: 

t 
ClSiI 2Cc.f) 
i=l 

Now we can bound the block sensitivity off 
in two ways: 
(1) f is sensitive to each Si on w , thus 
bs, (f )2 t . 
(2) Since for each i, Si is minimal then on 
,w f is sensitive to each element in Si, 
thus bsw~~i,~ )2 I Si I . 

So if t >m then (1) gives us the 
desired result, otherwise at least one of the 
sets has to be of size larger than m and 
(2) will give us the result. n 

We conclude this section by mentioning 
the relation between the certificate complex- 
ity, and the boolean decision tree complexity. 
This result was independently discovered by 
several people, perhaps first by Blum. ([BI]) 
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Lemma 2.5: 

C(f) 2 D(f) 2 (C(f))2 

3. PRAM complexity 

3.1. CREW PRAMS 
Let CREW (f ) denote the parallel time 

needed to compute f on a CREW PRAM 
with an unbounded number of processors, 
each given arbitrary power. [CDR] gave a 
general lower bound for CREW(f ) in terms 
of the sensitivity off . They showed that for 
all f : 

CREW (f )2log,s (f ) 

where a is some constant less than 5. 
We first note that this result may be 

strengthened to give a bound in terms of the 
block sensitivity. 
Lemma 3.1: for all f : 

CREW cf’ )rlog,bs (f ) 

Proof: Let w be an input achieving the 
block sensitivity, and let S1,S2, * . - ,S, be 
the sets f is sensitive to on w. We define a 
new function f’ (X 1X2, + . * X,) as follows: 
f (Xl> * * - Jr,) is equal to f(w’) where w’ is 
derived from w by flipping all the bits in the 
set Si for each i such that Xi=l. It is easy 
to see that f’ instantly reduces to f on a 
CREW PRAM, and that the sensitivity of f’ 
on the input 000...000 is C. thus 

CREW (f ) 2 CREW (f’) 2 log,s (f’) 2 

2 log,t = log&s (f ) 

I 
The surprising fact is that lemma 3.1 

actually gives a tight lower bound for every 
function f ! That will be shown using deci- 
sion trees. 
Lemma 3.2: A CREW PRAM can simulate 
a boolean decision tree of depth d in log2d 

time steps (using 2d processors). 
Proof: We will have a processor for each 
node of the decision tree. In the first step 
each processor will read the input variable 
that belongs to its node and set up a pointer 
to point to the node that should be followed 
by this node according to the value of the 
input. From now on in each step all the pro- 
cessors will use the standard “pointer dou- 
bling” method, and repeatedly copy the 
pointer of the node they’re pointing to into 
their own pointer. It is easy to see that after 
log2d steps the root will point to the last leaf 
reached in the computation. I 

The only thing left to note is that the 
upper and lower bound that we gave are 
actually to within a constant factor from each 
other. 
Theorem 1: For all f : 

CREW cf ) = @(log D (f )) = @(log bs (f )) 

Proof: Lemmas 2.4 and 2.5 show that D (f ) 
and bs (f ) am polynomially related to each 
other; thus the bounds given in lemmas 3.1 
and 3.2 are within a constant factor of each 
other. n 

It should be noted that the upper bound 
simulation can be carried out by processors 
limited to a reasonable instruction set, and on 
memory cells that contain only 1 bit, while 
the lower bound derived in [CDR] holds 
regardless of the instruction set of the pro- 
cessors or the capacity of the memory cells. 
As a corollary we get that this model is 
insensitive to these issues as long as the 
number of processors is not limited. 

3.2. CROW PRAMS 
An extra bonus to be got from the pre- 

vious proof is the equivalence in computa- 
tion time between CREW PRAMS and the 
seemingly weaker CROW PRAMS. (The 
connection between CROW PRAMS and 
decision trees was also observed by [Ra]). 
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Let CROW(f) be the time needed to com- 
pute f on an ideal CROW PRAM (with an 
unlimited number of processors) then we get: 
Theorem 2: for any boolean function f : 

CROW (f )=O(CREW t-f-)) 

Proof: The simulation of decision trees 
described in the proof to lemma 3.2 can also 
be carried out by a CROW PRAM. I 

It is interesting to note that this result 
does not yield a simulation. The relation 
between CREW PRAM complexity and deci- 
sion trees is a global one; there does not 
exist a correspondence between specific 
stages of the computation and parts of the 
decision tree. We can actually show that a 
CROW PRAM can not simulate a CREW 
PRAM step is a constant time! We exhibit a 
problem on a partial domain which 
separates these two models. Consider the 
following “promise” problem: Compute the 
OR of n input bits when you are “promised” 
that at most one input bit may be 1. A 
CREW PRAM with n processors can com- 
pute this function in 1 step; a CROW 
PRAM, however, can not compute this func- 
tion quickly: 
Lemma 2.3: A CROW PRAM requires time 
Q(Zog n ) to compute the OR function even 
on this partial domain. 
Proof: We say a processor p depends on 
input location i at time t, if its state on the 
input consisting of all zeroes is different than 
its state on the input consisting of a 1 in 
location i and zeroes everywhere else, at 
time t. (The processors’ state includes its 
private memory as well as all memory 
owned by it.) A simple induction shows that 
at time t each processor can depend on at 
most 2’ locations. this is so since in one 
time unit a processor may only read 1 
memory cell, and after this time unit it can 
depend on at most anything it depended on 
in the last time step and anything the proces- 

sor who owned this memory cell depended 
on last time step. Since the answer depends 
on all input bits, we get that 2’2n when the 
algorithm terminates and the lemma follows. 
n 

This lemma does not contradict theorem 
2, since theorem 2 only holds for functions 
on full domains. 

4. Probabilistic vs. Deterministic decision 
trees 

We first relate the one-sided error ran- 
domized complexity of a function to its 
deterministic complexity. 
Theorem 3: For any boolean function f : 

This theorem will follow from the following 
more general lemma. Let C(l)(f ) denote the 
certificate complexity of f limited to the l- 
instances, i.e. the maximum of C, (f ) over 
all w&f-l(l). 
Lemma 4.1: For any boolean function f : 

D tj)12C(‘)cf)Rzcf) 

Proof (Sketch): We will build a deterministic 
algorithm for f . The deterministic algorithm 
for f will start by picking any l-certificate 
off of size at most C’(f ) and asking all the 
variables in it. After this first step we are 
left with an induced function on the remain- 
ing variables, and the algorithm will recur- 
sively solve this induced problem. Our 
claim is that after at most Ur2cf ) such 
stages the induced function would be a con- 
stant. 

consider the randomized algorithm for 
f running on any O-instance, w. The proba- 
bility that this algorithm queries some vari- 
able in the l-certificate must be at least l/2. 
The reason is that without querying some bit 
in the l-certificate, the algorithm can not dis- 
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tinguish between w, for which f is 0, and w 
with all the bits in the l-certificate flipped to 
conform with the l-certificate for which f is 
1. 

This shows that the ftist stage had 
already “shed” away l/2. of a query from the 
expected running time of any O-instance. 
Thus, after 2R 2(f ) stages the running time 
for any O-instance must be 0, so the function 
must be a constant. n 

The previous techniques do not carry 
over to the 2-sided error case. In order to 
give results here we will need to use our 
results concerning the block sensitivity. We 
first show that the block sensitivity can serve 
as a lower bound for the two-sided error ran- 
domized complexity of a function. 
Lemma 4.2: For all boolean functions f : 

Proof: Let w be the input that achieves the 
block sensitivity, and let S $2, * * * ,St be 
disjoint sets s.t. f is sensitive to Si on w. 
For each lSilt, any randomized algorithm 
running on w must query some variable in 
Si with probability of at least l/2, since oth- 
erwise it can not distinguish between w and 
wcsi). Thus the total expected time has to be 
at least t/2. n 

At this point, by combining lemmas 2.4, 
4.1 and 4.2, we immediately get the follow- 
ing theorem: 
Theorem 4: For any function f : 

D (f K8R 2(f I3 
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