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Combinatorial Auctions
Liad Blumrosen and Noam Nisan

Abstract

In combinatorial auctions a large number of items are auctioned concurrently
and bidders are allowed to express preferences on bundles of items. This
is preferable to selling each item separately when there are dependencies
between the different items. This problem has direct applications, may be
viewed as a general abstraction of complex resource allocation, and is the
paradigmatic problem on the interface of economics and computer science.
We give a brief survey of this field, concentrating on theoretical treatment.

1.1 Introduction

A large part of computer science as well as a large part of economics may
be viewed as addressing the “allocation problem”: how should we allocate
“resources” among the different possible uses of these resources. An auction
of a single item may be viewed as a simple abstraction of this question: we
have a single indivisible resource, and two (or more) players desire using it
– who should get it? Being such a simple and general abstraction explains
the pivotal role of simple auctions in mechanism design theory.

From a similar point of view, “combinatorial auctions” abstract this issue
when multiple resources are involved: how do I allocate a collection of inter-
related resources? In general, the “inter-relations” of the different resources
may be combinatorially complex, and thus handling them requires effective
handling of this complexity. It should thus come as no surprise that the
field of “combinatorial auctions” – the subject of this chapter – is gaining a
central place in the interface between computer science and economics.
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1.1.1 Problem Statement

The combinatorial auction setting is formalized as follows: there is a set of
m indivisible items that are concurrently auctioned among n bidders. For
the rest of this chapter we will use n and m in this way. The combinatorial
character of the auction comes from the fact that bidders have preferences
regarding subsets – bundles – of items. Formally, every bidder i has a
valuation function vi that describes his preferences in monetary terms:

Definition 1.1 A valuation v is a real-valued function that for each subset
S of items, v(S) is the value that bidder i obtains if he receives this bundle of
items. A valuation must have “free disposal”, i.e., be monotone: for S ⊆ T

we have that v(S) ≤ v(T ), and it should be “normalized”: v(∅) = 0.

The whole point of defining a valuation function is that the value of a
bundle of items need not be equal to the sum of the values of the items
in it. Specifically for sets S and T , S ∩ T = ∅, we say that S and T are
complements to each other (in v) if v(S ∪T ) > v(S)+v(T ), and we say that
S and T are substitutes if v(S ∪ T ) < v(S) + v(T ).

Note that implicit in this definition are two assumptions about bidder
preferences: first, we assume that they are “quasi-linear” in the money, i.e.,
if bidder i wins bundle S and pays a price of p for it then his utility is
vi(S)−p. Second, we assume that there are “no externalities”, i.e., a bidder
only cares about the item that he receives and not about how the other
items are allocated among the other bidders.

Definition 1.2 An allocation of the items among the bidders is S1...Sn

where Si ∩ Sj = ∅ for every i 6= j. The social welfare obtained by an
allocation is

∑
i vi(Si). A socially-efficient allocation (among bidders with

valuations v1...vn) is an allocation with maximum social welfare among all
allocations.

In our usual setting the valuation function vi of bidder i is private infor-
mation – unknown to the auctioneer or to the other bidders. Our usual goal
will be to design a mechanism that will find the socially-efficient allocation.
What we really desire is a mechanism where this is found in equilibrium,
but we will also consider the partial goal of just finding the optimal alloca-
tion regardless of strategic behavior of the bidders. One may certainly also
attempt designing combinatorial auctions that maximize the auctioneer’s
revenue, but much less is known about this goal.
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There are multiple difficulties that we need to address:

• Computational complexity – the allocation problem is computationally
hard (NP-complete) even for simple special cases. How do we handle
this?

• Representation and communication – the valuation functions are expo-
nential size objects since they specify a value for each bundle. How can
we even represent them? How do we transfer enough information to the
auctioneer so that a reasonable allocation can be found?

• Strategies – how can we analyze the strategic behavior of the bidders?
Can we design for such strategic behavior?

The combination of these difficulties, and the subtle interplay between
them is what gives this problem its generic flavor, in some sense encompass-
ing many of the issues found in algorithmic mechanism design in general.

1.1.2 Some Applications

In this chapter we will undertake a theoretical study and will hardly men-
tion specific applications. More information about various applications can
be found in the references mentioned in Section 1.8. Here we will shortly
mention a few.

“Spectrum auctions”, held world wide and, in particular, in the united
states, have received the most attention. In such auctions a large number
of licenses are sold, each license being for the use of a certain band of the
electromagnetic spectrum in a certain geographic area. These licenses are
needed, for example, by cell-phone companies. To give a concrete example,
let us look at the next scheduled auction of the FCC at the time of writing
(number 66), scheduled for August 2006. This auction is intended for “ad-
vanced wireless services” and includes 1,122 licenses, each covering a 10 or 20
MHz spectrum band (somewhere in the 1.7GHz or 2.1GHz frequency range)
over a geographic area that contains a population of between 0.5 Million to
50 Million. The total of the minimum bids for all licenses is over 1 Billion
dollars. Generally speaking, in such auctions bidders desire licenses covering
the geographic area that they wish to operate in, with sufficient bandwidth.
Most of the spectrum auctions held so far escaped the full complexity of the
combinatorial nature of the auction by essentially holding a separate auction
for each item (but usually in a clever simultaneous way). In such a format,
bidders could not fully express their preferences, thus leading, presumably,
to sub-optimal allocation of the licenses. In the case of FCC auctions, it
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has thus been decided to move to a format that will allow “combinatorial
bidding”, but the details are still under debate.

Another common application area is in transportation. In this setting the
auction is often “reversed” – a procurement auction – where the auctioneer
needs to buy the set of items from many bidding suppliers. A common
scenario is a company that needs to buy transportation services for a large
number of “routes” from various transportation providers (e.g. trucking
or shipping companies). For each supplier, the cost of providing a bundle
of routes depends on the structure of the bundle as the cost of moving
the transportation vehicles between the routes in the bundle needs to be
taken into account. Several commercial companies are operating complex
combinatorial auctions for transportation services, and commonly report
savings of many millions of dollars.

The next application we wish to mention is conceptual, an example demon-
strating that various types of problems may be viewed as special cases of
combinatorial auctions. Consider a communication network that needs to
supply multiple “connection requests” – each requesting a path between two
specified nodes in the network, and offering a price for such a path. In the
simplest case, each network edge must be fully allocated to one of the re-
quests, so the paths allocated to the requests must be edge-disjoint. Which
requests should we fulfill, and which paths should we allocate for it? We
can view this as a combinatorial auction: the items sold are the edges of
the network. The players are the different requests, and the valuation of a
request gives the offered price for any bundle of edges that contains a path
between the required nodes, and 0 for all other bundles.

1.1.3 Structure of This Chapter

We start our treatment of combinatorial auctions, in Section 1.2, by leaving
aside the issue of representation and concentrating on bidders with simple
“single-minded” valuations. For these bidders we address the twin ques-
tions of the computational complexity of allocation and strategic incentive
compatibility. The rest of the chapter then addresses general valuations.
Section 1.3 lays out mathematical foundations and introduces the notion
of Walrasian equilibrium and its relation to the linear programming relax-
ation of the problem. Section 1.4 describes a first approach for computa-
tionally handling general valuations: representing them in various “bidding
languages”. Section 1.5 describes a second approach, that of using iterative
auctions which repeatedly query bidders about their valuations. In Section
1.6 we show the limitations of the second approach, pointing out an under-
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lying communication bottleneck. Section 1.7 studies a natural widely-used
family of iterative auctions – those with ascending prices. Bibliographic
notes appear in Section 1.8, followed by a collection of exercises.

1.2 The Single-Minded Case

This section focuses on the twin goals of computational complexity and
strategic behavior, while leaving out completely the third issue of the repre-
sentational complexity of the valuation functions. For this, we restrict our-
selves to players with very simple valuation functions which we call “single-
minded bidders”. Such bidders are only interested in a single specified bun-
dle of items, and get a specified scalar value if they get this whole bundle
(or any superset) and get zero value for any other bundle.

Definition 1.3 A valuation v is called single minded if there exists a bundle
of items S∗ and a value v∗ ∈ <+ such that v(S) = v∗ for all S ⊇ S∗, and
v(S) = 0 for all other S. A single-minded bid is the pair (S∗, v∗).

Single-minded valuations are thus very simply represented. The rest
of this section assumes as common knowledge that all bidders are single
minded.

1.2.1 Computational Complexity of Allocation

Let us first consider just the algorithmic allocation problem among single-
minded bidders. Recall that in general, an allocation gives disjoint sets of
items Si to each bidder i, and aims to maximize the social welfare

∑
i vi(Si).

In the case of single-minded bidders whose bids are given by (S∗
i , v∗i ), it is

clear that an optimal allocation can allocate to every bidder either exactly
the bundle he desires Si = S∗

i or nothing at all Si = ∅. The algorithmic
allocation problem among such bidders is thus given by:

Definition 1.4 The allocation problem among single-minded bidders is the
following:
INPUT: (S∗

i , v∗i ) for each bidder i = 1...n.
OUTPUT: A subset of winning bids W ⊆ {1...n} such that for every
i 6= j ∈ W , S∗

i ∩ S∗
j = ∅ (i.e., the winners are compatible with each other)

with maximum social welfare
∑

i∈W v∗i .

This problem is a “weighted-packing” problem and is NP-complete, which
we will show by reduction from the INDEPENDENT-SET problem.
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Proposition 1.5 The allocation problem among single-minded bidders is
NP-hard. More precisely, the decision problem of whether the optimal allo-
cation has social welfare of at least k (where k is an additional part of the
input) is NP-complete.

Proof We will make a reduction from the NP-complete “INDEPENDENT-
SET” problem: given an undirected graph G = (V,E) and a number k,
does G has an independent set of size k? An independent set is a subset
of the vertices that have no edge between any two of them. Given such an
INDEPENDENT-SET instance, we will build an allocation problem from it
as follows:

• The set of items will be E, the set of edges in the graph.
• We will have a player for each vertex in the graph. For vertex i ∈ V

we will have the desired bundle of i be the set of adjacent edges
S∗

i = {e ∈ E|i ∈ e}, and the value be v∗i = 1.

Now notice that a set W of winners in the allocation problem satisfies S∗
i ∩

S∗
j = ∅ for every i 6= j ∈W if and only if the set of vertices corresponding to

W is an independent set in the original graph G. The social welfare obtained
by W is exactly the size of this set, i.e., the size of the independent set. It
follows that an independent set of size at least k exists if and only if the
social welfare of the optimal allocation is at least k. This concludes the NP-
hardness proof. The fact that the problem (of whether the optimal allocation
has social welfare at least k) is in NP is trivial as the optimal allocation can
be guessed and then the social welfare can be calculated routinely.

As usual when a computational problem is shown to be NP-complete,
there are three approaches for the next step: approximation, special cases,
and heuristics. We will discuss each in turn.

First, we may attempt finding an allocation that is approximately optimal.
Formally, we say that an allocation S1...Sn is a c-approximation of the opti-
mal one if for every other allocation T1...Tn (and specifically for the socially
optimal one), we have that

P
i vi(Ti)P
i vi(Si)

≤ c. Perhaps a computationally-efficient
algorithm will always be able to find an approximately-optimal allocation?
Unfortunately, the NP-completeness reduction above also shows that this
will not be possible. Not only is it known that the finding the maximum
independent set is NP-complete, but it is known that approximating it to
within a factor of n1−ε (for any fixed ε > 0) is NP-complete. Since in our
reduction the social welfare was exactly equal to the independent-set size,
we get the same hardness here. Often this is stated as a function of the
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number of items m rather than the number of players n. Since m ≤ n2 (m
is the number of edges, n is the number of vertices), we get:

Proposition 1.6 Approximating the optimal allocation among single-minded
bidders to within a factor better than m1/2−ε is NP-hard.

As we will see in the next sub-section, this level of approximation can be
reached in polynomial time, even in an incentive-compatible way (which is
the topic of the next sub-section).

Second, we can focus on special cases that can be solved efficiently. Several
such cases are known. The first one, is when each bidder desires a bundle
of at most two items |S∗

i | ≤ 2. This case is seen to be an instance of the
weighted matching problem (in general non-bipartite graphs) which is known
to be efficiently solvable. The second case is the “linear order” case. Assume
that the items are arranged in a linear order and each desired bundle is for
a continuous segment of items, i.e., each S∗

i = {ji, ji + 1, ..., ki} for some
1 ≤ ji ≤ ki ≤ m (think of the items as lots along the sea shore, and assume
that each bidder wants a connected strip of seashore). It turns out that this
case can be solved efficiently using dynamic programming, which we leave
as an exercise to the reader (see Exercise 1).

Third, an NP-completeness result only says that one cannot write an al-
gorithm that is guaranteed to run in polynomial time and obtain optimal
outputs on all input instances. It may be possible to have algorithms that
run reasonably fast and produce optimal (or near-optimal) results on most
natural input instances. Indeed, it seems to be the case here: the allocation
problem can be stated as an “integer programming” problem, and then the
large number of known heuristics for solving integer programs can be ap-
plied. In particular, many of these heuristics rely on the linear programming
relaxation of the problem, which we will study in Section 1.3 in a general
setting. It is probably safe to say that most allocation problems with up
to hundreds of items can be practically solved optimally, and that even
problems with thousands or tens of thousands of items can be practically
approximately-solved quite well.

1.2.2 An Incentive-Compatible Approximation Mechanism

After having dealt with the purely algorithmic aspect in the last subsection,
we now return to handling also strategic issues. Again, we still avoid all
representation difficulties, i.e., focusing on single-minded bidders. That is,
we now wish to take into account the fact that the true bids are private in-
formation of the players, and not simply available to the algorithm. We still
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would like to optimize the social welfare as much as possible. The approach
we take is the standard one of mechanism design: incentive compatibility.
We refer the reader to Chapter 9 for background, but in general what we de-
sire is an allocation algorithm and payment functions such that each player
always prefers reporting his private information truthfully to the auctioneer
rather than any potential lie. This would ensure that the allocation algo-
rithm at least works with the true information. We also wish everything to
be efficiently computable, of course.

Definition 1.7 Let Vsm denote the set of all single-minded bids on m items,
and let A be the set of all allocations of the m items between n players. A
mechanism for single-minded bidders is composed of an allocation mecha-
nism f : (Vsm)n → A and payment functions pi : (Vsm)n → < for i = 1...n.
The mechanism is computationally efficient if f and all pi can be com-
puted in polynomial time. The mechanism is incentive compatible (in dom-
inant strategies) if for every i, and every v1, ..., vn, v′i ∈ Vsm, we have that
vi(a)− pi(vi, v−i) ≥ vi(a′)− pi(v′i, v−i), where a = f(vi, v−i), a′ = f(v′i, v−i)
and vi(a) = vi if i wins in a and zero otherwise.

The main difficulty here is the clash between the requirements of incen-
tive compatibility and that of computational efficiency. If we leave aside the
requirement of computational efficiency then the solution to our problem
is simple: take the socially-efficient allocation and let the payments be the
VCG payments defined in Chapter 9 . These payments essentially charge
each bidder his “externality”: the amount by which his allocated bundle re-
duced the total reported value of the bundles allocated to others. As shown
in Chapter 9 this would be incentive compatible, and would give the ex-
actly optimal allocation. However, as shown above, exact optimization of
the social welfare is computationally intractable. Thus, when we return to
the requirement of computational efficiency, exact optimization is impossi-
ble. Now, one may attempt using “VCG-like” mechanisms: take the best
approximation algorithm you can find for the problem – which can have a
theoretical guarantee of no better than O(

√
m) approximation but may be

practically much better – and attempt using the same idea of charging each
bidder his externality according to the allocation algorithm used. Unfortu-
nately, this would not be incentive compatible! VCG-like payments lead to
incentive compatibility if but only if the social welfare is exactly optimized
by the allocation rule (at least over some sub-range of allocations).

We thus need to find another type of mechanisms – non-VCG. While in
general settings almost no incentive compatible mechanisms are known be-
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The Greedy Mechanism for Single-Minded Bidders:
Initialization:
• Reorder the bids such that v∗1/

√
|S∗

1 | ≥ v∗2/
√
|S∗

2 | ≥ ... ≥ v∗n/
√
|S∗

n|.
• W ← ∅.

For i = 1...n do: if S∗
i ∩

(⋃
j∈W S∗

j

)
= ∅ then W ←W ∪ {i}.

Output:
Allocation: The set of winners is W.
Payments: For each i ∈W , pi = v∗j /

√
|S∗

j |/|S∗
i |, where j is the

smallest index such that S∗
i ∩ S∗

j 6= ∅, and for all k < j, k 6= i,
S∗

k ∩ S∗
j = ∅ (if no such j exists then pi = 0).

Fig. 1.1. The mechanism achieves a
√

m approximation for combinatorial auctions
with single-minded bidders

yond VCG, our single-minded setting is “almost single-dimensional” – in
the since that the private values are composed of a single scalar and the
desired bundle – and for such settings this is easier. Indeed, the mecha-
nism in Figure 1.1 is computationally efficient, incentive compatible, and
provides a

√
m approximation guarantee, as good as theoretically possible

in polynomial time.
This mechanism greedily takes winners in an order determined by the

value of the expression v∗1/
√
|S∗

1 |. This expression was taken as to opti-
mize the approximation ratio obtained theoretically, but as we will see, the
incentive compatibility result would apply to any other expression that is
monotone increasing in v∗i and decreasing in |S∗

i |. The intuition behind the
choice of j for defining the payments is that this is the bidder who lost ex-
actly because of i – if Bidder i had not participated in the auction, Bidder
j would have won.

Theorem 1.8 The greedy mechanism is efficiently computable, incentive
compatible, and produces a

√
m approximation of the optimal social welfare.

Computational efficiency is obvious; we will show incentive compatibility
and the approximation performance in two separate lemmas. The incentive
compatibility of this mechanism follows directly from the following lemma:

Lemma 1.9 A mechanism for single-minded bidders in which losers pay 0
is incentive compatible if and only if it satisfies the following two conditions:

(i) Monotonicity: A bidder who wins with bid (S∗
i , v∗i ) keeps winning
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for any v′i > v∗i and for any S′
i ⊂ S∗

i (for any fixed settings of the
other bids).

(ii) Critical Payment: A bidder who wins pays the minimum value
needed for winning: the infimum of all values v′i such that (S∗

i , v′i)
still wins.

Before we prove the lemma – or actually just the side that we need – let us
just verify that our mechanism satisfies these two properties. Monotonicity
is implied since increasing v∗i or decreasing S∗

i can only move bidder i up in
the greedy order, making it easier to win. The critical payment condition is
met since notice that i wins as long as he appears in the greedy order before
j. The payment computed is exactly the value at which the transition
between i being before and after j in the greedy order happens.

Note that this characterization is different from the characterization given
in Chapter 9 for general single-parameter agents, since single-minded bidders
are not considered to have a single parameter, as their private data consists
of both their value and their desired bundle.

Proof We first observe that under the given conditions, a truthful bidder
will never receive negative utility: his utility is zero while losing (losers pay
zero), and for winning, his value must be at least the critical value, which
exactly equals his payment. We will now show that a bidder can never
improve his utility by reporting some bid (S′, v′) instead of his true values
(S, v). If (S′, v′) is a losing bid or if S′ does not contain S, then clearly
reporting (S, v) can only help. Therefore we will assume that (S′, v′) is a
winning bid and that S′ ⊇ S

We next show that the bidder will never be worse off by reporting (S, v′)
rather than (S′, v′). Denote the bidder’s payment for the bid (S′, v′) by p′,
and for the bid (S, v′) by p. For every x < p, bidding (S, x) will lose since
p is a critical value. By monotonicity, (S′, x) will also be a losing bid for
every x < p, and therefore the critical value p′ is at least p. It follows that
by bidding (S, v′) instead of (S′, v′) the bidder still wins and his payment
will not increase.

It is left to show that bidding (S, v) is no worse than the winning bid
(S, v′): Assume first that (S, v) is a winning bid with a payment (critical
value) p̃. As long as v′ is greater than p̃, the bidder still wins with the same
payment, thus misreporting his value would not be beneficial. When v′ < p̃

the bidder will lose, gaining zero utility, and he will not be better off.

If (S, v) is a losing bid, v must be smaller than the corresponding critical
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value, so the payment for any winning bid (S, v′) will be greater than v,
making this deviation non-profitable.

The approximation guarantee is ensured by the following lemma.

Lemma 1.10 Let OPT be an allocation (i.e., set of winners) with maxi-
mum value of

∑
i∈OPT v∗i , and let W be the output of the algorithm, then∑

i∈OPT v∗i ≤
√

m
∑

i∈W v∗i .

Proof For each i ∈ W let OPTi = {j ∈ OPT, j ≥ i | S∗
i ∩ S∗

j 6= ∅} be the
set of elements in OPT that did not enter W because of i (in addition to i

itself). Clearly OPT ⊆
⋃

i∈W OPTi and thus the lemma will follow once we
prove the claim that for every i ∈W ,

∑
j∈OPTi

v∗j ≤
√

mv∗i .
Note that every j ∈ OPTi appeared after i in the greedy order and thus

v∗j ≤
v∗i
√
|S∗j |√
|S∗i |

. Summing over all j ∈ OPTi, we can now estimate

∑
j∈OPTi

v∗j ≤
v∗i√
|S∗

i |

∑
j∈OPTi

√
|S∗

j | (1.1)

Using the Cauchy-Schwarz inequality we can bound∑
j∈OPTi

√
|S∗

j | ≤
√
|OPTi|

√ ∑
j∈OPTi

|Sj | (1.2)

Every S∗
j for j ∈ OPTi intersects S∗

i . Since OPT is an allocation, these
intersections must all be disjoint, and thus |OPTi| ≤ |S∗

i |. Since OPT is
an allocation

∑
j∈OPTi

|Sj | ≤ m. We thus get
∑

j∈OPTi

√
|S∗

j | ≤
√
|S∗

i |
√

m,

and plugging into Inequality 1.1 gives the claim
∑

j∈OPTi
v∗j ≤

√
mv∗i .

1.3 Walrasian Equilibrium and the LP relaxation

In this section we return to discuss combinatorial auctions with general val-
uations, and we will study the linear-programming relaxation of the winner-
determination problem in such auctions. We will also define the economic
notion of a competitive equilibrium with item prices (or “Walrasian equilib-
rium”). Although these notions appear to be independent at a first glance,
we will describe a strong connection between them. In particular, we will
prove that the existence of a Walrasian equilibrium is a sufficient and neces-
sary condition for having an integer optimal solution for the linear program-
ming relaxation (i.e., no integrality gap). One immediate conclusion is that
in environments where Walrasian Equilibria exist, the efficient allocation
can be computed in polynomial time.
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1.3.1 The Linear Programming Relaxation and its Dual

The winner determination problem in combinatorial auctions can be formu-
lated by an integer program. We present the linear programming relaxation
of this integer program, and denote it by LPR (in the integer program Con-
straint (1.6) would be replaced with “xi,S ∈ {0, 1}”).

The Linear Programming Relaxation (LPR):

Maximize
∑

i∈N,S⊆M

xi,S vi(S) (1.3)

s.t.
∑

i∈N, S|j∈S

xi,S ≤ 1 ∀j ∈M (1.4)

∑
S⊆M

xi,S ≤ 1 ∀i ∈ N (1.5)

xi,S ≥ 0 ∀i ∈ N,S ⊆M (1.6)

In the integer program, each variable xi,S equals 1 if bidder i receives the
bundle S, and zero otherwise. The objective function is therefore maximiz-
ing social welfare. Condition 1.4 ensures that each item is allocated to at
most one bidder, and Condition 1.5 implies that each player is allocated at
most one bundle. Solutions to the linear program can be intuitively viewed
as fractional allocations: allocations that would be allowed if items were
divisible. While the LP has exponentially (in m) many variables, it still has
algorithmic implications. E.g., in the case of single-minded bidders only a
single variable Xi,S∗i

for each bidder i is required, enabling direct efficient
solution of the LP. In Section 1.5.2 we will see that, assuming reasonable
access to the valuations, the general LP can be solved efficiently as well.

We will also consider the dual linear program:

The Dual Linear Programming Relaxation (DLPR)

Minimize
∑
i∈N

ui +
∑
j∈M

pj (1.7)

s.t. ui +
∑
j∈S

pj ≥ vi(S) ∀i ∈ N, S ⊆M (1.8)

ui ≥ 0, pj ≥ 0 ∀i ∈ N, j ∈M (1.9)

The usage of the notations pj and ui is intentional, since we will later see
that at the optimal solution, these dual variables can be interpreted as the
prices of the items and the utilities of the bidders.
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1.3.2 Walrasian Equilibrium

A fundamental notion in economic theory is the notion of a competitive equi-
librium: a set of prices where the market clears, that is, the demand equals
the supply. We will now formalize this concept, that will be generalized later
in Section 1.7.

Given a set of prices, the demand of each bidder is the bundle that max-
imize her utility. (There may be more than one such bundle, in which case
each of them is called a demand). In this section we will consider a linear
pricing rule, where a price per each item is available, and the price of each
bundle is the sum of the prices of the items in this bundle.

Definition 1.11 For a given bidder valuation vi and given item prices
p1, ..., pm, a bundle T is called a demand of bidder i if for every other bundle
S ⊆M we have that vi(S)−

∑
j∈S pj ≤ vi(T )−

∑
j∈T pj .

A Walrasian equilibrium† is a set of “market-clearing” prices where every
bidder receives a bundle in his demand set, and unallocated items have zero
prices.

Definition 1.12 A set of non-negative prices p∗1, ..., p
∗
m and an allocation

S∗
1 , ..., S∗

m of the items is a Walrasian equilibrium if for every player i, S∗
i

is a demand of bidder i at prices p∗1, ..., p
∗
m and for any item j that is not

allocated (i.e., j /∈ ∪n
i=1S

∗
i ) we have p∗j = 0.

The following result shows that Walrasian equilibria, if they exist, are
economically efficient, i.e., they necessarily obtain the optimal welfare. This
is a variant of the classic economic result known as the First Welfare The-
orem but for environments with indivisible items. Here we actually prove a
stronger statement: the welfare in a Walrasian equilibrium is maximal even
if the items were divisible. In particular, if a Walrasian equilibrium exists,
then the optimal solution to the linear program relaxation will be integral.

Theorem 1.13 (The First Welfare Theorem) Let p∗1, ..., p
∗
m and

S∗
1 , ..., S∗

n be a Walrasian equilibrium, then the allocation S∗
1 , ..., S∗

n maxi-
mizes social welfare. Moreover, it even maximizes social welfare over all
fractional allocations, i.e., let {X∗

i,S}i,S be a feasible solution to the linear
programming relaxation. Then,

∑n
i=1 vi(S∗

i ) ≥
∑

i∈N, S⊆M X∗
i,Svi(S).

† Walras was an economist who published in the 19th century one of the first comprehensive
mathematical analysis of general equilibria in markets.
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Proof In a Walrasian equilibrium, each bidder receives his demand. There-
fore, for every bidder i and every bundle S, we have vi(S∗

i ) −
∑

j∈S∗i
p∗j ≥

vi(S) −
∑

j∈S p∗j . Since the fractional solution is feasible to the LPR, we
have that for every bidder i,

∑
S X∗

i,S ≤ 1 (Constraint 1.5), and therefore

vi(S∗
i )−

∑
j∈S∗i

p∗j ≥
∑

S⊆M

X∗
i,S

vi(S)−
∑
j∈S

p∗j

 (1.10)

The theorem will follow from summing Inequality 1.10 over all bidders, and
showing that

∑
i∈N

∑
j∈S∗i

p∗j ≥
∑

i∈N, S⊆M X∗
i,S

∑
j∈S p∗j . Indeed, the left-

hand side equals
∑m

j=1 p∗j since S∗
1 , ..., S∗

n is an allocation and the prices of
unallocated items in a Walrasian equilibrium are zero, and the right-hand
side is at most

∑m
j=1 p∗j , since the coefficient of every price p∗j is at most 1

(by Constraint 1.4 in the LPR).

Following is a simple class of valuations for which no Walrasian equilib-
rium exist.

Example 1.14 Consider two players, Alice and Bob, and two items {a, b}.
Alice has a value of 2 for every non-empty set of items, and Bob has a
value of 3 for the whole bundle {a, b}, and 0 for any of the singletons. The
optimal allocation will clearly allocate both items to Bob. Therefore, Alice
must demand the empty set in any Walrasian equilibrium. Both prices will
be at least 2, otherwise Alice will demand a singleton. Hence, the price of
the whole bundle will be at least 4, Bob will not demand this bundle, and
consequently, no Walrasian equilibrium exists for these players.

To complete the picture, the next theorem shows that the existence of an
integral optimum to the linear programming relaxation is also a sufficient
condition for the existence of a Walrasian equilibrium. This is a variant of
a classic theorem, known as ”The Second Welfare Theorem”, that provided
sufficient conditions for the existence of Walrasian equilibria in economies
with divisible commodities.

Theorem 1.15 (The Second Welfare Theorem) If an integral optimal
solution exists for LPR, then a Walrasian equilibrium whose allocation is
the given solution also exists.

Proof An optimal integral solution for LPR defines a feasible efficient al-
location S∗

1 , ..., S∗
n. Consider also an optimal solution p∗1, ..., p

∗
n, u∗1, ..., u

∗
n to

DLPR. We will show that S∗
1 , ..., S∗

n,p∗1, ..., p
∗
n is a Walrasian equilibrium.
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Complementary-slackness conditions are necessary and sufficient condi-
tions for the optimality of solutions to the primal linear program and its
dual. Due to the complementary-slackness conditions, for every player i for
which xi,S∗i

> 0 (i.e., xi,S∗i
= 1), we have that Constraint (1.8) is binding for

the optimal dual solution, i.e.,

u∗i = vi(S∗
i )−

∑
j∈S∗i

p∗i

Constraint 1.8 thus also shows that for any other bundle S we get:

vi(S∗
i )−

∑
j∈S∗i

p∗i ≥ vi(S)−
∑
j∈S

p∗i

Finally, the complementary-slackness conditions also imply that for every
item j for which Constraint (1.4) is strict, i.e.,

∑
i∈N, S|j∈S xi,S < 1 – which

for integral solutions means that item j is unallocated – then necessarily
p∗j = 0.

The two welfare theorems show that the existence of a Walrasian equilib-
rium is equivalent to having a zero integrality gap:

Corollary 1.16 A Walrasian equilibrium exists in a combinatorial-auction
environment if and only if the corresponding linear programming relaxation
admits an integral optimal solution.

1.4 Bidding Languages

This section concerns the issue of the representation of bids in combinatorial
auctions. Namely, we are looking for representations of valuations that will
allow bidders to simply encode their valuation and send it to the auctioneer.
The auctioneer must then take the valuations (bids) received from all bid-
ders and determine the allocation. Following sections will consider indirect,
iterative ways of transferring information to the auctioneer.

Specifying a valuation in a combinatorial auction of m items requires pro-
viding a value for each of the possible 2m − 1 non-empty subsets. A naive
representation would thus require 2m−1 real numbers to represent each pos-
sible valuation. It is clear that this would be completely impractical for more
than about two or three dozen items. The computational complexity can
be effectively handled for much larger auctions, and thus the representation
problem seems to be the bottleneck in practice.

We will thus be looking for languages that allow succinct representations
of valuations. We will call these bidding languages reflecting their intended
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usage rather than the more precise “valuations languages”. From the outset
it is clear that due to information theoretic reasons it will never be possible
to encode all possible valuations succinctly. Our interest would thus be in
succinctly representing interesting or important ones.

When attempting to choose or design a bidding language we are faced
with the same types of trade-offs common to all language design tasks: ex-
pressiveness vs. simplicity. On one hand, we would like our language to
express succinctly as many “naturally occurring” valuations as possible. On
the other hand, we would like it to be as simple as possible, both for humans
to express, and for programs to work with. A well chosen bidding language
should aim to strike a good balance between these two goals.

The bottom line of this section will be the identification of a simple lan-
gauge that is rather powerful and yet as easily handled by allocation algo-
rithms as are the single minded bids studied in section 1.2.

1.4.1 Elements of Representation: Atoms, OR, and XOR

The common bidding languages construct their bids from combinations of
simple atomic bids. The usual atoms in such schemes are the single-minded
bids addressed in Section 1.2: (S, p) meaning an offer of p monetary units
for the bundle S of items. Formally, the valuation represented by (S, p) is
one where v(T ) = p for every T ⊇ S, and v(T ) = 0 for all other T .

Intuitively, bids can be combined by simply offering them together. Still
informally, there are two possible semantics for an offer of several bids. One
considers the bids as totally independent, allowing any subset of them to be
fulfilled, and the other considers them to be mutually exclusive and allows
only one of them to be fulfilled. The first semantics is called an OR bid,
and the second is called (somewhat misleadingly) a XOR bid.

Take for example the valuations represented by ”({a, b}, 3)XOR({c, d}, 5)”
and ”({a, b}, 3) OR ({c, d}, 5)”. Each of them values the bundle {a, c} at 0
(since no atomic bid is satisfied) and values the bundle {a, b} at 3. The
difference is in the bundle {a, b, c, d} which is valued at 5 by the XOR bid
(according to the best atomic bid satisfied), but is valued at 8 by the OR
bid. For another example look at the bid ”({a, b}, 3) OR ({a, c}, 5)”. Here,
the bundle {a, b, c} is valued at 5 since both atomic bids cannot be satisfied
together.

More formally, both OR and XOR bids are composed of a collection
of pairs (Si, pi), where each Si is a subset of the items, and pi is the
maximum price that he is willing to pay for that subset. For the valua-
tion v = (S1, p1) XOR...XOR (Sk, pk), the value of v(S) is defined to be
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maxi|Si⊆S pi. For the valuation v = (S1, p1) OR...OR (Sk, pk), one must be
a little careful and the value of v(S) is defined to be the maximum over all
possible “valid collections” W , of the value of

∑
i∈W pi, where W is a valid

collection of pairs if for all i 6= j ∈W , Si ∩ Sj = ∅.
It is not difficult to see that XOR bids can represent every valuation v:

just XOR, the atomic bids (S, v(S)) for all bundles S. On the other hand,
OR bids can only represent super-additive bids (for any two disjoint sets
S, T , v(S ∪ T ) ≥ v(S) + v(T )), since the atoms giving the value v(S) are
disjoint from those giving the value v(T ), and they will be added together
for v(S ∪ T ). It is not difficult to see that all super-additive valuations can
indeed be represented by OR bids by ORing the atomic bids (S, v(S)) for
all bundles S.

We will be more interested in the size of the representation, defined to
be simply the number of atomic bids in it. The following basic types of
valuations are good examples for the power and limitations of these two
bidding languages.

Definition 1.17 A valuation is called additive if v(S) =
∑

j∈S v({j}) for
all S. A valuation is called unit demand if v(S) = maxj∈S v({j}) for all S.

An additive valuation is directly represented by an OR bid:

({1}, p1) OR ({2}, p2) OR · · · OR ({m}, pm)

while a unit-demand valuation is directly represented by a XOR bid:

({1}, p1) XOR ({2}, p2) XOR · · · XOR ({m}, pm)

where for each item j, pj = v({j}). Additive valuations can be represented
by XOR bids, but this may take exponential size: atomic bids for all 2m− 1
possible bundles will be needed whenever pj > 0 for all j. (Since an atomic
bid is required for every bundle S with v(S) strictly larger than that of all
its strict subsets, which is the case here for all S.) On the other hand, non-
trivial unit-demand valuations are never super-additive and thus cannot be
represented at all by OR bids.

1.4.2 Combinations of OR and XOR

While both the OR and XOR bidding languages are appealing in their sim-
plicity, none of them is expressive enough to succinctly represent many de-
sirable simple valuations. A natural attempt is to combine the power of OR
bids and XOR bids. The most general way to allow this general form of
combinations is to define OR and XOR as operations on valuations.
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Definition 1.18 Let v and u be valuations, then (v XOR u) and (v OR u)
are valuations and are defined as follows:

• (v XOR u)(S) = max(v(S), u(S)).
• (v OR u)(S) = maxR,T⊆S, R∩T=∅ v(R) + u(T )

Thus a general “OR/XOR formula” bid will be given by an arbitrary
expression involving the OR and XOR operations over atomic bids. For
instance, the bid (({a, b}, 3) XOR ({c}, 2)) OR ({d}, 5) values the bundle
{a, b, c} at 3, but the bundle {a, b, d} at 8. The following example demon-
strates the added power we can get from such combinations just using the
restricted structure of an OR of XORs of atomic bids.

Definition 1.19 A valuation is called symmetric if v(S) depends only on
|S|. A symmetric valuation is called downward sloping if it can be repre-
sented as v(S) =

∑
j=1..|S| pj , with p1 ≥ p2 ≥ ... ≥ pm ≥ 0.

It is easy to verify that every downward sloping valuations with p1 > p2 >

... > pm > 0 requires XOR bids of size 2m − 1, and can not be represented
at all by OR bids.

Lemma 1.20 OR-of-XORs bids can express any downward sloping sym-
metric valuation on m items in size m2.

Proof For each j = 1...m we will have a clause that offers pj for any single
item. Such a clause is a simple XOR-bid, and the m different clauses are all
connected by an OR. Since the pj ’s are decreasing we are assured that the
first allocated item will be taken from the first clause, the second item from
the second clause, etc.

1.4.3 Dummy Items

General OR/XOR formulae seem very complicated and dealing with them
algorithmically would appear to be quite difficult. Luckily, this is not the
case and a generalization of the langauge makes things simple again. The
main idea is to allow XORs to be represented by ORs. This is done by
allowing the bidders to introduce dummy items into the bids. These items
will have no intrinsic value to any of the participants, but they will be
indirectly used to express XOR constraints. The idea is that a XOR bid
(S1, p1) XOR (S2, p2) can be represented as (S1 ∪ {d}, p1) OR (S2 ∪ {d}, p2),
where d is a dummy item.
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Formally, we let each bidder i have its own set of dummy items Di, which
only he can bid on. An OR* bid by bidder i is an OR bid on the augmented
set of items M ∪Di. The value that an OR* bid gives to a bundle S ⊆M is
the value given by the OR bid to S ∪Di. Thus, for example, for the set of
items M = {a, b, c}, the OR* bid ({a, d}, 1)OR ({b, d}, 1)OR ({c}, 1), where
d is a dummy item, is equivalent to (({a}, 1) XOR ({b}, 1)) OR ({c}, 1).

An equivalent but more appealing “user interface” is to let bidders report
a set of atomic bids together with “constraints” that signify which bids are
mutually exclusive. Each constraint can then be converted into a dummy
item that is added to the conflicting atomic bids. Despite its apparent
simplicity, this language can simulate general OR/XOR formulae.

Theorem 1.21 Any valuation that can be represented by OR/XOR formula
of size s can be represented by OR* bids of size s, using at most s2 dummy
items.

Proof We prove by induction on the formula structure that a formula of
size s can be represented by an OR* bid with s atomic bids. We then show
that each atomic bid in the final resulting OR* bid can be modified as to
not to include more than s dummy items in it.

Induction: The basis of the induction is an atomic bid, which is clearly
an OR* bid with a single atomic bid. The induction step requires handling
the two separate cases: OR and XOR. To represent the OR of several OR*
bids as a single OR* bid we simply merge the set of clauses of the different
OR* bids. To represent the XOR of several OR* bids as a single OR* bid,
we introduce a new dummy item xST for each pair of atomic bids (S, v) and
(T, v′) that are in two different original OR* bids. For each bid (S, v) in
any of the original OR* bids, we add to the generated OR* bid an atomic
bid (S ∪ {xST |T}, v), where T ranges over all atomic bids in all of the other
original OR* bids.

It is clear that the inductive construction constructs a OR* bid with
exactly s clauses in it, where s is the number of clauses in the original
OR/XOR formula. The number of dummy items in it, however, may be
large. However, we can remove most of these dummy items. One can see
that the only significance of a dummy item in an OR* bid is to disallow
some two (or more) atomic bids to be taken concurrently. Thus we may
replace all the existing dummy items with at most

(
s
2

)
new dummy items,

one for each pair of atomic bids that cannot be taken together (according to
the current set of dummy items). This dummy item will be added to both
of the atomic bids in this pair.
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This simulation can be directly turned into a “compiler” that translates
OR/XOR formulae into OR* bids. This has an extremely appealing impli-
cation for allocation algorithms: to any winner determination (allocation)
algorithm, an OR* bid looks just like a regular OR-bid on a larger set of
items. But an OR bid looks to an allocation algorithm just like a collec-
tion of atomic bids from different players. It follows that any allocation
algorithm that can handle single-minded bids (i.e. atomic bids) can imme-
diately also handle also general valuations represented as OR* bids or as
general OR/XOR formulae. In particular, the various heuristics mentioned
in Section 1.2 can all be applied for general valuations represented in these
languages.

1.5 Iterative Auctions: The Query Model

The last section presented ways of encoding valuations in bidding languages
as to enable the bidders to directly send their valuation to the auctioneer. In
this section we consider indirect ways of sending information about the valu-
ation: iterative auctions. In these, the auction protocol repeatedly interacts
with the different bidders, aiming to adaptively elicit enough information
about the bidders’ preferences as to be able to find a good (optimal or close
to optimal) allocation. The idea is that the adaptivity of the interaction
with the bidders may allow pinpointing the information that is relevant to
the current auction and not requiring full disclosure of bidders’ valuations.
This may not only reduce the amount of information transferred and all
associated complexities, but also to preserve some privacy about the valua-
tions, only disclosing the information that is really required. In addition, in
many real-life settings, bidders may need to exert efforts even for determin-
ing their own valuation (like collecting data, hiring consultants etc.); such
iterative mechanisms may assist the bidders with realizing their valuations
by guiding their attention only to the data that is relevant to the mechanism.

Such iterative auctions can be modeled by considering the bidders as
“black-boxes”, represented by oracles, where the auctioneer repeatedly queries
these oracles. In such models, we should specify the types of queries that
are allowed by the auctioneer. These oracles may not be truthful, of course,
and we will discuss the incentive issues in the final part of this section (see
also Chapter 12 ). The auctioneer would be required to be computationally
efficient in two senses: the number of queries made to the bidders and the
internal computations. Efficiency would mean polynomial running time in
m (the number of items) even though each valuation is represented by 2m

numbers. The running time should also be polynomial in n (the number of
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bidders) and in the number of bits of precision of the real numbers involved
in the valuations.

1.5.1 Types of Queries

Our first step is to define the types of queries which we allow our auctioneer
to make to the bidders. Probably the most straightforward query one could
imagine is where a bidder reports his value for a specific bundle:

Value query: The auctioneer presents a bundle S, the bidder reports his
value v(S) for this bundle.

It turns out that value queries are pretty weak and are not expressive
enough in many settings. Another natural and widely-used type of queries
is the demand query, in which a set of prices is presented to the bidder,
and the bidder responds with his most valuable bundle under the published
prices.

Demand query (with item prices†): The auctioneer presents a vector of
item prices p1...pm; the bidder reports a demand bundle under these prices,
i.e., some set S that maximizes v(S)−

∑
i∈S pi.

How difficult it is for a bidder to answer such a demand query or a value
query depends on his internal representation of his valuation. For some
internal representations this may be computationally intractable, while for
others it may be computationally trivial. It does seem though that in many
realistic situations the bidders will not really have an explicit internal repre-
sentation, but rather ‘know” their valuation only in the sense of being able
to answer such queries.

The first observation that we should make is that demand queries are
strictly more powerful than value queries.

Lemma 1.22 A value query may be simulated by mt demand queries, where
t is the number of bits of precision in the representation of a bundle’s value.

Proof We first show how to answer “marginal value” queries using demand
queries: given a bundle S and an item j 6∈ S, compute the marginal value
of j relative to S: v(S ∪ {j}) − v(S) (the items are denoted, w.l.o.g., by
1, ...,m). For all i ∈ S we set pi = 0, for all i 6∈ S ∪ {j}, we set pi=∞, and
then run a binary search on pj . The highest value pj for which the demand
under these prices contains j is the marginal value of j relative to S.

† In Section 1.7 we consider more general demand queries where a price of a bundle is not
necessarily the sum of the prices of its items.
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Once we can solve marginal value queries, any value query can be solved
by v(S) =

∑
j∈S(v({i ∈ S|i ≤ j})− v({i ∈ S|i < j}).

Lemma 1.23 An exponential number of value queries may be required for
simulating a single demand query.

The proof of Lemma 1.23 is left for Exercise 3.

1.5.2 Solving the Linear Program

Many algorithms for handling combinatorial auctions or special cases of
combinatorial auctions start by solving the linear programming relaxation of
the problem, shown in Section 1.3.1. A very useful and surprising property of
demand queries is that they allow solving the linear-programming relaxation
efficiently. This is surprising since the linear program has an exponential
number of variables. The basic idea is to solve the dual linear program
using the Ellipsoid method. The dual program has a polynomial number of
variables, but an exponential number of constraints. The Ellipsoid algorithm
runs in polynomial time even on such programs, provided that a “separation
oracle” is given for the set of constraints. Surprisingly, such a separation
oracle can be implemented by presenting a single demand query to each of
the bidders.

Consider the linear-programming relaxation (LPR) for the winner deter-
mination problem in combinatorial auctions, presented in Section 1.3.

Theorem 1.24 LPR can be solved in polynomial time (in n, m and the
number of bits of precision t) using only demand queries with item prices.†

Proof Consider the dual linear program, DLPR, presented in Section 1.3
(Equations 1.8-1.9). Notice that the dual problem has exactly n+m variables
but an exponential number of constraints.

Recall that a separation oracle for the Ellipsoid method, when given a
possible solution, either confirms that it is a feasible solution, or responds
with a constraint that is violated by the possible solution. Consider a possi-
ble solution (−→u ,−→p ) for the dual program. We can re-write Constraint 1.8 of
the dual program as ui ≥ vi(S)−

∑
j∈S pj . Now, a demand query to bidder

i with prices pj reveals exactly the set S that maximizes the RHS of the
previous inequality. Thus, in order to check whether (−→u ,−→p ) is feasible it
suffices to (1) query each bidder i for his demand Di under the prices pj ; (2)

† The solution will have a polynomial-size support (non-zero values for xi,S), and thus we will
be able to describe it in polynomial time.
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check only the n constraints ui +
∑

j∈Di
pj ≥ vi(Di) (where vi(Di) can be

simulated using a polynomial sequence of demand queries as was previously
observed). If none of these is violated then we are assured that (−→u ,−→p ) is
feasible; otherwise we get a violated constraint.

What is left to be shown is how the primal program can be solved. (Recall
that the primal program has an exponential number of variables.) Since the
Ellipsoid algorithm runs in polynomial time, it encounters only a polynomial
number of constraints during its operation. Clearly, if all other constraints
were removed from the dual program, it would still have the same solution
(adding constraints can only decrease the space of feasible solutions). Now
take the “reduced dual” where only the constraints encountered exist, and
look at its dual. It will have the same solution as the original dual and
hence of the original primal, but with a polynomial number of variables.
Thus, it can be solved in polynomial time, and this solution clearly solves
the original primal program, setting all other variables to zero.

1.5.3 Approximating the Social Welfare

The final part of this section will highlight some of the prominent algorith-
mic results for combinatorial auctions. Some of these results are obtained
by solving the LP relaxation. Figure 1.2 lists state-of-the-art results for the
point in time in which this chapter was written. For each class of bidder
valuations, we mention the best currently known polynomial-time approxi-
mation ratio, the optimal ratio that is currently achievable by ex-post Nash
incentive-compatible mechanisms that run in polynomial time, and the best
computational hardness result for the algorithmic problem (under standard
computational assumptions). We also classify the results according to the
queries they use: unrestricted, value queries or demand queries. In the fig-
ure, we refer the reader to the papers that established these results for more
details. In particular, a randomized incentive-compatible mechanism that
achieves a O(

√
m)-approximation for general combinatorial auctions is dis-

cussed in Chapter 12 . Below are the classes of valuations that we consider
and their abbreviations:

Gen - General (unrestricted) valuations.
SubA - Subadditive valuations, i.e., where v(S ∪ T ) ≤ v(S) + v(T ) for all

S, T .
XOS - All valuations that can be represented by XOR-of-ORs bids with

singleton atomic bundles (see Section 1.4).
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SubM - Submodular valuations, i.e., where for every two bundles S and T

we have that v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ).
Subs - (Gross-) substitutes valuations, see Definition 1.28 in Section 1.7.
kDup - Combinatorial auctions with k duplicates of each good. Each bidder

desires at most a single item of each good.
Proc - Procurement auctions, where a single buyer needs to buy a set of m

items from n suppliers. The suppliers have privately known costs for
bundles of items. The buyer aims to minimize the total cost paid.

It is known that Gen ⊃ SubA ⊃ XOS ⊃ SubM ⊃ Subs.

1.6 Communication Complexity

We already saw in section 1.2.1 that solving the optimal allocation problem
is NP-complete even for single-minded bidders and thus certainly for more
general types of bidders. However, as mentioned, in practice one can usu-
ally solve problems with thousands or tens-of-thousands of items and bids
optimally of near-optimally. Will it be possible to do the same for general
valuations using some type of queries to the bidders? In other words: is
the problem of representing the valuations an obstacle beyond the compu-
tational hardness? In this section we provide an affirmative answer: even if
the auctioneer had unlimited computational power, then eliciting sufficient
information from the bidders as to determine the optimal allocation would
require an exponential amount of queries to the bidders – for any query
type. We present this lower bound in a very general model – Yao’s two-
party communication complexity model – and thus it holds for essentially
any model of iterative combinatorial auctions with any type of queries. Let
us first introduce this model formally.

1.6.1 The Model and Statement of Lower Bound

The lower bound is obtained in Yao’s standard model of two player com-
munication complexity. In this model we consider two players, Alice and
Bob, each holding a valuation function. We can restrict ourselves to the
special case where the value of each set is either 0 or 1. Thus, the inputs
are monotone functions v1, v2 : 2M → {0, 1}. Alice and Bob must embark
on a communication protocol whose final outcome is the declaration of an
allocation (S, Sc) that maximizes v1(S)+v2(Sc). The protocol specifies rules
for exchanging bits of information, where Alice’s message at each point may
depend only on v1 and on previous messages received from Bob, while Bob’s
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Class Queries Approx IC approx Lower bound

Gen Any
√

m m√
log m

m
1
2−ε

Section 1.6, [NS06]√
m (rand)

Value m√
log m

m√
log m

[HKDMT04] m
log m

[BN05a, DS05]

Demand
√

m [BN05a] m√
log m

m
1
2−ε

√
m (rand)

[LS05, DNS06]

SubA Value
√

m
√

m [DNS05] m
1
4

Demand 2 (rand) [Fei06]
√

m 2 [DNS05]

XOS Value
√

m
√

m m
1
4 [DS06]

Demand 2 [DNS05]
√

m e
e−1

[DNS05]

e
e−1

(rand) [Fei06]
log2 m (rand)
[DNS06]

SubM Value 2 [LLN06]
√

m e
e−1

[KLMM05]

Demand 2
√

m 20
19

[FV06]

e
e−1

-10−4 (rand)

[FV06]
log2 m (rand)

Subs Value 1 [Ber05] 1

Demand 1 [GS99, BM97] 1

kDup Demand m
1

k+1

[BKV05, DS05]
k · m

1
k−2 [BGN03] m

1
k+1−ε

[BGN03, DS05]

Proc Any ln n [NS06] - log n [Nis02]

Fig. 1.2. The table describes the best algorithmic results, incentives compatible
approximation results and lower bounds which are currently known for different
classes of combinatorial-auction valuations. All results apply for a polynomial
number of queries of the specified type. Results without references can be triv-
ially derived from other entries in this table. The word ”rand” implies that the
result is achieved by a randomized algorithm; otherwise, the results correspond to
deterministic algorithms only. Results that use ε hold for any ε > 0. For the sim-
plicity of the presentation, we ignore the constants of the asymptotic results (i.e.,
we drop the big-Oh and Ω notations).

message at each point may depend only on v2 and on previous messages re-
ceived from Alice. No computational constraints are put on Alice and Bob
– only communication is measured. The main result shows that:
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Theorem 1.25 Every protocol that finds the optimal allocation for every
pair of 0/1 valuations v1, v2 must use at least

(
m

m/2

)
bits of total communi-

cation in the worst case.

Note that
(

m
m/2

)
is exponential in m.† Since Yao’s communication model is

very powerful, the lower bound immediately applies to essentially all settings
where v1 and v2 reside in “different places”. In particular, to the case where
the bidders reply to queries of the auctioneer (since a protocol with an
auctioneer can be converted into one without an auctioneer, by sending
all replies directly to each other and having Alice and Bob simulate the
auctioneer’s queries) and to any larger number of bidders (since the 2-bidder
case is a special case where all bidders but two have null valuations.)

1.6.2 The Proof

Fix a communication protocol that for every input valuation pair (v1, v2)
finds an optimal allocation S, Sc. We will construct a “fooling set”: a set of
valuation pairs with the property that the communication patterns produced
by the protocol must be different for different valuation pairs. Specifically,
for every 0/1 valuation v, we define the dual valuation v∗ to be v∗(S) =
1− v(Sc). Note that (i) v∗ is indeed a monotone 0/1 valuation, and (ii) for
every partition (S, Sc), S ⊆M , we have that v(S) + v∗(Sc) = 1.

Lemma 1.26 Let v 6= u be arbitrary 0/1 valuations. Then, in a welfare
maximizing combinatorial auction, the sequence of bits transmitted on inputs
(v, v∗) is not identical to the sequence of bits transmitted on inputs (u, u∗).

Before we prove the lemma let us see how the main theorem is implied.
Since different input valuation pairs lead to different communication se-
quences, we see that the total possible number of communication sequences
produced by the protocol is at least the number of valuation pairs (v, v∗),
which is exactly the number of distinct 0/1 valuations v. The number of

0/1 valuations can be easily bounded from below by 2( m
m/2) by counting only

valuations such that v(S) = 0 for all |S| < m/2, v(S) = 1 for all |S| > m/2,
and allowing v(S) to be either 0 or 1 for |S| = m/2; there are

(
m

m/2

)
sets

of size m/2, so the total number of such valuations is exponential in this

number. The protocol must thus be able to produce 2( m
m/2) different com-

munication sequences. Since these are binary sequences, at least one of the
sequences must be of length at least

(
m

m/2

)
.

† More precisely, by Stirling’s formula,
` m
m/2

´
∼

p
2/(π · m) · 2m
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Proof (of lemma) Assume, by way of contradiction, that the communication
sequence on (v, v∗) is the same as on (u, u∗). We first show that the same
communication sequence would also be produced for (v, u∗) and for (u, v∗).
Consider the case of (v, u∗), i.e., Alice has valuation v and Bob has valuation
u∗. Alice does not see u∗ so she behaves and communicates exactly as she
would in the (v, v∗) case. Similarly, Bob behaves as he would in the (u, u∗)
case. Since the communication sequences in the (v, v∗) and the (u, u∗) cases
are the same, neither Alice nor Bob ever notice a deviation from this common
sequence, and thus never deviate themselves. In particular, this common se-
quence is followed also on the (v, u∗) case. Thus, the same allocation (S, Sc)
is produced by the protocol in all 4 cases: (v, v∗), (u, u∗), (v, u∗), (u, v∗). We
will show that this is impossible, since a single allocation cannot be optimal
for all 4 cases.

Since u 6= v, we have that for some set T , v(T ) 6= u(T ). Without loss of
generality, v(T ) = 1 and u(T ) = 0, and so v(T )+u∗(T c) = 2. The allocation
(S, Sc) produced by the protocol must be optimal on the valuation pair
(v, u∗), thus v(S) + u∗(Sc) ≥ 2. However, since (v(S) + v∗(Sc)) + (u(S) +
u∗(Sc)) = 1 + 1 = 2, we get that u(S) + v∗(Sc) ≤ 0. Thus (S, Sc) is not an
optimal allocation for the input pair (u, v∗) – contradiction to the fact that
the protocol produces it as the output in this case as well.

More complex lower bounds on communication allow us to prove tight
lower bounds for iterative auctions in various setting. The above lower
bound on communication can be extended to even approximating the social
welfare.

Theorem 1.27 For every ε > 0, approximating the social welfare in a com-
binatorial auction to within a factor strictly smaller than min{n, m1/2−ε}
requires exponential communication.

Note that this is tight: achieving a factor of n is always trivial (by bundling
all items together and selling them in a simple single-item auction), and for
n ≥

√
m there exists an O(

√
m) approximation (see Figure 1.2). Actu-

ally, most of the lower bounds described in Figure 1.2 are communication-
complexity results.

1.7 Ascending Auctions

This section concerns a large class of combinatorial auction designs which
contains the vast majority of implemented or suggested ones: ascending
auctions. These are a subclass of iterative auctions with demand queries in
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which the prices can only increase. In this class of auctions, the auctioneer
publishes prices, initially set to zero (or some other minimum prices), and
the bidders repeatedly respond to the current prices by bidding on their
most desired bundle of goods under the current prices. The auctioneer
then repeatedly updates the prices by increasing some of them in some
manner, until a level of prices is reached where the auctioneer can declare
an allocation. There are several reasons for the popularity of ascending
auctions, including their intuitiveness, the fact that private information is
only partially revealed, that it is clear that they will terminate, and that
they may increase the seller’s revenue in some settings.

We will describe auctions that belong to two families of ascending auc-
tions. One family uses a simple pricing scheme (item prices), and guarantees
economic efficiency for a restricted class of bidder valuations. The second
family is socially efficient for every profile of valuations, but uses a more
complex pricing scheme - prices for bundles – extending the demand queries
defined in Section 1.5.

1.7.1 Ascending Item-price Auctions

Figure 1.3 describes an auction that is very natural from an economic point
of view: increase prices gradually, maintaining a tentative allocation, un-
til no item that is tentatively held by one bidder is demanded by another.
Intuitively, at this point demand equals supply and we are close to a Wal-
rasian equilibrium discussed earlier in Section 1.3 which, by the first welfare
theorem, is socially efficient.

Of course, we know that a Walrasian equilibrium does not always exist
in a combinatorial auction, so this can not always be true. The problem
is that the auction does not ensure that items are not under-demanded: it
may happen that an item that was previously demanded by a bidder is no
longer so. The following class of valuations are those in which this cannot
happen.

Definition 1.28 A valuation vi satisfies the substitutes (or gross-substitutes)
property if for every pair of item-price vectors −→q ≥ −→p (coordinate-wise
comparison), we have that the demand at prices q contains all items in
the demand at prices p whose price remained constant. Formally, for every
A ∈ argmaxS{v(S)−

∑
j∈S pj}, there exists D ∈ argmaxS{v(S)−

∑
j∈S qj},

such that D ⊇ {j ∈ A|pj = qj}.
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An Item-Price Ascending Auction for Substitutes Valuations:
Initialization:

For every item j ∈M , set pj ← 0.
For every bidder i let Si ← ∅.

Repeat:
For each i, let Di be the demand of i at the following prices:

pj for j ∈ Si and pj + ε for j 6∈ Si.
If for all i Si = Di, exit the loop;
Find a bidder i with Si 6= Di and update:
• For every item j ∈ Di \ Si, set pj ← pj + ε
• Si ← Di

• For every bidder k 6= i, Sk ← Sk \Di

Finally: Output the allocation S1, ..., Sn.

Fig. 1.3. An item-price ascending auction that ends up with a nearly optimal allo-
cation when bidders’ valuations have the (gross) substitutes property.

I.e., the only items that could drop from the demand when prices change
from −→p to −→q are those whose price has strictly increased. The substitutes
property rules out any form of complementarities. For example, a single
minded bidder who is willing to pay 10 for the complete bundle {a, b} will
demand both items at prices (3, 3), but if the price of b is raised to 8, this
bidder will no longer demand any item – contrarily to the requirement of a
substitutes valuation. Exercise 6 shows that, in general, substitutes valua-
tions must be submodular. It is not difficult to see that this class of valu-
ations contains the classes of additive valuations, unit-demand valuations,
and downward-sloping valuations (see definitions 1.17 and 1.19). With such
valuations, the auction maintains the property that every item is demanded
by some bidder. The auction terminates when all the bidders receive their
demanded bundles, and consequently, the auction converges to a (nearly)
Walrasian equilibrium.

Definition 1.29 An allocation S1...Sn and a prices p1...pm are an ε-Walrasian
equilibrium if

⋃
i Si ⊇ {j|pj > 0} and for each i, Si is a demand of i at prices

pj for j ∈ Si and pj + ε for j 6∈ Si.

Theorem 1.30 For bidders with substitutes valuations, the auction described
in Figure 1.3 ends with an ε-Walrasian equilibrium. In particular the allo-
cation achieves welfare that is within nε from the optimal social welfare.

Proof The theorem will follow from the following key claim:
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Claim 1.31 At every stage of the auction, for every bidder i, Si ⊆ Di.†

First notice that this claim is certainly true at the beginning. Now let us see
what an update step for some bidder i causes. For i itself, Si after the step
is exactly equal to Di (note that the changes in prices of items just added
to Si exactly matches those defining Di). For k 6= i, two changes may occur
at this step: first, items may have been taken from Sk by i, and second the
prices of items outside of Sk may have increased. The first type of change
makes Sk smaller while not affecting Dk. The second type of change does
not affect Sk and the substitutes property directly implies that the only
items that can be removed from Dk are those whose price strictly increased
and are thus not in Sk.

Once we have this claim, it is directly clear that no item that was ever
demanded by any player is ever left unallocated, i.e.,

⋃
i Si always contains

all items whose price is strictly positive. Since the auction terminates only
when all Di = Si we get an ε-Walrasian equilibrium. The fact that an ε-
Walrasian equilibrium is close to socially optimal is obtained just as in the
proof of the first welfare theorem (Theorem 1.13).

Since prices are only going up, the algorithm terminates after at most
m · vmax/ε stages, where vmax is the maximum valuation. It may also be
useful to view this auction as implementing a primal-dual algorithm. The
auction starts with a feasible solution to the dual linear program (here, zero
prices), and as long as the complementary-slackness conditions are unsatis-
fied proceeds by improving the solution of the dual program (i.e., increasing
some prices).

Finally, we will address the strategic behavior of the bidders in such as-
cending auctions. Will strategic bidders act myopically and truthfully reveal
their demand in these auctions? If the valuation functions have complemen-
tarities, then bidders will clearly have strong incentives not to report their
true preferences, due to a problem known as the exposure problem: Bidders
who bid for a complementary bundle (e.g., a pair of shoes), are exposed to
the risk that part of the bundle (the left shoe) may be taken from them
later, and they are left liable for the price of the rest of the bundle (the right
shoe) that is worthless for them.

However, even for substitutes preferences the incentive issues are not
solved. The prices in Walrasian equilibria are not necessarily VCG prices,
and therefore truthful bidding is not an ex-post equilibrium.† The strategic
† For simplicity of presentation, the algorithm assumes that Di is unique. In the general case,

the claim is that Si is contained in some demand bundle Di, and the auction is required to
pick such a Di.

† When we further restrict the class of substitutes valuations such that each bidder desires at
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weakness of Walrasian equilibria is that bidders may have the incentive to
demand smaller bundles of items (“demand reduction”), in order to lower
their payments. The following example illustrates such a scenario:

Example 1.32 Consider two items a and b and two players, Alice and Bob,
with the following substitutes valuations:

v(a) v(b) v(ab)
Alice 4 4 4
Bob 5 5 10

For these valuations, the auction in Figure 1.3 will terminate at the Wal-
rasian equilibrium prices pa = 4, pb = 4, where Bob receives both items, and
earning him a payoff of 2. If Bob placed bids only on a during the auction,
then the auction would stop at zero prices, allocating a to Bob and b to
Alice. With this demand reduction Bob improves his payoff to 5.

1.7.2 Ascending Bundle-price Auctions

As we saw, not every profile of valuations has a Walrasian equilibrium. The
next type of auction that we describe will reach an equilibrium that involves
a more complex pricing scheme. We start by describing this extended notion
of equilibrium, allowing personalized bundle prices – a distinct price per
each possible bundle and for each bidder. That is, personalized bundle
prices specify a price pi(S) per each bidder i and every bundle S. We can
naturally generalize the notion of the demand of bidder i under such prices
to argmaxS(vi(S)− pi(S)).

Definition 1.33 Personalized bundle prices −→p = {pi(S)} and an allocation
S = (S1, ..., Sn) are called a competitive equilibrium if:

• For every bidder i, Si is a demand bundle, i.e., for any other bundle
Ti ⊆M , vi(Si)− pi(Si) ≥ vi(Ti)− pi(Ti).

• The allocation S maximizes seller’s revenue under the current prices, i.e.,
for any other allocation (T1, .., Tn),

∑n
i=1 pi(Si) ≥

∑n
i=1 pi(Ti).

It is easy to see that with personalized bundle prices, competitive equilib-
ria always exist: any welfare-maximizing allocation with the prices pi(S) =
vi(S) gives a competitive equilibrium. This may be viewed as the Second

most one item (“unit-demand” valuations, see Definition 1.17), then it is known that a similar
auction reaches the lowest possible Walrasian-equilibrium prices that are also VCG prices, and
hence these auctions are ex-post Nash incentive compatible (see Chapter 9 ).
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A Bundle Price Auction:
Initialization: For every player i and bundle S, let pi(S)← 0.
Repeat:
• Find an allocation T1, ..., Tn that maximizes revenue at current prices,

i.e.,
∑n

i=1 pi(Ti) ≥
∑n

i=1 pi(Yi) for any other allocation Y1, ..., Yn.
(Bundles with zero prices will not be allocated, i.e., pi(Ti) > 0 for eve ry i.)

• Let L be the set of losing bidders, i.e., L = {i|Ti = ∅}.
• For every i ∈ L let Di be a demand bundle of i under the prices −→pi .
• If for all i ∈ L, Di = ∅ then terminate.
• For all i ∈ L with Di 6= ∅, let pi(Di)← pi(Di) + ε.

Fig. 1.4. A bundle price auction which terminates with the socially-efficient alloca-
tion for any profile of bidders.

Welfare Theorem (see Theorem 1.15) for this setting. Even this weak notion
of equilibrium, however, guarantees optimal social welfare:

Proposition 1.34 In any competitive equilibrium (−→p , S) the allocation max-
imizes social welfare.

Proof Let (−→p , S) be a competitive equilibrium, and consider some allocation
T = (T1, ..., Tn). Since Si is a demand bundle under the prices −→pi for every
bidder i, we have that vi(Si)−pi(Si) ≥ vi(Ti)−pi(Ti). Summing over all the
bidders, together with

∑n
i=1 pi(Si) ≥

∑n
i=1 pi(Ti), we get that the welfare in

the allocation S exceeds the welfare in T .

Several iterative auctions are designed to end up with competitive equi-
libria. Figure 1.4 describes a typical one. At each stage the auctioneer com-
putes a tentative allocation that maximizes his revenue at current prices –
which we view as the current bids. All the losing bidders then “raise their
bids” on their currently demanded bundle. When no losing bidder is willing
to do so, we terminate with an approximately competitive equilibrium.

Definition 1.35 A bundle S is an ε-demand for a player i under the bundle
prices −→pi if for any other bundle T , vi(S) − pi(S) ≥ vi(T ) − pi(T ) − ε. An
ε-competitive equilibrium is similar to a competitive equilibrium (Definition
1.33), except each bidder receives an ε-demand under the equilibrium prices.

Theorem 1.36 For any profile of valuations, the bundle-price auction de-
scribed in Figure 1.4 terminates with an ε-competitive equilibrium.In partic-
ular, the welfare obtained is within nε from the optimal social welfare.
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Proof At each step of the auction at least one price will be raised. Since a
bundle price will clearly never exceed its value, the auction will terminate
eventually (although this make take exponentially many steps). Since the
allocation at each step is clearly revenue maximizing, it suffices to show that,
upon termination, each bidder receives an ε-demand.

Losing bidders will clearly receive their demand, the empty set, since
this is the condition of termination. A winning bidder i gets an ε-demand
bundle since the auction maintains the property that every bundle Ti with
pi(Ti) > 0 is an ε-demand. To see this notice that pi(Ti) > 0 implies that at
some previous round Ti was the demand of bidder i. At that point, Ti was
the exact demand, and thus, an ε-demand bundle after the price increment.
Since the last time that the bidder demanded (the current) Ti, only prices
of other bundles have increased, clearly maintaining the property.

Finally, the near optimality of the social welfare in an approximate com-
petitive equilibrium follows the same arguments as in Proposition 1.34.

Notice that while the auction always terminates with a (near) optimal
allocation, this may require exponential time in two respects: first, the
number of stages may be exponential, and, second, each stage requires the
auctioneer to solve an NP-hard optimization problem. Of course, we know
that this is unavoidable and that, indeed, exponential communication and
computation are required in the worst case. Variants of this auction may
be practically faster by allowing bidders to report a collection of demand
bundles at each stage and increase the prices of all of them (in particular,
prices of supersets of a reported demand bundle can be, w.l.o.g., maintained
to be at least as high as that of the bundle itself.).

The prices generated by this auction are not VCG prices and thus play-
ers are not strategically motivated to act myopically and truthfully report
their true demand at each stage.† One weak positive equilibrium property
is achieved when each bidder is committed in advance to act according to a
fixed valuation (“proxy bidding”). Then, the auction admits ex-post Nash
equilibria, but these equilibria require the participants to possess consider-
able knowledge of the preferences of the other bidders.

More complex variants of the auction may charge VCG prices from the
bidders rather then the equilibrium prices obtained. While this will have
the obvious advantage that truthful bidding will be an ex-post Nash equi-
librium, it turns out that this will lose some nice properties possessed by

† When bidders have substitutes valuations (Definition 1.28), however, the auction do terminate
at VCG prices.
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the equilibrium prices reached (like resistance to bidder collusion and to
false-name bids in some settings).

1.8 Bibliographic Notes

This chapter only gives the very basics of the theoretical treatment of combi-
natorial auctions. Much more information appears in the recently published
books [CSE06, Mil04]. Information about spectrum auctions can be found,
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applications can be found in [San06a].
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ner determination is due to [San02] who also noted the NP-hardness of the
problem and of its approximation. The hardness of approximation is based
on the hardness of approximation of clique size of [H̊as99], with the strong
version as stated appearing in [Zuc06]. Recent surveys on winner determi-
nation algorithms appear in [LMS06, Mul06, San06b]. The single-minded
case was studied in [LOS02] on which Section 1.2.2 is based. Additional
results for the single-minded case and generalizations of it can be found in
[BLP05] and the references within.

The LP formulation of the problem and the relation of its integrality gap
to Walrasian equilibria were studied in [BM97, BO02].

Bidding languages were studied in a general and formal way in [Nis00] on
which Section 1.4 is based. Dummy items were suggested in [FLBS99]. A
detailed survey of bidding languages appears in [Nis06].

A systematic study of the query model can be found in [BN05a]. The
fact that the linear program can be solved in polynomial time using demand
queries appears in [NS06, BN05a]. Applications of this fact for various
approximation algorithms can be found in [DNS05, LS05, FV06]. Relations
of the query model to machine-learning theory is described in [BJSZ04,
LP04] and the references within.

The analysis of the communication complexity of combinatorial auctions
was initiated in [NS06] on which Section 1.6 is based. A more compre-
hensive treatment of this subject can be found in the survey [Seg06]. A
detailed exposition of the theory of communication complexity can be found
in [KN97].

Ascending item-price combinatorial auctions for the (gross)-substitutes
case were first suggested by [DGS86], extending their use for matching
[KC82]. These were further studied in [BM97, GS99, GS00, Mil00, Aus06].
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Socially-efficient ascending bundle-price auctions were suggested in [PU00,
AM02], and hybrid designs that use both item- and bundle prices appear
in [KS00, CAM06]. [AM02] also discussed connections to coalitional games
and their core. A detailed study of ascending auctions and their limitations
may be found in [BN05b]. A comprehensive survey can be found in [Par06].

Exercise 1 is from [RPH98]. A proof for Exercise 2 can be found in [Mul06].
Exercise 3 is from [BN05a]. Exercise 4 is from [NS06]. Exercise 5 is from
[Nis00]. Exercise 6 is from [GS99]. Exercise 7 is from [Par01] and [BN05b].
Exercise 8 is from [BN05b]. The algorithm in exercise 9 is the classic one
for SET-COVER by Lovasz [Lov75], see also [Nis02].

Exercises

1.1 Consider an auction for items 1, ...,m where each bidder is single
minded and desires an interval of consecutive items, i.e., Si = {j|ki ≤
j ≤ li) where 1 ≤ ki ≤ li ≤ m. Prove that in this case the socially-
efficient allocation can be determined in polynomial time.

1.2 Consider combinatorial auctions for m items among n bidders, where
each valuation is represented simply as a vector of 2m − 1 numbers
(a value for each subset of items). Prove that the optimal allocation
can be computed in time that is polynomial in the input length:
n(2m−1). (An immediate conclusion is that when m=O(log n) then
the optimal allocation can be computed in polynomial time in n.)
Hint: use dynamic programming

1.3 Show a class of valuations for bidders in combinatorial auctions for
which a single demand query can reveal enough information for de-
termining the optimal allocation, but this task may require an ex-
ponential number (in the number of items) of value queries. (This
actually proves Lemma 1.23 from Section 1.5.1.)
Hint: Use the fact that the number of distinct bundles of size m

2 ,
out of m items, is exponential in m.

1.4 A valuation v is called sub-additive if for every two bundles S, T ,
v(S) + v(T ) ≥ v(S ∪ T ). Prove that for any ε > 0, achieving a 2− ε

approximation in a combinatorial auction with sub-additive bidders
requires exponential communication.
Hint: Construct a reduction from Theorem 1.27 in Section 1.6.

1.5 The majority valuation assigns a value of 1 to any bundle of at least
m
2 items, and 0 to all other bundles. Prove that representing this
valuation using an OR∗ formula requires size of at least

(
m
m
2

)
.

1.6 Prove that every (gross) substitutes valuation is submodular.
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1.7 Consider an anonymous-price variant of the bundle-price ascending
auctions described in Figure 1.4): The same ascending-price process
is performed, except that at every stage, all bidders observe the same
bundle prices {p(S)}S⊆M . At each stage, the prices of bundles that
are demanded by at least one losing bidder are raised by ε.

Show that when all the valuations are super-additive such an auc-
tion terminates with the socially-efficient allocation. (A valuation is
super-additive if for every two bundles S, T , v(S)+v(T ) ≤ v(S∪T ).)

Hint: First show that if bidder i receives the bundle Ti in the optimal
allocation, then vi(Ti) ≥ vj(Ti) for every bidder j.

1.8 Consider a pair of valuations with the following form (where 0 <

α, β < 1 are unknown to the seller):

v(ab) v(a) v(b)
Alice 2 α β

Bob 2 2 2

Prove that no item-price ascending auction can reveal enough in-
formation for determining the socially-efficient allocation for such
valuations.

1.9 In a procurement auction with single-minded bidders, a single buyer
needs to buy a set of m items from n possible suppliers. Each supplier
i can provide a single set of items Si for a privately known price vi.
The buyer needs to buy all items, and aims to minimize the total
price paid.

(a) Prove that the following greedy algorithm finds a (1 + ln m)-
approximation to the optimal procurement:

• Initialize R to contain all m items, and W ← ∅.
• Repeat until R = ∅: Choose j ∈ argmaxk

vk

|R∩Sk| , and let
W = W ∪ {j} and R = R \ Sj.

(b) Deduce an incentive-compatible polynomial-time (1+lnm)-
approximation mechanism for procurement auctions among
single-minded bidders. Show first that the allocation scheme
defined by the algorithm is monotone, and identify the “crit-
ical values” to be paid by the winning suppliers.
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