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DNA the molecule of life .
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Trillions of cells
Each cell:

® 46 human
chromosomes

* 2 meters of
DNA

* 3 billion DNA
subunits (the
bases: A, T, C, G)

“ Approximately
30,000 genes
code for proteins

that perform most _
life functions protein
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Challenges of The Post-Genome Era




Challenges of The Post-Genome Era

Issues:
¢Measurement noise
— Conclusions supported by more than one assay

¢Each assay provides a view of a single aspect

— Combine multiple types of assays for more
coherent reconstruction

¢ Combinatorial explosion of assay combinations

— Principles for integrating results from new
assays



Solution Strategies

Procedural

¢ Specify a set of steps for reaching biological
conclusions from experimental data

e Example
+ Cluster gene expression profiles
+ Search for enriched motif in each cluster

O

¢emphasis on the computational procedure and the
order of data manipulation steps



Model Based Approach

Additional
Biological

- Knowledge
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+Step 1: define class of potential models
+Step 2: reconstruct a specific model
+Step 3: visualization & testable hypotheses

¢Emphasis on the choice of model and how to use it
e The data manipulation steps are derived from the model




Model Based Approach

Additional

Biological
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Representation — defining the class of models
e What entities to involve
e Model granularity
e |dentifiably
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Model Based Approach

Additional
Biological

Knowledge
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Interpretation — what do they tell us about system

e Relation between components in the model to
biological entities/mechanisms

e What predictions can be made with the model



Why Model-Based?

Declarative
e Explicit statement of the assumptions made

e Closer connection between biological principles
and the solution

e Decouple the “what” (model) from the “how”
Flexibility
e Can use different computational approaches to
perform the task specified by the model

Reusability

e Modifications & extensions are specified the level
of the model



Stochastic Models

Use the probability theory to describe the system

¢ State of the system: assignment of value to all the
attributes of all the relevant entities

¢ A distribution over these states describe which
states are achievable and which ones are abnormal

Extensions:
¢Modeling inputs: interventions, conditions
+Modeling outputs: phenotype, behavior, assays



Why Stochastic Models?

¢Inherent noise In the system
¢Uncertainty due to granularity of the model
+Noise In sensors

¢Imperfect modeling --- noise as slack variable



What Can We Do with a Model?

¢Inference

e Set some evidence, compute posterior over
unobserved variables

¢Estimation/Learning

o “Fill in the gaps” in the model based on empirical
data



The Representation Hurdle

< Joint distributions grow large
e Exponential in the number of attributes
e Problem for inference & learning

We need to find compact representation

Strategy:
e Impose constraints

e Exploit these constraints for compact
representation



Probabilistic Graphical Models

¢Language(s) for representing complex joint
distributions

¢ Generic methods for performing tasks with these
representations

In this tutorial we will examine these in the context of
modeling biological systems.



Outline

¢ Introduction

¢Learning Bayesian Networks
¢ Transcriptional regulation

¢ Gene expression

¢Markov Networks

¢ Protein-Protein Interactions
¢ Discussion



Bayesian Networks by Example

Example: Pedigree

¢ A node represents
an individual’s
genotype

Joint distribution
PG, ...6.. .6, . .G
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Bayesian Networks by Example

Modeling assumption: Q

¢ Ancestors can effect

descendants' genotype
only by passing genetic \L2omer @ Q
materials through

Intermediate generations

P(éBar"r / éLisa ’ éMaggie / éHomer ’ éMar'ge r-° )
= P(éBarT I éLisa ’ éMaggie ’ éHomer' / 5Mar'ge I )

P(éLisa | éMaggieié

Homer ¢ éMar‘ge r-° )



Bayesian Networks by Example

¢ Ancestors can effect

descendants' genotype

only by passing genetic riomer @
materials through
Intermediate generations

Modeling assumption: Q

PG ...Cyi G

Lisa’ ™~ Maggie * “"Homer ¢ éMar'ge ’-e )

— P(éBar'T I éHomer"éMar'ge)
P(éLisa | éMaggieié

Homer ¢ éMar‘ge r-° )



Bayesian Networks by Example

¢ Ancestors can effect

descendants' genotype

only by passing genetic riomer @
materials through
Intermediate generations

Modeling assumption: Q

Bart @
P,..C...6,. . .G

Lisa’ ™~ Maggie * “"Homer ¢ éMar'ge ’-e )

— P (éBarT | éHomer"éMar'ge)
P (éLisa | éHomer"éMarge)



Bayesian Networks by Example

Extending this argument, we

can derive a functional form -_‘ ‘

for general pedigrees

Descendants ﬁ . ‘

,0(51,52,".):( HP(éj))( H’D(é I father(/)! maﬂvef'(/))j

J€Ancestors /eDescendants




Bayesian Networks by Exampile I

Sequence evolution & xR !% K B ﬁ
e¢Each random variable is th “’q"“ﬂ\ ; |
seguence of a taxa (ances!

or current day)

"= Early primata

Assumption (neutral changes):

¢ Past history does not affect
how the sequence will
change Iin the future




Bayesian Networks by Exampile I

Aardvark Bison Chimp Dog Elephant

P(S,,5,.5.....5.) = P(S, | 5,,5,,..5.)
P(S, | S......5;)

P(SF | SGISHISI)



Bayesian Networks by Exampile I

®

Aardvark Bison Chimp Dog Elephant

P(S,, 5,50 S) = P(S, | S)
P(S, | S......5;)

P(SF | SGISHISI)



Bayesian Networks by Exampile I
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Aardvark Bison Chimp Dog Elephant

P(S,, 5,50 S5) = P(S, | S.)
P(S, | S:)

P(SF | SGISHISI)



Bayesian Networks by Example Il

Aardvark Bison Chimp Dog Elephant

P(S5,.5.,5,...,5.)=P(5, ] S.)

P(S: | )




Markov Assumption dyliasdiial
Generalizing to DAGs: /w
+ A child is conditionally '

independent from its 0 @
non-descendents, given the

value of its parents Q o -
Often a natural assumption \ ’

for causal processes ‘ :
o if we believe that we capture \‘
the relevant state of each - Non-descendena

Intermediate stage

Descendent




Bayesian Networks

PABCDE)= FA)
PB[A)

PC] A, B)
PD A, B )
PEIA B CD)



Bayesian Networks
Ind(C ; B | A)
Ind( D ; A,B|C)
Ind( E; B, C| A, D)

PABCDE) = PA)
PB | %)
PIC IR R
PO KR W
PETR RRR)



Bayesian Networks

¢ Flexible language to capture a range
Maximal independence - Full dependence

¢ Formal correspondence between
e Acyclic directed graph structure

e Factorization of joint distribution as a product of
conditional probabilities

e A set of (conditional) independence statements



Example Structures

+Markov chain CGO—CO—CD)—C—CeD
+Hidden Markov

Model (HMM) & : I
CHNED
¢ Factorial HMM @ (A2
@ <.
@ X o G
¢lree
<D,
<, <D,

o L o o



Local Probability Models

Bayesian Network Structure
—=Simpler product form

P(ABCDE) =
PA)PB [ A)NC ] APD | B OPE | A D)

To specify a distribution we need to supply these
conditional probabilities

e Describe to “local” stochastic effects



Bayesian Network Semantics

Qualitative part Quantitative part

conditional o D
independence oca nique jo

s’ra’rgmen’rs * probability = dlSTPldbu’rlqn
in BN structure models over domain

Compact & efficient representation:
enodes have < k parents = O(2*n)vs. O(2")

params



Example: “ICU Alarm” network

Domain: Monitoring Intensive-Care Patients

+37 variables

¢509 parameters
...Instead of 2°*

ANAPHYLAXIS




Hidden Variable(s)

. : Hidden
A simple model of clustering w
¢C - gene’s cluster

®X4,..., X, _expression of the
gene In different experiments

Independence assumption:
* 10X X[ C)

‘ Observed \




Hidden Variable(s)

Marginal distribution:

Y P(X | e)--P(X, | )P(c)

+Compact representation
(n+1)k vs. 2" params

+No conditional
Independencies in the
marginal distribution

¢ The variable C “channels” the
dependencies between
observed variables



Hidden Variables

Hidden Markov Model

Phylogentic Trees

¢ The topology of hidden variables poses different
constraints on the marginal distribution



Inference - Queries

¢Posterior probabilities
e Probability of any event given any evidence

+Most likely explanation
e Scenario that explains evidence II I
+Rational decision making 1

Earthquake

e Maximize expected utility
e VValue of Information

¢ Effect of intervention




Inference - Algorithms

Complexity:
e \Worst case - exponential cost
Yet,

¢ Generic exact inference algorithms based on
dynamic programming

e Efficient In some network topologies
¢ Approximate inference algorithms
e With the appropriate “dark art” they perform well

For the purposes of this tutorial we assume we can
solve queries In networks.



Outline

¢ Introduction

¢Bayesian Networks

¢ Transcriptional regulation

¢ Gene expression

¢Markov Networks

¢ Protein-Protein Interactions
¢ Discussion



Transcriptional Regulation

DNA}indingjproteins

Q O Non-codingm

cene1 / > M
Acti\‘/}or / Repressor ‘ /

- : : : RN script
Gene 2Bjnding sites eRling region )—Ke\p/'\
(Speciic sequences ranscribe
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Transcription Factor Binding Sites

¢ Gene regulatory proteins contain structural
elements that can “read” DNA sequence “motifs”

¢ The amino acid — DNA recognition IS not
straightforward

¢ Experiments can pinpoint binding sites on DNA
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Modeling Binding Sites

Given a set of (aligned) binding sites ...

¢ Consensus sequence

¢ Prob
(prof
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How to model binding sites ?

P(X; X, X; X, X5) =? represents a distribution of binding sites

‘ ;I; é;!j Profile: Independency model

Xy) (Xz) (Xs) (Xe) x5 Tree: Direct dependencies
m Mixture of Profiles:
@ @ @ @ @ Global dependencies
(T) - :
Mixture of Trees:
Xy ®r® X)) (% Both types of dependencies

PO X0 EPOORINNXIBOREBEIOITIPE,

Barash et a% REC‘O/I//B 2002



Arabidopsis ABA binding factor 1

Profile Mixture of Profiles
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Test LL per instance -18.47 (+1.46) Test LL per instance -18.70 (+1.23)

(improvement in likelihood > 2.5-fold) (improvement in likelihood > 2-fold)

Barash et al, RECOMB 2002



The Knowledge Acquisition Bottleneck

How do we construct these models?

+Knowledge acquisition IS an expensive process
¢ Often we don’t have an expert

Harnessing Data
+Amount of available information growing rapidly

¢Learning allows us to construct models from raw
data

¢ The the detalls of learned models provide insights
about the data



Learning Bayesian networks
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Known Structure, Complete Data

<Y,N,N>
<Y,N,Y>
<N,N,Y>
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¢ Network structure is specified
e Learner needs to estimate parameters

¢ Data does not contain missing values
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Unknown Structure, Complete Data

E,B, A
<Y,N,N> \
<Y,N,Y>
<N,N,Y>
<N,Y,Y>
' e 8D
<N,Y,Y>
>IH:> Learner Iﬂ
>, E BlPea | EB)
@ e bl .9 .1
e bl .7 .3
e bl .8 2
/ = 7|.99 .01

+ Network structure is not specified
e Inducer needs to select arcs & estimate parameters

¢ Data does not contain missing values



Known Structure, Incomplete Data

E,B,A
<Y,N,N>
<Y,?,Y>
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¢ Network structure is specified

¢ Data contains missing values
e Need to consider assignments to missing values



Unknown Structure, Incomplete Data

E,B, A
<Y,N,N> \
<Y,?,Y>
<N,N,Y>
<N,Y,?>
' e 8D
<2,Y,Y>
>IH:> Learner Iﬂ
>, E BlPea | EB)
@ e bl .9 .1
e bl .7 .3
e bl .8 2
/ = 7|.99 .01

+ Network structure is not specified

¢ Data contains missing values
e Need to consider assignments to missing values



The Learning Problem

Known Structure

Unknown Structure

Complete Data

Statistical

parametric

estimation
(closed-form eq.)

Discrete optimization
over structures
(discrete search)

Incomplete Data

Parametric

optimization
(EM, gradient

descent...)

Combined
(Structural EM, mixture
models...)



Outline

¢ Introduction
¢Bayesian Networks
¢Learning Bayesian Networks

Transcriptional regulation

¢ Gene expression

¢ Markov Networks

¢ Protein-Protein Interactions
¢ Discussion



Learning models: Aligned binding sites

Aligned binding sites

GCGGGGCCGGGC
TGGGGGCGGGET
AGGGGGCGGGGE
TAGGGGCCGGGC
TGGGGGCGGGET
AAAGGGCCGGGC
GGGAGGCCGGGA
GCGGGGCGGGGC
GAGGGGACGAGT
CCGGGGCGGTCC
ATGGGGCGGGGC

Learning
Machinery

select maximum
likelihood model

/V

N\

Models

&) () &) &%) &)

(%) (%) (X3) (Xg) (X5)

Learning based on methods for probabillistic
graphical models (Bayesian networks)



Likelihood improvement over profiles

TRANSFAC: 95 aligned data sets

128

{ -)'\ ; \.'
64 - ) =
y ' 4 »
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s | P/
)
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16 RO N

32 |

Fold-change in likelihood

0.5 I I I I I I

Barash et al, RECOMB 2002



Motif finding problem

Input: A set of potentially co-regulated genes
Output: A common motif in their promoters

[
I
]
]
I
[
I
Sources of data: —
]
¢ Gene annotation (e.g. Hughes et al, 2000) —

¢ Gene expression (e.g. Spellman et al, 1998; Tavazoie et al, 2000)

¢ ChIP (e.g. simon et al, 2001; Lee et al, 2002)



Example

¢Upstream regions from yeast Sacharomyces
cerevisiae genes (300-600bp)

Ay

0— L -
— NN WO~ O ;O
5 - 3

TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTéAACG

CACATCCAACGAATCACCTCACCGTTATCG}GACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATA?GACTCATCCCGAACATGAAA
ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

151212158 8]



Probabilistic Model

T

Motif model Background probability

¢Background probabillity: given
+Motif model — parameters being learned

Hidden variable:
¢ Location of motif within each sequence



Learning models: unalighned data

EM (MEME-like)
+|dentify binding site positions
¢Learn a dependency model

Pt

& & & & &

& &) &) &) &

Identify sites
Model _ —
Learning




ChIP location analysis

Yeast genome-wide location analysis
Target genes annotation for 106 TFs

Gene ABF1 Targets ....... ZAP1 Targets

YALOO1C +
YALOO2W - +
YALOO3W + -
YALOOSC — -

# genes
~ 6000

YALO10C +
YALO12C —
YALO13W -
YPR201W —

+ + | -




Example: Models learned for ABF1 (YPD)

Autonomously replicating sequence-binding factor 1

Known profile _ _
(from TRANSFAC) Learned Mixture of Profiles
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Outline

¢ Introduction

¢Bayesian Networks
¢Learning Bayesian Networks
¢ Transcriptional regulation
¢Markov Networks

¢ Protein-Protein Interactions
¢ Discussion



Transcriptional Regulation



Expression Data

_ Gasch et I. Mol. I 2001

>6X

&= repressed

+1000s of genes
+10-100s of arrays
Possible designs

¢ Biopsies from different
patient populations

¢ Time course
¢ Different perturbations

>6X
induced



Clustering Gene Expression Profiles

Clustering model CGene Cluster>
¢“Cluster” hidden variable ONS D

explains dependencies
among measurement of
a gene in different conditions

¢Each gene is viewed as a sample from the same
distribution



Clustering Genes

Parameters are
shared by
network copies




Clustering Conditions

Now each
condition is an
Instance
pr. ClusteD

Parameters are ‘
shared by network

copies

pr. ClusteD




Joint Clustering?

Exp. Cluster, Exp. Cluster,




Relational Approach

Key ldea:

Expression level is “explained” by properties of
gene and properties of experiment

Gene
Properties

¢ & Properties

Expression
Level

Segal et al, ISMB 2001



Probabilistic Relational Models

Experiment

Gene Cluster Exp. cluster

:....... @ .......:
CPD '
/

GCIuster ECluster | ﬂ (o) " I—evel)

1 1 qo0812F A :
1 2 (0706 D— f \
: | Level Level

-0.7 0.8

P(Level)
4




Unrolling a Relational Network

\

Parameters of
variables from the
same template are
shared

@\ /

N\ Exp. Cluster,

Qene Clusten\~ Y

Gene Cluster2
Gene Cluster3 :

pr. ClusteD

pfm




Expression +Annotations

Array annotations:
Tissue type, Clinical

conditions, — —

Treatments, | e T ¢
: =] Il mn Sl LTI TN

Prognosis : e

‘II

ad k-

Gene annotations:
Function, Process,
Regulatory regions
Cellular location,
protein family

'-||-|_|:| i
b

= o i e - =3

Relational models!



Adding Additional Data

Experiment

-

¢ Annotations
+Binding sites

¢ EXxperimental detalls Segal et al. ISMB 2001



Semantics
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TF to Expression

Key Question:
+Can we explain changes in expression?

General model:

¢ Transcription factor binding sites in promoter region
should “explain” changes in transcription

2O > N/



R(t)

R(t,)

Goal

ACTAGTGCTGA

CTATTATTGCA

CTGATGCTAGC

t, Motif t, Motif

TAGACTGCAGCTAGTAGAGCTCTGCTAG
AGCTCTATGACTGCCGATTGCGGGGCGT
CTGAGCTCTTTGCTCTTGACTGCCGCTT
TTGATATTATCTCTCTGCTCGTGACTGC
TTTATTGTGGGGGGACTGCTGATTATGC
TGCTCATAGGAGAGACTGCGAGAGTCGT
CGTAGGACTGCGTCGTCGTGATGATGCT
GCTGATCGATCGGACTGCCTAGCTAGTA
GATCGATGTGACTGCAGAAGAGAGAGGG
TTTTTTCGCGCCGCCCCGCGCGACTGCT
CGAGAGGAAGTATATATGACTGCGCGCG
CCGCGCGCACGGACTGCAGCTGATGCAT
GCATGCTAGTAGACTGCCTAGTCAGCTG
CGATCGACTCGTAGCATGCATCGACTGC
AGTCGATCGATGCTAGTTATTGGACTGC
GTAGTAGTGCGACTGCTCGTAGCTGTAG

- [CRE -
= LT -1
- COXT -
- GDH3 - ¢
- QCRY -
- RiBDE -
- [CRE -
- QCRE -7
- GDHZ - !
= RIF1 -0
- S0HS -
- S0H1 -
- NDIT -
- COXE -
- COx4g-
- L0 -
- QCRZ -
- PET -

Segal et al, RECOMEB 2002, ISMB 2003
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“Classical” Approach

¢ Cluster gene expression profiles

¢ Search for motifs in control regions of clustered
genes

Control regions

AGCTAGCTGAGACTGCACAC Gene |
TTCGGACTGCGCTATATAGA Gene 11
GACTGCAGCTAGTAGAGCTC Gene Il
CTAGAGCTCTATGACTGCCG Gene IV
ATTGCGGGGCGTCTGAGCTC Gene V
TTTGCTCTTGACTGCCGCTT Gene VI

Procedural
 Apply separate methed.to ea %@-Tf@ztt;a
e Use output of one method as'1 Xt
e Unidirectional information flow




Sequence

Motifs

Motif
Profiles

Expression
Profiles

Flow of Information

TACTGATGATCGTAGTAACCACTGTCGATGATGCTGTGGGGGGTATCGATHHMVIL ACCCCCCGCT

ACGATGCTAGTGTAGCTGATGCTGATCGATCGTACGTGCTAGCTAGCTAGCTAGCISONNIGCTAGC
AGCTAGCTCGACTGIEININY GGGTCGACTGC TGCTCAAACACACACAACACCAAAT ORI GTGG

CGATCGATCGACTGCAGCTA TGATCAAAAACACCATACGCCCCHS®VNNCTGCTCGTAGCAT

GCTAGCTAGCTGATCGATCAGCTACTCGACTGCGASLINRS\GCTAGCTACTTTTTTTTTTTTGCTAGCA
' CCCAACTGACTGATCGTAGTCAGTACGTACGATCGTGACTGATIS®YNIC TCGTCGAIGCAGTT TACG
TATCGACTGCGCATGCTAGCTGCTCGCAAAAAAAAAACGTIGCAGTT CIEORVIN GCTCGCCCCCCCCC

CCCGACTGATCIEININSTAGTCGACTGCTCGATCGATCGTAGCT[HUYNR TATATAIGECAGTTACGGCG

TCGACTGC| |[eyre [eevyy GCAGIT

TCGACTGC GCAGTT

+

i
3
§
b




Unified Probabilistic Model

Sequence | |\ Sequence

Motifs
_ Experiment
Motif
Profiles

Expression Expression

Profiles egal et al, RECOMB 2002, 1SMB 2003



Unified Probabilistic Model

Sequence |Sequence
RPEIC
_ \ XXX/
Motifs Va\Va\Y
e@ S
o | |
Profiles

Expression Expression

Profiles egal et al, RECOMB 2002, 1SMB 2003



Unified Probabilistic Model

Sequence |Sequence

<
a a a a ‘

\ /\ ]\ 7]

Observed

A\

| \ XXX/
Motifs Va\Va\\Y
‘%Qz@
Experiment
| L
Profiles \/
Expression Observed
Profiles

egal et al, RECOMB 2002, ISMB 2003



Probabilistic Model

Sequence

Sequence Regulatory Modules

%- e 2 T -t

genes

_ “s‘f’[{ Motif profile Expression profile
Motifs
Motif
Profiles
Expression
Profiles

egal et al, RECOMB 2002, ISMB 2003



Goal: Reconstruct Cellular Networks

1

R

-|£

e

_ L
_x PP
/ - R SMAD3I
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® ‘SMaD2  SMAD2

‘SMAD3 I‘l" ’d II f

Taki  TAB1

SMADd .+ isyaDg ,F'
SMAD2Z
Pp

Biocarta. http://www.biocarta.com/




Causal Reconstruction for Gene Expression

&

¢Use language of Bayesian networks to reconstruct
causal connections

Friedman et al, JCB 2000



®- -0 BB L

Expresmon
T3 é@ta

Guided K-means
Discretization

= i &

Bayesian Network
Learning Algorithm

CED 8O

Properties of interactions
among genes D RED
O

Critical question: do we believe the structure?



Discovering Structure
P(6|D)

¢ Model selection
e Pick a single high-scoring model
e Use that model to infer domain structure



Discovering Structure
P(6|D)

ISV SV
OGO OO O o
é @D, O @b

Problem
e Small sample size = many high scoring models
e Answer based on one model often useless
e Want features common to many models



Bayesian Approach

¢ Posterior distribution over structures
¢ Estimate probability of features
e Edge XY _
+ Path X—>.. > ¥ Cavesinseer |

o0

P(f | D) = Zf(é) (& | D)

Tw F@S“t‘"'g(aflyéﬂ methods: Indicator function
s €.g., A— L for feature ¥

e Markov Chain Monte Carlo




Experiment

300 deletion
knockout in yeast
[Hughes et al
2000]

¢ 600 genes

¢ Color code
showing
confidence on
edges
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Markov Relations

Question: Do X'and Y directly interact?

Parent-Child (one gene regulating the other)

(0.91) Regulator in Exporter of
confidence mating mating factor
pathway

Hidden Parent (two genes co-regulated by a hidden factor)

Transcription
factor

(ccne

(0.84)

CARGE>

Arginine Arginine
Biosynthesis Biosynthesis



Separators: Intra-cluster Context

MAPK of cell
wall integrity
pathway

Cell wall Protein of
rotein unknown
P function

Cell wall Cell wall
protein protein

¢ All pairs have high correlation
¢ Clustered together



Separators: Intra-cluster Context

MAPK of cell
wall integrity
pathway

Protein of
unknown
function

Cell wall
protein

Cell wall Cell wall
protein protein

¢ SLT2: Pathway regulator, explains the dependence

+Many signaling and regulatory proteins identified as
direct and indirect separators



5@ TL ®

. Expression 2. LLIER] (Rl Preprocess
: a-"ééta .“, Discretization
Bayesian Network
Learning Algorithm, Learn
Mutation modeling model
+ Bootstrap

v v v

Feature
‘ Markov I ‘ Separator I ‘ Regulator | extraction

‘ Reconstruct Sub-Networks I Feature
assembly

Global network— Local features — Sub-network




Subnetworks in Compendium Dataset
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“Mating response” Substructure
STE12 (main TF), Fus3 (Main MAPK) are marginal




From Networks to Modules

MAPK of cell
wall integrity
pathway

CRH]1 YPS3

—— One—coemmen-regulatienfunetion :
Regulatien Regulation Regulation Regulation
Function-1 Function-2 Function-3 Function4

Idea: enforce common regulatory program

¢ Statistical robustness: Regulation programs are
estimated from m*k samples

+QOrganization of genes into regulatory modules:
Concise biological description



Gene partition
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i Regulation Gene |
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+learning to modules
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Segal et al, Nat Gen 2003



Learned Network (fragment)

Module 25
(59 genes)

Module 4
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Segal et al, Nat Gen 2003



® HAP4 Motif
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Segal et al, Nat Gen 2003



MRNA

MRNA

A Major Assumption

active
protein
tr. rate

MRNA
degradation




Realistic Regulation Modeling

¢ Model the closest
connection

¢ Active protein levels are
not measured

¢ Transcript rates are

MRNA
computed from degradation

expression data and
MRNA decay rates



New Proposed Scheme

eKnown biology
eLOcation data
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Nachman et al, ISMB 2004



General Two Regulator Function

|. Compute distribution of promoter states O

State Equations P(promoter state)

11
S, +tf, —— Sitf;

T2
S, +tf, ~— S.tf,

f(TF,, TF,) should describe mean transcription rate of G

Nachman et al, ISMB 2004



General Two Regulator Function

I1. Assign activation level to each state

State Equations P(promoter state)

Y1
S, +tf, — Sitf;

Lo ¥
d O 'ad:O

T2
S, +tf, ~— S.tf,

T @B
(G
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Nachman et al, ISMB 2004



K, [S 1[Tf]=k,[S"]
[S]+[ST]=1

v = 250
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TF activity level

tf

f(tf, y)

Example: One

Activator Function

Time
Nachman et al, ISMB 2004



Adding a Temporal Aspect

For time series — add explicit time modeling

Time
t-1 Per5|stenc t+1
TF, TF

TF, F, “!EE’D
(6,) (G) (60 @@@ (6,) (6 (60




Caulobacter CtrA regulon

Is There a
Second

Regulator?

in ctrAts

@
o
c
m
=
Qo

B cco3so pentapeptide repeat famlly protein

CC1872 peptidase M23 M37 family / conserved hypothetical
CC0018 molybdenum cofactor biosynthesis proteins MocaABCDE
CC2700 hypotheticals (5)

CC1396 L-lactate 2-monooxygenase

CC3202 ribosomal proteins $12/ §7

CC3291 hypothetical

CC2166 pantoate--beta-alamne Ilgase PanC
CC3476 hypothetical / £ actc
CC1211 hypothetical

CC3218 hypothetical

CC3699 hypothetical

CC2165 conserved hypothetical

CC2644 PhoH-related

CGC2316 tr: oti
CC2540 cell division pro ein FtsZ

e HK4

CC2215 hypothetical / hypoxanthine-guanine phosphoribosyltransferase

CC1210 cytochrome c family protein

CC0484 peptidyl-tRNA hydrolase Pth / hypothetical
CC1923 ribosomal protein S2

cc1072 hypothe‘tlcal

CC1902 transcr | repressor L

CC2317 methyl-acceptlng chemotaxis protein McpM

CC0050 S-adenosylmethionine synthetase / conserved hypothetical
CC2810 methyl-accepting chemotaxis protein McpR

CC3286 r
CC3599 B ipoN | hypothetical
CC2552 cell division and cell wall synthesis proteins FtsW / MurG
CC0233 flagellin modification proteins FImA / FImB

CC2062 flagellar proteins FIliL / FIiM

CC1458 flagellar proteins FIbT / FlaF

CC2868 putative NeuB

CC0378 DNA adenine methyltransferase CcrM
CC2628 holdfast synthesis proteins HfaA / Hfa

CC0430 Chemotaxis proteins McpA/CheX/Ch 1eAlICheW/CheR/CheB/CH

CC2949 hypotheticals (3)

CC2063 flagellar basal-body rod proteins FigF / FigG
CC1457 flagellin modification proteins FImG / FimH
CC1035 hypothetical

CC0953 flagellar basal-body rod proteins FigB / FigC / FIiE

CC0429 hypothetical

CC0793 flagellins FIjN / FljO
CC0792 flagellin FIjM

CC1307 conserved hypothetlcal
CC2324 sensor histic o
CC1963 ATP-dependenl Clp protease proteolyilc subuml CIpP
CC1101 conserved hypothetical / hypothetical

‘llICheD/CheU/CheYIlICheE

CC3219
CC1850 r«
CC3317 hypothetlca protein
CC0232 hypothetical protein
CC3295 hypothetical protein
CC2640 hypothetical protein
CC2948 pilus subunit protein PilA

repression induction
=
>2.50 =125 1:1 >1.25 >2.50

= decreased mRNA levels in ctrA401!S
Bl = increased mRNA levels in ctrA4071S




Caulobacter CtrA regulon

BIC score: 62.16 (log likelihood: 134.69)

r

input rates

BIC score: 252.36 (log likelihood: 344.47) 2

Input

input rates

Pred.

r

predicted rates

error

delta (input - predicted)




Slide 106

il
show in animation:
input r -> model -> predicted h -> pred r -> error
remove p-val and say in words

stress "realistic"
iftach, 3/31/2004



Multiple Regulon Experiments

Can we describe the cell transcriptome using a
small number of hidden regulators?

few TFs

many genes

*“Realistic” dimensionality reduction

*Allows prediction of target gene
dynamics




Outline

¢ Introduction

¢Bayesian Networks
¢Learning Bayesian Networks
¢ Transcriptional regulation

¢ Gene expression

¢ Protein-Protein Interactions
¢ Discussion



Protein-Protein Interactions

Isolate protein
; complex

Affinity
column

Excise bands

Digest with trypsin 3
Protein 1 o - t two hybrid
Protein2 | Analyse by f T=+" :
Protein 3 } spectromety - et al. 2000

Protein 4 | bioinformati

profiles

Protein 5




Using Protein-Protein Interactions

¢ Can we use Interactions to better understand
protein attributes?

Intuition: Interacting proteins tend to be similar

n the same cellular compartment
nvolved in the same function

Have similar expression patterns



Motivation
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&

P(AB.C.D) = L Expl(£(A,8) + £(B,C)+ £(C.D)+ £.(D,E))

Normalization constant:| Potential function :|

Undirected graph:

e Edge X — Y if there Is a factor that includes both
X and Y In the same scope



Markov Networks vs Bayesian Network

¢Undirected graph
=>»no acyclicity constraints

¢ Potential functions

=>»less natural and interpretable than conditional
distributions

¢Inference is similar to that of Bayesian networks
¢Learning is computationally harder



Relationship between Directed &
Undirected Models

Chain Graphs
(partially directed)

Markov
networks
(undirected)

Bayesian
networks
(directed)




Relational Markov Networks

¢ Similar to Relational Bayesian Networks

¢Duplicate potentials Pre7 Pre9
/Pre7 Pup3| f
oo Pup3 Pre5
O 1 -1 up re
1 0 -1
1 1 2 /Pre7 Preb| f
= -/ 0]lo o
0) 1 -1
1 0 -1
\ 1 1 4 /




Outline

¢ Introduction

¢Bayesian Networks
¢Learning Bayesian Networks
¢ Transcriptional regulation

¢ Gene expression

¢Markov Networks

Protein-Protein Interactions

¢ Discussion



Relational Markov Networks for
Protein-Protein Interaction

¢Random variable for each attribute of protein

e Pre7.nucleus
e Pre7.mitochondria » Cellular compartment

e Pre7/.cytoplasam

. LB B |
\

e Pre7.ribosomal |
e Pre7.DNA-binding [ Functional category (GO)

() ~

¢Introduce potential between interacting pairs

| | £ (p11UClEUS 9 .NUCIEUS)
pinteracts with ¢

Deng et al, RECOMB 2003



Relational Markov Networks for
Protein-Protein Interaction
Three phase process
+Model construction
e Use Iinteraction network to construct model
¢Learning phase

e Use know proteins attributes to estimate
potentials for each type of attribute

¢ Prediction phase

e Use inference to predict attributes for all proteins
given evidence

e Simultaneous predictions for all the proteins in
the network



Relational Markov Networks for
Protein-Protein Interaction

@ Got NucleuD
annown |OD




Inferring “Pathways”

¢Assumption: pathways exhibit two properties
e Have similar expression profiles
e Protein products more likely to interact
¢Use both types of data to find pathways

Segal et al, ISMB 2003



Probabilistic Model

¢ (Genes are partitioned into “pathways”:
e Every gene is assigned to one of ‘k’ pathways

e Random variable for each gene with domain
{1,...,k}

¢EXpression component:

e Model likelihood is higher when genes in the
same pathway have similar expression profiles

¢ Interaction component:

e Model likelihood is higher when genes in the
same pathway interact

Segal et al, ISMB 2003



Expression Component

Naive Bayes

Pathway of gene g

Expression level of gene g in m arrays

Segal et al, ISMB 2003



Protein Interaction Component

¢Interacting genes are more likely to be in the same
pathway

protein proaduct
/nteraction

WN=2WN=WN =2

Compatibility potential
Segal et al, ISMB 2003



Joint Probabilistic Model

1 1 | —
1 2 =
1 3 =
2 1 =
2 2 | I
2 3 =
3 1 =
3 2 |-
\3 3 I:I/




Comparison to Clustering

¢ Check enrichment of known gene annotations in pathways
+ Calculate significance (negative log p-value)

-Log(pvalue) for Method
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-Log(pvalue) for Standard Clustering

I \ I

10 20 30 40 50 60 70 80



Predicting Protein-Protein Interactions
-"-
4
i

@

b}
)

—_—

i
¢

inﬂ

JRlc et al. Blomformatlcs 2001

-/ al. ience 2003
tg Bir&9BMC Bioinformatics 2003
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Predicting Interactions

Taf1

Pﬁnlem Eacﬁteractlon is




Motivation




Design Plan
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Building the Model

L2 T | Score
0 0 1
0 1 1
1 0 1
1 1 104
0 0 1
0 1 |04
1 0 1
L(Pre7 ,nuc) 12

L(Pre9,nuc)



Using a Relational Model

4 )

So far, equivalent to integrated prediction
of each interactiep independently

p(z) = Ei;&j (1;[ Y(I; @ 1;[17?:,3'))/

\_

I (Pre7,Pre9)
\ TA(Pre7 Pre9)



Building the Model




L(p;.nuc)

T

The Complete Model

Cellular
localization

L(ps.l1)

:

é

Localization
assays

LA(ps.11)

Interactions
I(p;.p2)
Interaction
assays
TA(p;.P2)

I (p1.p2)

IA(py.p2)



Learning the Parameters

¢ Maximizing the likelihood (fully observed case)

» Directed parameters _
° Uﬂdil’%T Cellular Irs |
_ . Interactions
o Partially Ghff| 'ecalization | (> To. 52 >
. I L(p,, I : J 1.P2
o Filling thel__*P="Y)__ kg inferenl
e Maximizing thllikelihood 1
© L
S .
% Localization Interacti
2 assays assays
O 4 LA(Pl 1) | I

p(z) = _ch(ﬁcc) Hp(yz‘Paz)



Model Evaluation: S.cerevisiae
/Large scale data: A

* Yeast two hybrid (Ito et al. + Uetz et al .)
« Complexes (MIPS)

e Correlated domain signatures (Sprinzak et al.)

\- Protein localization (Huh et al.) /

— J30,UUU potentiars

@\37 free parameters 4/4
e PAINF

Med5
U von Mering et al. Nature 2002




Evaluation: Cross Validation

Interacting pair
Non Interacting pair




Evaluation: Parameter Estimation

Hide a set of test interactions and learn parameters

<D COID @
@ Pre7 Pre9 Taf10
N—

@ Interacting pair
@ Non Interacting pair




Evaluation: validate Predictions

Beelleirpeddiatrameters to predict hidden interactions

Predicted inter. = — =—

Predicted non inter, = — =

Interacting pair

Non Interacting pair



Evaluation: ROC curve
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Outline

¢ Introduction

¢Bayesian Networks
¢Learning Bayesian Networks
¢ Transcriptional regulation

¢ Gene expression

¢Markov Networks

¢ Protein-Protein Interactions

Discussion



Philosophy

|dentify biological problem

-

Formulate model

-

Learning/Inference procedures

e

Data curation, apply procedure, get results

-

Biological interpretation

o

New discoveries




Recap

+Models of evolution
e Pedigree analysis
e Sequence evolution

¢ Transcription Factors
e Binding sites
+Gene Expression
e Clustering, interaction networks
¢ Protein-Protein interaction networks

¢ Combination of subsets of these



Additional Areas

+Gene finding

e Extended HMMs + evolutionary models
¢Analysis of genetic variation

e SNPs, haplotypes, and recombination
¢ Protein structure

e 2nd-gry and 3rd-ary structure, molecular
recognition



Take Home Message

¢Graphical models as a methodology
e Modeling language
e Foundations & algorithms for learning

e Allows to incorporate prior knowledge about biological
mechanisms

e Learning can reveal “structure” in data

¢EXxploring unified system models
e Learning from heterogeneous data
+ Not simply combining conclusions

e Combine weak evidence from multiple sources
= detect subtle signals

e Get closer to mechanistic understanding of the signal
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