Google’s Auction for TV Ads

Preliminary version

Noam Nisan Jason Bayer Deepak Chandra Tal Franji Robert Gardner
Yossi Matias Neil Rhodes Misha Seltzer Danny Tom Hal Varian
Dan Zigmond
Google Inc.

Abstract

This document describes the auction system used by Google for allocation and pricing of
TV ads. It is based on a simultaneous ascending auction, and has been in use since September
2008.

1 Introduction

While Google is known for its advertising on the web, not many people know that it also allows
advertisers to buy TV ads, and do so in a convenient way online. At the time of writing, Google
offers TV advertising inventory on over 100 channels in the USA, some national and some local.
While this paper will not elaborate on the advantages that this offering can provide to advertisers,
broadcasters, cable operators, or Google itself, we will shortly mention the following advantages for
advertisers:

e Automation: all aspects of of creating, buying, and running the campaign are done via a
simple online web interface.

e Flexibility: in contrast to the old-fashioned habits of the TV advertising industry where
complex deals are manually negotiated long in advance, this system provides a simple, trans-
parent, just-in-time, granular auction model. In particular this allows convenient aggregation
of inventory over many small networks.

e Measurement: Excellent online measurements and analysis of the campaign are provided.
Notably, the TV ads are delivered via set-top boxes that track exact and actual numbers of
viewers for each ad.

This document concentrates on the auction mechanism that is used for allocation and pricing
of TV ads. We only sketch a high-level description of the whole system. The reader who wishes
to learn more about the rest of the system may consult Google’s web-sites for TV ads [2], or
the adwords “traditional media” blog [1]. A variant of the auction mechanism was also used for
allocation of Radio ads from October 2008 to May 2009, at which point Google cancelled its Radio
operation.

1.1 How it works — overview

Google has deals in place with various “publishers” of TV content: broadcasters and Cable compa-
nies. From the point of view of advertising, these publishers own an inventory of ad-slots: time-slots
on various stations, where each of these is (part of) a commercial break within some scheduled pro-
gram. A typical slot may be between 30 second to 120 seconds long, and there may be many dozens
of such slots available daily on each station. Publishers make (part of) their inventory of slots on
their various stations available for sale through Google. All day-to-day interaction with publishers
is automated: slightly over-simplifying, each day the publisher’s IT systems send the next day’s
inventory (set of slots to be sold by Google) to Google; Google then auctions it among interested
advertisers; finally, Google sends back the resulting schedule and ads to the publisher’s systems
that then insert the scheduled ads at the scheduled commercial breaks. The auction also sets the
prices for the advertisers and Google handles their billing.

This paper does not discuss the financial arrangements between Google and the different pub-
lishers, which are manually negotiated, but rather focuses on the advertiser-facing side which is
goverened by an auction.

1.2 The Advertiser-facing user interface

An advertiser that wishes to set a T'V advertising campaign can do so using the respective section
of Google’s Adwords site [2]. There are basically three steps involved. First, the ad itself — the

“creative” — a video clip, must be produced in standard format. This is the responsibility of
the advertiser, but Google offers an online “ad creation marketplace” which helps connecting an
advertiser with specialists that can produce a TV ad for him. Once the ad exists, the advertiser
simply uploads it to the site.

The second step is targeting where your ad may appear. This is done using a web-page interface
that allows targeting by various criteria: stations, days in the week, day parts, demographics,
geographic regions, scheduled programs, etc. Much sophistication went into making this interface
convenient and powerful, but logically, the output of this stage is simply the set of slots that the
advertiser is interested in. Figure 1 gives a screen shot of (part of) the user interface for this.

Select networks/dayparts Select/Block programs Gelt suggestions by targel audience
@ Choose the networks wheoe your ad will un @ Choose dayparis for the networks you hawe chosen

[l BET - Black Entertainment Television ~ ' py; ads on these days

[] Biography Channal Select: All, None, Weekdays, Weekend

[0 Bloomberg Business Televsion O = O g 0 & 6
Mon Tue Wed Thu Fr Sat Sun

[l Braa

[Cartoon Network Run ads at these times

[chBC Select: All, Nene

' [J 12:00 AM to 5:00 AM
- | N

] CHN - Cable Mews Network] 5:00 AM to 7-00 AM

[[] CNN Headline News] 7:00 AM to 10:00 &AM

[] College Sports Television [10:00 AM to 2:00 PM
1 2:00 PM to 5:00 PM

E] | Comedy Central [5:00 PM to 8:00 PM

[0 Country Music Television . [B:00 PM to 12:00 AM

[_ Add to schedule -_]

Figure 1: screen shot from TV ads targeting interface

The third step is setting the bid: how much the advertiser is willing to pay. Logically, there
are two main conceptual parts to this bid: a total budget and a per-ad bid. First, a daily budget
is specified, and then a maximum price that the advertiser is willing to pay for his ad to appear
in every targeted slot is specified. The latter is commonly given in terms of ”cpm” — cost per
Millie — the price for each 1000 viewers. Thus for example a ”$5 cpm” ad that is watched by 3,000
viewers will cost $15. Again, a web-interface lets the advertiser specify these "max-cpm” bids.
While additional constraints and preferences may be specified, logically, the heart of the specified
information here is a real value for each targeted slot. Figure 2 gives a screen shot of (part of) the
TV-ads user interface for this.

Set pricing

How long do you want your ad to run?
Start date: 412308
WWill run until: &) Mo end date

o

How much do you want to spend per day?
3 /day

How much are you willing to bid per thousand impressions (CPM) ?
Maxamum CPM: 5 (Minimum bid for a 30 second ad is $1.00)

Calculate Weekly Estimates]

Figure 2: screen shot from TV ads bidding interface

1.3 The Auction goals

Once all the inventory and bids are given, the goal of the auction is to decide on the allocation, i.e.
the schedule of ads, as well as the correct pricing. The desired input and output of this auction is
clear:

Input:

e The inventory that is available for the next day. This is essentially a set of slots, where each
slot is specified by a time-range on a station, as well as its basic parameters.

e The set of all campaigns that are interested in this inventory. The basic information given for
each campaign is the daily budget and the cpm for each slot, but there may also be additional
constraints and preferences.

Output:

e The schedule: which advertiser gets to air his creative in which slot.

e Pricing: How much is every advertiser charged (in cpm) for each slot that he received.

As opposed to traditional methods in the industry where prices are set by manual negotiations
long in advance, the system here allows buying inventory on a daily basis and thus the prices them-
selves must be determined automatically as manual negotiation is impractical and inconvenient.
These prices must be flexible, changing on a day-to-day basis as to reflect the changing market

conditions, and thus must be determined by some auction-like (or market-like) mechanism. This
flexibility of prices is needed as to ensure basic economic efficiency in the face of changing market
conditions. This automatic setting of prices is a major difference from existing systems [6] that
automatically handle scheduling of ads, but are given manually defined prices.

The exact criteria according to which the allocation and pricing should be done is slightly subtle.
It is clear that we would want to allocate slots to advertisers in a way that maximizes their value
from the ads as implied by their bids, and that we can never charge the advertisers more than
what is implied by their budget or bid. It is also clear that we would like to maximize the revenue,
which is then split between the publishers and Google (according to the negotiated business terms
whose details do not concern us here). What is less clear at first sight is the exact desired trade off
between the conflicting goals of the different advertisers, between these and the revenue goal, as
well as how all this is implemented in a way that encourages advertisers to bid truthfully and not
“shade” their bids. This last consideration strongly suggests that we should not charge advertisers
directly according to their bid, but rather in the spirit of the “second price auction”.

In section 2.2, we study some of the difficulties in even attempting to pose this as an optimization
goal (before even worrying about the practicality of the optimization). Our conclusion is to attempt
reaching a “market allocation” with minimum equilibrium prices. In such an equilibrium, each ad
slot is priced at the minimum price needed for the winner to “take it away” from the competition,
and each advertiser is allocated the most cost-effective set of ads under these prices according to his
bids. Such an outcome would, in partuclar, be “Pareto-optimal” as well as fair. Taking minimum
market equilibrium prices implies that bidders have little strategic incentive to reduce their bids, as
in any case they pay the minimum price needed to win their allocation. This approach focuses on
setting up an economic environment—a market—that we anticipate will grow in the future. Making
sure that the environment provides an efficient and fair outcome is critical for future growth.

1.4 The Auction logic

The mechanism that was chosen to implement the auction is based on the simultaneous ascending
auction with item prices. The theoretical foundations of this ascending approach go back to [8] with
a more general point of view taken in [10], and has been famously used in the FCC spectrum auctions
[12]. For a background on combinatorial auctions in general and the simultaneous ascending auction
in particular we refer the reader to [7, 12]. The basic logic of this auction is as follows: each ad-slot
has an associated price that keeps increasing throughout the auction. Prices start at low reserve
prices, and rise whenever there is “over-demand” for an ad-slot — i.e. a slot that is currently held
by one bidder is desired by another. Such small price increases keep going on until there is no
“over-demand”, at which point the auction closes. The basic step in the auction is the calculation
of the “demand” of a bidder at current prices — i.e. which set of slots would this bidder desire to
acquire assuming that slots are priced as given. In its basic form the calculation of this demand is
done by a greedy algorithm that chooses slots according to decreasing bid-to-price ratio.

Under certain theoretical assumptions (“gross substitutes”) it is known that this procedure ends
with a “Walrasian market equilibrium” [10] and under even stricter assumptions these prices are
incentive compatible — i.e. give no bidder any strategic reason to under-bid [8]. Of course, these
theoretical assumptions do not hold in reality, and thus we can not expect these desired properties
to perfectly hold in reality. In fact, we show that it is impossible to reach any of these two conditions
even under very restricted cases of our basic setting. However, we do find that this general approach

does work “well” in practice, with various heuristic solutions to various complications'.

1.5 The auction implementation

The auction system described here has been in operation continuously since September 2008. The
complete TV-ads system (which has been in operation longer) is quite sophisticated in terms of
architecture involving multiple components that interact with publisher systems, billing systems,
databases, monitoring, as well as a web-based front-end. The auction component itself is shielded
from this complexity and is quite simple in architecture. The auction is implemented as a single-
threaded single-processor program that accepts its input, in one “chunk”, in the Google-standard
open format of a protocol buffer [3], and produces an output in a similar format. The most notable
feature of the internal architecture is the central place of a “Bidder” interface that represents a
single advertiser to the auction. The auction itself proceeds by repeatedly asking Bidder objects
for their “demand”. This internal architecture directly corresponds to the theoretical point of view
[4], separates the concerns of each advertiser from those of the auction as a whole, and is very
adaptable to new advertiser bidding product features. (The reader may observe the rapid rate of
change (product improvements) on the adwords traditional media blog [1].)

The system is considered a success: short-term simulations do show a significant improvement
in the quality of allocation (revenue, advertiser value, and other measures) and feedback from the
advertiser and publisher directions has been quite positive.

1.6 Rest of the paper

The rest of this paper describes this auction in detail. We believe that it will be more illuminating
to start, in section 2, with a simplified description that captures the basic issues, and only then,
in section 3, discuss various “complications” that real life brings. This paper does not present any
new theoretical results, it does however attempt to provide a theoretical context to the many issues
that were faced and dealt with by the auction. As usual, any real implementation faces multiple
complications, many of which are handled in an ad-hoc way but really require new theoretical
analysis. We attempt pointing out some of the issues that we believe deserve such theoretical
treatment. The first author has in fact collaborated in theoretical analysis on one such topic [9].

2 The Basic Problem

This section discusses the basic version of the auction.

2.1 The Formulation

Let us start by introducing basic notation that captures the essence of the issue:

e We will have m abstract slots, numbered 1...m. For each slot j we are given a reserve price
r; > 0, as well as basic slot data (station, time, impressions).

"We wish we could quantify this last claim by bringing experimental results, but are not able to do so here. Some
of this quantification has been done but is confidential data, some of it has not been completely measured as it
requires non-trivial effort, and some of it is even not clear how to measure.

e We will have n bidders. Each bidder is specified by his budget b; > 0, and his maximum bid
for each slot, specified by a “valuation function” v;(), where v;(j) > 0 denotes the bid for slot
j. We denote T; = {j|vi(j) > 0} the set of slots that i targets. From the point of view of the
auction, we take v; as given, with entries that have been already calculated according to the
advertiser’s bid as a function of the slot data.

e The allocation produced is a partition of the slots into disjoint subsets Sy, S;...S, C {1...m},
where each bidder ¢ wins the set of slots S;, and Sy are the unallocated slots.

e The pricing produced is a real price p; for each slot j that satisfy the following properties:
(a) at least the reserve price: p; > r; (b) individual rationality: if j € S; then p; < v;(j) (c)
budget constraints: for each bidder 4, jes; Pi < b;2.

We first need to model the utilities of the bidders, i.e. what do they desire. While in section 3 we
elaborate on additional constraints and preferences that they may express, in the basic formulation
described here, we only get from each bidder a bid for each slot. Our basic assumption on the
value of a set of items is “additive valuations” up to the budget limit. L.e., that the (declared) value
that bidder ¢ gets from acquiring a bundle of slots S C {1...m} is simply v;(5) = >_,cgvi(j). Our
assumption is that this is a monetary measure and thus if the bidder pays a total of ¢ for the bundle
S then his utility — what we should aim to optimize for him — is v;(S) — ¢, but this holds only
as long as we are within budget ¢ < b;. This budget limit takes us out of the usual quasi-linear
setting, and is analyzed theoretically in [9].

2.2 What are the goals?

Let us start by informally stating the goals that we would like to get, at first not worrying about
exact definitions, whether they are feasible, or how to handle the conflicts between them.

e Efficiency: We should try to maximize the values obtained by the bidders, i.e. the vector
v1(S1)...v,(Sy). There will clearly be some trade off, which we should specify, between the
values obtained by different bidders.

e Revenue: certainly the auctioneer should aim to maximize the revenue, sum;gs,p;.

e Fairness: We should not discriminate between bidders. The exact meaning of this requires
some thought, but lack of fairness is usually quite clear.

e Incentive Compatibility: We should remember that the bid information is given to us by
advertisers. These will react strategically to the auction system used, and optimize their bids
as to get highest utility from the system. We should ensure that there are no strategic reasons
for advertisers to “under-bid” or otherwise strategically declare a bid that is different than
their true value.

2Less specifically, as in mechanism design theory, we could only ask for the total payments from each bidder i
without breakdown by “item price”, e.g., as given by the VCG payment rule. This relaxation does not seem to really
help, and our subsequent discussion regarding formalizing the auction goals applies also to this less specific “bundle
price” setting.

While the reader may certainly see the need for trade offs between these goals, there is even
conceptual difficulty in attempting to handle them separately. We encourage the reader to pause
for a while and try to formulate for himself what his optimization trade-off approach will be. To our
understanding there is no clear mathematical programming formulation of the optimization goal
that makes much sense here. The difficulty is inherent in the combination of budget constraints with
valuations, as simple attempts to optimize “social welfare” do not take budgets into proper account
and simple attempts to maximize revenue do not give reasonable weight to the valuations. This is
especially apparent when looking at scenarios where the budget constraints are the significant ones,
which is the typical case. In appendix A we use a simple example to discuss why several natural
attempts at formalizing the problem do not really make much sense. We also discuss there the
problems with auctioning each slot separately, an approach which would be quite appealing due to
its simplicity.

We believe that the approach that makes sense is the classic economic goal of reaching a “Wal-
rasian” market equilibrium:

e Unallocated slots remain at reserve price: j € Sp implies p; = r;.

e Each advertiser gets his “demand” at the equilibrium prices, i.e. wins the best package for
him. Formally, any set S of slots where ZjeSpj < b;, we have that Zjes(vi(j) —pj) <

s, (ild) — p))- -

e Where there is a range of equilibrium prices, we choose the lowest possible equilibrium prices.

Achieving this goal would seem to be natural and desirable in its own right. Let us say a few
words on how it addresses our previous informal list of goals.

1. Efficiency: By the first welfare theorem, any equilibrium allocation will be Pareto-optimal. In
particular, every bidder gets the bundles of slots that is optimal for him, under given prices,
according to his bid.

2. Revenue: This auction does not always maximize revenue among all auctions. However, at a
high level, budgets are exhausted for all bidders that bid “high enough”, while fairness and
incentive constraints limit what can be taken from “low bidders”.

3. Fairness: The auction is obviously anonymous, has the “no envy” property, and all prices are
justified by the property that at a lower price the slot would be over-demanded.

4. Incentive Compatibility: in general we know that markets are incentive compatible as long
as no single participant has non-negligible effect on market prices. Without this assumption,
there only are theoretical results showing incentive compatibility of minimum equilibrium
prices in some simple cases: unit demand [8] and multi-unit auctions when valuations con-
straints are significantly weaker than budget constraints [9]. One can not hope for perfect
theoretical incentive compatibility as [9] also show that no Pareto-optimal auction can be
incentive compatible in the presence of budget limits3.

3In particular due to the non-quasi-linear setting, VCG prices are not incentive compatible, even if they could be
computed efficiently.

Unfortunately, it is theoretically impossible to always reach such an equilibrium, even in this
restricted setting, for two main theoretical reasons: The first reason is the computational difficulty:
even when slot prices are given, computing the demand of a bidder is equivalent to a knapsack
problem. Computing the equilibrium allocation can only be harder, as computing the demand is a
special case. This is addressed by taking account of the fact that usually slot prices are relatively
small compared to budgets. In this case, we are close to a fractional setting, where the demand of
a bidder is efficiently computed by a greedy algorithm. Not only is this greedy algorithm a good
approximation, but when more realistic issues are taken into account, in section 3.1, it may be
argued that it represents the demand better than the theoretical optimum.

The second reason is that it is well known that a Walrasian equilibrium may not exist unless
all demands are “gross substitutes”, which they need not be in our case. Thus even ignoring
computational issues an equilibrium may not exist at all. Appendix B gives an example. This
is handled in our auction by first relaxing the condition that all non-reserve-priced slots must be
allocated, and then allocating the relatively few unsold spots in a sub-optimal “remnant inventory
sale” round.

2.3 The simultaneous ascending auction

We describe here the basic version of the auction, still dealing only with the basic scenario formalized
above. This basic version is the framework for the complete solution, and in the next section we
will describe the various changes and enhancements to the basic algorithm. The overall idea is
simple:

Initialization:
1. For all slots j, set price to reserve: p; « r;.
2. Start with an empty allocation: For all bidders i > 0, S; <), and Sy < the set of all slots.

3. For all advertisers i, enqueue ¢ into the bidder queue.

Main loop:
While bidder queue not empty do:
1. Dequeue the next bidder ¢ from the bidder que.
2. Compute the demand D of bidder i greedily as follows:

(a) Sort all slots in T; with p; < v;(j) according to decreasing value of v;(j)/p;, where
pj = pj for j € S; U Sy and p; = p; + & otherwise.
(b) For all j according to the sorted order, if taking this slot does not exceed budget,
Pj + 2 ep Pt < by, then acquire it, D «— D U {j}.
3. For all slots j € DN S for some ¢ # k > 0 do:

(a) Increase price of j: pj < pj + 6.

(b) Remove j from Sj.

(c) if k is not already in the bidder queue then enqueue k.
4. Update the set of unallocated spots: Sy < Sp U (S; — D).

5. Update S;: S; < D.

Output:

Each bidder ¢ > 0 is allocated all slots j in S;, at a price of p; for slot j. Slots in Sy are left
un-allocated at this point.

The key step in this auction is the calculation of the demand D. It is important that this
step only depends on bidder i’s information as well as the values p; and not on any other global
information. The goal of the step is to find the set of slots that maximize i’s utility >, p(vi(j) —Pj)
subject to the budget constraint that jepbj < b;. The greedy algorithm gives the optimal solution
to the fractional variant of the problem where a slot may be partially taken at any fraction « for
price ap; and giving value aw;(j), and thus is practically a good approximation to the optimal set?.
Notice also the modularity and flexibility of demand computation allowing easy extensions to take
into account various other bidder preferences as described in section 3.

This ascending auction algorithm follows the theoretical work starting with [8, 10], and de-
scribed, e.g., in [5]. It is easy to see that it ends with a Walrasian equilibrium (up to the additive
9) if no slots remain un-allocated. This is known to be the case with “gross substitutes” bidders in
which case it ends with the minimal equilibrium prices®. In general, however, and especially given
the complications discussed in section 3, some slots may remain unallocated at this stage and are
allocated in a next “remnant inventory” stage.

2.4 Remnant inventory

The auction main loop ends with some slots unsold, those in Sy. The remnant sale sells these slots.
In this stage all bidders participate as before, but their demands take into account the slots that
they have already won. The logic of this stage is heuristic, basically attempting to sell as much
as possible at prices that are as close as possible to the attempted “equilibrium prices” from the
previous round. This stage proceeds by reducing (slightly) all prices p; of the remaining slots,
and re-running the main loop, selling some more slots. This is repeated until all remaining unsold
slots are priced at their reserve price which means that they can not be sold at all and are left
un-allocated.

This round is certainly a heuristic; a theoretical foundation for handling relatively small devia-
tions from equilibrium would be of considerable interest.

1A dynamic programming algorithm could give a provable tighter approximation, but would require more running
time, be much less flexible to addition of further constraints, and even more importantly would likely give a worse
model of the bidder’s true utility as we discuss in section 3.1.

®The minimum is well defined as equilibrium prices turn out to be a lattice [10].

3 Some Complications

3.1 The Imprecise Nature of Budgets

Budgets play a critical role in the problem formulation above, as they do in reality: an advertiser’s
budget is usually the main constraint on his allocated set of spots. In reality, however, budgets
are not totally well defined as in our formulation for a host of reasons, including the following
significant ones:

1. Google charges TV advertisers according to the actual number of people that watched the
ad (as reported by their cable boxes) and these real payments need to be constrained by the
budget but are not known at allocation time, when only an estimate is available. Thus the
algorithm works with estimated payments that may later turn out to be smaller or larger than
the real payments.® The implication is that the budget should not be treated like a clear-cut
constraint but rather as a “band” in which the higher you get the higher the probability that
you are over-budget.

2. The hard budget constraints are usually specified by the advertisers for longer periods of time
(month, week, or campaign-length), which encompass multiple auctions. While it is expected
that the single-auction daily budget is approximately the appropriate proportion, this is not
a hard constraint. Indeed the current Google adwords rules allow exceeding a single day’s
budget by up to 20%, and only treat the longer-term budgets as “hard”.

The implication from this is double: first, since the budget should really be treated as a
“smooth” constraint, there is some room for optimizations as well as policy decisions in regards to
the exact stopping rule in calculating the demand using the greedy algorithm. A simple example of
an optimization is for handling the integrality constraint at the “last spot” — the one that just goes
over budget. This may be allowed as long as it does not go over-budget beyond some threshold.
An example for a policy decision is to be conservative in optimizations and try to stick closely to
proportional daily budgets as to simplify advertiser control of their campaign. The smoothness
of the budget constraint further justifies the greedy algorithm for computing demand rather than
trying some kind of knapsack algorithm, since the whole justification of the latter is dealing with
the sharp integrality constraint at the budget limit, without which the greedy algorithm is optimal
(i.e. for the fractional knapsack problem.)

We suggest that some more detailed modeling of budget constraints may be of considerable
interest in various settings.

3.2 Crowd control

The basic formulation of the problem did not place any structural constraints on the set of slots
allocated to a single bidder. In reality there are some constraints of this form, where the most
significant ones forbid too much “crowding” of slots on the same station. Such constraints come
in different flavors: they may forbid a single ad to to appear twice in the same commercial break
or within some predefined time gap, they may place the restriction on a single ad, on all ads by
the same advertiser, or even on ads by different advertisers in the same industry. (See section 3.4

In the algorithm above, p; is the total price of the ad given the estimated number of impressions for it. The
actual bids and payments are on CPM basis, i.e. after the ad is aired will be scaled by (actual number of impres-
sions)/(estimated impressions).

10

below for more sophisticated variants of such constraints.) These kind of restrictions can represent
the requirements of publishers or of advertisers, and must be respected by the auction. These
constraints are easily incorporated into the auction by modifying the greedy demand algorithm
to take them into account: in each greedy step we check whether taking the slot would violate
“crowding” constraints, and skip the slot if this is the case. While the greedy algorithm is no
longer theoretically optimal for calculating the demand even in the fractional case under these
constraints, we did not observe a significant sub-optimality in practice. Appendix C shortly provides
a theoretical analysis of such constraints that seems of general interest.

A constraint between different advertisers in the same industry is conceptually more problem-
atic: it breaks the basic model of a combinatorial auction since it introduces externalities: whether
I can take a slot or not depends also on someone else’s allocation. While in principle it is pos-
sible to “internalize” these externalities into the model by introducing “crowding tokens” which
are also put in auction, this would have significant overhead. A simpler, although not “perfectly
correct” solution is to simply incorporate these “industry” crowding constraints into the greedy
demand logic, slightly breaking the theoretical contract that the demand is a function of solely
the current prices. One significant addition to the basic auction algorithm which is needed here is
a mechanism that ensures that an advertiser is re-scheduled for calculating his demand whenever
an external constraint on him changes. A theoretical analysis and quantification of the effect of
“mild” externalities in combinatorial auctions and of various ways of dealing with them seems to
be of interest.

3.3 The Nature of Bidders: Accounts, Campaigns, and Creatives

All of our discussion assumes the atomic notion of the “bidders”: the entities among which we
allocate the slots and which are the strategic participants in the auction. The reality is more
complicated: there is an hierarchy of entities among which we allocate. In the case of Google
adwords the hierarchy contains three levels.

1. The Account: Represents a single advertiser (company).

2. The Campaign: Represents an advertising campaign with its own budget and goals. An
account may run multiple campaigns.

3. The Creative: Represents a single ad. A campaign may run multiple ads.

Now, which of these entities should a bidder be? From one point of view, the allocation is
ultimately between ads, so the creative level seems right. From a different point of view the
advertiser is really the strategic player in the auction, so the account level seems right. However, it
seems that the campaign level is really the preferred answer. Conceptually, a campaign has a goal
that it is trying to achieve, and the significant budget constraint usually is the campaign budget.
Indeed, bidding is set on a campaign level. Some modification need to be made to the auction
in order to handle the other levels of the hierarchy. First, we must sub-allocate each campaign’s
allocated slots among its creatives. This allocation is not price-based but rather by non-economic
criteria usually, more or less, by rotation. Second, we must take care of special relations between
campaigns in the same account, in particular they may share an “account budget” — a limit on
the combined expenditure of all campaigns in the same account — which in terms of our campaign-
based modeling is an externality. Also, as a matter of policy, it might be required that campaigns

11

from the same account do not compete with each other, driving prices up without real competition
from another advertiser.

We are not aware of theoretical work that attempts to directly model this “fuzziness” in the
nature of the agents themselves, but this certainly seems like an interesting research direction.

3.4 Long vs. short ads

All of our discussion so far assumed that all ads are of the same length, and thus all advertisers
that target the same slot simply compete against each other. In reality, ads come in several
standardized lengths: current TV industry standards use an integer multiple of 15 seconds, and
so we need to enhance our setting to allow ads whose length is a small integer number of slots
(practically between a single slot and eight consecutive slots). The main difficulty arises when
different length ads compete for the same slots: should we prefer a $5 bid for 2-slots or a $3 bid for
1-slot? In a totally “liquid” situation, which behaves just like the fractional setting, there would
also be another $3 1-slot bid for these 2 slots and thus taking the two $3 bids for a total of $6 is
certainly best. In practice this will not always be the case.

At the algorithmic level, the problem is not very difficult due to the consecutive linear nature of
the multi-slot bids and can be solved polynomial time using dynamic programming [15]”. However,
the pricing problem here is significant since a bid for two consecutive slots has strong built-in
complementarity: a single slot is worthless. The difficulties with such a situation are well known
and appear at full strength even with a small example of selling 2 consecutive slots: Assume that
Alice has a 2-slot ad at a value of v4, while Bob and Charlie each have a 1-slot ad at values vg and
vo, respectively. It terms of maximizing efficiency Alice should win whenever v4 > v 4+ veo, and
should “logically” pay v + vo. But how much should Bob and Charlie pay when vg + vo > va?
It is well recognized [16, 12] that in such a case the incentive compatible VCG payments are quite
problematic: they would have Bob pay max(0,v4 — v¢) and Charlie pay max(0,v4 — vg). This is
awkward for several reasons, e.g., the payments may well be zero and may certainly be such that
the combined payment is much less than v4. A natural approach would be to let Bob and Charlie
share paying a sum of v4 in some manner, e.g. proportionally to their bid. But this is strongly
non-incentive compatible as it encourages free-riding: reducing my bid will reduce my payment.

Our approach has been to stick with the price-per-slot auction in the main ascending auction
stage and then do a correction in the second remnant sale stage. This fits directly into the basic
ascending slot price architecture. In places with sufficient liquidity, it is optimal in terms of allo-
cation and seems “correct” in terms of pricing. Specifically, during the main ascending stage we
maintain a price for each slot and bids that require several continuous slots simply see the sum of
the slot prices when they compute their demand. When a “short” ad takes a slot from a longer
ad, the remaining slots are left un-allocated. This may lead to slots remaining unallocated at the
end of the auction at which point they are sold in the “remanent sale”. In fact, the competition
between different length ads is usually the main source of un-allocated slots at the end of the first
ascending stage®.

In the remnant sale stage we change the pricing rule from being per-slot to taking the whole ad
into account. Since we are already in a situation where it is clear that there are liquidity problems,
a short ad can replace a longer one only by paying for the complete price of the replaced ad —

"In fact, this is true even in conjunction with the crowding constraints described above.
8 As the complementarity between adjacent slots indeed is “farthest away” from the theoretical “gross substitutes”
condition.

12

even those slots that are not desired by the short one. Theoretically, the allocation achieved is no
longer optimal and we also deviate from incentive compatibility, but since typically only a small
fraction of slots are left unsold at the remnant stage, this is practically acceptable.

While much analysis of the basic “one two-item bid vs. two one-item bid” has appeared in
the literature, we leave a comprehensive theoretic strategic treatment of this scenario when there
are many slots and bidders (and so we are “somewhat close” to a fractional setting) as a research
problem.

3.5 Auction overlap

Our basic model considers a single fixed auction: all the input is available, then an algorithm that
determines the allocation and pricing is run, and then results are reported to the systems that ac-
tually run the ads at the allocated times and that bill the advertisers appropriately. Unfortunately,
reality has a significant “online” component: the “input” i.e. the inventory for sale arrives from
the different publishers at different times. Some may know their inventory for Tuesday a week
before, some may only have it late Monday night, and in some cases some preliminary information
is available early and may then be updated later. Similarly, some publishers are willing to get their
schedule for Tuesday late Monday night while others need it a few days in advance.

The way that this staggered schedule of availability of the input and the output is handled is as
follows. Every time some output (i.e. allocation information for some set of slots) is needed, a new
auction is run. At that point in time the auction is run on all inventory whose allocation affects
the required set of slots. For inventory that is unavailable at that time, the preliminary available
information — a prediction, if needed — is used. Only the allocation of slots that needs to be
specified at this time is actually used, and the allocation of other slots is discarded, to be finalized
in future auctions which may have better information.

As an example (which is similar in spirit though not details to the case in our auction) suppose
that publisher A needs to get his schedule 2 days in advance and publisher B requires only 1 day
in advance, but then may also report his inventory to Google only 1 day in advance. We then hold
two auctions on every day x: one for day x + 1 and the other day x + 2. The auction for day x + 2
will use the best estimates so far for B’s inventory and the final inventory of A. The allocation it
produces for B will be simply thrown away, and only the allocation for A will be committed. This
will exhaust some of the budgets of advertisers for day « + 2. The auction for day = 4+ 1 (run on
day x) will take into account the budgets that were already spent for day x + 1 (by the auction run
on day = — 1) and will use the final inventory of B to get the allocation for B.

The quality of results obtained by this staggered online algorithm depends of course on the
quality of preliminary information. It is not needed really that the preliminary information or
prediction get the exact inventory correctly but rather that prices implied by the predicted inventory
are close enough to those implied by the actual final inventory.

While there has been some work on online auctions (see survey in [14]), we did not find any
work that is directly applicable to our setting. We leave a disciplined theoretical analysis of this
type of “staggered” online problem as an open problem.

3.6 Lack of free disposal

The model of combinatorial auctions implicitly assumes free disposal: an item which is not sold
can simply be thrown away. In reality this need not always be the case. For example, a commercial

13

break must be filled — empty airtime is not tolerated. The solution to this is very simple in
principle: just have a bunch of “filler” ads ready that can be used to fill any empty slot. Of course
preparing, managing, and approving these ads may be non-trivial in practice, but from this paper’s
auction-centric point of view the problem reduces to filling empty slots with appropriately chosen
filler ads. In our auction, Google has “public service” announcements used for this purpose, while
providing this public service to the community.

Acknowledgments

Of the many Googlers who contributed to this system, we would especially like to thank the
following: Jag Duggal, Daniel Gertsacov, Kaustuv, Ryan Roemer, Steve Stuckenberg, Tal Sela,
and Kevin Thompson.

References

[1] Adwords traditional media blog. Web Page: http://google-
tmads.blogspot.com /search /label/Google%20TV %20Ads.

[2] Adwords tv ads web site. Web Page: http://www.google.com/adwords/tvads.
[3] Protocol buffers web site. Web Page: http://code.google.com /apis/protocolbuffers.

[4] Liad Blumrosen and Noam Nisan. On the computational power of iterative auctions. In ACM
EC, 2005.

[5] Liad Blumrosen and Noam Nisan. Combinatorial auctions (a survey). In Noam Nisan, Tim
Roughgarden, Eva Tardos, and Vijay Vazirani, editors, Algorithmic Game Theory. Cambridge
University Press, 2007.

[6] Srinivas Bollapragada, Hong Cheng, Mary Phillips, Marc Garbira, Tim Gibbs, and Mark
Humphreville. Nbc’s optimization systems increase revenues and productivity. In Interfaces,
pages 47 — 60, January-February 2002.

[7] P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions. MIT Press,
2006.

[8] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. Journal of Political Economy,
94:863-872, 1986.

[9] Shahar Dobzinski, Ron Lavi, and Noam Nisan. Multi-unit auctions with budget constraints.
In FOCS’08.

[10] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87:95 — 124, 1999.

[11] Benny Lehamnn, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270-296, 2006.

[12] Paul Milgrom. Putting auction theory to work. Cambridge University Press, 2004.

14

[13] Noam Nisan. In P. Cramton and Y. Shoham and R. Steinberg (Editors), Combinatorial Auc-
tions. Bidding Languages. MIT Press, 2006.

[14] David C. Parkes. Online mechanisms. In Noam Nisan, Tim Roughgarden, Eva Tardos, and
Vijay Vazirani, editors, Algorithmic Game Theory, chapter 16. Cambridge University Press,
2007.

[15] Michael H. Rothkhof, Aleksandar Peke¢, and Ronald M. Harstad. Computationally manage-
able combinatorial auctions. Management Science, 44(8):1131-1147, 1998.

[16] Michael H Rothkopf, Thomas J Teisberg, and Edward P Kahn. Why are vickrey auctions
rare? Journal of Political Economy, 98(1):94-109, 1990.

Appendix A: Difficulties in Problem Formulation

Let us look at a few natural attempts to formulate the desired goals of the auction and see why
they do not make much sense. These will lead us to the market equilibrium formulation that we
took. For concreteness, let us consider the following simple example:

Running Example: 100 slots are being auctioned among two advertisers: Alice has a $60 budget
and a $3 value for each slot and Bob has a $30 budget and a $6 value per slot.

3.7 Independent auctions?

The first approach that one may consider is to auction the spots one by one, each time to the
highest bidder whose budget has not been exhausted yet. This seems to make much sense as slot
values are independent of each other. This approach also has the very strong appeal of simplicity
both in terms of implementation and in terms of of explaining it to the advertisers. One may think
of various approaches to decide on pricing, but using the second price in each of the slot auctions
seems appropriate for incentive compatibility. If we follow what this approach means in our case
we see that Bob, the high bidder, will win all the first auctions until his budget is exhausted. Using
a second-price rule, he will be charged $3 per slot, so his budget will run out after winning 10 slots.
At this point, Alice will win the remaining 90 spots for free (or whatever low reserve price there
is). The extreme un-fairness would be even more apparent if Alice only had a $10 budget — she
would still win these 90 spots for free. Strategic manipulation can be extremely helpful here: had
Bob declared a $2 per-slot bid instead, Alice would win the first slots for $2 each, exhausting her
budget after 30 slots, and then Bob could reap the remaining 70 spots for free!

3.8 Maximize Revenue?

Suppose that are goal is maximizing revenue. This is achieved by charging the two advertisers their
full budgets. This will also satisfy individual rationality as long as the allocation gives at least 20
slots to Alice and at least 5 to Bob. Thus revenue maximization provides very little guidance on
which allocation to choose. So which other criteria should be use? Fairness and efficiency would
seem to suggest allocating a slot to the one that has a higher value for it. Should Bob get all
but 20 of the slots? This seems quite unfair. Why should he pay much less per slot? It also

15

is clearly not incentive compatible since advertisers are strongly motivated to strategically reduce
their declaration of the budget. Another difficulty of this approach is to what extent is taking the
whole budget is justified: suppose that Bob only puts in a low $0.1 value for each spot (rather than
$6). Can we still charge Alice her full $60 budget, even though the “second price” would only be
$10 (10 cents for each of 100 slots)? Should we give some spots to Bob in this case and charge him,
hence increasing our revenue further?

3.9 Maximize Efficiency?

Suppose, on the other hand, that our goal is maximizing efficiency. Let us further decide that our
resolution of the trade off between different advertisers is the “utilitarian” one of maximizing the
sum of values, >, > jes; Vi (7). How are the budgets taken into account? As previously, should Bob
get all slots? How much should he pay?

Some previous papers have considered the budget limit as an upper bound on the value, v;(S) =
min(bi, Y g vi(j), and thus attempted to maximize »,(min(b;, Y ;cg, vi(4)). If this is done, then
again any allocation that gives at least 20 slots to Alice and at least 10 to Bob would achieve this
maximization. Again we get very little guidance on which allocation to choose. How much should
they pay? VCG payments in this context make no sense since they would be 0 (and in general do
not ensure incentive compatibility in our non-quasi-linear setting).

3.10 Market Equilibrium

At this point, we hope that the reader is coming to the realization, like we have, that the correct
goal here is a market equilibrium.

Let us see what this equilibrium will look like here. At any price p < 30/34 = 0.882... Alice will
demand at least 68 slots and Bob at least 34 so there will be over-demand. Just above this price,
Bob’s demand would be 33 and Alice’s 67, so the the lowest equilibrium price would be just above
88.2 cents. Bob would pay $29.1.. for his 33 slots and Alice would pay $59.1.. her 67 slots. This
is quite efficient, nearly maximizes revenue, and seems to be quite fair. This case turns out to also
be incentive compatible: no advertiser can gain by manipulating his bid.

Appendix B: Example with no equilibrium prices

Here is an example for a simple setting where no Walrasian equilibrium exists.

bidder | budget | v(a) v(b) v(c)
1 6 5)) 0
2 9 4 4 8
3 7 0 0 7

Assume towards contradiction that an equilibrium exists, and assume without loss of generality
that pg < pp. If pa + pp > pe then bidder 2 demands ¢ and p. > 7 (otherwise 3 also demands it).
But then bidder 1 demands only a, and b is left un-allocated contradicting the requirement that
unallocated slots be priced at reserve (0 here). On the other hand, if p, + pp < p. then p. < 7
(otherwise neither 2 nor 3 demand c and it is left un-allocated despite its non-zero price). But then
both 1 and 2 demand a. Contradiction. The case p, + pp = ¢. is treated like the first case if c is
allocated to 2, and like the second case otherwise, concluding the contradiction.

16

Appendix C: Additive Valuations with pair-wise constraints

In this appendix we focus, in a general combinatorial auction setting, on constraints that forbid
a bidder to win certain given pairs of items. This appendix does not address the interplay with
budget constraints (which we have not analyzed and leave as a topic for further study) but rather
reverts to the standard quasi-linear setting. A linear valuation with such constraints is given by
two elements:

1. A value v(j) for each item j € M, where M is the set of items for sale.

2. A graph G = (M, E), where E are the set of pairs that are forbidden to be taken together.

The valuation of a set is defined as v(S) = maxjcs Y~ ;c;v(j), where I ranges over all sets that
are independent in G. This is essentially the ”OR*” bidding language used on singleton valuations
(see [13]). We believe that this is quite a useful “bidding language” in general and should be
studied. Here are a few preliminary results, whose proofs are straight forward given the literature
and omitted.

e Every linear valuation with pair-wise constraints lies in the class XOS of [11] and hence is
sub-additive. There are linear valuations with pair-wise constraints that are not sub-modular
and hence not gross-substitutes.

e Answering a value query or a demand query (see [4]) given the description of the valuation
as above is NP-hard. The same is true for approximating the value to within m%>=¢ or for
finding the welfare-maximizing allocation between such valuations.

e When the graph is restricted to be an interval graph (as it is in our “crowding” constraints)
both value and demand queries can be answered exactly in polynomial time (using dynamic
programming).

17

