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Abstract. In many multivariate domains,we are interestedin analyzingthe dependency
structureof the underlyingdistribution, e.g.,whethertwo variablesarein direct interaction.
We canrepresentdependency structuresusingBayesiannetworkmodels.To analyzea given
dataset,Bayesianmodelselectionattemptsto find themostlikely (MAP) model,andusesits
structureto answerthesequestions.However, whentheamountof availabledatais modest,
theremight bemany modelsthathave non-negligible posterior. Thus,we wantcomputethe
Bayesianposteriorof a feature,i.e., the total posteriorprobability of all modelsthat contain
it. In this paper, we proposea new approachfor this task.We first show how to efficiently
computea sum over the exponentialnumberof networks that are consistentwith a fixed
orderover network variables.This allows usto compute,for a givenorder, boththemarginal
probability of the dataand the posteriorof a feature.We then usethis result as the basis
for an algorithm that approximatesthe Bayesianposteriorof a feature.Our approachuses
a Markov Chain Monte Carlo (MCMC) method,but over ordersratherthan over network
structures.Thespaceof ordersis smallerandmoreregular thanthespaceof structures,and
hasmuchasmootherposterior“landscape”.Wepresentempiricalresultsonsyntheticandreal-
life datasetsthat compareour approachto full modelaveraging(whenpossible),to MCMC
over network structures,andto a non-Bayesianbootstrapapproach.

Keywords: BayesianNetworks,StructureLearning,MCMC, BayesianModel Averaging

Abbreviations: BN – BayesianNetwork; MCMC – Markov ChainMonte Carlo; PDAG –
Partially DirectedAcyclic Graph

1. Introduction

Bayesiannetworks(Pearl,1988)are a graphicalrepresentationof a multi-
variatejoint probability distribution that exploits the dependency structure
of distributionsto describethemin a compactandnaturalmanner. A BN is
a directedacyclic graph,in which the nodescorrespondto the variablesin
the domainand the edgescorrespondto direct probabilisticdependencies
betweenthem. Formally, the structureof the network representsa set of
conditionalindependenceassertionsaboutthedistribution: assertionsof the
form thevariablesX andY areindependentgiventhatwe have observed the
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2 Friedman& Koller

valuesof thevariablesin somesetZ. Thus,thenetwork structureallows us
to distinguishbetweenthesimplenotionof correlationandthemoreinterest-
ing notion of direct dependence;i.e., it allows us to statethat two variables
arecorrelated,but that the correlationis an indirect one,mediatedby other
variables.The useof conditionalindependenceis the key to the ability of
Bayesiannetworks to provide a general-purposecompactrepresentationfor
complex probabilitydistributions.

In the last decadetherehasbeena greatdealof researchfocusedon the
problemof learningBNs from data(Buntine,1996;Heckerman,1998).An
obviousmotivation for this taskis to learna modelthatwe canthenusefor
inferenceor decisionmaking,asasubstitutefor amodelconstructedby ahu-
manexpert.In othercircumstances,ourgoalmightbeto learnamodelof the
systemnotfor prediction,but for discoveringthedomainstructure.Forexam-
ple,wemightwantto useBN learningto understandthemechanismby which
genesin a cell expressthemselvesin protein,andthecausalanddependence
relationsbetweenthe expressionlevels of differentgenes(Friedmanet al.,
2000;Lander, 1999).If we learnthe“true” BN structureof our distribution,
werevealmany importantaspectsaboutourdomain.For example,if X andY
arenotconnecteddirectlyby anedge,thenany correlationbetweenthemisan
indirectone:thereis somesetof variablesZ suchthattheinfluenceof X onY
is mediatedvia Z. More controversially, thepresenceof adirectedpathfrom
X to Y indicates(undercertainassumptions(Spirtesetal., 1993;Heckerman
et al., 1997)) that X causesY. The extractionof suchstructural features is
oftenour primarygoal in thediscovery task,ascanbeseenby theemphasis
in datamining researchon discovering associationrules. In fact, we can
view the task of learningthe structureof the underlyingBN as providing
asemanticallycoherentandwell-definedgoalfor thediscovery task.

Themostcommonapproachto discoveringBN structureis to uselearning
with modelselectionto provideuswith asinglehigh-scoringmodel.Wethen
usethatmodel(or its Markov equivalenceclass) asour modelfor thestruc-
ture of the domain.Indeed,in small domainswith a substantialamountof
data,it hasbeenshown thatthehighestscoringmodelis ordersof magnitude
morelikely thanany other(Heckermanet al., 1997).In suchcases,the use
of modelselectionis a goodapproximation.Unfortunately, therearemany
domainsof interestwherethissituationdoesnothold.In ourgeneexpression
example,we might have thousandsof genes(eachof which is modeledasa
randomvariable)andonly a few hundredexperiments(datacases).In cases
like this, wheretheamountof datais small relative to thesizeof themodel,
thereare likely to be many modelsthat explain the datareasonablywell.
Model selectionmakesa somewhat arbitrarychoicebetweenthesemodels.
However, structuralfeatures(e.g.,edges)thatappearin this singlestructure
doesnot necessarilyappearin other likely structures;indeed,we have no
guaranteesthat thesestructuralfeaturesareeven likely relative to thesetof
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BeingBayesianAboutNetwork Structure 3

possiblestructures.Furthermore,modelselectionis sensitive to theparticular
instancesthatit wasgiven.Hadwesampledanotherdatasetof thesamesize
(from thesamedistribution), modelselectionwould have learneda very dif-
ferentmodel.For bothof thesereasons,we cannotsimply acceptour chosen
structureasa truerepresentationof theunderlyingprocess.

Given that thereare many qualitatively different structuresthat are ap-
proximatelyequallygood,we cannotlearna uniquestructurefrom thedata.
Moreover, in many learningscenariosthereareexponentiallymany structures
thatare“reasonably”goodgiventhedata.Thus,enumeratingthesestructures
is also impractical.However, theremight be certainfeaturesof the distri-
bution that are so strongthat we canextract them reliably. As an extreme
example,if two variablesarehighly correlated(e.g.,deterministicallyrelated
to eachother),it is likely thatanedgebetweenthemwill appearin any high-
scoringmodel.As we discussedabove,extractingthesestructuralfeaturesis
oftentheprimarygoalof BN learning.

Bayesianlearningallows us to estimatethestrengthwith which thedata
indicatesthe presenceof a certainfeature.The Bayesianscore of a model
is simply its posteriorprobabilitygiven thedata.Thus,we canestimatethe
extentto whichafeature,e.g.,thepresenceof anedge,is likely giventhedata
by estimatingits probability:

P
�
f � D ��� ∑

G

P
�
G � D � f

�
G��� (1)

whereG representsa model, and f
�
G� is 1 if the featureholds in G and

0 otherwise.If this probability is closeto 1, then almostany high-scoring
modelcontainsthe feature. On theotherhand,if theprobability is low, we
know thatthefeatureis absentin themostlikely models.

Thenumberof BN structuresis super-exponentialin thenumberof ran-
domvariablesin thedomain;therefore,this summationcanbecomputedin
closedformonly for verysmalldomains,or thosein whichwehaveadditional
constraintsthat restrict the space(asin (Heckermanet al., 1997)).Alterna-
tively, this summationcanbeapproximatedby consideringonly a subsetof
possiblestructures.Several approximationshave beenproposed(Madigan
andRaftery, 1994;MadiganandYork,1995).Onetheoreticallywell-founded
approachis to useMarkov ChainMonteCarlo(MCMC) methods:we define
a Markov chainover structureswhosestationarydistribution is theposterior
P
�
G � D � , wethengeneratesamplesfrom thischain,andusethemto estimate

Eq.(1). Thisapproachis quitepopular, andvariantshavebeenusedby Madi-
ganandYork (1995),Madiganet al. (1996),Giudici andGreen(1999),and
Giudici etal. (2000).

In this paper, we proposea new approachfor evaluating the Bayesian
posteriorprobabilityof certainstructuralnetwork properties.Thekey ideain
ourapproachis theuseof anorderingonthenetwork variablesto separatethe
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4 Friedman& Koller

probleminto two easierone.An order � is a total orderingon thevariables
in our domain,which placesa restrictionon thestructureof thelearnedBN:
if X � Y, we restrictattentionto networkswhereanedgebetweenX andY,
if any, mustgo from X toY. Wecannow decoupletheproblemof evaluating
theprobabilityover all structuresinto two subproblems:evaluatingtheprob-
ability for a given order, andsummingover the setof possibleorders.Our
two maintechnicalideasprovide solutionsto thesetwo subproblems.

In Section3, we provide an efficient closedform equationfor summing
overall (super-exponentially many) networkswith atmostk parentspernode
(for someconstantk) thatareconsistentwith a fixedorder � . This equation
allows us both to computethe overall probability of the data for this set
of networks, and to computethe posteriorprobability of certainstructural
featuresover this set.In Section4, we show how to estimatetheprobability
of a featureover thesetof all ordersby usinganMCMC algorithmto sample
amongthepossibleorders.Thespaceof ordersis muchsmallerthanthespace
of network structures;it alsoappearsto bemuchlesspeaked,allowing much
fastermixing (i.e., convergenceto the stationarydistribution of the Markov
chain).Wepresentempiricalresultsillustratingthisobservation,showing that
our approachhassubstantialadvantagesover direct MCMC over BN struc-
tures.TheMarkov chainoverordersmixesmuchfasterandmorereliablythan
thechainovernetwork structures.Indeed,differentrunsof MCMC over net-
workstypically leadto very differentestimatesin theposteriorprobabilities
of structuralfeatures,illustratingpoorconvergenceto thestationarydistribu-
tion; by contrast,differentrunsof MCMC overordersconvergereliablyto the
sameestimates.Wealsopresentresultsshowing thatourapproachaccurately
detectsdominantfeaturesevenwith sparsedata,andthatit outperformsboth
MCMC overstructuresandthenon-Bayesianbootstrapapproachof Friedman
etal. (1999).

2. Bayesian learning of Bayesian networks

2.1. THE BAYESIAN LEARNING FRAMEWORK

Considertheproblemof analyzingthedistribution over somesetof random
variablesX1 �	�	�	�
� Xn, eachof which takesvaluesin somedomainVal

�
Xi � . We

aregivena fully observeddatasetD ��� x  1���	�	�	��� x M ��� , whereeachx m� is a
completeassignmentto thevariablesX1 �	�	�	�
� Xn in Val

�
X1 �	�	�	�
� Xn � .

TheBayesianlearningparadigmtellsusthatwemustdefineaprior prob-
ability distribution P

��� � over the spaceof possibleBayesiannetworks
�

.
This prior is then updatedusing Bayesianconditioningto give a posterior
distribution P

��� � D � over thisspace.
For Bayesiannetworks,thedescriptionof amodel

�
hastwo components:

thestructureG of thenetwork, andthevaluesof thenumericalparametersθG
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BeingBayesianAboutNetwork Structure 5

associatedwith it. Thenetwork structureG is adirectedacyclic graph,whose
nodesrepresentthevariablesin thedomain,andwhoseedgesrepresentdirect
probabilisticdependenciesbetweenthem. The BN structureencodesa set
of conditionalindependenceassumptions:thateachnodeX is conditionally
independentof all of its nondescendantsin G givenits parents(in G) PaG

�
Xi � .

Theseindependenceassumptions,in turn,imply many otherconditionalinde-
pendencestatements,whichcanbeextractedfrom thenetwork usingasimple
graphicalcriterioncalledd-separation (Pearl,1988).In particular, they imply
thata variableX is conditionallyindependentof all othernetwork variables
givenits Markov blanket — thesetconsistingof X’sparents,its children,and
theotherparentsof its children.Intuitively, theMarkov blanketof X is theset
of nodesthatare,in somesense,directly correlatedwith X, at leastin some
circumstances.1 Weusethefamilyof anodeX to denotethesetconsistingof
X andits parents.

TheparameterizationθG of thenetwork varies.For example,in adiscrete
Bayesiannetwork of structureG, theparametersθG typically definea multi-
nomialdistribution θXi � u for eachvariableXi andeachassignmentof values
u to PaG

�
Xi � . If we considerGaussianBayesiannetworks over continuous

domains,thenθXi �u containsthecoefficientsfor alinearcombinationof u and
avarianceparameter.

To definetheprior P
��� � , we needto definea discreteprobability distri-

bution over graphstructuresG, and for eachpossiblegraphG, to definea
densitymeasureoverpossiblevaluesof parametersθG.

The prior over structuresis usuallyconsideredthe lessimportantof the
two components.Unlike otherpartsof theposterior, it doesnot grow asthe
numberof datacasesgrows. Hence,relatively little attentionhasbeenpaid
to thechoiceof structureprior, anda simpleprior is oftenchosenlargely for
pragmaticreasons.Thesimplestandthereforemostcommonchoiceis auni-
form prior over structures(Heckerman,1998).To provide a greaterpenalty
to densenetworks,onecandefineaprior usingaprobabilityβ thateachedge
bepresent;thennetworkswith medgeshaveprior probabilityproportionalto

βm � 1 � β � � n2 �	� m (Buntine,1991).An alternative prior, andtheonewe usein
ourexperiments,considersthenumberof optionsin determiningthefamilies
of G. Intuitively, if wedecidethatanodeXi hask parents,thenthereare � n � 1

k �
possibleparentssets.If we assumethatwe chooseuniformly from these,we
getaprior:

P
�
G� ∝

n

∏
i � 1

�
n � 1�PaG
�
Xi ��� � � 1 � (2)

1 More formally, theMarkov blanket of X is thesetof nodesthataredirectly linkedto X
in theundirectedMarkov networkwhich is a minimal I-map for thedistribution represented
by G.
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6 Friedman& Koller

Note that thenegative logarithmof this prior correspondsto thedescription
lengthof specifyingthe parentsets,assumingthat the cardinality of these
setsareknown. Thus,we implicitly assumethat cardinalitiesof parentsets
areuniformly distributed.

A key propertyof all thesepriorsis thatthey satisfy:� Structure modularity Theprior P
�
G� canbewritten in theform

P
�
G��� ∏

i

ρXi

�
PaG

�
Xi �	�

whereρXi

�
PaG

�
Xi �	� is adistribution over thepossibleparent-setsof Xi.

That is, the prior decomposesinto a product,with a term for eachvariable
in our domain.In otherwords,the choicesof the families for the different
variablesareindependentapriori.

Next we considertheprior over parameters,P
�
θG � G� . Here,theform of

theprior variesdependingon thetypeof parametricfamilieswe consider. In
discretenetworks,thestandardassumptionis a Dirichlet prior over θXi � u for
eachvariableXi andeachinstantiationu to its parents(Heckerman,1998).
In Gaussiannetworks,wemightuseaWishartprior (HeckermanandGeiger,
1995).For ourpurpose,weneedonly requirethattheprior satisfiestwo basic
assumptions,aspresentedby Heckermanetal. (1995):� Global parameter independence: Let θXi �PaG � Xi � betheparametersspec-

ifying thebehavior of thevariableXi giventhevariousinstantiationsto
its parents.Thenwerequirethat

P
�
θG � G��� ∏

i
P
�
θXi �PaG � Xi � � G� (3)

� Parameter modularity: LetGandG betwographsin whichPaG
�
Xi �!�

PaG" � Xi ��� U then

P
�
θXi �U � G��� P

�
θXi �U � G � (4)

Oncewe definetheprior, we canexaminetheform of theposteriorprob-
ability. UsingBayesrule,we have that

P
�
G � D � ∝ P

�
D � G� P � G���

The term P
�
D � G� is the marginal likelihood of the datagiven G, and is

definedasthe integral of the likelihoodfunctionover all possibleparameter
valuesfor G.

P
�
D � G���$# P

�
D � G � θG � P � θG � G� dθG
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BeingBayesianAboutNetwork Structure 7

The term P
�
D � G � θG � is simply the probability of the datagiven a specific

Bayesiannetwork. Whenthedatais complete, this term is simply a product
of conditionalprobabilities.

Usingtheaboveassumptions,onecanshow (see(Heckermanetal.,1995)):

THEOREM2.1.: If D is completeandP
�
G� satisfiesparameterindependence

andparametermodularity, then

P
�
D � G��� ∏

i

# ∏
m

P
�
xi m�%� paG

�
Xi �&m��� θXi �PaG � Xi � � P � θXi �PaG � Xi � � dθXi �PaG � Xi � �

If theprior alsosatisfiesstructuremodularity, we canalsoconcludethat the
posteriorprobabilitydecomposes:

P
�
G � D � ∝ P

�
D � G� P � G��� ∏

i
score

�
Xi � PaG

�
Xi �'� D � (5)

where

score
�
Xi � U � D ��� ρXi

�
U � # ∏

m
P
�
xi m�%� u m��� θXi �U � P � θXi �U � dθXi �U

For standardpriors suchas Dirichlet or Wishart, score
�
Xi � PaG

�
Xi �	� hasa

simpleclosedform solutionthatis easilycomputedfrom theprior andcertain
sufficient statisticsover the data.(E.g., in the caseof multinomialswith a
Dirichlet prior, thesufficient statisticsaresimply thecountsof thedifferent
eventsxi � u in thedata.)

Wenotethattheparameterprior canhaveasubstantialimpacton thepos-
teriordistributionoverstructures.For example,in Dirichlet priors,thegreater
the “strength” of theparameterprior (theequivalentsamplesizedefinedby
thehyperparameters),thegreaterthebiastowardsthedistribution inducedby
thehyperparameters,leadingstructuresthatresemblethatdistribution to have
ahigherscore.Of course,astheamountof datain thetrainingsetgrows, the
impactof theprior shrinks,but the impactcanbequitesignificantfor small
datasets.This issueis fundamentalto theBayesianapproach,including the
useof theBayesianscorein standardBN structuresearch,andis outsidethe
scopeof thispaper.

2.2. BAYESIAN MODEL AVERAGING

Recall that our goal is to computethe posteriorprobability of somefeature
f
�
G� overall possiblegraphsG. This is equalto:

P
�
f � D �(� ∑

G

f
�
G� P � G � D �
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8 Friedman& Koller

Theproblem,of course,is thatthenumberof possibleBN structuresis super-
exponential:2Θ � n2 � , wheren is thenumberof variables.2

We canreducethis numberby restrictingattentionto structuresG where
thereis aboundk onthenumberof parentspernode.Thisassumption,which
we will make throughoutthis paper, is a fairly innocuousone.Therearefew
applicationsin which very large familiesarecalled for, and thereis rarely
enoughdatato supportrobust parameterestimationfor suchfamilies.From
a more formal perspective, networks with very large families tend to have
low score.Let ) k be the setof all graphswith indegreeboundedby some
constantk. Notethatthenumberof structuresin ) k is still super-exponential:
2Θ � knlogn� .3

Thus,exhaustive enumerationover the set of possibleBN structuresis
feasibleonly for tiny domains(4–5nodes).Onesolution,proposedby several
researchers(MadiganandRaftery, 1994;MadiganandYork, 1995;Hecker-
manet al., 1997),is to approximatethis exhaustive enumerationby finding a
set ) of high scoringstructures,andthenestimatingtherelative massof the
structuresin ) thatcontainsf :

P
�
f � D ��* ∑G +-, P

�
G � D � f

�
G�

∑G +., P
�
G � D � � (6)

This approachleavesopenthequestionof how we construct) . Thesim-
plestapproachis to usemodelselectionto pick a singlehigh-scoringstruc-
ture,andthenusethat asour approximation.If the amountof datais large
relative to the sizeof the model, then the posteriorwill be sharplypeaked
aroundasinglemodel,andthisapproximationis a reasonableone.However,
aswediscussedin theintroduction,therearemany interestingdomains(e.g.,
our biologicalapplication)wheretheamountof datais small relative to the
sizeof themodel.In thiscase,thereis usuallya largenumberof high-scoring
models,sousingasinglemodelasourset ) is a verypoorapproximation.

A simpleapproachto finding a larger set is to recordall the structures
examinedduring thesearch,andreturnthehigh scoringones.However, the

2 RecallthattheΘ / f / n010 denotesbothanasymptoticlowerboundandanasymptoticupper

bound(up to a constantfactor). In this case,the numberof BN structuresis at least2 / n2 0 ,
becausewe have at leastthis many subgraphsfor any completegraphover then nodes.We

have at most3 / n2 0 structures,becausefor eachpossiblepair of nodesXi 2 Xj we have eitherno
edge,anedgeXi 3 Xj , or anedgeXi 4 Xj . Hence,we we have that thenumberof possible

structuresis both2Ω 5 n2 6
and2O 5 n2 6

.
3 For eachnodeXi , we have at most 7 nk 8 possiblefamilies,so that thenumberof possible

networks is 7 nk 8 n 9 nkn : 2knlogn, giving us theupperbound.For the lower bound,consider
a fixedorderingon thenumberof nodes,andconsidereachof thenodesXi thatappearin the
secondhalf of the ordering.For eachof these,we have 7 n; 2k 8 possiblefamilies,which, for
k constant,is Ω / nk 0 . Consideringthe choiceof family only for thesenodes,the numberof

possiblestructuresis at least 7 n; 2k 8 n; 2, which is 2Ω 5 knlogn6 .
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BeingBayesianAboutNetwork Structure 9

setof structuresfoundin thismanneris quitesensitive to thesearchprocedure
weuse.For example,if weusegreedyhill-climbing, thenthesetof structures
we will collect will all be quite similar. Sucha restrictedsetof candidates
also show up when we considermultiple restartsof greedyhill-climbing
andbeam-search.This is a seriousproblemsincewe run the risk of getting
estimatesof confidencethatarebasedon abiasedsampleof structures.

MadiganandRaftery(1994)proposean alternative approachcalledOc-
cam’swindow, which rejectsmodelswhoseposteriorprobabilityis very low,
aswell ascomplex modelswhoseposteriorprobability is not substantially
betterthana simplermodel(onethat containsa subsetof theedges).These
two principlesallow themto prunethespaceof modelsconsidered,oftento
anumbersmallenoughto beexhaustively enumerated.MadiganandRaftery
alsoprovide asearchprocedurefor finding thesemodels.

An alternative approach,proposedby MadiganandYork (1995),is based
ontheuseof Markov chainMonteCarlo (MCMC)simulation.In thiscase,we
defineaMarkov Chainoverthespaceof possiblestructures,whosestationary
distribution is theposteriordistribution P

�
G � D � . We thengeneratea setof

possiblestructuresby doinga randomwalk in this Markov chain.Assuming
thatwe continuethis processuntil thechainconvergesto thestationarydis-
tribution, we canhopeto get a setof structuresthat is representative of the
posterior. Relatedapproacheshave alsobeenadoptedby other researchers.
Giudici andGreen(1999)andGiudici et al. (2000)proposean MCMC ap-
proachover junctiontrees— undirectedgraphicalmodelsthataredecompos-
able, i.e.,wheregraphis triangulated.Green(1995)andGiudici etal. (2000)
alsoextendtheMCMC methodologyto caseswhereclosed-formintegration
over parametersis infeasible,by defininga reversible jump Markov Chain
that traversesthe spaceof parametersas well as structure.Madiganet al.
(1996)provide an approachfor MCMC samplingover the spaceof PDAGs
(Partially DirectedAcyclic Graphs),representingequivalenceclassesover
network structures.

TheseMCMC solutionsaretheonly approachthat can,in principle,ap-
proximatetrue Bayesianmodel averagingby samplingfrom the posterior
over network structures.They have beendemonstratedwith successon a
variety of small domains,typically with 4–14variables.However, thereare
severalissuesthatpotentiallylimit its effectivenessfor largedomainsinvolv-
ing many variables.As we discussed,thespaceof network structuresgrows
super-exponentiallywith thenumberof variables.Therefore,thedomainof
theMCMC traversalis enormousfor all but the tiniestdomains.4 More im-
portantly, theposteriordistribution overstructuresis oftenquitepeaked,with
neighboringstructureshaving very differentscores.The reasonis that even

4 For theexperimentsdonesofar, thelargerdomains(thosewith morethan7–8variables)
weretypically associatedwith a largesetof structuralconstraintslimiting thesetof possible
structures.
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10 Friedman& Koller

small perturbationsto the structure— a removal of a single edge— can
causeahugereductionin score.Thus,the“posteriorlandscape”canbequite
jagged,with high “peaks” separatedby low “valleys”. In suchsituations,
MCMC is known to beslow to mix, requiringmany samplesto reachthepos-
terior distribution. In Section5 we provide experimentalevidenceindicating
thatthesedifficultiesdo, indeed,arisein practice.

3. Closed form for known order

In this section,we temporarilyturn our attentionto a somewhateasierprob-
lem.Ratherthanperformmodelaveragingoverthespaceof all structures,we
restrictattentionto structuresthatareconsistentwith someknown totalorder� . In otherwords,we restrictattentionto structuresG whereif Xi < PaG

�
Xj �

theni � j. This assumptionwasastandardonein theearlywork on learning
Bayesiannetworksfrom data(CooperandHerskovits, 1992).

3.1. COMPUTING THE MARGINAL LIKELIHOOD

We first considertheproblemof computingtheprobabilityof thedatagiven
theorder:

P
�
D �=�>�?� ∑

G +., k

P
�
G �=�>� P � D � G� (7)

Note that this summation,althoughrestrictedto networks with boundedin-
degreeandconsistentwith � , is still exponentiallylarge:thenumberof such
structuresis still 2Θ � knlogn� .5

Thekey insight is that,whenwe restrictattentionto structuresconsistent
with a givenorder � , thechoiceof family for onenodeplacesno additional
constraintson thechoiceof family for another. Note that this propertydoes
nothold without therestrictionon theorder;for example,if we pick Xi to be
aparentof Xj , thenXj cannotin turnbeaparentof Xi.

Therefore,we canchoosea structureG consistentwith � by choosing,
independently, a family U for eachnodeXi. The parametermodularityas-
sumptionin Eq.(4) statesthatthechoiceof parametersfor thefamily of Xi is
independentof thechoiceof family for anotherfamily in thenetwork.Hence,
summingover possiblegraphsconsistentwith � is equivalent to summing
over possiblechoicesof family for eachnode,eachwith its parameterprior.

5 Our lower bound in footnote3 was derived in the caseof a fixed ordering,and the
matchingupperboundcertainly continuesto hold in the more restrictedcase.Clearly, the
numberof structuresin this caseis substantiallylower, but thatdifferenceexpressesonly in
thedifferentconstantfactorin theexponent,which is obscuredby theΘ notation.(Notethat
a constantfactor in the exponentcorrespondsto a different basefor the exponent,a very
significantdifference.)
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BeingBayesianAboutNetwork Structure 11

Givenourconstrainton thesizeof thefamily, thepossibleparentsetsfor the
nodeXi is @

i A B �C� U : U � Xi ���U �.D k �E�
whereU � Xi is definedto holdwhenall nodesin U precedeXi in � . Let ) k A B
bethesetof structuresin ) k consistentwith � . UsingEq. (5), we have that

P
�
D �=�>�F� ∑

G +., k G H ∏i
score

�
Xi � PaG

�
Xi �'� D �� ∏

i
∑

U +.I i G H score
�
Xi � U � D �J� (8)

Intuitively, the equalitystatesthat we cansumover all networks consistent
with � by summingover thesetof possiblefamiliesfor eachnode,andthen
multiplying the resultsfor the different nodes.This transformationallows
us to computeP

�
D �=�>� very efficiently. The expressionon the right-hand

side consistsof a productwith a term for eachnodeXi, eachof which is
a summationover all possiblefamilies for Xi. Given the boundk over the
numberof parents,thenumberof possiblefamiliesfor a nodeXi is at most� nk � D nk. Hence,thetotal costof computingEq.(8) is at mostn K nk � nkL 1.

Wenotethatthedecompositionof Eq.(8) wasfirst mentionedby Buntine
(1991),but theramificationsfor Bayesianmodelaveragingwerenotpursued.
The conceptof Bayesianmodelaveragingusinga closed-formsummation
over an exponentially large set of structureswas proposed(in a different
setting)by PereiraandSinger(1999).

Thecomputationof P
�
D �=�M� is usefulin andof itself; aswe show in the

next section,computingtheprobabilityP
�
D �=�>� is a key stepin our MCMC

algorithm.

3.2. PROBABILITIES OF FEATURES

For certain typesof features f , we can use the techniqueof the previous
sectionto compute,in closedform, theprobabilityP

�
f �=�N� D � that f holdsin

astructuregiventheorderandthedata.
In general,if f

� KO� is a feature.Wewantto compute

P
�
f �=�N� D ��� P

�
f � D �=�M�

P
�
D �=�>� �

Wehavejustshown how to computethedenominator. Thenumeratoris asum
overall structuresthatcontainthefeatureandareconsistentwith theorder:

P
�
f � D �=�M�?� ∑

G +., k G H f
�
G� P � G �=�>� P � D � G� (9)

Thecomputationof this termdependson thespecifictypeof featuref .
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12 Friedman& Koller

Thesimplestsituationis whenwewantto computetheposteriorprobabil-
ity of a particularchoiceof parentsU. This in effect requireus to sumover
all graphswherePaG

�
Xi �J� U. In this case,we canapply the sameclosed

form analysisto (9). The only differenceis that we restrict
@

j A B to be the
singleton � U � . Sincethetermsthatsumover theparentsof Xk for k P� j are
notdisturbedby thisconstraint,they cancelout from theequation.

PROPOSITION3.1.:

P
�
PaG

�
Xi �?� U � D �
�M��� score

�
Xi � U � D �

∑U " +.I i G H score
�
Xi � U  � D � � (10)

A slightly morecomplex situationis whenwe want to computethepos-
terior probabilityof theedge feature Xi Q Xj . Again,we canapplythesame
closedform analysisto (9). The only differenceis that we restrict

@
j A B to

consistonly of subsetsthatcontainXi.

PROPOSITION3.2.:

P
�
Xj < PaG

�
Xi �J�=�N� D ��� ∑ R U +.I i G H : Xj + U S score

�
Xi � U � D �

∑U +.I i G H score
�
Xi � U � D �

A somewhatmoresubtlecomputationis requiredto computetheposterior
of theMarkov feature Xi

MT Xj , denotingthatXi is in theMarkov blanket of
Xj ; this featureholdsif G containstheedgeXi Q Xj , or theedgeXj Q Xi, or
thereis avariableXk suchthatbothedgesXi Q Xk andXj Q Xk arein G.

Assume,without lossof generality, thatXi precedesXj in theorder. In this
case,Xi canbein Xj ’sMarkov blanket eitherif thereis anedgefrom Xi to Xj ,
or if Xi andXj areboth parentsof somethird nodeXl . We have just shown
how thefirstof theseprobabilitiesP

�
Xj < PaG

�
Xi �?� D �
�>� , canbecomputedin

closedform. WecanalsoeasilycomputetheprobabilityP
�
Xi � Xj < PaG

�
Xl �J�

D �
�M� thatbothXi andXj areparentsof Xl : wesimplyrestrict
@

l A B to families
thatcontainbothXi andXj . Thekey is to notethatasthechoiceof families
of differentnodesareindependent,theseareall independentevents.Hence,
Xi andXj arenot in thesameMarkov blanket only if all of theseeventsfail
to occur. Thus,

PROPOSITION3.3.:

P
�
Xi

MT Xj � D �
�>���
1 � �

1 � P
�
Xj < PaG

�
Xi �'� D �
�>�	�UK ∏

Xl V Xj

�
1 � P

�
Xi � Xj < PaG

�
Xl �J� D �
�M�	�

Unfortunately, thisapproachcannotbeusedto computetheprobabilityof
arbitrarystructuralfeatures.For example,we cannotcomputethe probabil-
ity that thereexists somedirectedpathfrom Xi to Xj , aswe would have to
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BeingBayesianAboutNetwork Structure 13

considerall possiblewaysin whichapathfrom Xi to Xj couldmanifestitself
throughourexponentiallymany structures.

Wecanovercomethisdifficulty usingasimplesamplingapproach.Eq.(10)
providesuswith a closedform expressionfor theexactposteriorprobability
of thedifferentpossiblefamiliesof thenodeXi. Wecanthereforeeasilysam-
pleentirenetworksfrom theposteriordistribution giventheorder:wesimply
samplea family for eachnode,accordingto the distribution in Eq. (10).
We canthenusethe samplednetworks to evaluateany feature,suchasthe
existenceof acausalpathfrom Xi to Xj .

4. MCMC methods

In the previous section,we madethe simplifying assumptionthat we were
givena predeterminedorder. Althoughthis assumptionmight bereasonable
in certaincases,it is clearly too restrictive in domainswherewe have very
little prior knowledge(e.g.,our biology domain).We thereforewant to con-
siderstructuresconsistentwith all n! possibleordersover BN nodes.Here,
unfortunately, we have no elegant tricks that allow a closedform solution.
Therefore,we provide a solution which usesour closedform solution of
Eq.(8) asasubroutinein aMarkov ChainMonteCarloalgorithm(Metropolis
et al., 1953).This hybrid algorithmis a form of Rao-BlackwellizedMonte
Carlo samplingalgorithm(CasellaandRobert,1996).Relatedapproaches,
calledmixture estimators wereproposedandanalyzedby GelfandandSmith
(1990) and by Liu et al. (1994) (seediscussionbelow). This approachis
somewhat relatedto the work of Larrañagaet al. (1996), which proposes
theuseof a geneticalgorithmto searchfor a high-scoringorder;there,how-
ever, thescoreof anorderis thescoreof a singlehigh-scoringstructure(as
foundby theK2 algorithmof CooperandHerskovits (1992)),andtheoverall
purposeis modelselectionratherthanmodelaveraging.Furthermore,genetic
algorithms,unlike MCMC, arenot guaranteedto generatesamplesfrom the
posteriordistribution.

4.1. THE BASIC ALGORITHM

We introducea uniform prior over orders � , and defineP
�
G �=�>� to be of

thesamenatureasthepriorswe usedin theprevioussection.It is important
to notethat the resultingprior over structureshasa different form thanour
original prior over structures.For example,if we defineP

�
G �=�>� to be uni-

form, we have thatP
�
G� is notuniform:graphsthatareconsistentwith more

ordersaremorelikely. For example,a Naive Bayesgraphis consistentwith�
n � 1� ! orders,whereasany chain-structuredgraphis consistentwith only

one.As oneconsequence,our inducedstructuredistribution is nothypothesis
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14 Friedman& Koller

equivalent(Heckermanet al., 1995),in thatdifferentnetwork structuresthat
arein thesameequivalenceclassoftenhavedifferentpriors.For example,the
chainX Q Y Q Z is associatedwith a uniqueorder, whereastheequivalent
structureX W Y Q Z is associatedwith two orders,andis thereforetwice as
likely apriori. However, asHeckermanetal. observe,hypothesisequivalence
is often too strongan assumption(e.g., in causalsettings).They propose
likelihoodequivalenceasa substitute,a propertywhich clearlyholdsin our
setting.

In general,while this discrepancy in priors is unfortunate,it is important
to seeit in proportion.Thestandardpriorsover network structuresareoften
usednotbecausethey areparticularlywell-motivated,but ratherbecausethey
aresimpleandeasyto work with. In fact, theubiquitousuniform prior over
structuresis far from uniform over PDAGs(Markov equivalenceclasses)—
PDAGsconsistentwith morestructureshaveahigherinducedprior probabil-
ity. Onecanarguethat,for causaldiscovery, a uniform prior over PDAGsis
moreappropriate;nevertheless,a uniform prior over networks is mostoften
usedfor practicalreasons.Finally, theprior inducedover our networksdoes
havesomejustification:onecanarguethatastructurewhichisconsistentwith
moreordersmakes fewer assumptionsaboutcausalorder, and is therefore
morelikely apriori (Wallaceet al., 1996).

We now constructa Markov chain X , with statespaceY consistingof
all n! orders � ; our constructionwill guaranteethat X hasthe stationary
distribution P

� �Z� D � . We canthensimulatethis Markov chain,obtaininga
sequenceof samples� 1 �	�	�	�
�
� T . Wecannow approximatetheexpectedvalue
of any functiong

� �M� as:

IE  g � D �[* 1
T

T

∑
t � 1

g
� � t ���

Specifically, wecanlet g
� �>� beP

�
f �=�N� D � for somefeature(edge)f . Wecan

thencomputeg
� � t �\� P

�
f �=� t � D � , asdescribedin theprevioussection.

It remainsonly to discusstheconstructionof theMarkov chain.Weusea
standardMetropolisalgorithm(Metropolisetal.,1953).Weneedtoguarantee
two things:� thatthechainis reversible, i.e., thatP

� �^]Q �_ `�?� P
� �_ a]Q �>� ;� that thestationarydistribution of thechainis thedesiredposteriordis-

tribution P
� �b� D � .

We accomplishthis goal using a standardMetropolis sampling.For each
order � , we definea proposalprobability q

� �  �=�>� , which definestheproba-
bility that thealgorithmwill “propose”a move from � to �_ . Thealgorithm
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BeingBayesianAboutNetwork Structure 15

thenacceptsthismovewith probability

min c 1 � P � �d 1� D � q � �b�=�_ e�
P
� �Z� D � q � �  �=�>�gf �

It is well known that the resultingchain is reversibleand hasthe desired
stationarydistribution (Gilks etal., 1996).

We considerseveral specificconstructionsfor the proposaldistribution,
basedon different neighborhoodsin the spaceof orders.In one very sim-
ple construction,we consideronly operatorsthatflip two nodesin theorder
(leaving all othersunchanged):�

i1 �	�	� i j �	�	� ik �	�	� in ��]Q �
i1 �	�	� ik �	�	� i j �	�	� in ���

4.2. COMPUTATIONAL ISSUES

Althoughourclosedform solutionto themarginal likelihoodandto theprob-
abilitiesof thedifferentstructuralfeaturesallows usto performthecomputa-
tion in timepolynomialin n, it canstill bequiteexpensive,especiallyfor large
networksandreasonablesizek. We utilize several ideasandapproximations
to reducethecomplexity of thesecomputations.

Our first set of ideasserve to reducethe scopeof the summationboth
for themarginal likelihoodandfor thecomputationof featureprobabilities.
For eachnodeXi, we restrictattentionto at mostC othernodesascandidate
parents(for somefixedC). We selecttheseC nodesin advance,beforeany
MCMC step,asfollows: for eachpotentialparentXj , we computethescore
of thesingleedgeXj Q Xi; wethenselecttheC nodesXj for whichthisscore
washighest.NotethatC is differentfrom k: C is thesizeof thesetof nodes
that could potentiallybe parentsof a nodeXi, whereask is an upperbound
on thesizeof theparentsetactuallychosenfor Xi from amongthesetof C
candidateparents.

Second,for eachnodeXi, weprecomputethescorefor somenumberF of
thehighest-scoringfamilies.Theparentsin thesefamiliesareselectedfrom
amongtheC candidateparentsfor Xi. Again,thisprocedureis executedonce,
at the very beginning of the process.The list of highest-scoringfamilies is
sortedin decreasingorder;let h i bethescoreof theworstfamily in Xi ’slist. As
we considera particularorder, we extractfrom thelist all familiesconsistent
with thatorder. We know thatall familiesnot in the list scoreno betterthanh i. Thus,if thebestfamily extractedfrom thelist is somefactorγ betterthanh i, wechooseto restrictattentionto thefamiliesextractedfrom thelist, under
theassumptionthatotherfamilieswill have negligible effect relative to these
high-scoringfamilies.If thescoreof thebestfamily extractedisnotthatgood,
wedo a full enumeration.

journal.tex; 31/05/2001; 12:06; p.15



16 Friedman& Koller

When performingexhaustive enumeration,we prunefamilies that aug-
mentlow-scoringfamilieswith low-scoringedges.Specifically, assumethat
for somefamily U, we have thatscore

�
Xi � U � D � is substantiallylower than

other families enumeratedso far. In this case,families that extend U are
likely to be even worse.More precisely, we define the incrementalvalue
of a parentY for Xi to be its addedvalue as a single parent:∆

�
Y;Xi �i�

score
�
Xi � Y �%� score

�
Xi � . If we now have a family U suchthat, for all other

possibleparentsY, score
�
Xi � U �kj ∆

�
Y;Xi � is lowerthanthebestfamily found

sofar for Xi, we pruneall extensionsof U.
In additionto reducingthescopeof thesummation,wecanfurtherreduce

thecostof our MCMC algorithm,by observingthat,whenwe take a single
MCMC stepin the space,we canoften preserve muchof our computation.
In particular, let � be an orderandlet �  be the orderobtainedby flipping
i j and ik. Now, considerthe termsin Eq. (8); thosetermscorrespondingto
nodesi l in theorder � thatprecedei j or succeedik do not change,astheset
of potentialparentsets

@
il A B is thesame.Furthermore,thetermsfor i l thatare

betweeni j andik alsohave a lot in common— all parentsetsU thatcontain
neitheri j nor ik remainthesame.Thus,we only needto subtract

∑R U +-I i G H : U m Xi j S score
�
Xi � U � D �

andadd

∑R U +.I i G H " : U m Xik S score
�
Xi � U � D ���

Having collecteda setof ordersamplesusingour MCMC algorithm,we
canusethem to estimatethe probability of the variousstructuralfeatures.
However, this processcanbequiteexpensive, especiallywhenwe areinter-
estedin theprobabilitiesof all Θ

�
n2 � (edgeor Markov) features.To reduce

the computationalburden,we performthis computationusingonly a small
setof sampledorders.To make surethat we got a representative setof or-
ders,we did not simply usethefirst ordersgeneratedby theMCMC process
after a burn-in phase;rather, after the burn-in phasewe continuedrunning
theMCMC process,collectinganordersampleat fixedintervals (e.g.,every
100steps).This processresultsin samplesfrom thechainthatarecloserto
independent,therebyallowing usto provide a lower-varianceestimateof the
probabilityusingasmallernumberof samples.6

6 An evenbetterestimatewould beobtainedif we coulduseall of thesamplesgenerated
by theMCMC process,but thecomputationalcostof estimatingfeatureprobabilitiesfor all of
themwouldbeprohibitive.
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Figure 1. Comparisonof posteriorprobabilitiesfor the exact posteriorover orders(x-axis)
versusorder-MCMC (y-axis) in the Flaredatasetwith 100 instances.The figuresshow the
probabilitiesfor all Markov featuresandedgefeatures.

5. Experimental Results

We evaluatedour approachin a variety of ways.We first compareit with a
full Bayesianmodelaveraging,in thosedomainssmallenoughto permitan
exhaustive enumerationof BN structures.Most importantly, we compareit
with themorepracticalandmostcommonapproachto Bayesianmodelaver-
aging:usingMCMC directly over BN structures(MadiganandYork, 1995).
In thisapproach,aMetropolis-HastingsMarkov chainis definedwhosestates
correspondto individual BN structures.Eachstepin the chaincorresponds
to a local transformationon the structure:adding,deleting,or reversingan
edge.The proposaldistribution is uniform over theselocal transformations,
andtheacceptanceprobability is definedusingtheBayesianscore,in a way
that guaranteesthat the stationarydistribution of the chain is the posterior
P
�
G � D � . Wecall ourapproachorder-MCMC andtheMCMC overBN struc-

turestructure-MCMC. Our primarymeasurefor comparingthedifferentap-
proachesis via the probability that they give to the structuralfeatureswe
discussabove: edgefeaturesandMarkov features.

EvaluatingtheSamplingProcess. Our first goalis to evaluatetheextentto
which the samplingprocessreflectsthe resultof true Bayesianmodelaver-
aging.We first comparedthe estimatesmadeby order-MCMC to estimates
givenby thefull Bayesianaveragingovernetworks.Weexperimentedon the
Flaredataset(Murphy andAha,1995),thathasninediscretevariables,most
of whichtake2 or 3 values.WerantheMCMC samplerwith aburn-inperiod
of 1,000stepsandthenproceededto collecteither5, 20,or 50ordersamples
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18 Friedman& Koller

at fixed intervals of 100 steps.(We notethat theburn-in time andsampling
interval areprobablyexcessive, but they ensurethat we aresamplingvery
closeto the stationaryprobability of the process.)The resultsareshown in
Figure1. As we cansee,the estimatesarevery robust. In fact, for Markov
featuresevena sampleof 5 ordersgivesa surprisinglydecentestimate.This
surprisingsuccessis dueto thefactthata singlesampleof anordercontains
informationaboutexponentiallymany possiblestructures.For edgeswe ob-
viouslyneedmoresamples,asedgesthatarenot in thedirectionof theorder
necessarilyhave probability0. With 20 and50 sampleswe seea very close
correlationbetweentheMCMC estimateandtheexactcomputationfor both
typesof features.

Mixing rate. Wethenconsideredlargerdatasets,whereexhaustive enumer-
ation is not an option. For this purposewe usedsyntheticdatagenerated
from theAlarm BN (Beinlich et al., 1989),a network with 37 nodes.Here,
our computationalheuristicsarenecessary. We usedthe following settings:
k (max. numberof parentsin a family) � 3;7 C (max. numberof potential
parents)� 20; F (numberof familiescached)� 4000;andγ (differencein
scorerequiredin pruning) � 10.Notethatγ � 10correspondsto adifference
of 210 in theposteriorprobabilityof thefamilies.Differentfamilieshavehuge
differencesin score,soa differenceof 210 in theposteriorprobability is not
uncommon.

Our first goal wasthe comparisonof the mixing rateof the two MCMC
samplers.For structure-MCMC,we useda burn in of 100,000iterationsand
thensampledevery 25,000iterations.For order-MCMC, we useda burn in
of 10,000iterationsandthensampledevery2,500iterations.In bothmethods
we collecteda total of 50 samplesper run. We note that, computationally,
structure-MCMCis fasterthanorder-MCMC. In ourcurrentimplementation,
generatinga successornetwork is aboutan order of magnitudefasterthan
generatinga successororder. We thereforedesignedthe runsin Figure2 to
take roughlythesameamountof computationtime.

In bothapproaches,we experimentedwith differentinitializationsfor the
MCMC runs.In theuninformedinitialization,westartedthestructure-MCMC
with an emptynetwork andthe order-MCMC with a randomorder . In the
informedinitialization,we startedthestructure-MCMCwith thegreedynet-
work — the BN found by greedyhill climbing searchover network struc-
tures(Heckerman,1998)andtheorder-MCMC with anorderconsistentwith
thatstructure.

One phenomenonthat was quite clear was that order-MCMC runs mix
muchfaster. That is, aftera smallnumberof iterations,theserunsreacheda
“plateau”wheresuccessive sampleshadcomparablescores.Runsstartedin

7 We notethatthemaximumnumberof parentsin a family in theoriginal Alarm network
is 3, henceourchoiceof k : 3.
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Figure 2. Plotsof the progressionof the MCMC runs.Eachgraphshows plots of 6 inde-
pendentrunsover Alarm with either100,500,and1000instances.Thegraphplot thescore
(log2 / P / D o G0 P / G010 or log2 / P / D o p?0 P /qp�010 ) of the“current” candidate(y-axis) for different
iterations(x-axis)of theMCMC sampler. In eachplot, threeof therunsareinitializedwith an
uniformednetwork or order, andtheotherswith thegreedynetwork or anorderingconsistent
with it.

differentplaces(including randomorderandordersseededfrom the results
of agreedy-searchmodelselection)rapidly reachedthesameplateau.On the
otherhand,MCMC runsovernetwork structuresreachedverydifferentlevels
of scores,eventhoughthey wererun for a muchlargernumberof iterations.
Figure2 illustratesthis phenomenonfor examplesof Alarm with 100,500,
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20 Friedman& Koller

and1000instances.Note thesubstantialdifferencein thescaleof they-axis
betweenthetwo setsof graphs.

In thecaseof 100instances,bothMCMC samplersseemedtomix. Structure-
MCMC mixesafterabout20,000–30,000iterations,whileorder-MCMC mixes
afterabout1,000–2,000iterations.On theotherhand,whenwe examine500
samples,order-MCMC convergesto ahigh-scoringplateau,whichwebelieve
is thestationarydistribution, within 10,000iterations.By contrast,different
runsof thestructure-MCMCstayedin verydifferentregionsof thein thefirst
500,000iterations.Thesituationis evenworsein thecaseof 1,000instances.
In this case,structure-MCMCstartedfrom anemptynetwork doesnot reach
the level of scoreachieved by the runsstartingfrom the structurefound by
greedyhill climbing search.Moreover, theselatter runs seemto fluctuate
aroundthe scoreof the initial seed,never exploring anotherregion of the
space.Note that different runsshow differencesof 100–500bits. Thus,the
sub-optimalrunssamplefrom networksthatareat least2100 lessprobable!

Effectsof Mixing. This phenomenonhastwo explanations.Either theseed
structureis the global optimumandthe sampleris samplingfrom the pos-
terior distribution, which is “centered”aroundthe optimum;or the sampler
is stuckin a local “hill” in the spaceof structuresfrom which it cannotes-
cape.This latterhypothesisis supportedby thefactthatrunsstartingatother
structures(e.g., the emptynetwork) take a very long time to reachsimilar
level of scores,indicatingthat thereis a very differentpart of the spaceon
which stationarybehavior is reached.We now provide further supportfor
this secondhypothesis.

Wefirst examinetheposteriorcomputedfor differentfeaturesin different
runs.Figure3 comparestheposteriorprobabilityof Markov featuresassigned
by differentrunsof structure-MCMC.Let usfirst considertherunsover 500
instances.Here,althoughdifferent runs give a similar probability estimate
to most structuralfeatures,thereare several featureson which they differ
radically. In particular, therearefeaturesthatareassignedprobabilitycloseto
1 by structuressampledfrom onerunandprobabilitycloseto 0 by thosesam-
pled from theother. While this behavior is lesscommonin the runsseeded
with thegreedystructure,it occurseventhere.Thisphenomenonsuggeststhat
eachof theseruns(even runsthat startat the sameplace)getstrappedin a
differentlocalneighborhoodin thestructurespace.Somewhatsurprisingly, a
similarphenomenonappearsto occurevenin thecaseof 100instances,where
the runs appearedto mix. In this case,the overall correlationbetweenthe
runsis, aswemightexpect,weaker:with 100instances,therearemany more
high-scoringstructuresand thereforethe varianceof the samplingprocess
is higher. However, we onceagainobserve featureswhich have probability
closeto 0 in onerun andcloseto 1 in theother. Thesediscrepanciesarenot
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Figure 3. Scatterplots that compareposteriorprobability of Markov featureson the Alarm
dataset,as determinedby different runs of structure-MCMC.Eachpoint correspondsto a
single Markov feature;its x and y coordinatesdenotethe posteriorestimatedby the two
comparedruns.The position of points is slightly randomlyperturbedto visualizeclusters
of pointsin thesameposition.

aseasilyexplainedby thevarianceof thesamplingprocess.Therefore,even
for 100instances,it is not clearthatstructure-MCMCmixes.

By contrast,comparisonof thepredictionsof differentrunsof order-MCMC
are tightly correlated.To test this, we comparedthe posteriorestimatesof
Markov featuresandPathfeatures.Thelatter representrelationsof theform
“thereis a directedpathfrom X to Y” in thePDAG of thenetwork structure.
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Figure 4. Scatterplotsthatcompareposteriorprobabilityof Markov andPathfeatureson the
Alarm domainasdeterminedby differentrunsof order-MCMC. Eachpoint correspondsto a
singlefeature;its x andy coordinatesdenotetheposteriorestimatedby thegreedyseededrun
anda randomseededrun respectively.

As discussedin Section3,wecannotprovideaclosedform expressionfor the
posteriorof sucha featuregivenanorder. However, wecansamplenetworks
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from theorder, andestimatethefeaturerelative to those.In ourexperiments,
we sampled20 networks from eachorder. Figure4 comparestwo runs,one
startingfrom anorderconsistentwith thegreedystructureandtheotherfrom
arandomorder. We canseethatthepredictionsarevery similar, bothfor the
small datasetandthe larger one.The predictionsfor the Path featureshave
somewhat highervariance,which we attribute to theadditionalrandomness
of samplingstructuresfrom theordering.Theveryhighdegreeof correlation
betweenthetwo runsreaffirms ourclaim thatthey areindeedsamplingfrom
similardistributions.Thatis, they aresamplingfrom theexactposterior.

Webelieve thatthedifferencein mixing rateis dueto thesmootherposte-
rior landscapeof thespaceof orders.In thespaceof networks,evena small
perturbationto a network canleadto a hugedifferencein score.By contrast,
the scoreof an order is a lot lesssensitive to slight perturbations.For one,
the scoreof eachorder is an aggregate of the scoresof a very large set
of structures;hence,differencesin scoresof individual networks canoften
cancelout. Furthermore,for mostorders,we are likely to find a consistent
structurewhich is not too bada fit to thedata;hence,anorderis unlikely to
beuniformly horrible.

Thedisparityin mixing ratesis morepronouncedfor largerdatasets.The
reasonis quite clear:as the amountof datagrows, the posteriorlandscape
becomes“sharper” since the effect of a single changein the structureis
amplified acrossmany samples.As we discussedabove, if our datasetis
large enough,modelselectionis often a goodapproximationto modelav-
eraging.However, it is importantto notethat500instancesfor Alarm arenot
enoughto peaktheposteriorsharplyenoughthatmodelselectionis areliable
approachto discovering structure.We canseethat by examiningthe poste-
rior probabilitiesin Figure4. We seethat theposteriorprobability for most
Markov featuresis fairly far from 0 or 1. As Markov featuresareinvariantfor
all networksin thesameMarkov equivalenceclass(PDAG), thisphenomenon
indicatesthatthereareseveralPDAGsthathavehighscoregiventhedata.By
contrast,in thecaseof 1000instances,we seethat theprobabilityof almost
all featuresis clusteredaround0 or 1, indicatingthatmodelselectionis likely
to returna fairly representative structurein thiscase.

A secondform of supportfor the non-mixingconjectureis obtainedby
consideringan even smallerdataset: the Boston-housingdataset,from the
UCI repository(Murphy and Aha, 1995), is a continuousdomainwith 14
variablesand506 samples.Here,we consideredlinear Gaussiannetworks,
andusedastandardWishartparameterprior. Westartedthestructure-MCMC
on the structureobtainedfrom greedyhill-climbing search.We startedthe
order-MCMC on anorderconsistentwith thatstructure.As usual,asshown
in Figure6(a), structure-MCMCdoesnot converge. However, asshown in
Figure6(b), therunsof order-MCMC arealsosomewhatmoreerratic,indi-
catingamorejaggedposteriorlandscapeevenoverorders.In away, thisisnot
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Figure 5. Scatterplots that compareposteriorprobability of Markov featureson the Alarm
domainas determinedby the two different MCMC samplers.Eachpoint correspondsto a
singleMarkov feature;its x andy coordinatesdenotethe posteriorestimatedby the greedy
seededrunof order-MCMC andstructure-MCMC,respectively.
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Figure 6. Plotsof theprogressionof theMCMC runson theBoston-housingdataset.Each
graphshows plotsof 4 independentruns.All the runsareseededwith thenetwork foundby
searchingover network structures.

surprising,giventhelargenumberof instancesandsmalldomain.In Figure7,
weseethat,asabove,differentrunsof structure-MCMCleadto verydifferent
answers,whereasdifferentrunsof order-MCMC arevery consistent.

Moreinterestingis theexaminationof thefeatureprobabilitiesthemselves.
Figure8(a)showsacomparisonbetweenthefeatureprobabilitiesof structure-
MCMC and thoseof the structurereturnedby greedysearch,usedas the
startingpoint for thechain.We canseethatmostof thestructurestraversed
by theMCMC searcharevery similar to thegreedyseed.By contrast,Fig-
ure 8(b) shows that order-MCMC traversesa different region of the space,
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Figure 7. Scatterplots that compareposteriorprobabilityof Markov on theBoston-housing
dataset,asdeterminedby differentrunsof structure-MCMCandorder-MCMC.
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Figure 8. Scatter plots that compareposterior probability of Markov featureson the
Boston-housingdata set, as determinedby different runs of structure-MCMC and or-
der-MCMC, to theprobabilitiesaccordingto the initial seedof theMCMC runs.Thex-axis
denoteswhetherthefeatureappearsin theseednetwork: 1 if it appearand0 if doesnot.The
y-axis denotethe estimateof the posteriorprobability of the featurebasedon the MCMC
sampling.

leadingto very different estimates.It turns out that the structurefound by
thegreedysearchis suboptimal,but that structure-MCMCremainsstuckin
a localmaximumaroundthatpoint.By contrast,thebettermixing properties
of order-MCMC allow is to breakout of this local maximum,andto reach
a substantiallyhigher-scoringregion. Thus,even in caseswherethereis a
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dominantglobal maximum,order-MCMC can be a more robust approach
thangreedyhill-climbing, structure-MCMC,or their combination.

Comparisonof Estimates. We now comparethe estimatesof the two ap-
proacheson theAlarm dataset.Wedeliberatelychoseto usethesmallerdata
setsfor two reasons:to allow structure-MCMCa betterchanceto mix, and
to highlight thedifferencesresultingfrom thedifferentpriorsusedin thetwo
approaches.The resultsareshown in Figure5. We seethat, in general,the
estimatesof the two methodsare not too far apart,althoughthe posterior
estimateof thestructure-MCMCis usuallylarger.
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Figure 9. Comparisonof posteriorprobabilitiesfor differentMarkov featuresbetweenfull
Bayesianaveragingusing: orders(x-axis) versusPDAGs (y-axis) for two UCI datasets(5
variableseach).

We attribute thesediscrepanciesin theposteriorto thedifferentstructure
priorweemploy in theorder-MCMC sampler. To testthisconjecture,in away
thatdecouplesit from theeffectsof sampling,wechoseto comparetheexact
posteriorcomputedby summingover all ordersto the posteriorcomputed
by summingover all equivalenceclassesof Bayesiannetworks (PDAGs)
(i.e., we countedonly a singlerepresentative network for eachequivalence
class.)Of course,in order to do the exact Bayesiancomputationwe need
to do anexhaustive enumerationof hypotheses.For orders,this enumeration
is possiblefor asmany as10 variables,but for structures,we arelimited to
domainswith 5–6variables.Wetooktwo datasets— VoteandFlare— from
theUCI repository(MurphyandAha,1995)andselectedfivevariablesfrom
each(all of which arediscrete).We generateddatasetsof sizes50 and200,
andcomputedthe full Bayesianaveragingposteriorfor thesedatasetsusing
bothmethods.Figure9 comparestheresultsfor bothdatasets.Weseethatthe
two approachesarewell correlated,but thattheprior doeshave someeffect.
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Figure 10. Comparisonof the posteriorof Markov featureswhenwe changethe structure
prior strengthfor Alarm with 100instances.Thetoprow comparesthemodifiedprior (y-axis)
in order-MCMC againstthe standardprior (x-axis). The middle row makes an analogous
comparisonfor structure-MCMC.Thebottomcomparesthemodifiedprior with order(x-axis)
againstthe modified prior with structures(y-axis). Eachcolumncorrespondsto a different
weightingof theprior, asdenotedat thetop of thecolumn.

To gainabetterunderstandingof thegeneraleffectof astructureprior, we
examinedthesensitivity of Bayesianmodelaveragingto changesin theprior.
Recall that our experimentsusethe MDL prior shown in Eq. (2), whether
for P

�
G� (in structure-MCMC)or for P

�
G �=�>� (in order-MCMC). Weranthe

sameexperiment,raisingthis prior to somepower — 0, 1
2, or 2. Note thata

power of 0 correspondsto a uniform prior, over structuresin the structure-
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MCMC caseandover structureswithin an order in the order-MCMC case.
By contrast,a power of 2 correspondsto an even moreextremepenaltyfor
large families.Figure10 shows thecomparisonof themodifiedpriorsto the
“standard”case.As we canexpect,a strongerstructureprior resultsin lower
posteriorfor featureswhile auniform structureprior is moreproneto adding
edgesand thus most featureshave higher posterior. Thus, we seethat the
resultsof astructurediscovery algorithmarealwayssensitive to thestructure
prior, and that even two very reasonable(and common)priors can lead to
very differentresults.This effect is at leastaslargeastheeffect of usingour
order-basedstructureprior. Given that the choiceof prior in BN learningis
often somewhat arbitrary, thereis no reasonto assumethat our order-based
prior is lessreasonablethanany other.

StructureReconstruction. Thisphenomenonraisesanobviousquestion:given
that the approachesgive different results,which is betterat reconstructing
featuresof the generatingmodel.To test this, we label Markov featuresin
the Alarm domainaspositiveif they appearin the generatingnetwork and
negativeif they donot.Wethenuseourposteriorto try anddistinguish“true”
featuresfrom “f alse”ones:we pick a thresholdt, andpredictthatthefeature
f is “true” if P

�
f �is t. Clearly, aswe vary the the valueof t, we will get

different setsof features.At eachthresholdvalue we can have two types
of errors:falsepositives— positive featuresthat aremisclassifiedasnega-
tive, and falsenegatives— negative featuresthat areclassifiedaspositive.
Differentvaluesof t achieve different tradeoffs betweenthesetwo type of
errors.Thus, for eachmethodwe can plot the tradeoff curve betweenthe
two typesof errors.Note that, in most applicationsof structurediscovery,
we caremoreaboutfalsepositivesthanaboutfalsenegatives.For example,
in our biologicalapplication,falsenegativesareonly to beexpected— it is
unrealisticto expectthatwewoulddetectall causalconnectionsbasedonour
limited data.However, falsepositivescorrespondto hypothesizingimportant
biological connectionsspuriously. Thus,our main concernis with the left-
hand-sideof the tradeoff curve, the part wherewe have a small numberof
falsepositives.Within that region, we want to achieve thesmallestpossible
numberof falsenegatives.

We computedsuchtradeoff curvesfor Alarm datasetwith 100,500,and
1000instancesfor two typesof features:Markov featuresandPathfeatures.
Figure11 displaysROC curvescomparingorder-MCMC, structure-MCMC,
andthenon-parametricBootstrap approachof Friedmanetal. (1999),anon-
Bayesiansimulationapproachtoestimate“confidence”in features.Thecurves
representtheaverageperformanceover ten repetitionsof theexperiment—
wesampledtendatasetsfrom theAlarm dataset,andfor eacheachthreshold
t we reporttheaveragenumberof errorsof bothtypes.
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Figure 11. Classificationtradeoff curves for differentmethodson datasetsof varying sizes
sampledfrom theAlarm network.Thex-axisandthey-axisdenotefalsepositiveandfalseneg-
ativeerrors,respectively. Thecurveis achievedby differentthresholdvaluesin theranget 0 2 1u .
Eachgraphcontainsthreecurves,eachcollectedover 50 samples:order-MCMC, with order
samplescollectedevery 200 iterations;structure-MCMC,with structuresamplescollected
every 1000iterations;and50 network structuresgeneratedby the non-parametricbootstrap
samplingmethod.

As we cansee,in all casesorder-MCMC doesaswell or betterthanthe
otherapproaches,with markedgainsin threecases.In particular, for t larger
than0 � 4, order-MCMC makesnofalsepositive errorsfor Markov featureson
the1000-instancedataset.Webelieve thatfeaturesit missesaredueto weak
interactionsin thenetwork thatcannotbereliably learnedfrom sucha small
dataset.
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Figure 12. Plotsof theprogressionof theMCMC runson theGeneticsdataset.Eachgraph
showsplotsof 4 independentruns.All therunsareseededwith thenetwork foundby searching
over network structures.
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Figure13. Scatterplotsthatcompareposteriorprobabilityof Markov andpathfeaturesonthe
Geneticsdataset,asdeterminedby differentrunsof order-MCMC.

Applicationto GeneExpressionData. As statedin theintroductionourgoal
is to applystructureestimationmethodsfor causallearningfrom geneexpres-
siondata.Wetestedourmethodonarelatively smallgeneticdatasetof Fried-
manetal. (2000).Thisdatasetisderivedfromalargerdatasetof S.cerevisiae
cell-cyclemeasurementsreportedin Spellmanetal. (1998).Thedatasetcon-
tains76samplesof 250genes.Friedmanetal. discretizedeachmeasurement
into threevalues(“under-expressed”,“normal”, “over-expressed”).

We appliedorder-MCMC, using an informed greedyinitialization. For
theseruns,weused: k (max.numberof parentsin afamily) � 3;C (max.num-
ber of potentialparents)� 45; F (numberof familiescached)� 4000;and
γ (differencein scorerequiredin pruning) � 10. (Thechoiceof k � 3 is im-
posedby computationallimitations,inducedby thelargenumberof variables
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Figure14. Classificationtradeoff curvesfor differentmethodsonthesimulatedGeneticsdata
set.Thex-axisandthey-axisdenotefalsepositiveandfalsenegativeerrors,respectively. The
curve is achievedby differentthresholdvaluesin therange t 0 2 1u . .

in thedomain.)Weusedaburn-inperiodof 4000iterations,andthensampled
every 400iterationscollecting50 samplesin eachrun.

Figure12 shows the progressionof runsof the two MCMC methodson
this data.As we cansee,order-MCMC mixesrapidly (after a few hundred
iterations).On the other hand,structure-MCMCseemsto be mixing only
after200,000iterations.Figure13 shows comparisonof estimatesfrom two
differentrunsof the orderbasedMCMC sampler. As in theotherdatasets,
the estimatesfor Markov featuresbasedon the two different runsarevery
similar. In this case,we alsoshow theestimatesfor pathfeatures,which are
obtained(asdiscussedin Section3.2)by samplingspecificnetworksfrom the
distribution overnetworksfor agivenorder, andthenevaluatingthepresence
or absenceof apathin eachsamplednetworks.In this case,we sampled500
networks from our 50 sampledorderings.The varianceof this estimatoris,
ascanbe expected,muchhigher;nevertheless,the estimatesarestill quite
well-correlated.

Sincewe want to usethis tool for scientificdiscovery, we want to eval-
uatehow well Bayesianstructureestimationperformsin this domain.To
do sowe performedthefollowing simulationexperiments.We sampled100
instancesfrom the network found by structuresearchon the geneticsdata.
WethenappliedtheorderbasedMCMC samplerandthebootstrapapproach
and evaluatedthe successin reconstructingfeaturesof the generatingnet-
work. Figure14 shows thetradeoff betweenthetwo typesof errorsfor these
two methodsin predictingMarkov andpathfeatures.As we cansee,order-
MCMC clearlyoutperformsthebootstrapapproach.

Weshouldstressthatthesimulationis basedonanetwork thatis probably
simpler than the underlyingstructure(sincewe learnedit from few sam-
ples).Nonetheless,weview theseresultsasanindicationthatusingBayesian
estimatesis more reliable in this domain.A discussionof the biological
conclusionsfrom thisanalysisarebeyondthescopeof this paper.
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6. Discussion and future work

We have presenteda new approachfor expressingthe posteriordistribution
over BN structuresgivena dataset,andtherebyfor evaluatingtheposterior
probabilityof importantstructuralfeaturesof thedistribution. Our approach
is basedon two mainideas.Thefirst is acleanandcomputationallytractable
expressionfor the posteriorof the datagiven a known order over network
variables.The secondis Monte Carlo samplingalgorithm over orders.We
have shown experimentallythatthisapproachmixessubstantiallyfasterthan
thestandardMCMC algorithmthatsamplesstructuresdirectly.

Oncewe have generateda setof orderssampledfrom the posteriordis-
tribution, we canusethemin a varietyof ways.As we have shown, we can
estimatetheprobabilitiesof certainstructuralfeatures— edgefeaturesor ad-
jacency in Markov neighborhoods— directlyin closedformfor agivenorder.
For otherstructuralfeatures,we canestimatetheir probability by sampling
network structuresfrom eachorder, andtestingfor the presenceor absence
of thefeaturein eachstructure.

We have shown that theestimatesreturnedby our algorithm,usingeither
of thesetwo methods,aresubstantiallymorerobustthanthoseobtainedfrom
standardMCMC over structures.To someextent, if we ignorethe different
prior usedin thesetwo approaches,this phenomenonis dueto the fact that
mixture estimatorshave lower variancethanestimatorsbasedon individual
samples(GelfandandSmith,1990;Liu etal.,1994).Moresignificantly, how-
ever, we seethat the resultsof MCMC over structuresaresubstantiallyless
reliable,asthey arehighly sensitive to the region of thespaceto which the
Markov chainprocesshappensto gravitate.

We have also testedthe efficacy of our algorithmfor the taskof recov-
ering structuralfeatureswhich we know are present.We have shown that
our algorithm is always more reliable at recovering featuresthan MCMC
over structures,andin all but onecasealsomorereliablethanthebootstrap
approachof Friedmanetal. (1999).

Webelieve thatthisapproachcanbeextendedto dealwith datasetswhere
someof thedataismissing,byextendingtheMCMC overorderswith MCMC
over missingvalues,allowing us to averageover both.If successful,we can
usethiscombinedMCMC algorithmfor doingfull Bayesianmodelaveraging
for predictiontasksaswell. Finally, we plan to apply this algorithmin our
biology domain,in order to try andunderstandthe underlyingstructureof
geneexpression.
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