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Abstract

We analyze the communication burden of surplus-maximizing allocations. We

study both the continuous and discrete models of communication, measuring its

burden with the dimensionality of the message space and the number of transmitted

bits, respectively. In both cases, we offer a lower bound on the amount of com-

munication. This bound is applied to the problem of allocating L heterogeneous

objects among N agents, whose valuations are (i) unrestricted, (ii) submodular, or

(iii) homogeneous in objects. In cases (i) and (ii), efficiency requires exponential

communication in L. Furthermore, in case (i), polynomial communication in L

cannot ensure a higher surplus than selling all objects as a bundle. On the other

hand, in case (iii), exact efficiency requires the transmission of L numbers, but can

be approximated arbitrarily closely using only O(logL) bits. When a Walrasian

equilibrium with per-item prices exists, efficiency is achieved with deterministic

communication that is polynomial in L.
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1 Introduction

We have recently seen great interest in so-called combinatorial auctions, which allo-

cate heterogeneous indivisible items among bidders whose preferences for combinations

of items can exhibit complementarity or substitutability (see, e.g., Vohra and de Vries

(2000) for an overview). The objective of an auction is to elicit enough information

about bidders’ preferences so as to realize an efficient or approximately efficient alloca-

tion. Recent important applications include auctions of spectrum licenses and online

procurement.

The mechanism design literature has examined the bidders’ incentives to reveal their

valuations truthfully, using the Revelation Principle to focus on direct revelation mecha-

nisms. For example, the Vickrey-Groves-Clarke direct revelation mechanism implements

the efficient allocation and is incentive-compatible in the private-value environment. At

the same time, it has been recognized that the full revelation of bidders’ preferences may

require a prohibitive amount of communication. Indeed, every bidder has a valuation for

each subset of the items, and the number of such subsets is exponential in the number of

objects. With 30 items, full revelation of such preferences would require the communi-

cation of more than one billion numbers, which is beyond the capabilities of any human

or machine.1

Recognition of the communication problem has prompted researchers to examine the

properties of simpler mechanisms, which do not fully reveal valuations. For example,

auctions that quote only per-item prices were shown to be efficient in some restrictive

settings (Gul and Stacchetti (2000), Milgrom (2000)). Also, ascending-bid auctions have

been examined, in the hope of economizing on communication by asking bidders to

announce their valuations only for the subsets revealed to be relevant in previous bidding

(Ausubel and Milgrom (2001), Bikhchandani et al. (2001)). However, until now there

has been no analysis of the minimum amount of communication required to achieve or

1Even if it is known a priori that the bidder is not interested in more than, say, six items, full

revelation would require the communication of more than half a million numbers (
¡
30
6

¢
).
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approximate efficiency. The present paper closes this gap, identifying the communication

burden of the problem of implementing efficient or approximately efficient allocations.

We analyze the communication problem using techniques developed in parallel in

economics and computer science.2 In economics, these techniques were developed in the

literature on the dimensionality of message spaces, originated by Hurwicz (1960) and

Mount and Reiter (1974). This literature measures the communication burden of an

allocation problem with the number of real variables that need to be announced to verify

that a desired allocation is implemented. The key achievement of that literature is a

formalization of Hayek’s (1945) idea that in standard “convex” environments, the Wal-

rasian mechanism is “informationally efficient,” i.e., it realizes Pareto efficient allocations

with the least amount of communication. The Walrasian mechanism involves only the

announcement of prices, along with the allocation, which is much more economical than

full revelation of agents’ preferences. In nonconvex environments, however, a Walrasian

equilibrium with linear prices need not exist, in which case much more extensive commu-

nication may be needed (see Calsamiglia (1977) for an early example). The problem of

combinatorial allocation of indivisible items is nonconvex, and a Walrasian equilibrium

with linear (per-item) prices in general does not exist (with some notable exceptions

discussed below). The question examined in this paper can be formulated as how many

real-valued “prices” need to be announced to verify efficiency in such discrete allocation

problems.

A parallel approach to measuring communication has developed in the computer

science field of communication complexity, pioneered by Yao (1979) and surveyed in

Kushilevitz and Nisan (1997). The main difference from the economic approach is that

it considers a discrete (finite) setting. All “inputs” (in our case, agents’ valuations) are

given with a finite precision, and the complexity of communication is measured with the

number of bits transmitted.

Our main result is a lower bound on the amount of communication required to im-

2For an earlier discussion relating the economic and computer science approaches to communication

complexity, see Marschak (1996).
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plement efficiency in both the continuous and discrete cases. We obtain the bound by

showing that all distinct states of the world in which the total surplus is constant across

all outcomes must give rise to different communications. In the terminology of computer

science, such states constitute a “fooling set.” A lower bound on communication is given

in the continuous case by the dimensionality of the fooling set, and in the discrete case

by the binary log of its cardinality.

For the problem of allocating L heterogeneous objects to N agents whose valuations

over subsets of objects are unrestricted, our lower bound implies that the required com-

munication is exponential in the number L of items to be allocated. Even if the agents’

valuations are known to be submodular (i.e., exhibit diminishing marginal utility of ob-

jects), exponential communication in L is still required.

These results are extended to the problem of finding approximately efficient alloca-

tions, i.e., those whose total surplus is within some predetermined factor from optimal.

Since arbitrarily close approximation can be obtained with finite communication, here

we focus on the discrete measure counting the communicated bits. Most of the approx-

imation results follow from the simple observation that in the discrete case where the

agents’ valuations are described with a given precision, sufficiently close approximation

is equivalent to exact efficiency. Hence, the lower bounds obtained for exact efficiency

can be brought to bear on this case.

In the case of unrestricted valuations, we show that any mechanism guaranteed to

achieve more than 1/N of the maximum available surplus involves the communication

of an exponential number of bits in L. On the other hand, share 1/N of the surplus is

attained by an auction selling all items as a bundle. Therefore, no “practical” mechanism

can guarantee an improvement upon the simple bundled auction.3

We also identify a setting in which there is a drastic difference between the com-

3For the case of submodular valuations, we only establish a weaker result, ruling out so-called “Fully

Polynomial Approximation Schemes,” defined as approximating efficiency within ε using polynomial

communication in the parameters and ε−1. (An economic example of FPAS is an ascending-bid auction

with L per-item prices and bid increment ε.)
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munication burdens of exact and approximate efficiency. This setting has homogeneous

valuations (i.e., agents only case about the number of objects we consume). Exact ef-

ficiency in this case requires the transmission of L real numbers, but arbitrarily close

approximation can be achieved using only O(logL) bits. This setting is similar to that in

Calsamiglia (1977), where the good infinitely divisible rather than discrete. By allocating

the good in optimally chosen discrete units, an enormous savings in communication can

be achieved in Calsamiglia’s setting with only a slight sacrifice in economic efficiency.

The approximation results described above require uniform surplus approximation

across states. However, we show that in the case of unrestricted valuations, the same lower

bound applies for the weaker problem of approximating the expected surplus. Namely,

using results of Nisan (2001), we establish that for a certain joint probability distribution

over the agent’s valuations, any mechanism achieving a higher expected surplus than

1/N of maximum possible must communicate, on expectation, an exponential number of

bits. While the constructed distribution may not be realistic, the point is that obtaining

non-trivial efficiency with sub-exponential communication is possible only for a restricted

class of probability distributions over valuations.

Our lower bounds on communication are obtained under what is called the “verifi-

cation” scenario in economics, and the “nondeterministic” scenario in computer science.

This scenario supposes the existence of an omniscient oracle, who must prove to the agents

that a given allocation should be implemented. (In economics, the oracle is known as

the “Walrasian auctioneer”, who can “guess” the equilibrium prices.) The problem of

communication in the absence of such an oracle, called “deterministic communication,”

is more difficult. Deterministic communication is usually facilitated by having multiple

rounds, where at each round an agent only transmits information that is revealed in the

previous rounds to be relevant for the outcome. An economic example of such multi-round

communication is given by “tatonnement” processes used to attain a Walrasian equilib-

rium. In particular, ascending-bid combinatorial auctions have recently been considered

by Ausubel and Milgrom (2001), Bikhchandani et al. (2001), Parkes (1999), Parkes and

Ungar (2001). The hope is that these auctions economize on communication, by asking
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the bidders in each round to send only their valuations for a small number of subsets

that have been previously revealed to be “relevant.” However, while such multi-round

mechanisms may indeed reduce the amount of deterministic communication, they are

not of any help when nondeterministic communication is allowed. Indeed, an omniscient

oracle can announce the whole equilibrium communication sequence (in particular, the

“relevant” subsets) up front, and needs only to verify that no agent objects to it. There-

fore, our lower bounds apply to communication in any mechanism, be it nondeterministic

or deterministic, single- or multi-round.

Our results imply that any practical combinatorial auction can only approximate effi-

ciency for some restricted class of valuations (or probability distributions over valuations).

For example, if the linear programming relaxation of the integer programming problem

of efficient combinatorial allocation yields a feasible allocation, then a Walrasian equilib-

rium with per-item prices exists (Bikhchandani and Mamer (1997)), and it constitutes a

polynomial nondeterministic protocol realizing efficient allocations. (One way to ensure

this existence is with the “gross substitutes” property of Kelso and Crawford (1982) and

Gul and Stacchetti (1999), but other conditions are known (Nisan (2000), Vohra and

de Vries (2000)). For this case, we suggest a polynomial deterministic protocol that

achieves efficiency.4 This protocol mimics a separation-based linear programming algo-

rithm, and it can be made incentive-compatible with little added communication. While

this protocol is not very natural, it does show that whenever a Walrasian equilibrium

with per-item prices is known to exist, efficiency can also be obtained with a deterministic

incentive-compatible mechanism using polynomial communication.

The remainder of the paper is organized as follows. Section 2 describes the general

setup. Section 3 discusses the different measures of communication complexity. Section

4 obtains a general lower bound on communication using the “fooling set” technique.

4This protocol works for more general valuations than those suggested by Kelso and Crawford (1982)

and Ausubel (2000). Also, the mechanism of Kelso and Crawford (1982) and Ausubel (2000) only achieve

FPAS - i.e., obtain ε-approximation in time proportional to ε−1, while our mechanism takes so-called

“true polynomial time,” i.e., polynomial in log ε−1, the representation length of ε.
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In Section 5, this bound is applied to the problem of efficient combinatorial allocation

for different classes of agents’ valuations. In Section 6, the same technique is applied

to the problem of approximate efficiency. Section 7 suggests a polynomial deterministic

mechanism that implements efficiency whenever a Walrasian equilibrium with per-item

prices exists. In conclusion, we discuss the relation of our results to the computational

complexity and mechanism design literatures.

2 Setup

Let N be the finite set of agents, and K be the set of outcomes. (With a slight abuse

of notation, we will use the same letter to denote a set and its cardinality when this

causes no confusion. At this point, the set K need not be finite, though it will be in most

applications.) An agent’s valuation assigns real values to all outcomes, and is therefore

represented with a vector in RK. The class of possible valuations of agent i ∈ N is

denoted by V i ⊂ RK . Agent i’s valuation vi ∈ V i is assumed to be his privately observed
“type.” A state is a profile of valuations:

¡
v1, ..., vN

¢ ∈ V ≡ V 1 × . . .× V N ⊂ RNK.
A leading application considered in this paper is the problem of allocating L items

among the agents. The outcome set in this problem is K = NL.

The efficient choice correspondence K∗ : V ³ K is defined by5

K∗(v) =argmax
k∈K

X
i∈N

vik ∀v ∈ V.

Observe that valuations (vi1, . . . , v
i
K) and (v

i
1 + a, . . . , v

i
K + a) describe the same pref-

erences for any a ∈ R. It will be convenient to rule out such situations, by assuming that
each agent i’s class of valuations V i is normalized, meaning that it does not contain the

two above valuations for any a 6= 0. A simple way to normalize valuations is by assigning
the value of zero to one of the outcomes.

5This notion of efficiency is based on the implicit assumption that the agents’ utilities are quasilinear

in monetary transfers, and that such transfers can be used to compensate agents.
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3 The Communication Problem

3.1 Nondeterministic Communication

We begin with a formal definition:

Definition 1 A (nondeterministic) protocol is a triple hM,µ, hi, whereM is the message

set, µ : V ³M is the message correspondence, and h :M → K is the outcome function,

and the message correspondence µ has the following two properties:

(a) µ(v) 6= ∅ ∀v ∈ V ,

(b) µ(v) = ∩i∈Nµi(vi) ∀v ∈ V , where µi : V i ³M ∀i ∈ N .

The protocol hM,µ, hi realizes choice correspondence F : V ³ K if h(µ(v)) ⊂ F (v)
∀v ∈ V .

This definition corresponds to a communication scenario called “verification” in eco-

nomics and “nondeterministic” in computer science. In the scenario, an omniscient oracle

knows the state of the world v and consequently the set F (v) of “desirable” outcomes,

but needs to prove to an outsider that an outcome k ∈ F (v) is desirable. He does this
by publicly announcing a message m ∈ M . Each agent i either accepts or rejects the
message, doing this on the basis of his own type vi. The message correspondence µ(v)

describes the set of messages acceptable to all agents in state v. If message m is accepted

by all agents, then the oracle implements outcome h(m).

In this interpretation, condition (a) requires that there exist an acceptable message

in each state. Condition (b) follows from the fact that each agent does not observe

other agents’ types when making his acceptance decision, thus the set of messages he

accepts is a function µi(vi) of his own type vi only. This condition is known as “privacy

preservation” in the economic literature.

Conditions (a) and (b) can also be given a geometric interpretation. Condition (a)

can be interpreted as saying that the collection of sets {µ−1(m)}m∈M is a covering of the
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state space V . In this interpretation, condition (b) says that each element of the covering

is a product (“rectangular”) set (see Figure 1 for an illustration). This is why condition

(b) is known as the “rectangle property” in computer science.

Finally, the definition of realization requires that acceptable messages give rise only to

desirable outcomes, which means that outcome h(m) is “proven” to be desirable whenever

message m is accepted by all agents.

A famous nondeterministic communication protocol in economics is the Walrasian

equilibrium. The role of the oracle is played by the “Walrasian auctioneer,” who guesses

the equilibrium prices and quantities.6 Each agent accepts the message if and only if

the announced quantities constitute his optimal choice from the budget set given by the

announced prices. This protocol realizes the Pareto efficient allocation correspondence.

3.2 Measures of Complexity

The economic literature considers problems with continuous type spaces V i, in which

efficiency usually requires protocols with continuous message spaces M . The amount

of communication is measured with the dimensionality of the message space M . A

potential problem with this approach is that the message correspondence could be chosen

to be a one-to-one function µ : RNK → R (e.g., the inverse Peano function), which

“smuggles” any amount of information in a one-dimensional message space. To rule

out such smuggling, it is customary to impose a regularity restriction on the message

correspondence. We follow Walker (1977) and Sato (1981) in requiring that the message

space M be a Hausdorff topological space, and that the message correspondence µ be

locally threaded - which means that it has a continuous selection on an open neighborhood

of every v ∈ V .
As suggested by Walker (1977), we define the “dimensionality” of the message space

by comparing it with Euclidean spaces using the Frechet ordering. According to this

6The choice of quantities can often be delegated to the agents, but not always - for example, when

production exhibits constant returns to scale, the oracle needs to assign market shares.
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ordering,M ≥F RS if RS can be homeomorphically embedded inM (in this case, we will

also write dimM ≥ S).
The computer science literature, in contrast, considers finite state spaces, in which

case a finite message space M obviously suffices. The relevant complexity measure is

then the number of bits needed to encode a message from M , which equals log2 |M |.
When the agents’ valuation classes V i are continuous, efficiency will typically require

an infinite (continuous) message space, and the continuous complexity measure will be

used. On the other hand, when valuations given with a finite precision, we will use the

discrete complexity measure. We also consider the more interesting case in which only

approximate efficiency is required, and it can be achieved by announcing valuations that

are rounded-off with a finite precision. The precision can then be chosen endogenously

to achieve a given degree of approximation.

3.3 Relation to Deterministic Communication

The notion of communication defined above does not describe a realistic process by which

a state v results in a message m. For example, in the case of the Walrasian protocol, it

does not explain how the Walrasian prices are obtained. A more realistic concept, called

deterministic communication, defines communication as a sequence of messages sent by

the agents (see Kushilevitz and Nisan 1997). An economic example of deterministic

communication is a “tatonnement” process that converges to the Walrasian outcome.

In the language of game theory, a deterministic protocol is an extensive-form message

game along with the agents’ strategies (complete plans contingent on their types and on

observed history) specified in the game.7 Since incentives are not considered, without

loss of generality the game can taken to have perfectly observed histories.

The computer science literature considers finite deterministic communication, and

7More precisely, it is a “game form” because the agents’ payoffs are not specified, and are in fact

irrelevant since the agents’ behavior is not required to be incentive-compatible. Instead, the agents are

assumed to follow blindly the strategies assigned to them. See the Conclusion for a discussion of the

effect of imposing incentive-compatibility constraints.
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restricts attention to games with two actions at each node (interpreted as sending a

bit of information). The (“worst-case”) deterministic communication complexity is then

defined as the maximum depth of the game tree, i.e., the maximum number of bits

transmitted over all states.8

It is well known that deterministic communication is “harder” than nondeterministic.

To see this, note that any deterministic protocol can be converted into nondeterministic

without an increase in communication. The converted protocol works as follows: the

oracle announces the equilibrium path of the game in the given state. Each agent i

accepts a path if and only if at each node on it at which it is his turn to move, the strategy

assigned to his type vi is to move along the path. This protocol yields the same outcome

as the original deterministic protocol. Its complexity equals the binary log of the number

of terminal nodes in the game tree, which cannot exceed the maximum depth of the

tree, which is the complexity of the deterministic protocol. Therefore, nondeterministic

complexity offers a lower bound on deterministic complexity. (A similar argument can

be made for continuous communication, where real-valued messages can be sent at each

node.)

3.4 Relation to “Black-Box” Computational Complexity

One can consider the problem of computing a selection from the efficient choice correspon-

dence K∗. However, in our settings of interest, such as that of combinatorial allocation

of a large number L of objects, the agents’ valuations vi that serve as inputs to compu-

tation may hold a huge amount of information. In such cases, one must consider how a

computational algorithm will access this information. The most general model will allow

the algorithm to ask a “black box” an arbitrary question about a valuation vi and receive

an answer for any such question. More restricted models will define which queries the

black box for vi will answer - e.g., the “valuation oracle” model will only answer queries

8One may instead be interested in the expected number of bits transmitted given a certain probability

distribution over states, rather than the worst-case number. Such distributional complexity is considered

in subsection 6.6.
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of the form “what is vik”.

A trivial, yet important, observation is that the general black box model is equiva-

lent to the deterministic communication complexity model. A stage in a deterministic

communication protocol where agent i has observed the message history hm1...mti and
responds with his own message mt+1 is equivalent to a black box that is asked the query

hm1...mti and responds with the answer mt+1. In both cases mt+1 depends only on vi

and hm1...mti. Thus, our lower bounds on communication also imply lower bounds on
computational complexity in the general black box model.

3.5 Relation to Walrasian Equilibria: Messages as Prices

A Walrasian Equilibrium is the classical economic example of continuous nondetermin-

istic communication. The efficiency of this protocol is ensured by the First Welfare The-

orem. However, the existence property (a) is traditionally established under convexity

assumptions that are not satisfied in the combinatorial allocation setting.

One way to ensure existence is by introducing Lindahl prices, i.e., personalized prices

that depend on the whole outcome. The Lindahl-Walras protocol can be defined as

follows: the designer announces a Lindahl price vector (pik)i∈N,k∈K and an outcome k,

and each agent accepts if and only if k ∈argmax
j∈K

£
vij − pij

¤
— i.e., k is his preferred

outcome given the price vector. We require that
P

i p
i
k = 0 for all k ∈ K, reflecting the

fact that each outcome k is costless to the designer. Also, we can normalize
P

k p
i
k = 0

for all i ∈ N , since adding a constant to prices for all outcomes does not changes agents’
choices. Thus, the dimensionality of the message space in the Lindahl-Walras protocol

is (N − 1) (K − 1).
By the First Welfare Theorem argument, a Lindahl-Walras equilibrium is efficient.

Also, such an equilibrium always exists. For example, for each k we can take pik =

vik − 1
K

P
j v

i
j for i = 1, ..., N − 1 - that is, let personalized prices to all agents but

agent N mirror their valuations, and let agent N ’s prices be pNk = −PN−1
i=1 p

i
k. Thus,

(N − 1) (K − 1) gives an upper bound on the dimensionality of message space required
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to realize efficiency. This upper bound can also be realized with deterministic commu-

nication, in which all agents but agent N reveal their valuations, and then agent N

announces an efficient decision.

The problem with the Lindahl-Walras protocol is that it requires a large amount of

communication — equivalent to full revelation of valuations by all but one agent. This

raises the question whether we could restrict attention to a lower-dimensional subset of

the Lindahl price space while preserving the existence property. For example, per-item

Walrasian prices can be interpreted as Lindahl prices that are restricted to be linear

in objects and anonymous, which drastically reduces the dimensionality of the price

space, but in general violates the existence property. In this terminology, our search

for the message space of minimum dimensionality can be interpreted as looking for the

minimum-dimensional subspace of the Lindahl price space that ensures the existence of

a Walrasian equilibrium.

4 The Basic Lower Bound

Our lower bound on communication is obtained by constructing a set that is called a

“fooling set” in computer science and a “set with the uniqueness property” in economics.

The simplest illustration of this construction obtains in the case where a single indivisible

object is to be allocated between two agents. Letting vi denote agent i’s valuation for

this object, a state of the world is described by a pair (v1, v2). Efficiency requires giving

the object to the agent with the higher valuation (see Figure 2).

The basic idea is that an efficient protocol cannot use the same message in two

different “diagonal” states of the world, (v, v) and (w,w), where, say, w > v. Suppose

in negation that there exists a single message that occurs in both states. Then each

agent 1 and 2 accepts this message when his valuation is v or w. But then the “privacy

preservation”/“rectangle” property of communication implies that both agents accept

the same message in states (w, v) and (v,w), and therefore the same outcome will obtain

in the two states. But this contradicts efficiency, which requires giving the object to agent
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1 in state (w, v) and to agent 2 in state (v, w). Therefore, all distinct diagonal states

in the example must give rise to distinct messages. A set of states with this property is

called a “fooling set.” Communication of the fooling set bounds from below the number

of messages required to realize efficiency. In particular, in the case where each agent’s

valuation can be in [0, 1], there is a continuum of diagonal states, and therefore at least

a continuum of possible messages is needed to realize efficiency.9

Extending this argument to arbitrary many agents and outcomes yields

Lemma 1 Suppose each V i is normalized, and v, w ∈ V 1 × . . . × V N such that v 6= w
and K∗(v) = K∗(w) = K. Then in any efficient protocol hM,µ, hi, µ(v) ∩ µ(w) = ∅.

Proof. Suppose in negation that m ∈ µ(v) ∩ µ(w). Then by the rectangle property, we
must also have for all i ∈ N , m ∈ µ (vi, w−i) and m ∈ µ (wi, v−i). Hence, for outcome
k∗ = h(m) ∈ K we must have

k∗ ∈argmax
k∈K

"
vik +

X
j 6=i
wjk

#
and k∗ ∈argmax

k∈K

"
wik +

X
j 6=i
vjk

#
.

But by assumption,
P

j v
j
k and

P
j w

j
k do not depend on k, which allows us to rewrite

the above display as

k∗ ∈argmax
k∈K

£
vik − wik

¤
and k∗ ∈argmax

k∈K

£
wik − vik

¤
=argmax

k∈K

£
vik − wik

¤
.

This is only possible when vik − wik does not depend on k ∈ K, and since V i is
normalized, we must have vi = wi. Since this argument applies for each i ∈ N , we must
have v = w, contradicting our assumption.

In words, the Lemma says that any two distinct states in which all outcomes are

indifferent from the social viewpoint must give rise to distinct messages. Formally, the

message correspondence in any efficient protocol is injective on the set

F =
©
v ∈ V 1 × . . .× V N : K∗(v) = K

ª
,

9A one-dimensional continuum indeed suffices here - e.g., consider the Walrasian equilibrium where

the auctioneer announces price
¡
v1 + v2

¢
/2.
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i.e., the set can serve as a “fooling set.” The communication burden of efficiency is at

least that of communicating a point in the fooling set. For the discrete and continuous

communication measures, this implies

Proposition 1 Suppose each V i is normalized, and hM,µ, hi is an efficient protocol.
Then log2 |M | ≥ log2 |F| and dimM ≥ dimF.

Proof. The first inequality follows immediately from Lemma 1. The second inequality

follows from Lemma 1 and our topological assumptions on the protocol using Lemma 1

in Sato (1981).

5 Application to Combinatorial Allocation Problems

In this section we apply Proposition 1 to the problem of allocating L items among N

agents. The outcome set in this problem isK = NL, where k(l) denotes the agent holding

object l ∈ L in outcome k ∈ K. We will maintain the following assumptions on agents’
valuations:

• No Externalities (NE): For each agent i, vik = ui(k−1(i)), where ui : 2L → R.

In words, each agent i cares only about the subset of items k−1(i) allocated to him.

Let U i ⊂ R2L denote the class of agent i’s valuations for his own consumption.

• Monotonicity (M): For each ui ∈ U i, ui(S) is nondecreasing in S ⊂ L.

• Normalization (N): ui(∅) = 0 for all i ∈ N .

• Boundedness (B): ui(S) ≤ 1 for all i ∈ N , S ⊂ N .

All these restrictions could only reduce the communication burden, and thus only

strengthen our lower bounds. Restriction (N) is in fact without loss of generality, as

argued in Section 2. Restrictions (M) and (B) are not needed in this section, but will

play a role in the next section’s analysis of approximation.
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We will examine in turn the communication requirements for three classes of valua-

tions:

(i) Unrestricted valuations: Each U i is the set of valuations satisfying (NE), (M),

(N), and (B).

(ii) Submodular valuations: Each U i is the set of valuations ui : 2L → R satisfying

(NE), (M), (N), (B), and in addition submodularity:

ui(S ∪ T ) + ui(S ∩ T ) ≤ ui(S) + ui(T ) for all S, T ⊂ L.

It is well known that submodularity can be alternatively defined by requiring that

the marginal benefit of an item l ∈ L, ui(S ∪ l)− ui(S) be nonincreasing in S ⊂ L.

(iii)Homogeneous valuations: Each U i is the set of valuations ui : 2L → R satisfying

(NE), (M), (N), (B), and in addition taking the form ui(S) = φ(|S|) for all S ⊂ N ,
where φ : {0...L} → R. That is, agents care only about the number of items they

receive.

We will also formulate results for the discrete case, which in addition satisfies

• Discreteness (D): ui(S) ∈ {0, 1/R, 2/R, ..., 1} for all i ∈ N , S ⊂ N .

In the discrete case, valuations for each set are given with finite precision R, and can

be encoded with log2 (R+ 1) bits. For now we treat R as given, but in the next section

the precision with which agents’ valuations are revealed will be chosen endogenously to

achieve the desired approximation. The continuous case is one where (D) is not imposed,

and the range of valuations is [0, 1] .

Our lower bounds are obtained by focusing on the case where N = 2. (The bounds

extend to N > 2, by considering the case where all agents but two have valuations that

are identically zero.) In most cases, we apply Proposition 1 in the following way: for

each valuation u ∈ U1, define a dual valuation u∗ by

u∗(S) = u(L)− u(L\S).
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The idea is that if agent 1 has valuation u and agent 2 has the dual valuation u∗, the

total surplus for any allocation of objects between the agents is u(L). Dual valuations are

illustrated in Figure 3 (where the horizontal axis represents one “cut” of the allocation

space, corresponding to reallocating items from agent 1 to agent 2 in a particular order).

By Proposition 1, the set of states F = {(u, u∗) : (u, u∗) ∈ U1 × U2} constitutes a fooling
set, and the dimensionality of the message space in the continuous case is at least dimF,

while the number of bits in the discrete case is at least log2 |F|.

5.1 Unrestricted Valuations

One may easily verify that the dual of any valuation in the set U of unrestricted valuations

is also in U , thus {(u, u∗) : u ∈ U} is a fooling set. Communicating the fooling set is
equivalent to communicating a valuation from U . Thus, by Proposition 1, the lower

bound is dimU and log2 |U | in the continuous and discrete case respectively. Note that
this lower bound is essentially tight for N = 2, since it is achieved by the protocol in

which agent 1 announces his valuation and then agent 1 announces an efficient allocation.

In the continuous case, dimU = 2L − 1. In the discrete case, |U | is the number
of monotone functions on subsets of L with range {0, 1/R, ..., 1}. This number can be
bounded below by (R+ 1)(

L
L/2), by considering valuations with u(S) = 0 for |S| < L/2

and u(S) = 1 for |S| > L/2. Thus, we have

Corollary 1 With continuous unrestricted valuations, the dimensionality of the message

space in an efficient protocol is at least 2L− 1. With discrete unrestricted valuations, the
number of bits communicated by an efficient protocol is at least

¡
L
L/2

¢
log2 (R+ 1).

Therefore, the communication burden is exponential in the number of objects, both

in the continuous and discrete case.10 It an interesting open problem how the required

communication grows with the number N of agents.11

10More precisely, for the discrete case, Stirling’s formula implies that¡
L
L/2

¢ ∼p2/ (πL) · 2L.
11That such an increase might be required is suggested by the finding of Bikhchandani and Ostroy
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5.2 Submodular Valuations

The approach of the previous subsection cannot be applied to this case directly, since the

dual of a submodular valuation is not submodular (unless both are identically constant).

We modify the approach by defining duality in such a way that the social surplus is

constant only on the outcomes involving even division of objects. Namely, let

eK =
©
k ∈ K :

¯̄
k−1(1)

¯̄
=
¯̄
k−1(2)

¯̄
= L/2

ª
.

Consider the set eU of valuations u ∈ R2L such that
• u(S) = 4|S|d for |S| < L/2,

• u(S) = 2Ld for |S| > L/2,

• u(S) ∈ [(2L− 1)d, 2Ld] for |S| = L/2,

• u({1, ..., L/2}) + u({L/2 + 1, ..., L}) = (4L− 1) d,

where in the continuous case d = 1/ (2L), and in the discrete case it is rounded down

to a multiple of 1/R, i.e., d = [R/ (2L)] /R, where [·] stands for the integer part. One
can easily verify that in both cases eU is a subset of the class U of submodular valuations.
Note that in any state (u1, u2) ∈ eU × eU , all efficient outcomes lie in K̃. (Indeed, any

allocation from K̃ brings a total surplus of at least (4L− 2) d, while any other allocation
brings a total surplus of at most (4L− 4) d.) This allows us to apply Proposition 1 with
the two agents’ valuations restricted to eU and the outcomes restricted to eK (the last

bullet above ensures that thus constructed valuation classes on eK are normalized). For

this purpose, for each u ∈ eU , define its “quasi-dual” bu ∈ eU as follows:
• bu(S) = (4L− 1) d− u(L\S) for |S| = L/2,
• bu(S) = 4|S|d for |S| < L/2.

(2001) that Lindahl prices, i.e., personalized prices for subsets of objects, are needed to ensure the

existence of a Walrasian equilibrium.
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• bu(S) = 2Ld for |S| > L/2,
By construction, the set of efficient outcomes in any state (u, bu) ∈ eU × eU is exactlyeK, hence by Proposition 1 these outcomes constitute a fooling set. In the continuous

case, the dimensionality of this set is dim eU =
¯̄̄ eK ¯̄̄ − 1, while in the discrete case, its

cardinality is
¯̄̄ eU ¯̄̄ = (dR+ 1)| eK|−1 (where ¯̄̄ eK ¯̄̄ = ¡ L

L/2

¢
). Thus, Proposition 1 implies

Corollary 2 With continuous submodular valuations, the dimensionality of the message

space in an efficient protocol is at least
¡
L
L/2

¢−1. With discrete submodular valuations, the
number of bits communicated by an efficient protocol is at least

h¡
L
L/2

¢− 1i log2 ¡£ R2L¤+ 1¢.
In the continuous case, this Corollary implies that exponential communication is

still needed for efficiency. In the discrete case, however, note that the lower bound is

non-trivial only when R ≥ 2L. Thus, for a fixed precision R, the discrete bound is

not very useful. However, the bound will have implications in the next section, where

input precision will be chosen endogenously to achieve progressively better and better

approximation.

5.3 Homogeneous Valuations

Since the dual of a homogeneous valuation is homogeneous, the fooling set can be con-

structed here in the same way as with unrestricted valuations: {(u, u∗) : u ∈ U}. Com-
municating the fooling set is equivalent to communicating a valuation from U . Thus, by

Proposition 1, the lower bound is dimU and log2 |U | in the continuous and discrete case
respectively.

In the continuous case, dimU = L. In the discrete case, |U | is the number of monotone
functions with domain {1..L} and range {0, 1/R, ..., 1}, which is exactly the number
of ways that R indistinguishable balls (corresponding to the function’s jumps) can be

partitioned into L+ 1 bins:
¡
R+L
R

¢
. This yields

Corollary 3 With continuous homogeneous valuations, the dimensionality of the mes-

sage space in an efficient protocol is at least L. With discrete homogeneous valuations,
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the number of bits communicated by an efficient protocol is at least log2
¡
R+L
R

¢
.

Just as with unrestricted valuations, this lower bound is essentially tight for N = 2,

since it is achieved by the protocol in which agent 1 announces his valuation and then

agent 1 announces an efficient allocation. The problem of how the required communica-

tion grows with N is again open.

The result for the continuous case can be linked to a result obtained by Calsamiglia

(1977). In his model, instead of L indivisible goods there exists one unit of an infinitely

divisible good. In this case, U is the space of nondecreasing functions [0, 1] → [0, 1],

which is infinitely-dimensional under a reasonable topology. The same argument as that

before Corollary 3 establishes that the dimensionality of the message space in an efficient

mechanism must be at least dimU = ∞. Therefore, finite-dimensional communication
cannot realize efficiency, which is exactly the result obtained by Calsamiglia (1977).12

These results should be contrasted with the case where both agents’ valuations are

known to be concave. In this case, a Walrasian equilibrium with a single price exists, and

thus efficiency is achieved with a one-dimensional message space (regardless of whether

the objects are divisible or not).

Note also that the communication burden stated in the Corollary for the discrete

case with a given input precision R is only proportional to logL. This foreshadows the

finding in Section 6 that any given approximation of efficiency can be achieved using

communication that is O(logL).

12Calsamiglia (1977) restricts the valuation of agent 1 to be concave and that of agent 2 to be convex.

Since the dual of a concave valuation is convex, the analysis goes through without modification. Similarly,

the agents’ valuations can be restricted to be arbitrarily smooth (even analytical), without changing the

argument.
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6 Approximation

6.1 The measure of approximation

This section considers the problem of approximating the maximum total surplus, rather

than achieving it exactly. The standard measure of approximation used in computer sci-

ence is the “approximation factor,” defined as the inverse of the fraction of the maximum

possible value that is guaranteed by the algorithm (in our case, protocol).13 However,

this approximation measure has an important shortcoming in our case when the agents’

valuations are continuous: no finite approximation factor can be achieved with finite

communication. The simplest illustration of this is in the problem of allocating a single

indivisible object between two agents, whose valuations for the object are in [0, 1]. Pick

some a > 1, and consider the restricted problem in which both agents’ valuations lie in

the set {a−r}∞r=0 ⊂ [0, 1]. In this simpler problem, achieving an approximation factor less
than a is equivalent to exact efficiency. The fooling set constructed in Lemma 1 for the

exact efficiency problem consists of all possible valuations for an agent, hence it is count-

able. Since any a > 1 could be chosen, this implies that no finite approximation factor

can be achieved with finite communication. On the other hand, it can be seen that any

approximation factor can be realized with countable communication, so the continuous

communication measure used in economics is not useful, either.

Intuitively, the problem here is that the desired precision depends on the maximum

total surplus available, which in turn depends on the unknown scale of the agents’ val-

uations, and transmission of this scale requires infinite communication.14 From the eco-

nomic viewpoint, the problem is not significant, because it is not important to achieve

close approximation in states in which the maximum total surplus is very low.

13This is a “worst-case” definition, since it requires uniform approximation across all states. The

weaker requirement of “average-case” approximation is considered in subsection 6.6 below.
14The problem does not arise if only the discrete case is considered, as in computer science. Indeed,

if valuations are given with a fixed precision R, the maximum achievable surplus is bounded below by

1/R (except in the trivial state where all valuations are identically zero).
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To avoid the problem, we consider an approximation requirement bounding the ab-

solute, rather than relative, loss of surplus. However, for our results to be comparable

with the existing computer science literature, we express the bound as (1− 1/c)N , where
c > 1 is called an “approximation factor.” Formally, we consider the realization of the

relaxed choice correspondence

K∗
c (v) =

(
k ∈ K :

X
i∈N

vik ≥ S(v)−
µ
1− 1

c

¶
N

)
,

where S(v) = max
j∈K

X
i∈N

vij.

Note that replacing N (which is the maximum potential surplus across all states) with

S(v) ≤ N (the maximum surplus in the given state) would yield the relative approxima-

tion requirement used in computer science:X
i∈N

vik ≥
1

c
S(v).

Thus, our absolute notion of approximation within factor c is slightly weaker than the

computer science notion.

Given our definition of approximation, arbitrary approximation factor c > 1 can be

realized with a finite communication in which agents report their valuations rounded

off with a sufficiently fine precision. Therefore, in this section we measure communica-

tion with the number of bits transmitted, and examine how it depends on the desired

approximation factor c and parameters L,N .

Most of our lower bounds on approximation of the continuous case are obtained by

replacing the problem with the simpler problem of approximating the discrete case. In

the discrete case with input precision R, any inefficiency loses at least surplus 1/R, hence

realizing the approximation factor c <
¡
1− 1

NR

¢−1
= 1 + 1

NR−1 is equivalent to realizing

exact efficiency. Therefore, the obtained lower bounds on exactly efficient protocols in

the discrete case can be used to derive lower bounds on approximating protocols.

We will be able to compare our lower bounds with the approximation factors achieved

by several protocols suggested in computer science, which realize the stronger relative
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approximation requirement in the discrete case. Namely, suppose we have a protocol

realizing relative (and therefore absolute) approximation factor c in the discrete case with

input precision R, and it is polynomial in logR (e.g., it involves the full revelation of a

certain number of valuations). Then in the continuous case, we can let agents discretize

their valuations in multiples of ε and run the protocol on the discretized valuations

with R = ε−1, which yields the absolute approximation factor c + ε using polynomial

communication in log ε−1 (often called “truly polynomial”).

For a simple example, consider the auction in which all objects are sold together as

a bundle to the agent who announces the highest valuation for it. The social surplus

realized by this auction is

max
i
ui(L) ≥ 1

N

X
i

ui(L) ≥ 1

N
max
k

X
i

vik =
1

N
S(v),

hence the bundled auction realizes approximation factorN (relative, and hence absolute).

In the discrete case, the auction communicates N log2 (R+ 1) bits. In the continuous

case, absolute approximation factor N + ε is achieved by letting agents reveal their

valuations for the bundle rounded off to multiples of ε, requiring the communication of

N log2 (ε
−1 + 1) bits. In this and similar cases, we will say for brevity that the protocol

has agents “reveal their valuations” for the bundle and “realize factor N -approximation,”

which is shorthand for saying that agents “reveal their valuations rounded off to multiples

ε” and “realize approximation factor N + ε.”

6.2 Unrestricted Valuations

Using Corollary 1 for the case N = 2 and R = 1, we see that approximation within a

factor c < 1 + 1
NR−1 = 2 requires the communication of at least

¡
L
L/2

¢
bits. This implies

Corollary 4 With unrestricted valuations (continuous or discrete), approximation within

a factor c < 2 requires the communication of at least
¡
L
L/2

¢
bits.
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This result is generalized in Nisan (2001) as follows15:

Theorem 1 (Nisan (2001)) With unrestricted valuations, approximation within a factor

c < N requires communication that is exponential in L/c2.

Since factor N -approximation is achieved by the bundled auction, the Theorem im-

plies that for any given N , improvement upon the bundled auction requires exponential

communication in L.

This result should be contrasted with the findings of Lehmann et al. (1999) and Holz-

man et al. (2001), who suggest “simple” protocols improving upon the bundled auction.

The improvements are achieved when the number of objects L either stays fixed or goes

to infinity along with, and not much faster than, the number N of agents. For example,

Holzman et al. (2001) note that auctioning L off in two equal-sized bundles achieves

approximation factor L/2 for any N , thus improving over the single-bundle auction for

L < 2N (splitting L into more bundles achieves further improvement). Lehmann et al.

(1999) suggest a polynomial protocol in L that realizes approximation factor c(L) =
√
L,

which is better than the bundled auction when N >
√
L.16 Note that this does not

contradict the above theorem, which is vacuous for c(L) =
√
L. Intuitively, the theorem

implies that in large problems in which the number N of agents is “substantially smaller”

than the number L of items (e.g., smaller than L1/2−ε), simple protocols (i.e., polyno-

mial in L) cannot improve over bundled auctions. When N is either comparable with

or larger than L, simple protocols can improve over bundled auctions, but both bundled

15Nisan (2001) establishes this lower bound by considering the following set packing problem: each of

the N agents holds a collection of subsets of L, and the aim is to approximate the maximum number

of subsets in the union of their collections that can be packed together, i.e., that are pairwise disjoint.

This problem is a special case of the combinatorial allocation problem (where the range of valuations is

{0, 1} and ui(S) = 1 if the subset S is in the collection of agent i).
16At each stage of the protocol, each agent i who is not yet allocated any items requests a subset Si

of yet unallocated items that maximizes the ratio ui(Si)/
p|Si|, along with the ratio itself. The agent

who announces the highest ratio receives the requested subset.
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auctions and all other simple protocols realize a vanishing share of the available surplus

as N,L→∞.

6.3 Submodular Valuations

Using Corollary 2 for the case N = 2 and R = 2L, we see that approximation within

a factor c < 1 + 1
NR−1 = 1 +

1
4L−1requires the communication of at least

¡
L
L/2

¢ − 1 bits.
This implies

Corollary 5 With continuous submodular valuations, approximation within a factor c <

1 + 1
4L−1 requires the communication of at least

¡
L
L/2

¢− 1 bits.
This result is substantially weaker than that for unrestricted valuations. For example,

it does not rule out the possibility that any given approximation factor greater than 1

can be realized with polynomial communication. Nevertheless, Corollary 5 does rule

out the possibility of a so-called “Fully Polynomial Approximation Scheme” - i.e., 1 + ε

approximation with communication that is polynomial in L,N, ε−1. (Indeed, the corollary

implies that realizing ε(L) = 1/ (4L) requires exponential communication in L.) To have

an economic example, consider an ascending-bid auction with per-item bids and bid

increment ε. The number of bits transmitted by agents in this auction (whether they

bid or abstain on a given object at a given price) is at most NLε−1. Corollary 5 implies

that such an auction cannot yield an efficient allocation up to the bid increment ε, for

otherwise it would be a FPAS.

The only upper bound known for the submodular case is the 2-approximation of

Lehmann et al. (2001), which is achieved by allocating the objects sequentially to the

agents with the highest current marginal benefit for them.

6.4 Homogeneous Valuations

Consider the protocol in which all agents reveal their valuations rounded down to a

multiple of ε. This revelation can be done by having each agent submit the minimum
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number of items for which he is willing to pay rε, for each integer r ∈ [0, ε−1]. Since each
agent sends ε−1 numbers from {0..L}, the total communication involves Nε−1 log2 (L+ 1)

bits. The protocol then chooses the allocation to maximize the sum of agents’ payments,

which approximates the maximum surplus within Nε.17 Thus, we achieve factor (1 + ε)

-approximation using a protocol that is polynomial in logL,N, ε−1 — i.e., a Fully Poly-

nomial Approximation Scheme in parameters logL and N . In particular, this implies

that efficiency can be approximated arbitrarily closely using O(logL) bits, in contrast

to the finding of Corollary 3 that exact efficiency in the continuous case requires the

communication of L real variables — an exponentially larger number.

The lesson here is that by insisting on exact rather than approximate efficiency, the

economic literature on the dimensionality of message spaces can enormously complicate

communication. This also happens in the model of Calsamiglia (1977), which only differs

from the one considered here in that the homogeneous good to be allocated is infinitely

divisible. Indeed, suppose that the agents’ valuation functions over consumption x ∈ [0, 1]
satisfy the following condition:

¯̄
ui(x+∆x)− ui(x)¯̄ ≤ [− log |∆x|]−A , for some A > 0.

(This is a very mild strengthening of continuity — for example, it is weaker than Lipschitz

continuity of any degree k > 0, since |∆x|k (log |∆x|)A → 0 as |∆x|→ 0.) Then restrict-

ing the agents to demand the good in L = 2ε
−1/A

identical discrete units can reduce the

maximum surplus by at most N (logL)−A = Nε. Running the protocol described above

with agents submitting their discretized demands will approximate the maximum sur-

plus within 2Nε. Thus, we realize the approximation factor 1+ 2ε while communicating

only ε−1 log2 (L+ 1) ≈ ε−1Nε−1/A bits — i.e., we have a Fully Polynomial Approximation

Scheme, even though exact efficiency here requires infinite-dimensional communication.

17This protocol is clearly not incentive-compatible, but it can be made into such by having each agent

pay the Vickrey-Groves-Clarke transfer based on the announced bids, rather than paying his own bid.
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6.5 The Procurement Problem

The procurement problem is the combinatorial allocation problem in which the “items”

are obligations to supply objects, thus the valuations are the negative costs of producing

combinations of objects: ui(S) ≡ −ci(S). Now it is the cost functions, rather than the
valuations, that satisfy “free disposal.” The analysis of exact efficiency in the procure-

ment problem is exactly the same as in the “selling” problem. However, the analysis of

approximation of cost-minimization in the procurement problem differs from the approx-

imation of value-maximization in the “selling” problem.

To illustrate the difference, consider the setting with two agents whose costs take

only 0/1 values. Here any finite approximation requires realizing the total cost of zero

whenever this is possible. However, by the same argument as in Corollary 1, this requires

exponential communication.

Better approximation can be achieved when costs are known to be subadditive, i.e.,

satisfying ci(S∪T ) ≤ ci(S)+ci(T ). Nevertheless, even for this case, Nisan (2001) obtains
the following lower bound:18

Theorem 2 (Nisan (2001)) For procurement auctions with subadditive costs, the real-

ization of a c logL-approximation for any constant c < 1/2 requires communication that

is exponential in L.

Nisan (2001) observes that a matching upper bound follows from classic algorithms

of Lov’asz (1975) for approximate set covering using the following iterative procedure:

repeatedly procure the set of items S with the minimal average cost until all items are

procured.

18This is done by considering the following set covering problem: each of two agents holds a collection

of subsets of L, and the aim is to approximate the minimal number of sets in the combined collection

whose union is L. This is a special case of the procurement auction with subadditive costs, if agent i’s

cost of producing set S is defined to be the minimal number of sets in his own collection that together

cover S (or infinity if such covering is impossible).

27



6.6 Average-case approximation

One may relax the notion of approximation by requiring only that the expected surplus be

close to optimal. Furthermore, we can count the expected rather than worst-case number

of bits transmitted. In the terminology of communication complexity, this concept is

called “distributional complexity,” since the results clearly depend on the distribution of

the agents’ valuations.

It turns out that the results of Nisan (2001) also imply lower bounds on distributional

complexity:

Proposition 2 In the combinatorial allocation problem with unrestricted valuations,

there exists a probability distribution over states
¡
v1, . . . , vN

¢
such that any protocol re-

alizing fraction 1/N + ε of the maximum expected total surplus (for any fixed ε > 0)

requires communication of an expected number of bits that is exponential in L/N2.

Proof. The lower bound in Nisan (2001) applies even for the restricted problem of distin-

guishing between the states with maximum total surplus S(v) = N and maximum total

surplus S(v) = 1. Furthermore, the bound applies also for randomized protocols with any

bounded error. Using the well-known equivalence of randomized complexity and distribu-

tional complexity (see Kushilevitz and Nisan (1997), Section 3.4), it follows that for some

distribution over states, any protocol that distinguishes states with S(v) = N from those

with S(v) = 1 correctly with probability at least 1/2 + ε/4 requires exponential commu-

nication. In particular, we can choose the distribution so that Pr {S(v) ∈ {1, N}} = 1.
Note in particular that we must have Pr {S(v) = N} ≤ 1/2 + ε/4, for otherwise always

declaring that S(v) = N would be correct with a probability higher than 1/2 + ε/4.

Now take any protocol, and let δ be the probability that the protocol realizes an

allocation with surplus exceeding 1 conditional on S(v) = N , given the distribution

constructed above. Then by declaring that S(v) = N if and only if the surplus at the

realized allocation exceeds 1, we err with probability

Pr {S(v) = N} · (1− δ) ≤ (1/2 + ε/4) · (1− δ) .
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On the other hand, if the protocol is subexponential, then the probability of error must

be at least 1/2− ε/4, hence we must have

1− δ ≥ 1/2− ε/4

1/2 + ε/4
⇒ δ ≤ ε/2

1/2 + ε/4
< ε.

Now consider the conditional distribution on states with S(v) = N , and assign proba-

bility zero to states with S(v) = 1. The expected surplus achieved on this conditional

distribution is 1 + δ(N − 1), which is less than fraction 1/N + ε of the total expected

surplus, N .

In the distribution constructed in the above proposition, the valuations are not nec-

essarily independently distributed. We can obtain a (weaker) lower bound on approxi-

mation even for independent valuations using the distributional lower bounds of Babai,

Frankl, and Simon (1986):

Proposition 3 There exist distributions D1, D2 on unrestricted valuations such that any

protocol for the combinatorial allocation problem with N = 2 realizing fraction c of the

maximum expected surplus (for some fixed c < 1) when the agents’ valuations are dis-

tributed independently according to D1, D2, respectively, requires communication of an

expected number of bits that is exponential in L.

Proof. We will use a reduction to the “disjointness problem” from communication

complexity theory (See Kushilevitz and Nisan 1997). In this problem, two agents are

each given a subset of a set of size m, and the objective is to decide whether the sets

are disjoint. Babai, Frankl, and Simon (1986) prove a lower bound on the distributional

complexity of disjointness for product distributions:

Theorem 3 (Babai, Frankl, and Simon (1986)) There exists a distribution D on subsets

of M with |M | = m and a fixed d > 0 such if the two agents’ sets are drawn according to

D, then any protocol that communicates in expectation at most d
√
m bits must err with

at least 1% probability when attempting to solve the disjointness problem.
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We will now show that any protocol for combinatorial allocation that achieves 99.5%

expected efficiency when agents’ valuations are drawn according to D1, D2 (to be defined

below), can be used to obtain a protocol for disjointness form =
¡
L
L/2

¢
that errs on at most

1% of inputs (drawn according to D). Thus the lower bound of d
√
m = d

q¡
L
L/2

¢
(which

is exponential in L) communication applies to the combinatorial allocation problem.

Here is the definition of the distributionsD1, D2 on valuations: LetM be the collection

of subsets of L of size exactly L/2, hence |M | = m. The valuation v is chosen by first
choosing a random subset X of M according the distribution D of Babai, Frankl, and

Simon (1986). In both D1 and D2, we define v(S) = 0 for |S| < L/2; v(S) = 1 for

|S| > L/2. In D2 we define for |S| = L/2, v(S) = 1 if S ∈ X and v(S) = 0 otherwise.

In D2 we define for |S| = L/2, v(S) = 1 if N\S ∈ X and v(S) = 0 otherwise. Now in

order to solve the disjointness problem on X1 and X2, the two parties can each create a

valuation according to the rule specified above and then solve the combinatorial allocation

problem. Finding an allocation with surplus 2 means finding a partition of L into two sets

(S,N\S) of size L/2 each such that S ∈ X1 and S ∈ X2, thus proving X1 and X2 are not
disjoint. Any inefficient allocation has at most surplus 1. Now, if the allocation protocol

loses at most 0.5% of expected total surplus, then the probability that it produces an

inefficient allocation in a state with maximum surplus 2 is at most 1%. Thus, if we

declare that X1 and X2 are disjoint whenever the obtained allocation has value 1, we err

with probability of at most 1%.

The proof is done for c = 99.5%, which is derived from a constant quoted in Babai,

Frankl, and Simon (1986). No optimization of the constant was attempted and it seems

likely that a substantial improvement is possible.

7 Deterministic Protocols using Linear Programming

The communication lower bounds obtained in this paper leave room for simple protocols

that work well on restricted classes of valuations. In this section we sketch a possibility

result along these lines.
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It is well known that the allocation problem of combinatorial auctions may be phrased

as an integer programming problem (see Vohra and de Vries (2000)). This integer pro-

gramming problem is commonly relaxed to a linear programming problem, and in some

cases it is known that this linear program will indeed return integer allocations, solving

the original problem as well. In particular it is known that this is the case if all valuations

satisfy the “gross substitutes” property (Kelso and Crawford 1982, Gul and Stacchetti

1999). What we wish to point here is that in all such cases, efficiency may be realized

with a protocol that only requires polynomial communication.

The basic correspondence between many auction protocols and primal-dual methods

of linear programming was pointed out in Bikhchandani et al. (2001). However, to prove

a theorem about communication we will need to use separation-based LP algorithms. A

separation-based linear programming algorithm may be used in cases of linear programs

that have an exponential number of constraints (inequalities) that are given implicitly.

Specifically, such an algorithm does not receive the inequalities as an explicit input, but

rather is provided with a “separation oracle” as its input: whenever an infeasible solution

is presented to this oracle, it must be able to produce a violated inequality. Algorithms of

this type can solve linear programs in polynomial time, given just this type of an oracle.

The reader is referred to any textbook on linear programming (e.g., Karloff 1991) for

more information.

The allocation problem itself is usually phrased as having an exponential number of

variables (xiS specifying the allocation of the bundle S of goods to bidder i), but only a

polynomial number of significant inequalities (that each item is sold only once, and that

each bidder is allocated only one set):

Maximize:
P

i,S x
i
Su

i(S)

Subject to:

• For all items j: Pi,S|j∈S x
i
S ≤ 1.

• For all bidders i: PS x
i
S ≤ 1.
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• For all i, S: xiS ≥ 0.

In order to use a separation-based linear programming algorithm, we move to the

dual that has just a polynomial number of variables:

Minimize:
P

j pj +
P

iwi

Subject to:

• For all i, S: wi +
P

j∈S pj ≥ ui(S).

• For all j: pj ≥ 0.

• For all i: wi ≥ 0.

It is important to note that in the dual, each inequality specifies a condition that

depends on the valuation of a single agent.

Now consider the protocol running the separation-based LP algorithm, but instead of

making an oracle query, asking all agents to suggest a violated inequality at the current

solution, if one exists.19 If a violated equality exists is suggested, and the protocol

continues. The communication that takes place at each such stage is polynomial, and

since the algorithm is known to terminate within a polynomial number of steps, the whole

protocol requires polynomial communication.

Truthfulness on the part of all the bidders can be ensured by adding a final stage in

which all agents announce their final utilities, and each agent receives a payment equal to

the sum of everyone else’s announcements. The agents will have no incentives to lie in the

final stage, since an agent’s announcement does not affect his own payment. Furthermore,

since each agent’s final payoff equals to the total surplus, he will have no incentive to

deviate from a surplus-maximizing protocol. The only shortcoming of this mechanism is

its large budget deficit, but it can be covered by charging each agent an extra amount

19A violated inequality can be described as a subset S of items that would give player i at least utility

wi under the prices pj . Finding this set may be a computationally difficult problem depending on the

representation of individual valuations ui, but this does not concern us here.
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that depends only on the others’ messages. In particular, the designer can implement the

Vickrey-Groves-Clarke payments by running n extra linear programs, each excluding a

single agent, and its value determining the extra charge to the excluded agent. The agents

will have no incentive to lie in the extra linear programs, since an agent’s message will

not affect his own payment. Thus, truthtelling constitutes an ex post Nash equilibrium

of the proposed mechanism.20 While not being very elegant, the mechanism illustrates

that for some restricted classes of valuations communication may not be a bottleneck,

and that incentive-compatibility can in such cases be ensured without a large increase in

communication (the latter point is also made by Reichelstein (1984)).

8 Conclusion

The communication problem examined here is different from the often considered problem

of computing the optimal allocation once valuations are known. The computational

complexity of a problem is defined relative to its input size, but in our cases of interest

the input size itself is enormous. In some cases the problem of computing the optimal

combinatorial allocation is known to be NP-complete even when its “input size” is small,

and so the communication problem is easy. (A simple example is when each agent is

known to be interested in a single bundle of items.) Nevertheless, it seems that in practice

the communication bottleneck may be more severe than the computational one. First,

the NP-completeness results only indicate the asymptotic complexity of the problem

as the number of items goes to infinity. In practice, computational complexity can be

handled for up to hundreds of items (and thousands of bids) optimally (Vohra and de

Vries 2000, Sandholm et al. 2001) and thousands of items (with tens of thousand of bids)

20In general it will not be a dominant-strategy equilibrium. Indeed, if agent j believes that agent i

will send the message corresponding to type vi0 after one of j’s announcements and to type vi00 after

another, j’s incentives to be truthful may be destroyed. Thus, dominant-strategy incentive-compatibility

is destroyed when agents send their messages sequentially rather than simultaneously, but it is such

sequentiality that is needed to reduce deterministic communication complexity.

33



near-optimally (Zurel and Nisan 2001). In contrast, our lower bounds on communication

are exact, and they “kick in” already with a few dozen items as long as valuations are

general. Second, unlike the communication burden, the computational burden may be

sidestepped by transferring it to the bidders themselves, e.g., by asking the bidders to

suggest allocations or matches to their package (Banks et al. 1989, Nisan and Ronen

2000).

Through most of the paper we have also assumed that the agents follow the strategies

suggested by the designer, rather than behaving in their self-interest. We found that the

communication requirement by itself often constitutes a “bottleneck” preventing exact

or approximate efficiency. If agents behave in their self-interest, this imposes further

incentive-compatibility constraints that the designer must honor. In the deterministic

communication model, these constraints require that the agents’ strategies constitute

an equilibrium of the extensive-form message game. (Incentive-compatibility cannot be

directly imposed on nondeterministic communication, since it does not specify what an

agent would obtain by “rejecting” the oracle’s message.) Given an equilibrium concept

such as Bayesian Nash or ex post Nash, a version of the revelation principle still holds

— that is, incentive-compatibility constraints can be imposed directly on the choice rule.

As shown in Reichelstein (1984) and in the previous subsection, in cases in which the

communication problem is easy, the imposition of incentive constraints does not require

a drastic increase in communication. However, it would be interesting to explore the

interaction of communication and incentive constraints in a more general setting.
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