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Overview

� Introduction
�Parameter Estimation
�Model Selection
�Structure Discovery

� Incomplete Data
�Learning from Structured Data
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Family of Alarm

Bayesian Networks

Qualitative part: 
Directed acyclic graph (DAG)

� Nodes - random variables 

� Edges - direct influence

Quantitative part: 
Set of conditional 
probability distributions
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Together:
Define a unique distribution 
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Example: “ICU Alarm” network
Domain: Monitoring Intensive-Care Patients
�37 variables
�509 parameters
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PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2

PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

5

Inference
�Posterior probabilities

� Probability of any event given any evidence

�Most likely explanation
� Scenario that explains evidence

�Rational decision making
� Maximize expected utility
� Value of Information

�Effect of intervention
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Burglary

Alarm

Call

Radio

Call
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Why learning?

Knowledge acquisition bottleneck
�Knowledge acquisition is an expensive process
�Often we don’t have an expert

Data is cheap
�Amount of available information growing rapidly
�Learning allows us to construct models from raw 

data
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Why Learn Bayesian Networks?

�Conditional independencies & graphical language  
capture structure of many real-world distributions

�Graph structure provides much insight into domain
� Allows “knowledge discovery”

�Learned model can be used for many tasks

�Supports all the features of probabilistic learning
� Model selection criteria
� Dealing with missing data & hidden variables
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Learning Bayesian networks
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Known Structure, Complete Data
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� Inducer needs to estimate parameters

� Data does not contain missing values
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Unknown Structure, Complete Data
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� Network structure is not specified
� Inducer needs to select arcs & estimate parameters

� Data does not contain missing values
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Known Structure, Incomplete Data
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� Network structure is specified

� Data contains missing values
� Need to consider assignments to missing values
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Unknown Structure, Incomplete Data
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Overview

� Introduction

�Parameter Estimation
� Likelihood function
� Bayesian estimation

�Model Selection
�Structure Discovery
� Incomplete Data

�Learning from Structured Data
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Learning Parameters
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�Training data has the form:
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Likelihood Function 
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�Assume i.i.d. samples

�Likelihood function is
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Likelihood Function
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Likelihood Function

E B
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�Rewriting terms, we get
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General Bayesian Networks

Generalizing for any Bayesian network:

Decomposition 
⇒ Independent estimation problems
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Likelihood Function: Multinomials

�The likelihood for the sequence H,T, T, H, H is

∏ θ=θ=θ
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Bayesian Inference

�Represent uncertainty about parameters using a 
probability distribution over parameters, data

�Learning using Bayes rule
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Bayesian Inference
�Represent Bayesian distribution as Bayes net

�The values of X are independent given θ
�P(x[m] | θ ) = θ
�Bayesian prediction is inference in this network

θ

X[1] X[2] X[m]

Observed data
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Example: Binomial Data

�Prior: uniform for θ in [0,1]

⇒ P(θ |D) ∝ the likelihood L(θ :D)

(NH,NT ) = (4,1)

�MLE for P(X = H ) is 4/5 = 0.8 

�Bayesian prediction is

K7142.0
7

5
)|()|]1[( ==θθ⋅θ==+ ∫ dDPDHMxP

0 0.2 0.4 0.6 0.8 1

)()|][],1[(])[],1[|( θθθ PMxxPMxxP ⋅∝ KK

23

Dirichlet Priors

�Recall that the likelihood function is 

�Dirichlet prior with hyperparameters  α
1
,…,α

K

⇒ the posterior has the same form, with 

hyperparameters  α
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Dirichlet Priors - Example
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Dirichlet Priors (cont.)

� If P(Θ) is Dirichlet with hyperparameters α
1
,…,α

K

�Since the posterior is also Dirichlet, we get

∑∫ α
α

=ΘΘ⋅θ==

l

l

k
k

dPkXP )()]1[(

∑∫ +α
+α

=ΘΘ⋅θ==+

l

ll
)(

)|()|]1[(
N

N
dDPDkMXP kk

k

26

�Priors for each parameter group are independent

�Data instances are independent given the 
unknown parameters

θX

X[1] X[2] X[M] X[M+1]

Observed data
Plate notation

Y[1] Y[2] Y[M] Y[M+1]

θY|X θX

θY|Xm

X[m]

Y[m]

Query

Bayesian Nets & Bayesian Prediction
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�We can also “read” from the network:

Complete data ⇒
posteriors on parameters are independent

�Can compute posterior over parameters separately!

Bayesian Nets & Bayesian Prediction
θX

X[1] X[2] X[M]

Observed data

Y[1] Y[2] Y[M]

θY|X
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Learning Parameters: Summary

�Estimation relies on sufficient statistics
� For multinomials: counts N(x

i
,pa

i
)

� Parameter estimation

�Both are asymptotically equivalent and consistent
�Both can be implemented in an on-line manner by 

accumulating sufficient statistics
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Learning Parameters: Case Study

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

K
L 

D
iv

er
ge

nc
e 

to
 tr

u
e 

di
st

ri
bu

tio
n

# instances

MLE

Bayes; M'=50

Bayes; M'=20

Bayes; M'=5

Instances sampled from 
ICU Alarm network

M’ — strength of prior

30

Overview

� Introduction

�Parameter Learning
�Model Selection

� Scoring function

� Structure search
�Structure Discovery
� Incomplete Data

�Learning from Structured Data
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Why Struggle for Accurate Structure?

� Increases the number of 
parameters to be estimated

�Wrong assumptions about 
domain structure

� Cannot be compensated 
for by fitting parameters

�Wrong assumptions about 
domain structure

Earthquake Alarm Set

Sound

Burglary Earthquake Alarm Set

Sound

Burglary

Earthquake Alarm Set

Sound

Burglary

Adding an arcMissing an arc
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Score-based Learning

E, B, A
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Search for a structure that maximizes the score

Define scoring function that evaluates how well a 
structure matches the data
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Likelihood Score for Structure

�Larger dependence of X
i
on Pa

i
⇒ higher score

�Adding arcs always helps
� I(X; Y) ≤ I(X; {Y,Z})

� Max score attained by fully connected network
� Overfitting: A bad idea…
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Mutual information between
Xi and its parents
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Max likelihood params

Bayesian Score

Likelihood score:

Bayesian approach:
� Deal with uncertainty by assigning probability to 

all possibilities
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Marginal Likelihood: Multinomials

Fortunately, in many cases integral has closed form

�P(Θ) is Dirichlet with hyperparameters α
1
,…,α

K  

�D is a dataset with sufficient statistics N
1
,…,N
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Marginal Likelihood: Bayesian Networks

X

Y

�Network structure 
determines form of
marginal likelihood
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Network 1:
Two Dirichlet marginal likelihoods
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Marginal Likelihood: Bayesian Networks

X

Y

�Network structure 
determines form of
marginal likelihood

1 2 3 4 5 6 7

Network 2:
Three Dirichlet marginal likelihoods
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Marginal Likelihood for Networks

The marginal likelihood has the form:

∏∏=
i paG
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GDP )|( Dirichlet marginal likelihood
for multinomial P(Xi | pai)
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N(..) are counts from the data
α(..) are hyperparameters for each family given G
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�As M (amount of data) grows, 
� Increasing pressure to fit dependencies in distribution
� Complexity term avoids fitting noise

�Asymptotic equivalence to MDL score
�Bayesian score is consistent

� Observed data eventually overrides prior

( ) O(1)dim(G)
2

M
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i
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G

ii
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log
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2

M
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log l

Fit dependencies in
empirical distribution

Complexity
penalty

Bayesian Score: Asymptotic Behavior
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Structure Search as Optimization
Input:
�Training data
�Scoring function

�Set of possible structures

Output:
�A network that maximizes the score

Key Computational Property: Decomposability: 

score(G) =  ∑ score ( family of X in G )
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Tree-Structured Networks

Trees:
�At most one parent per variable

Why trees?
�Elegant math 

⇒we can solve the 
optimization problem

�Sparse parameterization 
⇒ avoid overfitting
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Learning Trees
�Let p(i) denote parent of X

i

�We can write the Bayesian score as

Score = sum of edge scores + constant

Score of “empty”
network

Improvement over 
“empty” network
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i

i
i
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Learning Trees

�Set w(j→i) =Score( Xj → Xi ) - Score(Xi)

�Find tree (or forest) with maximal weight
� Standard max spanning tree algorithm — O(n2 log n)

Theorem: This procedure finds tree with max score 
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Beyond Trees

When we consider more complex network, the 
problem is not as easy

�Suppose we allow at most two parents per node
�A greedy algorithm is no longer guaranteed to find 

the optimal network

� In fact, no efficient algorithm exists

Theorem: Finding maximal scoring structure with at 
most k parents per node is NP-hard for k > 1
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Heuristic Search

�Define a search space:

� search states are possible structures
� operators make small changes to structure

�Traverse space looking for high-scoring structures

�Search techniques:
� Greedy hill-climbing
� Best first search

� Simulated Annealing
� ...
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Local Search

�Start with a given network

� empty network
� best tree 
� a random network

�At each iteration
� Evaluate all possible changes

� Apply change based on score

�Stop when no modification improves score
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Heuristic Search

�Typical operations: 

S C

E

D Reverse C →
EDelete C 

→E

Add C →
D

S C

E

D

S C

E

D

S C

E

D

∆score = 
S({C,E} →D) 
- S({E} →D) 

To update score after local change, 

only re-score families that changed
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Learning in Practice: Alarm domain
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Local Search: Possible Pitfalls

�Local search can get stuck in:

� Local Maxima:
�All one-edge changes reduce the score

� Plateaux:
�Some one-edge changes leave the score unchanged

�Standard heuristics can escape both
� Random restarts

� TABU search

� Simulated annealing
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Improved Search: Weight Annealing

� Standard annealing process:
� Take bad steps with probability ∝ exp(∆score/t)
� Probability increases with temperature

� Weight annealing:
� Take uphill steps relative to perturbed score
� Perturbation increases with temperature

S
c
o
r
e
(G
|
D
)

G
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Perturbing the Score

�Perturb the score by reweighting instances

�Each weight sampled from distribution:
� Mean = 1

� Variance ∝ temperature
� Instances sampled from “original” distribution
� … but perturbation changes emphasis

Benefit: 
� Allows global moves in the search space

52

Weight Annealing: ICU Alarm network
Cumulative performance of 100 runs of 

annealed structure search

Greedy
hill-climbing

True structure
Learned params

Annealed
search
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Structure Search: Summary

�Discrete optimization problem

� In some cases, optimization problem is easy
� Example: learning trees

� In general, NP-Hard

� Need to resort to heuristic search
� In practice, search is relatively fast (~100 vars in 

~2-5 min):
�Decomposability

�Sufficient statistics

� Adding randomness to search is critical
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Overview

� Introduction

�Parameter Estimation
�Model Selection
�Structure Discovery
� Incomplete Data
�Learning from Structured Data
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Structure Discovery

Task: Discover structural properties

� Is there a direct connection between X & Y
� Does X separate between two “subsystems”
� Does X causally effect Y

Example: scientific data mining
� Disease properties and symptoms

� Interactions between the expression of genes

56

Discovering Structure

�Current practice: model selection
� Pick a single high-scoring model
� Use that model to infer domain structure 
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Discovering Structure

Problem
� Small sample size ⇒ many high scoring models
� Answer based on one model often useless

� Want features common to many models
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Bayesian Approach

�Posterior distribution over structures

�Estimate probability of  features
� Edge X→Y

� Path X→… → Y

� …

∑=
G

DGPGfDfP )|()()|(

Feature of G,
e.g., X→Y

Indicator function
for feature f

Bayesian score
for G
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MCMC over Networks

� Cannot enumerate structures, so sample structures

�MCMC Sampling

� Define Markov chain over BNs

� Run chain to get samples from posterior P(G | D)

Possible pitfalls:
� Huge (superexponential) number of networks

� Time for chain to converge to posterior is unknown

� Islands of high posterior, connected by low bridges

∑
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≈
n

i

i
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n
DGfP
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)(
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ICU Alarm BN: No Mixing
�500 instances:

�The runs clearly do not mix

MCMC Iteration
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Effects of Non-Mixing
�Two MCMC runs over same 500 instances
�Probability estimates for edges for two runs

Probability estimates highly variable, nonrobust
True BN
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Fixed Ordering
Suppose that
�We know the ordering of variables

� say, X1 > X2 > X3 > X4 > … > Xn

parents for Xi must be in X1,…,Xi-1

�Limit number of parents per nodes to k

Intuition: Order decouples choice of parents
�Choice of Pa(X

7
) does not restrict choice of Pa(X

12
)

Upshot: Can compute efficiently in closed form
�Likelihood P(D | p)

�Feature probability P(f | D, p)

2k•n•log n

networks
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Our Approach: Sample Orderings

We can write

Sample orderings and approximate

�MCMC Sampling

� Define Markov chain over orderings

� Run chain to get samples from posterior P(p | D)
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i

n

i
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≈
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Mixing with MCMC-Orderings
�4 runs on ICU-Alarm with 500 instances

� fewer iterations than MCMC-Nets
� approximately same amount of computation

Process appears to be mixing!
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Mixing of MCMC runs
�Two MCMC runs over same instances
�Probability estimates for edges

500 instances 1000 instances

Probability estimates very robust
66

Application: Gene expression

Input:
�Measurement of gene expression under 

different conditions
� Thousands of genes
� Hundreds of experiments

Output:
�Models of gene interaction

� Uncover pathways



12

67

Map of Feature Confidence

Yeast data 
[Hughes et al 2000]

�600 genes
�300 experiments

68

“Mating response” Substructure

� Automatically constructed sub-network of high-
confidence edges

� Almost exact reconstruction of yeast mating pathway

KAR4

AGA1PRM1TEC1

SST2

STE6

KSS1NDJ1

FUS3AGA2

YEL059W

TOM6 FIG1YLR343W

YLR334C MFA1

FUS1
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Overview

� Introduction

�Parameter Estimation
�Model Selection
�Structure Discovery

� Incomplete Data
� Parameter estimation
� Structure search

�Learning from Structured Data

70

Incomplete Data

Data is often incomplete
�Some variables of interest are not assigned values

This phenomenon happens when we have 

�Missing values:
� Some variables unobserved in some instances

�Hidden variables:
� Some variables are never observed
� We might not even know they exist

71

Hidden (Latent) Variables

Why should we care about unobserved variables?

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

17 parameters 59 parameters

72

Example
�P(X) assumed to be known

�Likelihood function of: θY|X=T, θY|X=H

�Contour plots of log likelihood for different number 
of missing values of X (M = 8):

no missing values

θ Y
|X
=
H

θY|X=T

2 missing value

θY|X=T

3 missing values

θY|X=T

X Y

In general: likelihood function has multiple modes 
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Incomplete Data

� In the presence of incomplete data, the likelihood 
can have multiple maxima

Example:
�We can rename the values of hidden variable H
� If H has two values, likelihood has two maxima

� In practice, many local maxima

H Y

74

L
(Θ

|
D
)

EM: MLE from Incomplete Data

Θ
� Use current point to construct “nice” alternative function

�Max of new function scores ≥ than current point 

75

Expectation Maximization (EM)
�A general purpose method for learning from 

incomplete data

Intuition:
� If we had true counts, we could estimate parameters
�But with missing values, counts are unknown

�We “complete” counts using probabilistic inference 
based on current parameter assignment

�We use completed counts as if real to re-estimate 
parameters

76

Expectation Maximization (EM)

1.3
0.4
1.7
1.6

N (X,Y )

X Y #

H
T
H
T

H
H
T
T

Expected Counts

X Z

H
T
H
H
T

Y

?
?
H
T
T

T
?
?
T
H

Data

P(Y=H|X=T,Θ) = 0.4

P(Y=H|X=H,Z=T,Θ) = 0.3

Current 
model

77

Expectation Maximization (EM)

Training
Data

X
1

X
2

X
3

H

Y
1

Y
2

Y
3

Initial network (G,Θ0)

+

Expected Counts
N(X1)
N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

(E-Step)

X
1

X
2

X
3

H

Y
1

Y
2

Y
3

Updated network (G,Θ1)

Reparameterize

(M-Step)

Reiterate

X
1

X
2

X
3

H

Y
1

Y
2

Y
3
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Expectation Maximization (EM)

Formal Guarantees:
�L(Θ

1
:D) ≥ L(Θ

0
:D)

� Each iteration improves the likelihood
� If Θ

1 
= Θ

0 
, then Θ

0  
is a stationary point of L(Θ:D)

� Usually, this means a local maximum
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Expectation Maximization (EM)

Computational bottleneck:
�Computation of expected counts in E-Step

� Need to compute posterior for each unobserved 
variable in each instance of training set

� All posteriors for an instance can be derived 
from one pass of standard BN inference

80

Summary: Parameter Learning
with Incomplete Data

� Incomplete data makes parameter estimation hard

�Likelihood function
� Does not have closed form
� Is multimodal

�Finding max likelihood parameters:
� EM

� Gradient ascent
�Both exploit inference procedures for Bayesian 

networks to compute expected sufficient statistics

81

Incomplete Data: Structure Scores

Recall, Bayesian score:

With incomplete data:
�Cannot evaluate marginal likelihood in closed form

�We have to resort to approximations:
� Evaluate score around MAP parameters

� Need to find MAP parameters (e.g., EM)

∫ ΘΘ=

∝

θdGPGDPGP

GDPGPDGP

)|(),|()(

)|()()|(

82

Naive Approach

�Perform EM for each candidate graph
G1G3 G2

Parametric 
optimization 

(EM)

Parameter space

Local Maximum

G4
Gn

� Computationally expensive:

� Parameter optimization via EM — non-trivial

� Need to perform EM for all candidate structures

� Spend time even on poor candidates

� ⇒In practice, considers only a few candidates

83

Structural EM

Recall, in complete data we had

�Decomposition ⇒ efficient search

Idea: 

� Instead of optimizing the real score… 
�Find decomposable alternative score
�Such that maximizing new score 

⇒ improvement in real score

84

Structural EM

Idea:
�Use current model to help evaluate new structures

Outline:
�Perform search in (Structure, Parameters) space
�At each iteration, use current model for finding either:

� Better scoring parameters: “parametric” EM step

or
� Better scoring structure: “structural” EM step
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Training
Data

Expected Counts
N(X1)
N(X2)
N(X3)
N(H, X1, X1, X3)
N(Y1, H)
N(Y2, H)
N(Y3, H)

Computation

X
1

X
2

X
3

H

Y
1

Y
2

Y
3

X
1

X
2

X
3

H

Y
1

Y
2

Y
3+

Score 
&

Parameterize

X
1

X
2

X
3

H

Y
1

Y
2

Y
3

Reiterate

N(X2,X1)
N(H, X1, X3)
N(Y1, X2)
N(Y2, Y1, H)

X
1

X
2

X
3

H

Y
1

Y
2

Y
3
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Example: Phylogenetic Reconstruction
Input: Biological sequences

Human CGTTGC…

Chimp CCTAGG…

Orang CGAACG…

….

Output: a phylogeny

leaf

An “instance” of 
evolutionary process

Assumption: positions 
are independent

10 billion years

87

Phylogenetic Model

�Topology: bifurcating

� Observed species – 1…N

� Ancestral species – N+1…2N-2

�Lengths t = {ti,j} for each branch (i,j)

�Evolutionary model:
� P(A changes to T| 10 billion yrs )

internal
node

1 2 3 4 5 6 7

8
12

10 11

9branch (8,9)

leaf

88

Phylogenetic Tree as a Bayes Net

�Variables: Letter at each position for each species
� Current day species – observed
� Ancestral species - hidden

�BN Structure: Tree topology
�BN Parameters: Branch lengths (time spans)

Main problem: Learn topology

If ancestral were observed
⇒ easy learning problem (learning trees)

89

Algorithm Outline

Original Tree (T0,t0)

Weights: Branch scores

Compute expected pairwise stats

90

Pairwise weights

Algorithm Outline

∑
∈

=
Tji

jiT wT

),(
,maxarg'Find:

Weights: Branch scores

Compute expected pairwise stats

O(N2) pairwise statistics suffice 
to evaluate all trees 
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Max. Spanning Tree

Algorithm Outline

∑
∈

=
Tji

jiT wT

),(
,maxarg'Find:

Construct bifurcation T1

Weights: Branch scores

Compute expected pairwise stats

92

New Tree
Theorem: L(T1,t1) ≥ L(T0,t0)

Algorithm Outline

Construct bifurcation T1

∑
∈

=
Tji

jiT wT

),(
,maxarg'Find:

Repeat until convergence…

Weights: Branch scores

Compute expected pairwise stats

93

Real Life Data

-74,227.9-2,916.2Traditional 
approach

3,578122# pos

3443# sequences

Mitochondrial 
genomes

Lysozyme c

1.030.19Difference 
per position

-70,533.5-2,892.1Structural EM

Approach 

Log-
likelihood

Each position twice as likely

94

Overview

� Introduction

�Parameter Estimation
�Model Selection
�Structure Discovery

� Incomplete Data
�Learning from Structured Data

95

Bayesian Networks: Problem
� Bayesian nets use propositional representation
� Real world has objects, related to each other

Intelligence Difficulty

Grade

96

Bayesian Networks: Problem
� Bayesian nets use propositional representation
� Real world has objects, related to each other

Intell_J.Doe Diffic_CS101

Grade_JDoe_CS101

Intell_FGump Diffic_Geo101

Grade_FGump_Geo101

Intell_FGump Diffic_CS101

Grade_FGump_CS101

These “instances” are not independent!

A C
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St. Nordaf University
T

ea
ch

es

T
ea

ch
es

In-course

In-course

Registered

In-course

Forrest Gump

Jane Doe

Welcome to

CS101

Welcome to

Geo101

Difficulty

Difficulty Registered

Registered
Grade

Grade

Grade

Satisfac

Satisfac

Satisfac

Intelligence

Intelligence

Teaching-abilityTeaching-ability

98

Relational Schema
� Specifies types of objects in domain, attributes of each type 

of object, & types of links between objects

Teach

Student

Intelligence

Registration

Grade

Satisfaction

Course

Difficulty

Professor

Teaching-Ability

In

Take

ClassesClasses

LinksLinks

AttributesAttributes

99

Representing the Distribution

�Many possible worlds for a given university 

� All possible assignments of all attributes of all 
objects

� Infinitely many potential universities

� Each associated with a very different set of 
worlds

Need to represent 
infinite set of complex distributions

100

Possible Worlds

Prof. SmithProf. Jones

Forrest Gump

Jane Doe

Welcome to

CS101

Welcome to

Geo101

Teaching-abilityTeaching-ability

Difficulty

Difficulty

Grade

Grade

Grade

Satisfac

Satisfac

Satisfac

Intelligence

Intelligence

HighLow

Easy

Easy

A

B

C

Like

Hate

Like

Smart

Weak

� World: assignment to all attributes
of all objects in domainHighHigh

Hard

Easy

A

C

B

Hate

Hate

Hate

Smart

Weak

101

Probabilistic Relational Models

� Universals: Probabilistic patterns hold for all objects in class

� Locality: Represent direct probabilistic dependencies
� Links give us potential interactions!

Student
Intelligence

Reg
Grade

Satisfaction

Course
Difficulty

Professor

Teaching-Ability

Key ideas:

0% 20% 40% 60% 80% 100%

hard,smart

hard,weak

easy,smart

easy,weak
A B C

102

Prof. SmithProf. Jones

Forrest Gump

Jane Doe

Welcome to

CS101

Welcome to

Geo101

PRM Semantics

Teaching-abilityTeaching-ability

Difficulty

Difficulty

Grade

Grade

Grade

Satisfac

Satisfac

Satisfac

Intelligence

Intelligence

Instantiated PRM �BN
� variables: attributes of all objects
� dependencies: determined by 

links & PRM
θGrade|Intell,Diffic
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Welcome to

CS101

weak / smart

The Web of Influence

0% 50% 100%0% 50% 100%

Welcome to

Geo101 A

C

weak smart

0% 50% 100%

easy / hard

� Objects are all correlated

� Need to perform inference over entire model

� For large databases, use approximate inference:

� Loopy belief propagation

104

PRM Learning: Complete Data

Prof. SmithProf. Jones

Welcome to

CS101

Welcome to

Geo101

Teaching-abilityTeaching-ability

Difficulty

Difficulty

Grade

Grade

Grade

Satisfac

Satisfac

Satisfac

Intelligence

Intelligence

HighLow

Easy

Easy

A

B

C

Like

Hate

Like

Smart

Weak

θGrade|Intell,Diffic

� Entire database is single “instance”

� Parameters used many times in instance

� Introduce prior over parameters
� Update prior with sufficient statistics:

Count(Reg.Grade=A,Reg.Course.Diff=lo,Reg.Student.Intel=hi)

105

PRM Learning: Incomplete Data

Welcome to

CS101

Welcome to

Geo101

??????

???

???

B

A

C

Hi

Low

Hi

???

???
� Use expected sufficient statistics

� But, everything is correlated:
⇒ E-step uses (approx) inference over entire model

106

A Web of Data

Tom Mitchell
Professor

WebKB
Project

Sean Slattery
Student

CMU CS Faculty

Contains

Advisee-of

Project-of

Works-on

[Craven et al.]
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Professor
department

extract
information
computer
science
machine
learning

…

Standard Approach

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68

...

Page

Category

Word1 WordN

108

What’s in a Link

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68

...

Page

Category

Word1 WordN

From-

...

Page

Category

Word1 WordN

Link

Exists

To-
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Discovering Hidden Concepts

Internet Movie Database
http://www.imdb.com 110

Discovering Hidden Concepts

Type Type

Type

Internet Movie Database
http://www.imdb.com

Gender

Actor Director

Movie

Genre Rating

Year
#VotesCredit-Order

MPAA Rating

Appeared

111

Web of Influence, Yet Again 
Movies

Terminator 2
Batman
Batman Forever
Mission: Impossible           
GoldenEye
Starship Troopers
Hunt for Red October

Wizard of Oz
Cinderella
Sound of Music
The Love Bug
Pollyanna
The Parent Trap
Mary Poppins
Swiss Family Robinson

…

Actors

Anthony Hopkins
Robert De Niro
Tommy Lee Jones
Harvey Keitel
Morgan Freeman
Gary Oldman

Sylvester Stallone
Bruce Willis
Harrison Ford
Steven Seagal
Kurt Russell
Kevin Costner
Jean-Claude Van Damme
Arnold Schwarzenegger

…

Directors

Steven Spielberg
Tim Burton
Tony Scott
James Cameron
John McTiernan
Joel Schumacher

Alfred Hitchcock
Stanley Kubrick
David Lean
Milos Forman
Terry Gilliam
Francis Coppola

…
112

Conclusion

�Many distributions have combinatorial dependency 
structure

�Utilizing this structure is good
�Discovering this structure has implications:

� To density estimation

� To knowledge discovery
�Many applications

� Medicine

� Biology
� Web

113
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