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Overview

e Introduction

& Parameter Estimation

¢ Model Selection

o Structure Discovery

< Incomplete Data

o Learning from Structured Data

Bayesian Networks
Compact representation of probability
distributions via conditional independence
Family of Afarm

Qualitative part:
Directed acyclic graph (DAG) WV,

+ Nodes - random variables
+ Edges - direct influence

Together:
Define a unique distribution
in a factored form

Quantitative part:
Set of conditional
probability distributions

P(B,E,AC.R)=P(BP(EYP(A|B.EYP(RIEYP(C|A)

Example: “ICU Alarm” network
Domain: Monitoring Intensive-Care Patients
¢ 37 variables
©509 parameters
...instead of 254

Inference
ePosterior probabilities
« Probability of any event given any evidence
+Most likely explanation
« Scenario that explains evidence II I 1
<+ Rational decision making
« Maximize expected utility

« Value of Information
¢ Effect of intervention

Why learning?

Knowledge acquisition bottleneck
¢ Knowledge acquisition is an expensive process
+ Often we don’t have an expert

Data is cheap
¢ Amount of available information growing rapidly

o Learning allows us to construct models from raw
data




Why Learn Bayesian Networks?

+ Conditional independencies & graphical language
capture structure of many real-world distributions

# Graph structure provides much insight into domain
« Allows “knowledge discovery”

o Learned model can be used for many tasks

+ Supports all the features of probabilistic learning
« Model selection criteria
« Dealing with missing data & hidden variables

Known Structure, Complete Data

E,B,A
<Y,N,N>
<Y,N,Y>
<N,N,Y>
<N,Y,Y>

<N,;(,Y>
CRED
@D,

& Network structure is specified
e Inducer needs to estimate parameters
+ Data does not contain missing values

Known Structure, Incomplete Data

E,B,A
<Y,N,N>
<Y,?,Y>
<N,N,Y>
<N,Y,?>

<?,‘.(,Y>

&

@D,

& Network structure is specified

+ Data contains missing values
o Need to consider assignments to missing values
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Learning Bayesian networks

Unknown Structure, Complete Data

E,B,A
<Y,N,N>
<Y,N,Y>
<N,N,Y>
<N,Y,Y>

<N,;(,Y>

@@
@

& Network structure is not specified
e Inducer needs to select arcs & estimate parameters
+ Data does not contain missing values
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Unknown Structure, Incomplete Data

E,B,A
<Y,N,N>
<Y,?,Y>
<N,N,Y>
<N,Y,?>

<?,‘.(,Y>
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& Network structure is not specified

+ Data contains missing values
o Need to consider assignments to missing values




Overview

< Introduction
¢ Parameter Estimation
e Likelihood function
« Bayesian estimation
¢ Model Selection
o Structure Discovery
< Incomplete Data
o Learning from Structured Data
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Likelihood Function

Learning Parameters
# Training data has the form: & &
O
Ny en] A1l <l @
0 0 0 0
D=
0 0 0 0
EM BIM AM M)
14
Likelihood Function
+ By definition of network, we get & o
O
L(©: D)= [[| AELmL.BLm],Am).CTm]: ©) "
P(E[m]: ©)
P(Bm]: ©)

) I:I P(Am)| Blm) E[m]: ©)
P(CTm)| Am): ©) CEn_ & ATy

0 U U 0

0 0 0 0

EIM] BIM] AIM] CIMID

16

q

¢ Assume i.i.d. samples & T
o Likelihood function is YD
L(©: D) = [|AELm), BLm), Am),CTm): ©) S
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Likelihood Function

¢ Rewriting terms, we get & T
D
o

(@ D) = [ (L) B Al CTm]: ©)
[AEt:e)
[17@:©)

T [P A £z e)
ﬁP(C[m] | A ©)

General Bayesian Networks

Generalizing for any Bayesian network:
Le:D)= |;| P(x,[m],...,x,[m]: ©)
=11 Pxlml Palm]: ©,)
= |;|L:ﬂ(®, :0)

Decomposition
= Independent estimation problems
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Likelihood Function: Multinomials
L(8:D)=P(D6) =] P(x[m]1]6)

¢ The likelihood for the sequence H, T, T, H, H is

L(6:D)=06{1-0){1-0)BD

L(B:D)

14
Generalcase: L(@:D) = ﬂ o.M

Bayesian Inference

¢ Represent Bayesian distribution as Bayes net

Observed data

& The values of X are independent given 8
ePx[m]/6)=6
¢ Bayesian prediction is inference in this network
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Dirichlet Priors

+ Recall that the likelihood function is
LO:D)= liekM
o Dirichlet prior with hyperparameters ay,...,a;
P(@)0 flekﬂrl
= the posterio: has the same form, with

hyperparameters a N ,,..,a *N

K K K
PO|DYD PE)P(D|O)D l:lek”k'll:l g = ﬂ gt

23]

Bayesian Inference

¢ Represent uncertainty about parameters using a
probability distribution over parameters, data

+ Learning using Bayes rule

P(xT11.... xIM1| ©)P(6)
P(x0],... xIM])

PO| x[1],...xM]D =

20

Example: Binomial Data

& Prior: uniform for @in [0,1]
= AB|D) O the likelihood L(8:D)

AB| AL, M) DAL XM | 6) LP(E)

(N N7) = (4.0)

& MLE for AX=H)is 4/5=0.8

g

¢ Bayesian prediction is o 02 04 06 8 1
P(xIM+1]= H| D) = [0 B(®| D)OE:; -07142...
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Dirichlet Priors - Example
5
4.5 o 1
4 1 DmChIet(aheadsv a\ails) '
35 1 l
A‘é’ 3 fd '
3 \ Dirichlet(5,5) I
@ 25 [\ Dirichlet(0.5,0.5) LN ;
o 2 ,’ N .
\ ¢+  Dirichlet(2,2) !
15 . Lo N ’
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Dirichlet Priors (cont.)

o If P(©)is Dirichlet with hyperparameters a;,..,a,

P(XTL]= k) = [ 6, B(©)cO = Z“;

L
# Since the posterior is also Dirichlet, we get

a, +N,

P(XIM+1]1=k|D) =6, B(ew)de:m
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Bayesian Nets & Bayesian Prediction

Plate notation
Observed data Query

o Priors for each parameter group are independent

¢ Data instances are independent given the
unknown parameters
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Bayesian Nets & Bayesian Prediction

Observed data

¢ We can also “read” from the network:

Complete data =
posteriors on parameters are independent

+ Can compute posterior over parameters separately!
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Learning Parameters: Summary

¢ Estimation relies on sufficient statistics
« For multinomials: counts M(x,pa,)
« Parameter estimation

D>

_Nx.pa) 5 _alx,pa)+Nix, pa)

xlea = N(pa,) sl = a(pa))+ N(pa,)

MLE Bayesian (Dirichlet)

+ Both are asymptotically equivalent and consistent

¢ Both can be implemented in an on-line manner by
accumulating sufficient statistics
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Learning Parameters: Case Study

=
IS

Instances sampled from
ICU Alarm network

M’ — strength of prior

=
N

[

o
3

)/ILE

=g
=)

KL Divergence
2

to true distribution

Bayes; M'=50
e

o
[N

Bayes; M'=5

o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# instances
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Overview

< Introduction
¢ Parameter Learning
¢ Model Selection
e Scoring function
e Structure search
o Structure Discovery
< Incomplete Data
o Learning from Structured Data
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Why Struggle for Accurate Structure?

Missing an arc

e

+ Cannot be compensated « Increases the number of
for by fitting parameters parameters to be estimated

+ Wrong assumptions about ¢ Wrong assumptions about
domain structure domain structure

Adding an arc
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Likelihood Score for Structure
16 D) =log L(E :D) = MY (Zex, :Pag ) - HIX )

o Larger dependence of X;on Pa;= higher score

¢ Adding arcs always helps
o I V) s I(X {(V.Z))
« Max score attained by fully connected network
« Overfitting: A bad idea...

Score-based Learning

Define scoring function that evaluates how well a
structure matches the data

D =
@
2 || = L

Search for a structure that maximizes the score

32
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Bayesian Score
Likelihood score: L(& : D) = PO /

Bayesian approach:
« Deal with uncertainty by assigning probability to
all possibilities

P(D16)=[P(DI16,6)P(8] 6)dE

PO | 6)PE)
PO)

P& |D) =
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Marginal Likelihood: Multinomials

Fortunately, in many cases integral has closed form

+ AO) is Dirichlet with hyperparameters a,,...,a,
# Dis a dataset with sufficient statistics M,,..., N

B Y
) r[;(az +A4)J RCO
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Marginal Likelihood: Bayesian Networks

& Network structure
determines form of
marginal likelihood v | 4| Tl 1| W] T] T]| W

X|{H|T|T|H|[T|[H]|H

Network 1:

Two Dirichlet marginal likelihoods @ @
Pl ) Integral over 0y

P( ) Integral over 6y

36




Marginal Likelihood: Bayesian Networks

& Network structure
determines formof X |[H | T[T|H|T
marginal likelihood v | 4| Tl 1| W] T] T | H

Network 2:

Three Dirichlet marginal likelihoods OO—D
Pl ) Integral over 8y

Pl ) Integral over By;y-,
P ) Integral over 8yy.r

37

Marginal Likelihood for Networks

The marginal likelihood has the form:

PO\ &)= I‘l D Dirichlet marginal likelihood
i' pg for multinomial P(X; / pa)

N(..) are counts from the data
a(..) are hyperparameters for each family given G
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Bayesian Score: Asymptotic Behavior

log P(D | &) = (6 : D) - %dlm(é) o)

> (zex .- Paf ) - HiX )J)-\%cﬁm{é)j o)

¢ As M (amount of data) grows,
« Increasing pressure to fit dependencies in distribution
« Complexity term avoids fitting noise

¢ Asymptotic equivalence to MDL score

& Bayesian score is consistent

« Observed data eventually overrides prior
39

Structure Search as Optimization

Input:
e Training data
« Scoring function
« Set of possible structures

Output:
« A network that maximizes the score

Key Computational Property: Decomposability:
score(G) = X score (family of X in G)

40

Tree-Structured Networks

Trees:

Why trees?
¢ Elegant math

= we can solve the
optimization problem

# Sparse parameterization
= avoid overfitting

41

Learning Trees

o Let p(i) denote parent of X
o We can write the Bayesian score as

Score(6 : D)= Score(X; :Pa)

=y (.S'core(X, X )~ .S'core(X,)) +3" Score(X;)

Score = sum of edge scores + constant

42




Learning Trees

o Set w(j— i)=Score( X, - X ) - Score(X))
« Find tree (or forest) with maximal weight
« Standard max spanning tree algorithm — O(n? log n)

Theorem: This procedure finds tree with max score
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Beyond Trees

When we consider more complex network, the
problem is not as easy

¢ Suppose we allow at most two parents per node

+ A greedy algorithm is no longer guaranteed to find
the optimal network

< In fact, no efficient algorithm exists

Theorem: Finding maximal scoring structure with at
most 4 parents per node is NP-hard for 4 » 1

Heuristic Search

# Define a search space:

« search states are possible structures

« operators make small changes to structure
# Traverse space looking for high-scoring structures
# Search techniques:

« Greedy hill-climbing

¢ Best first search

e Simulated Annealing

45

Local Search

« Start with a given network
« empty network
* best tree
e arandom network

# At each iteration
« Evaluate all possible changes

« Apply change based on score

+ Stop when no modification improves score

46

Heuristic Search

+ Typical operations:

To update score after local change,
only re-score families that changed

47

Learning in Practice: Alarm domain

2

15
Structure known, fit params

Learn both structure & params

KL Divergence to
true distribution
N

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#samples

48]




Local Search: Possible Pitfalls

o Local search can get stuck in:
e Local Maxima:
»All one-edge changes reduce the score
« Plateaux:
»Some one-edge changes leave the score unchanged

« Standard heuristics can escape both
« Random restarts
« TABU search
« Simulated annealing
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Improved Search: Weight Annealing

+ Standard annealing process:
« Take bad steps with probability 0 exp(Ascore/t)
« Probability increases with temperature
+ Weight annealing:
« Take uphill steps relative to perturbed score
« Perturbation increases with temperature

Score(6/D)

50

Perturbing the Score

« Perturb the score by reweighting instances
¢ Each weight sampled from distribution:

e Mean=1

« Variance [ temperature
# Instances sampled from “original” distribution
# ... but perturbation changes emphasis

Benefit:
¢ Allows global moves in the search space
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Weight Annealing: ICU Alarm network

Cumulative performance of 100 runs of

annealed structure search
100

(- —— - === True structure

‘\\‘“ llearned params
S

[

Annealed |

Greedy search

hill-climbing

Pracentage of 100 runs
H 4 5 B 8 & 8 8

=

o

S161 -1506 1508 1507 <1606 1505 -15.04 1503 1602 1501
log-lossfinstance on test data
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Structure Search: Summary

# Discrete optimization problem

+In some cases, optimization problem is easy
« Example: learning trees

«In general, NP-Hard
« Need to resort to heuristic search

« In practice, search is relatively fast (~100 vars in
~2-5 min):
»Decomposability
»Sufficient statistics

e Adding randomness to search is critical

s3]

Overview

< Introduction

& Parameter Estimation

¢ Model Selection

o Structure Discovery

< Incomplete Data

o Learning from Structured Data
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Structure Discovery

Task: Discover structural properties
o Is there a direct connection between X & Y
« Does X separate between two “subsystems”
e Does X causally effect Y

Example: scientific data mining
« Disease properties and symptoms
« Interactions between the expression of genes

55

Discovering Structure

P(6]D)

GE &
D O
(=

« Current practice: model selection
¢ Pick a single high-scoring model
« Use that model to infer domain structure
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Discovering Structure

P(6ID)
R P O O~
Z
é) @ O @ )
Problem

« Small sample size = many high scoring models
¢ Answer based on one model often useless
« Want features common to many models

57

Bayesian Approach

< Posterior distribution over structures
« Estimate probability of features
e Edge X - Y
ePathX-.. - ¥

P(f1D)=> F(6)P(E|D)

58

MCMC over Networks

& Cannot enumerate structures, so sample structures
1 n
PIF) D)= -3 (&)
i=1

& MCMC Sampling
« Define Markov chain over BNs
« Run chain to get samples from posterior (6 | D)

Possible pitfalls:
« Huge (superexponential) number of networks
« Time for chain to converge to posterior is unknown
« Islands of high posterior, connected by low bridges

59

ICU Alarm BN: No Mixing

4500 instances:

Mhaion
i A

WWWW’ g W M(»'VW‘W

Score of
cuurent sample

empty ——
greedy

| 100000 200000 300000 400000 500000 600000

MCMC lteration
¢ The runs clearly do not mix

60
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Effects of Non-Mixing
¢ Two MCMC runs over same 500 instances
+ Probability estimates for edges for two runs

v - . - e . K

Random start
True BN

True BN True BN

Probability estimates highly variable, nonrobust
61

Fixed Ordering
Suppose that
o We know the ordering of variables
esay, X; > Xp 3 X3 Xy 5 . > X, | seniogn
parents for X;must be in Xy, ..., X;_;
L networks
< Limit number of parents per nodes to k

Intuition: Order decouples choice of parents
# Choice of Pa(X;) does not restrict choice of Pa(X,)

Upshot: Can compute efficiently in closed form
o Likelihood P(D | <)
« Feature probability P(f | D, <)
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Our Approach: Sample Orderings
We can write
P(f| D) =Y P(f |<.D)P( D)
Sample orderings and approximate

P(F1D)= 3 P(F | <,.0)

& MCMC Sampling
« Define Markov chain over orderings
« Run chain to get samples from posterior P« / D)
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Mixing of MCMC runs
& Two MCMC runs over same instances
+ Probability estimates for edges

s B S T

N | .
Ve Y
.500 instances .1000 instances

Probability estimates very robust
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Mixing with MCMC-Orderings
¢4 runs on ICU-Alarm with 500 instances

« fewer iterations than MCMC-Nets
. approximately same amount of computation

T
I

) xw
S

&

ple

8 & 8 @

Score of
cuurent sam

random
greedy

50
0 10000 20000 30000 40000 50000 60000

MCMC Iteratlon

Process appears to be mixing! o

Application: Gene expression

Input:

+Measurement of gene expression under
different conditions

« Thousands of genes
« Hundreds of experiments

Output:
+Models of gene interaction
« Uncover pathways

66
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Map of Feature Confidence

Yeast data
[Hughes et al 2000]

©600 genes
300 experiments
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Overview

< Introduction
& Parameter Estimation
¢ Model Selection
o Structure Discovery
e¢Incomplete Data
e Parameter estimation
e Structure search
o Learning from Structured Data

& Automatically constructed sub-network of high-
confidence edges
& Almost exact reconstruction of yeast mating pathway

68
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Incomplete Data

Data is often incomplete
& Some variables of interest are not assigned values

This phenomenon happens when we have
¢ Missing values:

« Some variables unobserved in some instances
e Hidden variables:

e Some variables are never observed

« We might not even know they exist

70

Hidden (Latent) Variables

Why should we care about unobserved variables?

) @
O

17 parameters 59 parameters

71

Example
o P(X)assumed to be known @>—DD
# Likelihood function of: &y_r, &x-p
+ Contour plots of log likelihood for different number
of missing values of X (M = 8):

Bypx-n

3Y\><=T BY\X=T

no missing values 2 missing value 3 missing values

In general: likelihood function has multiple modes
72

12



Incomplete Data

«In the presence of incomplete data, the likelihood
can have multiple maxima

@@>—D
Example:
& We can rename the values of hidden variable H
< If H has two values, likelihood has two maxima

< In practice, many local maxima

73

EM: MLE from Incomplete Data

L(o/D)

1
1
1
1
1
1
'y

(€]
+ Use current point to construct “nice” alternative function
+ Max of new function scores = than current point

74

Expectation Maximization (EM)

+ A general purpose method for learning from
incomplete data

Intuition:

< If we had true counts, we could estimate parameters

+ But with missing values, counts are unknown

o We “complete” counts using probabilistic inference
based on current parameter assignment

o We use completed counts as if real to re-estimate
parameters

75

Expectation Maximization (EM)

Expected Counts

76

Expectation Maximization (EM)

Reiterate

N

Initial network (6,0,)

Updated network (6,0)
D) D X

D Computation

—

WO WO (E-Step)
+

Reparameterize

(M-Step)
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Expectation Maximization (EM)

Formal Guarantees:

¢L(©,:D)2L(0,D)
« Each iteration improves the likelihood

oIf ©,=0,, then O, is a stationary point of L(©:D)
e Usually, this means a local maximum

cl|

13



Expectation Maximization (EM)

Computational bottleneck:
¢ Computation of expected counts in E-Step
« Need to compute posterior for each unobserved
variable in each instance of training set
« All posteriors for an instance can be derived
from one pass of standard BN inference

79

Incomplete Data: Structure Scores
Recall, Bayesian score:
PG| D)YD P(GYP(D | 6)
= P(6)| P(D6,0)P(0] 6)db|

With incomplete data:
# Cannot evaluate marginal likelihood in closed form
o We have to resort to approximations:

« Evaluate score around MAP parameters

« Need to find MAP parameters (e.g., EM)

81

Structural EM

Recall, in complete data we had
« Decomposition = efficient search

Idea:
« Instead of optimizing the real score...
¢ Find decomposable alternative score
# Such that maximizing new score

= improvement in real score

|

Summary: Parameter Learning
with Incomplete Data
< Incomplete data makes parameter estimation hard
o Likelihood function
¢ Does not have closed form
¢ Is multimodal

# Finding max likelihood parameters:
¢ EM
¢ Gradient ascent

+ Both exploit inference procedures for Bayesian
networks to compute expected sufficient statistics

80

Naive Approach

¢ Perform EM for each candidate graph
€s é; é;
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Structural EM

Idea:
¢ Use current model to help evaluate new structures

Outline:

¢ Perform search in (Structure, Parameters) space

# At each iteration, use current model for finding either:
¢ Better scoring parameters: “parametric” EM step
or
¢ Better scoring structure: “structural” EM step

84
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Reiterate

Score
Computation
Parameterize

85

Example: Phylogenetic Reconstruction

Input: Biological sequences
Human
Chimp
Orang

Output: a phylogeny

10 billion years

R L SR

Phylogenetic Model
branch (8,9) ]

 Topology: bifurcating

« Observed species — 1...N

e Ancestral species — N+1...2N-2
¢ Lengths t = {{;;} for each branch (/)
+ Evolutionary model:

o P(A changes to T/ 10 billion yrs)

87

Phylogenetic Tree as a Bayes Net

o Variables: Letter at each position for each species
« Current day species — observed
« Ancestral species - hidden

¢ BN Structure: Tree topology

¢ BN Parameters: Branch lengths (time spans)

Main problem: Learn topology

If ancestral were observed
= easy learning problem (learning trees)

88

Algorithm Outline

— Compute expected pairwise stats

— Weights: Branch scores

Original Tree (77, #9)

89

Algorithm Outline

— Compute expected pairwise stats

— Weights: Branch scores

—Find: 7'=argmax: > u;;
. /or

Pairwise weights

O(N?) pairwise statistics suffice
to evaluate all trees

90
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Algorithm Outline

— Compute expected pairwi
— Weights: Branch scores

—Find: 7'=argmax: > u;;
. /or

— Construct bifurcation 7,

ise stats

Max. Spanning Tree

91

Algorithm Outline

— Compute expected pairwise stats
— Weights: Branch scores

—Find: 7'=argmax: > u;;
. /or

— Construct bifurcation 7,

— Theorem: L(T,t,)=>L(T,1,)

New Tree

Repeat until convergence...

92

Real Life Data

Lysozyme ¢ | Mitochondrial
genomes

# sequences 43 34

# pos 122 3,578

Traditional -2,916.2 -74,227.9

approach
Log- Structural EM | -2,892.1 -70,5335
likelihood

Approach

Difference 0.19

per position

93

Overview

< Introduction

& Parameter Estimation

¢ Model Selection

o Structure Discovery

< Incomplete Data

e Learning from Structured Data
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Bayesian Networks: Problem

+ Bayesian nets use propositional representation

& Real world has objects, related to each other

95

Bayesian Networks: Problem

+ Bayesian nets use propositional representation
¢ Real world has objects, related to each other

16



Teaches

St. Nordaf University

Jane Doe

97

objects

worlds

Representing the Distribution

& Many possible worlds for a given university

< Infinitely many potential universities
e Each associated with a very different set of

Need to represent
infinite set of complex distributions

¢ All possible assignments of all attributes of all

99

Key ideas:

e Links give us potential interactions!

« Professor .
Teaching-Ability «

Grade<£

Satisfaction

Probabilistic Relational Models

tudent

+ Universals: Probabilistic patterns hold for all objects in class
+ Locality: Represent direct probabilistic dependencies

Relational Schema

+ Specifies types of objects in domain, attributes of each type
of object, & types of links between objects

Classes
Professor >| Student

Teaching-Ability Intelligence

V-

Attributes I o
\ Course __@‘_{ Registration
Difficulty "= | Grade
Satisfaction
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= World: assignment to all attributes
of all objects in domain

Jane Doe

100

PRM Semantics

Instantiated PRM —BN
= variables: attributes of all objects

Jane Doe

102
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PRM Learning: Complete Data

The Web of Influence

104

easy / hard weak /smart 103

Mt tante, tiegfusis s Project-of

ML fam a8 e
Pretenies C£D H

/|

[Craven et al.] ==
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Standard Approach T What's in a Link

Page From-Page

052 054 056 058 0.6 0.62 064 0.66 068 . . . . X X X X
107 108]




Discovering Hidd
T k" estmaks & Leuben frcp un nd conTatle 3
1o nt a X 2 @

T

Batman (1289)

e - 5

*
o
v Commentic M Esgg#ind St Review.
o

0
e b o o2 e

(s ¢
o

Denects

x. The Earlx

Yeans (1442 175

Internet Movie Database
http://www.imdb.com
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Discovering Hidden Concepts

Actor

—— | Director .

/

Movie

Appedred_ |l..........}

Internet Movie Database

http://www.imdb.com
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Web of Influence, Yet Again

Movies

Actors Directors

Wizard of Oz Sylvester Stallone | Alfred Hitchcock
Cinderella Bruce Willis Stanley Kubrick
Sound of Music | | Harrison Ford David Lean

The Love Bug Steven Seagal Milos Forman
Pollyanna i Kurt Russell Terry Gilliam
The Parent Trap Kevin Costner Francis Coppola
Mary Poppins Jean-Claude Van Damme

Swiss Family Robinson Arnold Schwarzenegger

Terminator 2
Batman

Batman Forever
Mission: Impossibl
GoldenEye
Starship Troopers
Hunt for Red October

Anthony Hopkins
Robert De Niro
Tommy Lee Jone:
Harvey Keitel
Morgan Freeman
Gary Oldman

Steven Spielberg
Tim Burton

Tony Scott
James Cameron
John McTiernan
Joel Schumacher

1T

Conclusion

+ Many distributions have combinatorial dependency
structure

# Utilizing this structure is good
# Discovering this structure has implications:
« To density estimation
« To knowledge discovery
¢ Many applications
¢ Medicine
« Biology
« Web
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The END
Thanks to

+ Gal Elidan

« Lise Getoor

+ Moises Goldszmidt
+ Matan Ninio

¢ Dana Pe’er
+ Eran Segal
& Ben Taskar

Slides will be available from:
http://www.cs.huji.ac.il/~nir/

http://robotics.stanford.edu/~koller/
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