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Chapter 1

Introduction

1.1 From Genes to Microarrays

Molecular biology has made major steps towards the understanding of the human body in
the last few decades. One of these steps was to understand the concept of DNA inheritance
and protein synthesis. The DNA is a linear sequence of nucleotides (A, C, G and T), which
carry all the information needed for the creation of life. Inheritance is possible due to
the ability of the cell to replicate the DNA, and transform it to the inheriting cell. Unlike
the dynamic creation and degradation of proteins and other molecules, the DNA sequence
is static and does not change over time. It is built from twocomplementarystrands that
fit each other, where due to chemical association, if A occurs in one strand, T will occur
in the other strand, and the same for G and C (the formation of this structure is called
hybridization). The two strands create adouble helix, which is folded intochromosomes
(Figure 1.1).

According to the central dogma, the DNA encodes the inherited characters of the cell in
short sequences calledgenes, which are transformed into the building blocks of life - the
proteins[Lodish et al., 2000]. The proteins are shorter sequences, generated by repeating
20amino acids, and are folded and form a 3D structure, which is crucial for their function.

How does the DNA sequence encode the protein sequence? Like in a regular text, it has
”words”: each triplet of nucleotides is translated to one amino acid; it also has ”sentences”:
the gene has a beginning and an end, which define thereading frameof the sequence. The
transformation from gene to protein is done in two steps. First is thetranscriptionof gene
to mRNA, which is an intermediate sequence, also built from four nucleotides (A, C, G and
U), and is identical to the gene sequence (where U replaces T). The mRNA strand goes
through further editing and is finally translated to the protein product (Figure 1.2). The
opposite process which turns mRNA to DNA is calledreverse transcription.
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Figure 1.1: The DNA double helix, built from two hybridized complementary strands, and folded to create
chromosomes.http://www.ucsc.edu/currents/00-01/07-03/dna.graphic.html

The transcription is done by theRNA polymeraseprotein complex. This ”machine” binds
to the DNA sequence and traverses it, while creating the mRNA sequence. However, the
polymerase does not work alone; it has an ensemble oftranscription factors(TFs) that
regulate the transcription rate by binding to the sequence in specificrecognition sites. Such
binding can disturb the polymerase activity, resulting in transcriptioninhibition, or help it
(for example by keeping open the double helix), resulting in transcriptionactivation. Once
it was created, the mRNA stays in the cytoplasm where it is translated to proteins, and after
a while it is degraded. Therefore we say that the number of mRNA copies of a certain gene
is proportional to the number of proteins of that gene. Nevertheless, the number of proteins
in the cell is not necessarily identical to the number of active proteins: another regulation
mechanism exists in the post-translational level, generated by chemical modifications on
the proteins’ residues, and by the binding of other proteins or ligands in the cell.

Following this paradigm, biological research has achieved tremendous discoveries. With
the development of technology, the biological assays became more efficient, and today,
computational biology research focuses on large scale assays. These assays can measure
various parameters efficiently and accurately, for example: finding the DNA nucleotide se-
quence, measuring physical interactions between proteins and between proteins and DNA,
and measuring theexpressionlevel of genes, i.e., how many mRNA copies of each gene,
can be found in the cell. Analysis of large scale assays requires appropriate computational
tools, and such tools will be presented in this work, mainly for the analysis of gene expres-
sion.

DNA microarraysis a technology that has reached technical maturity around 1998, and is
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Figure 1.2: The central dogma in biology: the DNA is transcribed to mRNA, and the mRNA is translated
to give proteins.http://cats.med.uvm.edu/catsteachingmod/microbiology/courses/genomics/introduction/12 bgd genpro dog.html

now widely used in biological and medical research. It measures the number of mRNA
copies of each known coding sequence, in a certain tissue and time point. In a microarrays
experiment (Figure 1.3[Brown and Botstein, 1999]) mRNA is extracted from two different
samples. It is then reverse transcribed to give complementary DNA (cDNA), in the pres-
ence of fluorescently labeled nucleotides. To allow direct comparison of the abundance of
every gene in the two samples, the cDNA pool from each sample is labeled with different
fluorescent marker (green or red). The two pools are then mixed and put on a small sili-
con microarray, which contains thousands of spots with DNA probes; each spot contains
probes which are specific to one gene. The individual transcript hybridizes specifically to
the complementary probe in the array. Thus, the relative abundance of gene transcripts
from one sample, compared to the those from the other sample, is reflected by the ratio
of ’red’ to ’green’ fluorescence measured at the array element corresponding to that gene.
This competitive hybridization is called a ”dual channel” experiment, whereas in a ”single
channel” experiment, transcripts from a single sample are hybridized to the microarray, and
then the total fluorescence is measured.

1.2 Computational Analysis of Microarrays

A single microarray sample can provide information about the mRNA expression levels in
the sampled tissue. However, the question of expression changes between samples is more
interesting than the absolute expression level in one sample. Thus, we usually consider
several comparable samples, either time serialized or from distinct sources (e.g. tissue in
several conditions). This kind of experiments enables to identify large scale transcriptional
changes, that describe distinct active mechanisms in the different conditions. A typical
dataset of a gene expression experiment consists of several dozens of conditions, and sev-
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Figure 1.3: DNA microarray dual channel experiment
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Figure 1.4: An expression matrix: entry(i, j) describes the expression value of genei in experimentj.
Values are in log-ratio, normalized in the average of each row.

eral thousands of genes (Figure 1.4).

The first question to be answered, is whether there is a group (or groups) of samples, that
share a common expression pattern. Such a pattern may describe molecular properties
associated with that group. Symmetrically, is there a group of genes that share a common
expression profile over the samples? These genes are likely to be co-expressed in the cell,
and may share a common function. To answer such questions, we useclusteringmethods,
which divide either the samples or the genes to clusters. The genes (or samples) within
the cluster have a similar expression pattern, which is different from the patterns in other
clusters. Clustering methods areunsupervised, since the real classification of the features
is hidden during the clustering. Some important works revealed in this way the existence of
sub-types of diseases that were considered homogeneous before [Golub et al., 1999, Bittner
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et al., 2000, Alizadeh et al., 2000].

Clustering of samples can point out the existence of expression patterns which are com-
mon to a group of samples, but the next computational challenge is to detect the genes that
generate these patterns. Furthermore, we would like to find the pattern that is relevant to
our biological question. For example, if we have two classes of samples from normal and
cancerous tissues, we are interested in the genes that share a common expression pattern
within each class, but are differentially expressed between the classes. Thesedifferentially
expressed geneshave biological and computational importance [Ben-Dor et al., 2000b].
They are biologically interesting because they reflect the difference between the sample
classes, and therefore are probably relevant to the biological question. They are computa-
tionally important, when trying to classify samples of two classes, i.e., to predict to which
class do the samples belong. According to theVapnik-Chervonenkis theory[Kearns and
Vazirani, 1994], the quality of the classification is dependent on the dimension of the prob-
lem. When the dimension of the problem increases, larger set of samples is required to
keep on the classification quality1. In typical gene expression experiment, the sample set is
small, relatively to the dimension of the problem, which is the number of genes. Therefore
we would like to limit the dimension, by selecting only the features which are relevant to
the problem. The differentially expressed genes are good candidates for such features, and
are detected with various statistical tests.

Using differentially expressed genes we can learn a generalized pattern rule that predicts
the classification of a new given sample [Ben-Dor et al., 2000a]. This can lead to the
development of a molecular diagnosis tool, which is more sensitive than current diagnostic
tools, and can be used in earlier stages of the disease. The hypothesis that is used to
classify a new sample is calledclassifier. To build a classifier we learn a decision rule
that associates class to expression pattern, using a training set of labeled samples. Then
we test the classification ability of the classifier on a brand new set of unlabeled samples.
An important step before learning a decision rule will be to reduce the dimension of the
problem by selecting genes as described above. In contrast to clustering, classification is a
supervisedalgorithm since the labels of the training set are known during the learning.

1.3 Information Integration for Learning Regulatory Net-
works

We can gain additional insight from expression profiles by integrating information from
other sources, like sequence information, cellular function and location, physical interac-
tions, evolutionary processes and more. These sources usually carry information on some
of the genes or proteins, but not on all of them. Nevertheless, partial information can teach

1seeBishop[1995] for the curse of dimensionality
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us a lot, and can be used to learn about the other genes or proteins. Consider for example
the clustering method described above. Given a cluster of genes with similar profiles, we
can look for a functional annotation that is common in the group, more than expected by
chance. Such a test can validate the clustering result, and give us new information about un-
known genes - by deducing that all genes with a similar profile, share that function (”guilt
by association”).

Since expression level is mostly determined by a complex regulation system, genes that are
co-expressed may be also co-regulated. The transcription factors that regulate expression
bind to the genes in certain recognition sites in their promoters. The recognition sites are
identified by sequence motifs. Therefore, an interesting test would be to check for the ex-
istence of a common motif in the gene promoters. Again, this test can validate the cluster
we have found, and indicate potential transcription factors that regulate this cluster.
By connecting several parts of the huge biological puzzle we are able to reveal new infor-
mation. Some works construct models that describe several aspects of biological processes
at once. For example, describe a regulation network that consists of transcription factors
and target genes, supported by various information sources such as expression data [Segal
et al., 2003], physical interaction networks [Yeang et al., 2004], knowledge about regula-
tion [Bar-Joseph et al., 2003], and sequence information [Segal et al., 2002]. These kind
of models can be used both for evaluating observations, and for gaining new insights about
the cell processes.

This work presents and discusses methods for gene expression analysis, and applies those
methods in real-life medical practice:Chapter 2 will review and discuss some of the exist-
ing methods for feature selection (2.1), and present a new selection method (2.1.8). It will
review the concept of gene abundance analysis (2.4), and elaborate on the importance of
its statistical validation. New methods that estimate the significance, using annotation from
external sources and permutation test, will be presented for that purpose (2.5). Chapter 3
will review clustering and classification methods. It will elaborate again on the importance
of statistical validation and a correct learning procedure (3.6). Chapter 4 will present and
discuss a work that was done in collaboration with a medical team, in which we analyzed
expression data that was measured in blood cells of post traumatic stress disorder patients
(4.3). In this analysis we employ all the methods that are presented in the former chapters.

This work includes analysis examples of real expression data. Seven datasets are used for
illustration purposes, but due to space limit, only part of the datasets are shown in each
example. However, all the described phenomena are common to most or all of the datasets.
The datasets describe human diseases, mainly cancer:LUCA - Lung cancer,Breast -
Breast cancer,Lymph - Lymphoma,Lukemia, Colon - Colon cancer,Adenocarcinoma-
Lung adenocarcinoma andPTSD - Posttraumatic Stress disorder. See appendix A for more
details on the datasets.

All the methods described in chapters 1-4 were implemented. Their code is available in
http://www.cs.huji.ac.il/v shefi/thesis/src/.
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Chapter 2

Statistical Benchmark of Genes

2.1 Detecting Relevant Genes

Two samples with different biological characteristics (e.g. normal vs. tumor cells) are ex-
pected to have different gene expression profiles. However, most of the genes represented
in the chip are not relevant to the question of interest, and are likely to have similar expres-
sion values in both samples. One of the important computational challenges is to identify
the group of genes that are relevant to the question of interest and therefore are expected
to have a distinct distribution of expression values in each class. These genes are potential
targets for further investigation, as well as candidates for constructing diagnosis tools. For
instance, a gene involved in proliferation process, is expected to be over-expressed in the
tumor samples (which are characterized with aggressive proliferation of cells), compared
to the normal samples.

To identify the relevant genes we make two assumptions: if the samples are divided into
classes, we assume that the expression values of these genes will be driven from a differ-
ent distribution in each class, and therefore they aredifferentially expressedbetween the
classes. Secondly, we assume that the genes are independent from each other. As this
assumption clearly simplifies the biology, it enables us to measure the relevance of each
individual gene. Following these assumptions, our computational task is to identify poten-
tially relevant genes based on their expression profiles.

Definition 2.1.1.: Assume we are given a datasetD, consisting of pairs〈xi, li〉 with i =
1...M , where the samplexi is vector inRN , xi[g] is the expression value of geneg in sample
xi, andli is the label of that sample.li ∈ L = {−, +}. Assume we haven negative samples
andp positive, s.t.M = p + n.

For simplicity purposes, we focus here on two-labeled classification, which can be extended
later to a larger number of classes.
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Given a geneg, our null hypothesisis that the expression values ofg in the two classes
are driven from the same distribution. i.e., letDi be the expression distribution of class
i = {1, 2}, then

H0 : D1 = D2

Thealternative hypothesissuggests that each class has a different distribution:

H1 : D1 6= D2

The simplest test we use, is thefold-change, in which the null hypothesis is rejected if the
ratio between the expression average in one class compared to the other, is big enough.

The following statistical scoring methods score the genes according to their ability to sepa-
rate the samples. If the score is good enough, we will reject the null hypothesis, otherwise
we will accept it.

Theparametricscores, such as the students t-test, make assumptions about the form of the
score distribution within each group. Thenon-parametricmethods, such as TNoM, Info
and Kolmogorov-Smirnov, do not make distributional assumptions about the expression
values.

2.1.1 TNoM - Threshold Number of Misclassifications

A relevant geneg is expected to have different value distributions in the two classes, and
therefore it can serve as a predictor: given a new samplex, we can check to which dis-
tribution x[g] is closer, and classifyx to this class. Specifically, we can find a threshold
value that separates the class values, and then check ifx[g] is above or below the threshold.
Formally we define the followingdecision stump:

l(x | t, d, g) =

{
d x[g] > t
−d x[g] < t

Wheret is some threshold value andd ∈ {−1, +1} is a direction parameter. Rewriting it,
the prediction class is simplysign(d · (x[g]− t)). Theerror of such a predictor gene is the
sum of prediction errors over all samples:

Err(d, t|g, l) =
∑

1{li 6= sign(d · (x[g]− t))}

8
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Figure 2.1: Example of threshold and direction that minimize the number of misclassifications.

Definition 2.1.2.: The TNoM score was defined byBen-Dor et al.[2000a] as the number
of errors made by the best decision stump, i.e.:

TNoM (j, l) = min
d,t

Err(d, t|g, l)

To find the TNoM score, we arrange the expression values in increasing order s.t.x1[g] <
... < xM [g]. For each thresholdt and directiond, we divide the vector into two groups
- above and belowt, and label the groups according tod. We then count the number of
misclassified samples. The TNoM score is the minimal number of misclassifications, over
all possiblet andd (Figure 2.1).

2.1.2 Estimating Score Significance

An immediate question is whether a gene with a low TNoM score is “good enough” to
reject the null hypothesis. According to the lemma of Neyman and Pearson [DeGroot,
1989], it means that the probability to find such a score under the null hypothesis is much
smaller than the probability to find it under the alternative. Thep-valueof a score is the
probability of a gene to attain such a score or a better one, under the null hypothesis. A
low p-value means that genes with such a score are rare in a random dataset, therefore they
probably carry some relevance to the studied classification.

Definition 2.1.3.: Let S denote a scoring metric, and g denote a gene that received the score
s, then:

pV al(g) = Prob(S(g) ≤ s)

9



KNTC2  p = 1.2145·10-11

PRRG2  p = 0.498227

Normal Tumor
KNTC2  p = 1.2145·10-11

PRRG2  p = 0.498227

Normal TumorNormal Tumor

Figure 2.2: Expression pattern of two genes (LUCA data set), with their associated p-values. KNTC2
(kinetochore associated 2) is involved in spindle checkpoint signaling, during cell division. it is known to be
highly expressed in cancer. PRRG2 is a proline-rich Gla (G-carboxyglutamic acid) polypeptide 2.

The p-value is calculated under the null hypothesis of random labels, while the size of each
class is kept. This is a relaxed definition of the original null hypothesis(D1 = D2), as we
do not have the distribution parameters.

Practically, we choose to reject the null hypothesis, if the p-value is smaller than a certain
threshold. The common convention ispV al ≤ 0.05, or a stricter threshold, which is deter-
mined with various methods (Section 2.2). An example for a separating gene and a non-
separating one, is shown inFigure 2.2. It is clear that KNTC2 is differentially expressed
between the classes, as it is over expressed in the tumor samples, and under expressed in
the normals. PRRG2 is not differentially expressed.

2.1.3 Calculating TNoM’s p-Value

The combinatorial character of TNoM makes it amenable to rigorous calculations.Ben-
Dor et al.[2000a] developed a recursive procedure that computes the exact distribution of
TNoM scores, and it is outlined here:

Definition 2.1.4.: Let

• v = {−, +}n,p be the labels of the ranked expression vector of geneg

• pv(i) be the number of samples labeled+ within first i samples

• nv(i) be the number of samples labeled− within first i samples

• πv(i) bepv(i)− nv(i)

Now let us look at the paths inR2 through the points(i, πv(i)) (Figure 2.3). There is a one
to one and onto mapping from labels vectorv to a path in the grid, which starts at(0, 0)
and ends at(p + n, p− n), denoted byΠ[(0, 0) → (p + n, p− n)]. Givenp andn, all paths
are bounded by the paths of the perfect classifiers (Figure 2.3, diagonal lines ).

The above definitions leads to the following conclusion (proven in [Ben-Dor et al., 2000b]):

10
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Figure 2.3: Path on the grid that describes the gene fromFigure 2.1. p = 5, n = 6, s = 2

Theorem 2.1.5.:TNoM(v) ≤ s iff there is ani such thatπv(i) ≥ p− s, or πv(i) ≤ s− n.

So the probability to get a scores is the probability that a random path on the grid crosses
those lines. Formally:

MarkingA = p− s,B = s− n then:

pV al(s) = Prob(TNoM (v) ≤ s) =
ν(A,B)(

M
p

)

Whereν(A,B) = number of pathsΠ[(0, 0) → (M, p− n)] that crossA or B, i.e.,πv(i) ≥
p− s or πv(i) ≤ s− n.

To calculateν(A,B) we use the repeated reflection principle: The number of paths
{Π[(0, 0) → (p + n, p− n)]} that crossA, is equal to the number of paths
{Π[(0, 2A) → (p + n, p − n)], where A is a mirror axis. Using this and the inclu-
sion/exclusion principle, we count exactly the number of pathes that crossA or B at least
once.

The TNoM score is intuitive and simple to implement. Due to its discrete character, its
p-value distribution has a typical ”steps” form. Comparing the TNoM to the basic fold-
change test, we find that TNoM is able to detect finer cases of separation (Figure 2.4).

However, TNoM still has drawbacks:

• Its p-values are distributed in discrete bins, and there is no way to determine which
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Figure 2.4: TNoM p-value distribution vs. fold-change ratio. Red dots mark genes withpV al(TNoM ) ≤
0.05. (LUCA dataset)

gene is more informative within the bins. We would generally like a method which
scores the genes on a more refined scale.

• The p-values have lower bound of1
(p+n

p )
. In some cases even the best genes will not

pass the correction thresholds (Section 2.2), and in the extreme case of lown andp,
even the most informative gene will have p-value> 0.05.

• The type of error - false positive or false negative is not being considered in the
current definitions:k false positive errors will have the same score ask false negative
errors.

• The classification quality is not considered. i.e., TNoM does not distinguish a rule
that makesk errors on a single class, and a rule that makesk/2 errors on each class.
In this case the first rule will perform very badly on the class with the errors.

The Last problem of classification quality is addressed by the following mutual information
and Kolmogorov-Smirnov scores, which are also non-parametric methods.

2.1.4 The Mutual Information Score

The entropyof a variable describes how much uncertainty do we have on it. When the
variable has only one value, the entropy is minimal, and when it gets several possible
values with uniform distribution, the entropy is maximal. The Info score calculates the
relative entropy of a ranked label vector, i.e., how much uncertainty do we have on the

12
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Figure 2.5: Example of Info score calculation

sample labels, given the expression values. To describe Info, first let us present the formal
definition of entropy:

Definition 2.1.6.: [Shannon, 1948] The entropy of a random variableX is:

H(X) = −
∑

p(x) · log p(x)

wherex ∈ X

Hence, the maximum entropy is accepted when the values ofX are uniformly distributed.

Let v be the vector of expression valuesx1[g] ≤ ... ≤ xM [g], which are divided into two
sub vectorsv1:i andvi+1:M using some threshold value like in TNoM.

Definition 2.1.7.: [Ben-Dor et al., 2000b] The Info score ofv is:

INFO(v) = min
i
{ i

M
·H(P1:i) +

M − i

M
·H(Pi+1:M)}

WhereH(P1:i) is the entropy of labels distribution in the sub vectorv1:i. (Figure 2.5)

When the vector is divided into two sub vectors with homogenous labels, the Info score will
be zero. The highest score will be received wheni = M/2, and the labels are uniformly
distributed between the sub vectors.

2.1.5 The Kolmogorov-Smirnov Score

The Kolmogorov-Smirnov (KS) test [DeGroot, 1989] estimates the distance between two
distributions, according to an empirical sampling of these distributions.
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Given a ranked vectorv with p positive samples andn negative samples, letpv(i) andnv(i)
be as in TNoM’s definition. We will define twoempirical distribution functionsto be:

N(i) =
nv(i)

n

P (i) =
pv(i)

p

The KS score is:

KS (v) = sup
i
|N(i)− P (i)|

i.e., the maximal distance between the two function (Figure 2.6).

According to Gilvenko-Cantelli lemma, under the null hypothesis

lim
n,p→∞

KS (v) = 0

Therefore, the test rejects the null hypothesis if the distance is large enough. The exact
threshold is determined according to the score p-value.

2.1.6 Mutual Information and KS p-Values

Both Info and KS calculate their p-values in a similar way to TNoM. However, in their case
the definition of boundaries (A andB in TNoM) is more complicated.INFO(v) > s iff
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Figure 2.7: KS p-values vs. Info p-values (LUCA dataset)

the relative entropy ofv is greater thans in each partitioni. For a givens, Ben-Dor et al.
[2001] calculate the areaR(s) of the grid, in which the relative entropy is greater thans,
and count the number of paths withinR(s), using a dynamic programming. The p-value
is:

Prob(INFO(v) ≤ s) = 1− # paths withinR(s)

total # paths

TNoM, Info and KS are close methods. They all look for the division of the vector that
optimizes functions ofpv(i) andnv(i). Considering this, it is not surprising to find out that
KS and Info tend to ”agree” about the score and give the genes similar p-values (Figure 2.7).
Whenn = p we can notice that the KS choice ofi is identical to TNoM’s:TNoM (g) =

mini{p− πv(i), p + πv(i)}, andKS = supi |πv(i)
p
|. Both reach the optimum insupi |πv(i)|.

The Info and the KS scores express the quality of the classification, and in this way they are
better than TNoM. But they still carry some of the drawbacks that were listed for TNoM:

• Info and KS are both discrete, in the sense that they depend only on the ranked vector
labels. The number of ways to order the labels vector is finite, resulting in bins of
scores and a lower bound on the p-values. However, using the terminology of prob-
abilities gives Info and KS the ability to have higher resolution, and to distinguish
between genes that had identical TNoM scores. The typical distribution of Info and
KS p-values looks much smoother than TNoM’s.

• The type of error - false positive or false negative is not being considered.
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Figure 2.8: The t-test p-value distribution vs. fold-change ratio. Red dots mark genes withpV al(t −
test) ≤ 0.05. (LUCA dataset)

• All the three methods have one major drawback, as they do not take into considera-
tion themarginof the separation, i.e., how much are the distributions far from each
other. Genes that separate the distributions with different margins may have the same
score, because only the labels are being considered, while the expression values are
ignored. To address this problem we use the parametricstudents t-test.

2.1.7 The Student’s t-test Score

This score considers two groups of expression valuesa andb, driven from normal distri-
butions with meansµa andµb and varianceσ2. The t-test score [DeGroot, 1989] decides
whether the values were sampled from the same distribution (the null hypothesis), or from
separate distributions (the alternative)1.

To accept or reject the null hypothesis, the following statistic is calculated, and then its
p-value is calculated according to thet-distribution[DeGroot, 1989].

t =

√
(na + nb − 2)(X̄a − X̄b)√
( 1

na
+ 1

nb
)(na + nb)S2

Wherena, nb are the number of samples ina andb respectively,X̄a, X̄b are the estimators
to the means, andS2 is the estimator of the variance.

1Other version of t-test assumes different variance for each distribution.
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Figure 2.9: Intersection p-value distribution vs. fold-change ratio. Red dots mark genes with
pV al(Intersect) ≤ 0.05. (LUCA dataset)

Unlike TNoM, Info and KS, the score of t-test is continuous, which gives a good scaling of
the genes (Figure 2.8). Genes that had identical score in the non-parametric methods, may
have now different scores, that express the distance between the empirical distributions.

Still we are not satisfied with t-test, mainly because of the normal distribution assumption.
This assumption is reasonable in cases where we have many samples, according to the
central limit theorem [DeGroot, 1989]. However, when the number of samples is small, the
distributions may not be normal.

2.1.8 Integrating Several Methods

Trying to reduce the number of errors among the selected genes, we constructed a method
that intersects several scoring methods. The idea is that a gene which is significant accord-
ing to several methods, is more likely to be truly relevant to the classification.

Formally, for a given geneg and scoring methods p-valuesS1...SN ,

Intersect(g) = max{S1, ..., SN}

The intersection of TNoM, Info and t-test results in a score which is neither discrete like
TNoM, nor continuous like the t-test. It has a typical steps form (Figure 2.9) due to the
integration of the scores.

The intersection scorehas a straightforward intuition, but does not have a well defined
model as the other methods. The meaning of intersection p-value is not the probability to
get such an intersection score, but the probability to get the score with the strictest method.
Therefore it is better to treat it as a score between 0 to 1 and not as a p-value.
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Figure 2.10:The number of informative genes with p-value≤ 0.05, that were selected by the different
methods in six datasets.

2.1.9 Scoring Methods Comparison

We have presented several methods, parametric and non-parametric. Generally we can say
that the advantage of the non-parametric methods is that they do not assume anything on
the sample distributions. Their major drawbacks are the discrete character, and the inability
to score different margins. The t-test score solves the two last problems, but in the cost of
a strong assumption on the distributions.

Comparing scoring methods is not an easy task. If we had information about the true
relevant and irrelevant genes, we could calculate the sensitivity and specificity. However,
we do not have such information: in real life many genes have indirect relevance to the
classification, and there is no clear-cut between the relevant and the irrelevant genes. In
addition, the information about the genes is usually lacking. As a result, we can only try
and simulate the methods performance on synthetic data in which the expression values are
being sampled either from a single distribution or from two distinct distributions. Good
simulation, that describes well what happens in a real biological experiment, is a very
ambitious goal.

A possible solution would be to estimate the ability to classify samples (seeSection 3.3)
with the different methods. Such experiment revealed that there is no method which is
significantly better than the others, but it varies between the datasets (data not shown).

Nevertheless, we are able to compare two aspects: first is how much strict or relaxed is
the method? Note that relaxed method will have higher sensitivity and lower specificity.
Second, is how much do the scoring methods agree? If they always agree on the informative
genes, then comparing them is meaningless.
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Figure 2.11:Overlapped fraction of selected informative genes (with p-value≤ 0.05), according to the
different methods in six datasets. (Appendix A)

To answer to the first question we measured the number of informative genes with p-values
smaller than a certain threshold, according to the different methods, over six datasets, of
Human diseases (Appendix A). The results (Figure 2.10for p ≤ 0.05) show that the TNoM
score is stricter than the others, and that the Info and KS select a similar number of genes.
The t-test score behaves differently over the datasets, sometime more strict and sometime
more relaxed than others. Since the intersection score select the consensus genes of TNoM,
Info and t-test, it obviously the strictest test.

The answer to the second question is strongly related to former results. TNoM is much
stricter than Info, so most of the genes selected by TNoM (more than 84%,Figure 2.11),
are selected also by Info. The relative part of Info genes which is common to TNoM, is
low (44% to 76%). A second observation is that Info and KS agree on most of the genes
- usually above 80%. This may result from the fact the both Info and KS are functions
of pv(i) andnv(i). The overlap between t-test and Info varies from 70% to 93% of t-test
genes, what may result from the inherited difference between the methods.

2.2 Statistical Corrections

Let us assume now we have 10,000 genes in the dataset, among them we find 600 genes
with p-value≤ 0.05. Under the null hypothesis of uniform p-values distribution, we would
expect to get 5% of the genes with this p-value, i.e., 500 false positive genes2. Meaning
that most of our selected genes are false. How do we set the threshold to filter out the
false positive genes? One solution adapts the threshold to the number of features, using the

2Here the genes that are relevant to the biological classification arepositives, and the irrelevant genes are
negatives. Therefore the irrelevant genes among the selected ones are thefalse positives.
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union bound principle:

Definition 2.2.1.: Let S be some scoring metric, with p-valuepV alS. Let P0 be the p-
values distribution under the null hypothesis,p∗ = ming pV alS(g) is the p-value of the
best gene. The Bonferroni Correction [Bonferroni, 1936] finds a thresholdt, given a desired
significance levelα, and number of genesN :

P0(p
∗ < t) ≤

∑
g

P0(pV alS(g) < t) = N · t ≤ α

⇒ t ≤ α

N

So instead of choosing genes withpV al ≤ α, we will only choose genes withpV al ≤ α
N

.

The Bonfferoni correction, however, is a very strict correction. It bounds the chance that
the best gene is false positive toα. But what about the second best gene? If it is also
beyond the threshold we would be more surprised since under the null hypothesis, theith
gene should get p-value ofi

N
3. So now we would like to choose theith gene, if it has

p-value≤ i
N

α

This alternative approach is employed in the ”False Discovery Rate” (FDR) correction
[Benjamini and Hochberg, 1995].

Definition 2.2.2.: FDR Correction:
Let p1 ≤ ... ≤ pN be the ordered p-values of the genes. Findmaxk s.t.

pk ≤ k

N
α

FDR threshold will bepk

This means that we choose all the genes with surprising low p-values. There is no rule to
which correction should be used. This decision depends on the abundance of informative
genes in the specific dataset, and the importance of false negative errors. Table2.2 shows
the number of genes selected in each data set, withα = 0.05:

3Under the null hypothesis the probability to get the same score as theith gene is{#g:S(g)<S(gi)}
N , and

that denotes the p-value.
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Figure 2.12:Bonfferoni and FDR corrections result in a different group of predicted positives genes, on a
hypothetical p-values distribution.

Data Set Classification Genes passed Bonferroni Genes passed FDR
Adenocar Stg1vs3 5 129
Colon NvsT 11 60
Lympho DLCLvsNon 617 2003
PTSD PvsC 9 538
Breast Cancer BRCAvsAll 553 2604
Leukemia NvsT 197 986
LUCA NvsT 1099 3043

Figure2.12shows the principle difference between the corrections on hypothetical data:
the red plot describes the p-values of theN genes. the break lines mark the Bonferroni and
FDR thresholds, where the genes with p-value below these thresholds will be selected.
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2.3 Dealing with Continuous Parameters

So far we have discussed how to find informative genes, which are differentially expressed
between the classes. Sometimes, however, the question of interest is not the difference
between dichotomic classes, but the change in expression along a continuous scale. Such
scale may be time, for exampleSpellman et al.[1998] found a group of genes whose
transcript levels vary periodically within the cell cycle of the yeast. Other parameter may be
a clinical score that indicates the status of the tissue, or the severity of the disease. In these
cases we look for genes with expression pattern that correlates with the external parameter.
Such genes may be the reason for the parameter or its result, therefore they are biologically
meaningful. To find those genes we calculate the correlation between the expression pattern
of each gene and the external parameter; the correlation between variables is the degree to
which the two are correlated. We will present here the non-parametricSpearman Rank
Correlationand the parametricPearson correlation.

2.3.1 The Spearman Rank Correlation

The simple Spearman Rank Correlation [Lehmann and D Abrera, 1998] estimates the dis-
tance between two vectors using their raking.

Definition 2.3.1.: Let X andY be random variables, and let{Xi}, {Yi}, i = 1..N be ranked
vectors of values sampled from their distributions. LetrXi

be the rank of sampleXi in the
ranked vector, and so isrYi

. The rank correlation is:

r = 1− 6
∑

i

d2
i

N(N2 − 1)

Wheredi = rXi
− rYi

, is the difference between the ranks of samplei in X andY values.

2.3.2 The Pearson Correlation

Pearson correlation is a parametric method that estimates the linear relationship between
two variables, while making assumptions on their distributions.

Definition 2.3.2.: Let µx, µy be the means of the variablesX andY , andσx, σy be their
standard deviations. ThePearson correlationis simply:

ρ =
E|(x− µx)(y − µy)|

σxσy
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Given{Xi}, {Yi}, we can estimateρ. Let:

Sxx = Σi(Xi − X̄)2

Syy = Σi(Yi − Ȳ )2

Sxy = Σi(Xi − X̄)(Yi − Ȳ )

The estimator forρ will be:

r =
Sxy√
SxSy

If the Pearson score is normally distributed around 0, we can easily find its p-value using
thez table. However, with high correlation values, the distribution tends to have a negative
skew. In these cases a transformation calledFisher z’ transformationconvertsr to a normal
distributed variablez′ with standard error of 1√

N−3
. z′ is used to calculate the p-value ofr

[http://davidmlane.com/hyperstat/A98696.html].

The use of Pearson correlation can be illustrated on the PTSD dataset, in which we have ex-
ternal parameter that describes the severity of the Post Traumatic Stress disorder. Measur-
ing the correlation between expression and severity score, we have found many correlated
and anti-correlated genes (Figure 2.13). Note that the correlation p-value is equivalent to a
scoring method, therefore it can be employed for gene selection.

2.4 An Overabundance Analysis

In former sections we presented methods that score genes for their relevance to the biolog-
ical attribute, and formulated the probability to get such a score by chance. To get a more
comprehensive picture, we can measure the number of informative genes that were scored
with a given p-value, and the probability to find this number by chance.

Looking over all p-values at once, we can get a good estimation for the separability of
our data, i.e., to the information it carries. Dataset which has an abundance of informative
genes, probably reflects a real biological phenomenon. We would like to detect such data,
and to have a parameter which is comparable between datasets and between classifications.
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Figure 2.13: Expression patterns of genes with high correlation or anti-correlation (r< −0.7, r > 0.7) to
the severity score (IES total, top histogram). The complete results are presented inChapter 4.

2.4.1 Abundance Plots

Overabundanceplot [Ben-Dor et al., 2001] describes for increasing p-value, the number of
genes that were actually scored with this p-value or better, along with the number of genes
expected by chance (Figure 2.14(a)). The null hypothesis assumes uniform distribution
of p-values, therefore the number of expected genes for p-valuep, is N · p. Looking over
several classifications or dataset, we can easily detect the one with more informative genes
(Figure 2.14(b)).

Overabundance is simple and convenient methodology which gives a quantitative measure-
ment to the separability of the dataset, or to its correlation to an external parameter, while
other methods as the volcano plots, give only qualitative measurement (Figures2.4, 2.8).
Nevertheless, two problems in the current definition should be addressed:

• First, a quantitative parameter is needed to enable the comparison between overabun-
dance plots, such as the maximal distance of the real plot from the expected plot. This
problem is addressed, for example, in the max-surprise score [Ben-Dor et al., 2001].

• The second problem is the assumption that the scores are uniformly distributed under
the null hypothesis. De facto, when estimating the scores distribution with random
labels, we see that often they are not uniformly distributed. This may be due to the
small number of samples and the dependencies between the genes. In the next section
we address this problem by calculating empirical p-value.
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Figure 2.14: (a) Overabundance analysis of LUCA dataset. The blue plot describes for each p-value
the number of genes that were scored with that p-value or less, according to the t-test method. Red plot
describes the number of genes expected under null hypothesis. For instance, 3260 genes gotpV al ≤ 0.05,
while 250 were expected by chance. (b) Overabundance plots with LUCA dataset, for three optional sample
classifications.

2.5 Results Validation

Let us assume we have analyzed our data, and got a set of informative genes. A desirable
goal would be to validate our results, both statistically and biologically.

2.5.1 An Empirical p-Value Estimation

The statistical validation estimates the significance of the results, i.e., the probability to
get such results by chance. In the context of overabundance we will first ask, what is the
probability to findk informative genes with a given p-value or better. Then we ask for the
probability to get the whole overabundance plot.

To calculate the probability of findingk informative genes, we would like to have a back-
ground distribution. Since rigorous model of the background distribution is usually miss-
ing, we build a distribution model, under the null hypothesis of random labels.

Definition 2.5.1.: Given datasetD consists of pairs< xi, li > with i = 1...M , therandom
permutated datasetD′ is a new dataset consists of pairs< xi, l

′
i >, whereL′ = l′1...l

′
M is a

random permutation of the original labels vectorL = l1...lM .

In Random permutation test we repeat the examined testn times, each with different per-
mutated dataset, to getn test results, sampled from the background distribution. LetGt(i)
be the number of genes that got p-value better thant in theith repeat, then the probability
to findk informative genes is simply:
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Figure 2.15:Empirical Overabundance plot: ”Genes number” is the abundance of genes with the real
labels. ”Empirical p-value” marks for each point in the abundance graph the probability to find such amount
of genes by chance. ”Average” is the average number of genes over the random runs, which is the empirical
expectation. ”95%” marks the 95 percentile of the random plots. The graph was generated with Leukemia
dataset, t-test scoring method and 1000 random permutations.

Prob(Gt = k) =

∑
i 1{Gt(i) ≥ k}

n

To calculate the probability to find abundance of genes which correlate to an external pa-
rameter, we do the same permutation test, but instead of permuting the labels, we permute
the external parameter values.

The significance of an overabundance plot is not so straightforward. We can calculate the
probability of each and every point in the graph (Figure 2.15, ”empirical p-value” plot), but
that will not give us the probability of the plot as a whole. Since order relation is not well
defined over the plots, we cannot estimate directly the p-value of a plot. What we can do
is estimate the p-value of some parameter that describes the quality of the plot, such as the
max-surprise or Sanov scores [Ben-Dor et al., 2001]. Another solution is to calculate the
p-value in each point in the graph, and claim that the plot has p-value≤ 0.05 if every point
in the graph has p-value≤ 0.05 (Figure 2.15, ”95% plot”).

The statistical validation of the results is essential, as sometimes there is an abundance of
informative genes, but it has no statistical significance. In this case, random data would
probably generate similar abundance (Figure 2.16).
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Figure 2.16:An example to overabundance which is not significant, starting from threshold p-value≈
0.07. The abundance of genes is below the 95% plot, meaning that more than 5% of the random runs got
such abundance of genes, or more.

2.6 An Analysis of Annotation Enrichment

The biological validation addresses both the question of significance and the results in-
terpretation. If we have an external parameter, which is completely independent in the
parameters that were used for analysis, we can use it to estimate the significance of our set
of genes, and to interpret them. Let us assume that the candidates have external annota-
tions. If we detect a common annotation within the positive group (i.e. the selected genes),
we can conclude that the group is meaningful, and learn about its members.

To emphasize let us take an hypothetic example of a dataset, which consists of healthy and
tumor tissues. The genes which are differentially expressed between the two tissue types,
are the positives. Let us assume we annotated all the genes according to their cellular
role (e.g. restriction enzyme, kinase, G-protein, transcription factor etc.), and we found
that among the positive genes, many are annotated as transcription factors. A reasonable
conclusion would be that the molecular difference between healthy and tumor samples is
related to transcriptional processes.

2.6.1 Statistical Significance of Annotations

In the example above we found many genes with a “transcription factor” annotation. The
requested question here, is how much is ”many”? Fortunately the well establishedhyper
geometricmodel describes the probability of our findings.

Definition 2.6.1.: The Hyper Geometric Distribution [DeGroot, 1970]
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Let us assume we haveN features, of whomK are ”special” andN − K are not. We
randomly choose (with no returns and repeats) a group ofn features from this set. The
probability to findk ”special” features among the chosenn is:

Hyper(k) =

(
K
k

)(
N−K
n−k

)
(

N
n

)

The intuition is very simple: the number of ways to choosek from K special features, and
n−k from N−K non special, divided by the total number of ways to choosen features. In
our caseN is the number of genes in the dataset,K is the number of genes with a specific
annotation,n in the number of informative genes, andk is the number of genes with that
annotation, among the informative genes. In this way we compute the probability to find
such annotation enrichment in our group of genes, under the null hypothesis of randomly
chosen group.Figure 2.17describes annotation analysis in a cluster of genes, obtained by
implying double hierarchical clustering on the PTSD dataset (seeSection 3.2). One cluster
(red) was analyzed with GO annotations (Gene Ontology [Consortium, 2001]), and found
to be enriched with annotations which are related to RNA and DNA processing.

2.6.2 Using Annotation Analysis to Integrate External Data

In the introduction we discussed the importance of integrating several data sources. In
annotation analysis, the integration is immediate. The external parameter can come from
various sources, each gives a different interpretation to the group of interest:

• The Cellular role annotation describes the molecular function of the genes, but it
does not point on specific process that is being activated.

• The annotation ofmolecular process(e.g. cell-cycle, amino-acids synthesis, glycol-
ysis etc.) is more relevant in this context.

• Cellular localizationmay point to special activity in one of the cell components.

• Co-expressionannotation labels the genes according to the tissues in which they are
known to be expressed. It would be interesting to find for example, that many genes
that active in a metastasis are usually active in the tissue of the primary tumor and
not in the hosting tissue.

• Taking the data integration ability another step, we can learn about new regulatory
relationships. Say we annotate the genes according to the transcription factors that
are known to regulate them. Annotation analysis reveals a TF that regulates many
positive genes. We now can look for a sequence element which is common to all the
regulated genes, and then look for appearance of that element among the other genes.
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Figure 2.17:(a) Result of applying double hierarchical clustering on the PTSD dataset. The algorithm
cluster both the samples and the genes according to their expression patterns. (b) Annotation enrichment
analysis of GO annotations, which was done to one of the genes cluster (red). The percentage of each
annotation in the background and in the cluster is marked, together with the its p-value.
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Chapter 3

Learning to Cluster and Classify
Samples

3.1 Supervised and Unsupervised Learning

Until now we discussed methods that find and score differentially expressed genes. In
these methods we assume the existence of a classification, and look for the informative
genes accordingly. This approach, which ”forces” us to use the label information during
the analysis, enables us to concentrate on the relevant classification while reducing other
signals in the data. However, sometimes the interesting elements are unknown, and we
would like to detect them.Machine learning theoryformalizes this intuition by defining
two approaches for learning [Vapnik, 1995]:

• In supervised learning, the learner has a supervisor which is ”omniscient”, i.e., it
knows the true positives and negatives, and can calculate the error rate and give the
learner feedback on its performance.

• In unsupervised learning, the learner has no supervisor, i.e., the true positives and
negatives are unknown.

Both supervised and unsupervised learning are interesting and difficult tasks. Selection
of informative genes and classification algorithms are supervised, since the labels of the
samples are known and being used in the process (although gene labels are unknown).
Clustering algorithms are unsupervised since the sample labels are not being used during
the learning process.
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3.2 Discovering Clusters

In a clustering procedure we detect groups of samples or groups of genes that share a
common expression pattern. Such a pattern may describe molecular properties associated
with that group, thus encompassing new biological knowledge. An example of sample
clustering is the detection of disease sub classes [Alizadeh et al., 2000, Bittner et al., 2000,
Golub et al., 1999]. Sample clustering may also reflect noise in the data, either artificial or
biological (e.g. clusters of genders), and may indicate problems in the sample labels.

Gene clustering discovers groups of genes that share a common expression profile over the
samples. These genes are likely to be co-regulated and co-expressed in the cell, and may
share a common function. When clustering is applied both to samples and genes, we call it
doubleclustering.

Definition 3.2.1.: Given a datasetD, consisting of samples{xi}i=1...M ∈ RN , aclustering
algorithmdivides the samples intok different clusters, so that close samples are in the same
cluster.

All clustering algorithms follow this concept, but they differ in the details, such as:

• The distance metric between the samples.

• The method for calculating distance to a cluster. For example, using the average of
the cluster or the closest sample within the cluster etc.

• The method for sample traversal.

• The stop condition - which function is being optimized, if at all.

3.2.1 Hierarchical Clustering

TheHierarchical clustering[Johnson, 1967] is a simple algorithm: given a distance metric
d and a methodc for calculating distance between sample and cluster, it clusters the sam-
ples, starting from the closest pair. In the next stage it will cluster the second closest pair,
which can be either two samples, a sample and a cluster, or two clusters. It will stop when
it gets an hierarchical tree structure with a single root, where allM samples are the leaves
of the tree (Figure 3.1(a)). To getk clusters, we have to trim the tree so thatk clusters are
left disconnected (Figure 3.1(b)). An example for hierarchical clustering, applied to the
PTSD dataset, was shown inFigure 2.17(a).
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Figure 3.1:Hierarchical clustering of samples in a 2D space. (a) Building the tree (b) Trimming to generate
disconnected clusters.

3.2.2 k-Means

TheK-means clustering[Bishop, 1995] is a much more sophisticated method that gets as
an input the distance metricd and the final number of clustersk. The target function for
minimization is the sum of average distance squares within each cluster, over all clusters:

min
c1..c)k

f(d, c1...ck) s.t.

f(d, c1...ck) =
∑

j=1...k

∑
i:xi∈cj

d < xi, µj >2

|cj|

K-means starts by pickingk random clusters, and calculating their means (Figure 3.2(a)).
Next, it iteratively improves the selection by re-assigning each sample to the cluster with
the closest mean, which necessarily improves the target function (Figure 3.2(b)). After
each re-assignment the means are recalculated, and so on (Figure 3.2(c)). The algorithm
stops when no further improvement can be made.

In thesoftversion of k-means, each sample can be assigned to each cluster with a certain
probability. In this case the target function summarizes the mean of distances within each
cluster. Letpij be the probability of samplexi to be assigned to clustercj,

∑
j pij = 1 then:

f(d, c1...ck, p̄) =
∑

j=1...k

∑
i:xi∈cj

pijd < xi, µj >2

|cj|
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Figure 3.2:Single iteration of k-means: (a) Initial random clusters with means (red). (b) Calculation of dis-
tance from one sample (blue) to all clusters means. (c) Reassignment to the closest cluster, and recalculation
of means.

??

Figure 3.3:The unclassified sample is closer to the red class, but may belong to the blue class.

3.3 Classifying a New Sample

Let us assume that we have found two major clusters, which were interpreted as ”healthy”
and ”diseased”, and now a new sample needs to be classified. We would naturally choose
to classify it according to the closest cluster. If the samples were already labeled, we could
divide them into the two classes and classify the new sample accordingly. The ability to
classify a new sample serves as a statistical tool which evaluates the classification, and
more importantly, can be used for real life clinical diagnosis of a new sample [M.J. van de
Vijver, 2002]. Classification is not trivial, and the closest group is not always the correct
answer. For instance, how would you classify the sample inFigure 3.3?

A simple decision rule was presented in the definition of TNoM:l(x | t, g) will be ’+’ if
x[g] > t, and ’-’ otherwise. This decision rule is alinear separatorsince in the dimension
of geneg, it can be described as a straight line, where all the ’+’s are above it, and the ’-’s
are below it.

Given a sample setD (training set), the classification algorithm learns a decision rule,
which can be either a linear or a non-linear separator. Later when obtained a new sample
x, it classifiesx using the learnedclassifierdecision rule. The classifier’s prediction ability
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is evaluated by calculating the error rate on a new sample set (test set).

Definition 3.3.1.: Given a datasetD, consisting of pairs< xi, li >i=1...M , li ∈ {1, 2...k}, a
classifieris a functionfD that depends on the datasetD, and predicts the label of a given
samplex: fD(x) = l̂.

3.3.1 The Naive Bayesian Classifier

Thenaive Bayesian classifier[Duda and Hart, 1973, Ben-Dor et al., 2000a] is based on a
probabilistic approach to the problem. It assumes that each class produces a different dis-
tribution of the expression values -P (x|li). Given a new samplex, the classifier estimates
the probability that the sample belongs to classj, as:

P (lj|x) =
P (x|lj)P (lj)∑

i=1..k P (x|li)P (li)

P (lj) is the prior probability of classj, which is estimated by the fraction of classj samples
in the training set.P (x|li) is determined using the training set samples. The naive Bayesian
classifier prediction will be:

f(x) = arg max
j

P (lj|x)

We will now see an explicit calculation, for the binary classification case:

f(x) = log
P (+|x)

P (−|x)

where the sign of the classifier determines the prediction, and the magnitude expresses the
classifier’sconfidence.

f(x) = log
P (+|x)

P (−|x)
(3.1)

= log
P (+)

P (−)
+ log

P (x|+)

P (x|−)
(3.2)

= log
P (+)

P (−)
+

∑
g

log
P (xg|+)

P (xg|−)
(3.3)

= log
P (+)

P (−)
+

∑
g

(log
P (+|xg)

P (−|xg)
− log

P (+)

P (−)
) (3.4)
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Figure 3.4:Naive Bayes classification confidence in several datasets: (a) PTSD, (b) Lymphoma, (c) Breast
cancer and (d) Adenocarcinoma. They axis denotes the confidence of the classifier in the sample predictions.
Negative confidence means that the first class label (blue) was predicted, and positive confidence means that
the second class (red) label was predicted. Therefore, blue dots with positive values and red dots with negative
values, are classification errors.

where (2) is derived from theBayes rule, (3) from the probability chain rule, assuming
gene independence, and (4) again from the Bayes rule, used here for each gene separately.

Given a training setD, the algorithm will learn a classifierf , by calculatingP (+)/P (−)
andP (+|xg)/P (−|xg). To calculateP (+|xg) andP (−|xg), the algorithm finds a threshold
t, that best separates the values ofg into the two classes. The thresholdt can be found
with the TNoM or Info methods, using the training set samples. In the next step, the
algorithm calculates the probabilities of ’+’ and ’-’ samples above the threshold and below
the threshold. If the new samplex[g] > t the algorithm will return the probabilities that
were calculated from above the threshold, otherwise, it will return the probabilities from
below the threshold. The final classifier is generated by summing the ”votes” of all the
genes.

An example of the performance of the naive Bayesian classifier on several datasets is pre-
sented inFigure 3.4. They axis describes the confidence of the classifier, i.e., the proportion
of the probabilities.
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3.4 Validation of the Classifier

3.4.1 Train and Test Errors

To evaluate the classifier’s performance, we would like to know its classification error rate,
i.e., what is the probability to misclassify a new given sample.

Let D be the real distribution of the samples, letX be a sampling ofD, and letfX be a
classifier that was trained onX.

Definition 3.4.1.: Thegeneralization error[Kearns and Vazirani, 1994], is the probability
overD that the classifier will misclassify a sample.

Err(f) = Probx∼D(fD(x) 6= lx)

Calculating this error is not feasible in most interesting problems1, so we have toestimate
it on the test set.

Definition 3.4.2.: The empirical error [Kearns and Vazirani, 1994] of a classifier is the
fraction of the classifier’s errors, estimated over a set of samplesX:

Err(fX(X)) =
1

|X|
∑

i

1{fX(xi) 6= li|xi ∈ X}

The empirical error on the training set is thetrain error, and on the test set it is thetest
error. While the train error can be as small as we wish2, the test error may vary. Since the
test error is an estimator for the the generalization error, according to the weak law of large
numbers [DeGroot, 1989] when the set size increases, the estimation is closer to the real
error.

3.4.2 Cross Validation and Dimension Reduce

In order to get a good estimation of the classifier error, we would like to have a sufficient
set of samples for training and testing, where ”sufficient” depends on the number of genes,
and would roughly be more than several hundreds of samples. However, typical experiment

1Since the sampling space is usually infinite.
2If the hypothesis class is PAC learnable, or in our case - the number of potential classifiers is finite

[Kearns and Vazirani, 1994].
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Figure 3.5:The leave one out cross validation (LOOCV) procedure: given labeled samples (e.g., Normal
vs. Tumor), one sample is left out. Then the genes are selected and the classifier is learned with the rest of
the samples. Finally the classifier gives its prediction to the left out sample.

consists of much fewer samples, and generating training and test set, reduces the effective
number of samples even more. To answer this challenge we use two methods that reduce
the problem dimension on the one hand, and increase the effective number of available
samples on the other hand:

• Feature selectionis used for reducing the problem dimension, by selecting genes
to be the candidates for the classifier’s learning. The most informative genes are
selected according to the scoring methods, and in this way we reduce noise created
by irrelevant genes. Note that the classifier is learned from the training set, and
therefore the genes should also be selected only according to the training set.

• k-Fold cross validationis used to increase the effective number of samples. This
procedure divides the sample set intok random groups and iterates on them. In each
iteration it removes one group, learns a classifierfXn on the rest (training set) and
tests it on the left out group. The error of the classifier is the sum of errors of the
interior classifiers:

Err(fX) =
1

|X|
∑

n=1..k

1{fXn(xni
) 6= lni

|xni
∈ X}

When k = 1 this well known procedure is calledleave one out cross validation
(LOOCV) (Figure 3.5).
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Figure 3.6:The error rate of Naive Bayes classifier with Info scoring method, over different datasets. The
x axis denotes the threshold p-value, according to which the feature genes are selected. They axis denotes
the percentage of errors accepted with LOOCV procedure in each dataset.

3.5 Classification Results

Figure 3.6presents the naive Bayesian classifier error rate for increasing threshold p-values,
according to which the genes are selected. The error rate can vary between datasets, since
some datasets are easier to classify than others. However, the error rate plot has several
typical characteristics:

• In low p-values the plot is noisy (Figure 3.6(a)). The number of selected genes in
these p-values is relatively small, and each addition of genes has a great effect on the
error rate.

• As the p-value increases, we can often detect a typical concaveness - a region of a
low error rate, which does not change for increasing p-values (Figure 3.6(b)). In this
region an optimal set of separating genes is selected, and an addition of other genes
does not affect the classification ability. Each dataset has a different typical optimal
region.

• Increasing the p-values even more, the classifier is starting to perform badly, since
many genes that are not relevant to the classification are being selected. Their noise
overcomes the real signal that was clearer in the lower p-values, and the error rate
increases (Figure 3.6(c)).
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3.6 Using the Classification Procedure Correctly

3.6.1 Over Fitting to the training set

We stressed before that the classifier performance should be evaluated on an independent
set of test samples. It is very easy to understand that if the classifier is tested on the samples
according to which it was learned, it will easily classify them, resulting in a presumably
good ”generalization error”. But when checking the classifier on a real independent set,
we will probably find out that the true generalization error is worse. This situation is an
over fitting to the training set. It can be illustrated by a situation in which students are
studying all year, and at the end of the year are given an exam. One student is given the
same questions he saw during the year, and the other is given new questions. The first
student will probably get a better grade, but his true understanding of the material was not
examined.

This principle is true for both stages of learning - the feature selection and the learning
of the decision rule. Both should be done only with the training set, and examined on an
independent set. In the cross validation procedure, we first remove the test samples, and
only then select features and learn a decision rule, with all the other samples.

Some gene expression studies were not aware of this principle, and selected the features be-
fore performing the LOOCV procedure. The result is a classifier which is tested on the very
same samples according to which its features were chosen. The classification error which
is claimed in those cases does not represent the true generalization error. Furthermore, it
can be easily achieved by any classifier (as for the first student).

In conclusion, we hypothesized that the classifier that was learned with the misguided pro-
cedure is over fitted to the train data. In addition, the probability to get the same error rate
by chance is higher than the probability to get the same error rate had we used the correct
procedure.

3.6.2 p-Value of Classification

To prove our claim, we need to be able to measure the over fitting of a classifier. One way
to measure it is simply to estimate the classifier error rate on a new test set. Returning to
the students illustration, we will give them a truly new question, and compare their error
rates to the error rates that were measured before.

An alternative way is to estimate the statistical significance of the classification. We esti-
mate the p-value of the classification with the permutation test, that permutates the labels,
repeats the learning procedure, and estimates the probability to get such an error rate or a
better one, under the null hypothesis.
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Figure 3.7:Classification error rate on the Breast dataset (BRCAvsAll). Thex axis denotes the threshold
p-value according to which the feature genes were selected. Theblue plot denotes the number of errors
accepted with that threshold, and thered plot denotes the empirical p-value of each error rate. Panel (a)
describes the error rates and p-values when using the misguided learning procedure, and panel (b) describes
the same, for the correct learning procedure. Classification was done with the naive Bayes classifier and t-test
scoring method. The empirical p-value was calculated with permutation test with more than 300 random
runs.

The following table presents an empirical p-value estimation for classifications of different
datasets. As you can see, all the above classifications are statistically significant, as the
probability to get such an error rate is usually≤ 0.0001.

Dataset Classification Errors Num p-Value
Adenocar Stg1vs3 18 0.0005
Colon NvsT 16 0.0001
Lympho DLCLvsNon 3 0.0001
PTSD PvsC 7 0.0001
Breast Cancer BRCAvsAll 16 0.0001

The empirical p-value test was applied to the data from one study byL.J. van t Veer[2002]
that used the misguided learning procedure. The results (Figure 3.7) clearly show that the
classifier that was learned with the misguided procedure (panel a) produces non significant
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Figure 3.8:Classification error distribution that was calculated over 300 random permutation tests, with
different p-values. Red bars mark the error distribution of the misguided procedure, Blue bars mark the
distribution with the correct procedure. The real error rates are marked below the graph (Adenocarcinoma
dataset, Stg1vs3).

classification results for most of the threshold p-values. The classifier that was learned with
the correct procedure (panel b) preforms badly for very small p-values, but in contrast to
the classifier in (a), for all p-values excluding one, the classification results are significant,
i.e. p ≤ 0.05.

Further investigation of the correct and misguided procedures was done by looking at the
distribution of errors over random labels with the two methods.Figure 3.8presents a his-
togram of the error rates that were received with 300 random permutations and different
p-values. We can easily observe that the average error rate is lower with the misguided
procedure, which supports our claim of ”easier” classification due to over fitting. A second
observation is that although the error rate (with the real labels) in the misguided proce-
dure is lower than in the correct procedure, we can observe again that the chance to get
such error, which is equivalent to the position in the histogram, is higher in the misguided
procedure.

To conclude, statistical validation is exhaustively used in feature selection and clustering,
but rarely in classification. Using the simple estimation of empirical p-value we have shown
that even a good classification may sometimes be insignificant.
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Chapter 4

Detecting Psychiatric Disorder with
Gene Expression Analysis

This chapter is excerpted from joint a research with Ronnen Segman, Arik Shalev
and Tania Goltser-Dubner (Hadassa medical center, Jerusalem), Naftali Kaminski
(Pittsburgh Universrity), and with Nir Friedman (Hebrew University).

The complete paper is available at www.cs.huji.ac.il/vshefi/ptsd.pdf

4.1 PTSD - Post Traumatic Stress Disorder

Post-traumatic stress disorder is a maladaptive response to stressful events, consisting of re-
experiencing of the traumatic event; avoidance and numbing; vigilance and hyper arousal
[The American Psychiatric Association, 1994]. With a lifetime prevalence of 9-14%, PTSD
is a common mental disorder [Breslau, 2001, Kessler et al., 1995, Yehuda, 2002]. Many
survivors express PTSD symptoms at the early aftermath of traumatic events. With time,
these symptoms subside in most survivors, but persist in a significant minority - one out of
five, in the form of chronic PTSD [Breslau, 2001, Shalev, Zlotnick, 1999, Blanchard, 1997].
Early treatment might prevent PTSD [Bryant et al., 1999], but known risk factors and early
PTSD symptoms do not effectively predict chronic PTSD, and therefore have limited use in
guiding early treatment [Brewin et al., 2000, Freedman et al., 1999]. Additional difficulty
is that the pathogenesis of PTSD is largely unknown.

Biological alterations may underlie the onset severity and persistence of PTSD symptoms
[Kessler et al., 1995, Yehuda, 2002, Pitman et al., 2000]. Such alterations are likely to be
associated with differential gene transcription, during or after exposure to the triggering
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event. For example, acute stress exposure has been shown to induce long-term expression
differences in the rat brain [Kaufer et al., 1999, Liberzon et al., 1999, Fujikawa, 2000].
While direct sampling of the brain is not possible in humans, peripheral blood cell gene ex-
pression may provide a surrogate indicator of differential response to stress and subsequent
PTSD. Supporting this tenet, acute psychological stress is associated with immune activa-
tion [Aloe, 1994], and persistent immune alterations have been linked with chronic PTSD
[Kawamura et al., 2001, Miller et al., 2001, Spivak, 1997, Maes, 1999]. Additionally, re-
cent microarray studies in human CNS disorders (multiple sclerosis, stroke and seizure)
as well as rodent models of such disease suggest specific gene expression signatures in
peripheral blood mononuclear cells (PBMC) [Achiron et al., 2004, Tang et al., 2001].

Microarrays allow high throughput gene expression profiling of transcriptional reactivity.
Applied to PBMCs, they may detect signatures of biological processes that underlie adap-
tive and pathological reactions to traumatic stress as they unfold over time. We hypothe-
sized that the transcriptional response of peripheral blood mononuclear cells, will correlate
with the development of PTSD among trauma survivors. Here we show that gene expres-
sion patterns evaluated four months after trauma identified survivors who either persistently
manifested full criteria for acute and chronic PTSD at both one and four months respec-
tively, or remained healthy at follow up. Signatures measured within hours of trauma corre-
lated with later course, and expression patterns at both early and late time points correlated
with core symptom trajectories among all survivors.

4.2 Experiment Design

Participants in the study were non physically injured trauma survivors, who were presented
to the emergency room (ER), immediately following a traumatic event. 24 trauma survivors
were included based on clinical assessment. fourteen of whom hadconsistent phenotypeof
either full diagnostic criteria of PTSD, or no formal clinical criterion for PTSD at any time.
For part of the analysis we included additional ten subjects who showedpartial phenotype
at the ER, and had final clinical diagnosis only at 4 months. Peripheral blood samples were
taken from each participant, in the ER, hours after the trauma, and 4 months later. Using
oligonucleotide arrays (Affymetrix HU95A), we measured gene expression profiles from
these samples. A total of 33 PBMC samples (18 M4 and 15 ER) were available for analysis,
of whom 20 samples taken from the consistent phenotype group. After signal quantization
and normalization, we identified a set of 4,512 active genes that were expressed and show
some variance among the collected profiles. Analysis of the samples was done, and ex-
haustively validated with various statistical methods that were presented in this work.

43



4.3 Results

4.3.1 Gene expression signal distinguish PTSD and control

We first determined whether gene expression patterns could distinguish PTSD from control
subjects. For this comparison we focused on the consistent phenotype group. Unsupervised
hierarchical clustering distinguishes the clinical status at one and four months (Figure 4.1
a). When only M4 samples are analyzed, all subjects are classified into two clusters, one
containing PTSD subjects and the other control subjects (Figure 4.1b). Remarkably, a
similar pattern (with one misclassified subject) is evident in clustering of samples taken
at ER, hours after trauma (Figure 4.1c), suggesting that gene expression patterns at the
immediate aftermath of trauma can be informative of the later development of the PTSD
phenotype.

Over abundance analysis identifies significant number of genes which are differentially
expressed between PTSD and control samples - 656 compared to 103 expected by chance
(Fig. 1d). Similarly, we find a significant amount of differentially expressed genes, much
more than expected by chance, when we examine M4 samples or ER samples separately
(Figure 4.1e and f).

To further explore the predictive abilities of these gene expression signatures, we used
the Nave Bayesian classifier, and LOOCV procedure. The classifier was able to correctly
classify 8 out of 9 M4 samples (Figure 4.1g) and 9 out of 11 ER samples (Figure 4.1h).
Evaluating the significance of these classifications using the random permutation test (with
1000 random runs) shows that the classification accuracy is significant with M4 samples
(p = 0.027), and nearly significant with ER samples(p = 0.061).

4.3.2 Gene expression correlates with severity of PTSD symptoms

PTSD symptoms are grouped into 3 clusters: trauma re-experiencing (intrusive memory),
avoidance behavior and hyper arousal. These symptoms were measured at month 4, using
the ”Impact of Event Scale” (IES) clinical test that scores the symptoms severity. To in-
vestigate the persistence of symptom trajectories among all survivors, we correlated gene
expression profiles of the entire sample of 24 subjects, with the composite IES score, and
with the score of each of the three clusters. The correlation was measured with Pearson
Correlation. Among the 18 available M4 samples, we found a significant overabundance
of genes showing significant correlations(p ≤ 0.05) with the IES total score (Figure 4.2
a), as well as with each of the 3 symptom clusters (Figure 4.2b-d). Among the 15 avail-
able ER samples, we also found a significant overabundance of genes that correlated with
continuous IES scores measured four months later (Figure 4.3).
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4.3.3 Affected trauma survivors show reduced expression of transcrip-
tional enhancers and distinct immune activation

To gain better understanding of the informative and correlative genes that were found in
the analysis, we examined their functional classifications. We identify several functional
groups that are enriched in these signatures (Figure 4.4a). Notably, we observe among the
affected subjects, down regulation of genes encoding for transcriptional activation proteins,
cell cycle and proliferation. We also observe distinct expression signatures for genes in-
volved in immune activation, signal transduction and apoptosis. To attempt a quantitative
analysis we calculated the enrichment of GO (Gene Ontology) annotations, and found a sig-
nificant representations(p < 0.0005) of genes involved in RNA metabolism and process-
ing, as well as nucleotide metabolism (Figure 4.4b).

4.3.4 Signatures are significantly enriched for genes that encode for
neural and endocrine proteins

To further pursue how peripheral transcriptional response may be relevant to the neuropsy-
chiatric process, we examined to what extent differentially expressed genes are also ex-
pressed in primary tissues involved in the mediation of neural and endocrine reactivity to
stress. We assessed the enrichment of genes known to be expressed in primary tissues, in
the signature of differentially expressed genes we identified above. Gene transcripts known
to be expressed in brain amygdalar, and hippocampal regions, and the hypothalamic - pi-
tuitary adrenal (HPA) axis, were found to be significantly overabundant amongst the genes
that distinguished trauma survivors with consistent PTSD (Figure 4.5a). Significant in-
creased representation of co-expressed genes was found also in the other signatures. Some
of the genes showing differential expression patterns among affected trauma survivors play
a major role in the neural and endocrine modulation of the stress response (Figure 4.5b).

4.4 Discussion

We showed here that expression signatures in PBMCs, are informative of the development
of PTSD, and its main symptom clusters. In contrast to the current notion [Nisenbaum,
2002, Barlow and Lockhart, 2002], the signatures remains detectable despite cellular het-
erogeneity of PBMCs, and despite the fact that the PBMCs are not the primary tissue in
which the disease occurs.

Our results demonstrate that signatures in PBMCs contain information that is highly cor-
related with continuous symptom trajectories among all survivors regardless of threshold
clinical designation. In addition, initial signatures are informative of later clinical course,
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and could have a potential for guiding early detection and focused early intervention among
survivors of trauma.

The results can be explained in several ways:

• Alterations of the immune system following psychological stress results in a pertur-
bation of the PBMCs [Southwick, 1999, McEwen, 1998, Aloe, 1994]. We found
differential transcriptional patterns of genes involved in immune activation, as well
as regulators of proliferation differentiation and demise of leukocytes. It is unclear,
though, whether the changes observed in PBMCs are merely informative of the de-
velopment of PTSD or also bear relevance to its pathogenesis.

• Distinct changes in thecompositionof circulating white cells among affected sur-
vivors, may be an additional mechanism underlying the immediate expression changes
observed here, resulting an advantage to measure a composite population of cells.

• Expression signatures among PBMCs may reflect in part genomic predisposition to
develop PTSD, beyond the putative participation of immune system cells in this neu-
ropsychiatric disorder. Genomic variation may drive related transcriptional reactivity
among glial cells that share closer embryonal derivation to leukocytes or even among
neuronal cells.

• Reduced hippocampal volumes have been described among PTSD patients [Gilbert-
son, 2002]. Altered neuroendocrine reactivity, signal transduction, and cellular pro-
liferation and demise among neural and glial cells, have been implicated in hip-
pocampal volume depletion [Kakiuchi, 2003, Gilbertson, 2002, Kim and Diamond,
2002], as well as in fear avoidance formation and memory consolidation processes
[Schafe et al., 2001, McEwen, 2001]. It is thus tempting to suggest that our results
may denote reduced potential for neural plasticity in response to stress among af-
fected trauma survivors.

46



(a) (d)

0.00001 0.0001 0.001 0.01 0.1
0

250

500

750

1000

1250 

Observed: 656
( p = 0.007 )

95%: 308

Expected: 103

0.05

Observed

Expected by chance

95%

ER and Month 4 samples

p-Value

N
um

be
r 

of
 g

en
es

M
on

th
 4

 s
am

pl
es

C
la

ss
ifi

er
 c

on
fid

en
ce

P-value =< 0.027 

40
8 

ge
ne

s

< -1.5

Expression Ratio

> 1.50

(b) (e) (g)

(c) (f) (h)

ER samples

Observed: 574
( p = 0.002 )

95%: 298

Expected: 138

0.001 0.01 0.1
0

250

500

750

1000

1250 

0.05

p-Value

N
um

be
r 

of
 g

en
es

Observed: 408
( p = 0.003 )

95%: 183

Expected: 65

Month 4 samples

0

250

500

750

1000

1250 

0.05

p-Value

N
um

be
r 

of
 g

en
es

0.001 0.01 0.1

Control ER
Control M4

PTSD ER

PTSD M4

E
R

 a
nd

 M
on

th
 4

 s
am

pl
es

14
C 6P 6P 2P 1P 7P

19
C 3P 3P 8P 5P 4P 4P

16
C

15
C

15
C

18
C

18
C

17
C

16
C

E
R

 s
am

pl
es

14
C

18
C

15
C

16
C 4P 7P

19
C 3P 5P 8P 6P

C
la

ss
ifi

er
 c

on
fid

en
ce

P-value =< 0.061 

57
4 

ge
ne

s
8P 7P 4P 6P 5P 3P 19

C
14

C
18

C
15

C
16

C

6P 2P 3P 4P 1P
15

C
16

C
18

C
17

C 1P 4P 6P 2P 3P 15
C

16
C

18
C

17
C

Figure 4.1:Unsupervised hierarchical clustering of 4,512 active genes from the entire sample set (a), at
ER only (b) or at four months after trauma (c). The samples colors at the dendrogram bottom indicate the
subject number, clinical status and time of sample harvest. (d,e,f) Overabundance plots: Red line - number of
informative genes accepted with the real labels; Dark gray line the number expected by chance as calculated
with random permutation test; Light gray area - the range on the 95th percentile. (g,h) Evaluation of the
supervised classification of subjects phenotypes. Top: Expression profiles of differentially expressed genes.
Bottom: Classification results from LOOCV. The sign of the outcome value indicates the predicted phenotype
and the magnitude indicates relative confidence. Red cross marks denote misclassified examples.
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Figure 4.2:Shown is the expression of genes with significant positive or negative correlation to the Total
IES score (a), Avoidance score (b), Intrusion score (c), and Arousal score (d). Correlation is measured in 18
month 4 samples. Each panel consists of three elements. Top: The scores of each of the 18 subjects who had
month 4 samples. Bottom left: Expression levels of genes with significant(p ≤ 0.05) positive and negative
correlations with the respective score. The number of correlated genes is shown together with its empirical
p-value. Bottom right: Correlation coefficients of all 4512 active genes with the subject score. Red line -
curve showing the Pearson correlation of each of the 4512 active genes with the subject score, when the genes
are sorted in a decreasing order of correlation. Dark gray line - curve showing the expected sorted Pearson
correlations according to the random permutation test.
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Figure 4.3:The same analysis as inFigure 4.2, but here with 15 samples from the ER.
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Figure 4.5: (a) Enrichment of differentially expressed genes within groups of genes known to be co-
expressed in different brain areas. Annotations were determined using OMIM and UniGene databases.
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The horizontal line marks the percentage expected by chance. (b) Expression profiles of neural and neu-
roenocrine genes that are known to be involved in modulation of the stress response.
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Chapter 5

Conclusions

The new technique of DNA microarrays has had a great effect on biological research in
the last few years, as it enables a large scale view of the transcriptional changes in the
cell [Clarke et al., 2001, Slonim, 2002]. The large amount of data now available requires
appropriate computational tools, which were indeed developed, drawing from the worlds
of statistics, pattern recognition and machine learning.

Here we have presented several classical methods of gene expression analysis, including
feature selection using gene scoring methods, overabundance analysis, clustering methods
and classification. These methods enable us to detect new relevant genes, to identify pre-
viously unknown sample classifications and gene functionalities, and to develop medical
diagnosis tools.

The power of applying theoretical methods on real data was emphasized in analysis in
which we searched for molecular signals in the blood cells of people who suffer from
post traumatic stress disorder. Using the aforementioned analysis methods, transcriptional
changes were identified, even during the very early stages of the disorder. This work, as
well as many others, shows that theoretical analytical methods may be fruitful in gaining
new important medical insights.

Although the classical methods described are commonly used, some works are not fully
aware of the need to validate results. However, statistical validation is crucial, as a non-
significant result is eventually meaningless. A simple method that estimates the empirical
p-value using a random permutation test was presented here, in the context of overabun-
dance and classification validation. It was employed to show the importance of a correct
procedure of classifier learning with k-fold cross validation. Incorrect cross validation leads
to an over fitting of the classifier to the training set, which results in a low, yet insignificant,
error rate.

In addition, annotation analysis was presented as an efficient tool for biological validation.
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Such analysis achieves two goals: one is significance estimation, and the other is the inter-
pretation of results. A great advantage of the annotation analysis is its ability to be applied
to any kind of information available, both on the genes and on the samples. This allows us
to gain insights in various different levels.

Besides DNA microarrays, interaction data and sequence data, other large scale assays are
being developed, such as protein chips [Zhu et al., 2000, Zhou et al., 2004], and SNPs
arrays - which identify Single Nucleotide Polymorphisms [Mei et al.]. The availability of
such data creates opportunities to develop more complex models which integrate several
data sources, and to create a richer and more accurate picture of reality.

In addition to that, other parameters in the cell may be measured, such as protein modifica-
tions, ligand concentrations, and the levels of microRNA (which were lately discovered to
have a major regulatory role in the cell, [Bartel, 2004]). It would be a great computational
challenge to create a model that gives a rich and accurate picture of reality while using these
measurements. Such a model needs to describe both transcriptional and post-translational
regulation, the protein functionality and the molecule synthesis.

Although there will be no replacement for the human researcher, computational analysis
and automatic models may have a major contribution to biological and medical research.
The latest technologies produce ample data and the analysis of which necessitates auto-
matic methods. Computational biology had indeed made extraordinary progress in the last
decade in supplying such methods, analyzing the various data starting from the DNA se-
quence, continuing through gene expression and protein structures, and - as of now - ending
with system biology and evolution.

The challenge for computational biologists is nevertheless still formidable. As computer
scientists we must continue to develop tools that will be standard instruments in the ”wet”
lab, just like the pipet and the Petri plate. As biologists, we must continue to ask the
seemingly unsolvable questions, which we will be able to solve in the future, on our lab’s
PC.
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Appendix A

Supplementary Information

1. LUCA - Human Lung cancer experiment (data not published, generated by Kamin-
ski N. et al., Sheba medical center and Pittsburgh university). Data consists of 78
samples and 5004 active genes.Classifications:

• NvsT - 32 normal samples vs. 46 tumor samples.

• AdenovsSq- 28 tumor samples from type Adeno vs. 18 from type Squamous.

• EarlyvsLate - 29 samples from early satge tumor vs. 17 from late stage tumor.

2. Lympho - Human Lymphoma experiment [Alizadeh et al., 2000]. Data consists of
96 samples, and 4026 active genes.Classifications:

• DLBCLvsALL - 46 large b-cell lymphoma (DLBCL) samples vs. 50 normal
samples that were taken from 8 different tissues.

• DLBCLSubClass- 22 germinal center B-like DLBCL samples vs. 23 activated
B-like DLBCL samples.

3. Leukemia - Human Leukemia experiment [Golub et al., 1999]. Data consists of 72
samples and 7129 active genes.Classification:

• AMLvsALL - 25 Acute Myelogenous Leukemia (AML) samples vs. 47 Acute
Lymphocytic Leukemia (ALL) samples.

4. Colon - Human Colon experiment [Alon et al., 1999]. Data consists of 62 samples
and 2000 active genes.Classification:

• NvsT - 20 normal samples vs. 38 cancerous.

5. Breast - Human Breast cancer [L.J. van t Veer, 2002]. Data consists of 96 samples,
and 5664 active genes.Classification:
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• BRCAvsALL : 18 samples from patients with BRCA1 mutation vs. 78 breast
cancer patients without the mutation.

6. Adenocarcinoma- Human Lung Adeno carcinoma [D.G. et al., 2002]. Data consists
of 86 samples, and 4968 active genes.Classification:

• Stg1vs3: 67 tumor samples at stage 1 vs. 19 tumor samples at stage 3.

7. PTSD - Human Post traumatic stress disorder (data not published, seeChapter 4).
Data consists of 20 samples and 4512 active genes.Classification:

• PvsC: 11 PTSD samples vs. 9 control samples.
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