Probabilistic Graphical Models in Systems Biology

Nir Friedman

Hebrew University

Includes slides by:

Yoseph Barash, Nebojsa Jojic, Ariel Jaimovich, Tommy Kaplan, Daphne Koller, Iftach Nachman, Dana Pe'er, Tal Pupko, Aviv Regev, Eran Segal

Challenges of The Post-Genome Era

High-throughput assays:

- Observations about one aspect of the system
- Often noisy and less reliable than traditional assays
- Provide partial account of the system

Challenges of The Post-Genome Era

Issues:

- ◆Measurement noise
 - ⇒ Conclusions supported by more than one assay
- ◆Each assay provides a view of a single aspect
 - ⇒ Combine multiple types of assays for more coherent reconstruction

- Combinatorial explosion of assay combinations
 - ⇒ Principles for integrating results from new assays

Solution Strategies

Procedural

- Specify a set of steps for reaching biological conclusions from experimental data
 - Example
 - Cluster gene expression profiles
 - Search for enriched motif in each cluster
 - ***** . . .
- emphasis on the computational procedure and the order of data manipulation steps

Model Based Approach

- ◆Step 1: define class of potential models
- ◆Step 2: reconstruct a specific model
- ◆Step 3: visualization & testable hypotheses
- Emphasis on the choice of model and how to use it
 - The data manipulation steps are derived from the model

Model Based Approach

Representation – defining the class of models

- What entities to involve
- Model granularity
- Identifiably

Model Based Approach

Interpretation – what do they tell us about system

- Relation between components in the model to biological entities/mechanisms
- What predictions can be made with the model

Why Model-Based?

Declarative

- Explicit statement of the assumptions made
- Closer connection between biological principles and the solution
- Decouple the "what" (model) from the "how"

Flexibility

 Can use different computational approaches to perform the task specified by the model

Reusability

 Modifications & extensions are specified the level of the model

Stochastic Models

Use the probability theory to describe the system

- ◆State of the system: assignment of value to all the attributes of all the relevant entities
- A distribution over these states describe which states are achievable and which ones are abnormal

Extensions:

- Modeling inputs: interventions, conditions
- Modeling outputs: phenotype, behavior, assays

Why Stochastic Models?

◆Inherent noise in the system

Uncertainty due to granularity of the model

◆Noise in sensors

◆Imperfect modeling --- noise as slack variable

What Can We Do with a Model?

◆Inference

 Set some evidence, compute posterior over unobserved variables

◆Estimation/Learning

 "Fill in the gaps" in the model based on empirical data

The Representation Hurdle

- Joint distributions grow large
 - Exponential in the number of attributes
 - Problem for inference & learning

We need to find **compact** representation

Strategy:

- Impose constraints
- Exploit these constraints for compact representation

Probabilistic Graphical Models

- Language(s) for representing complex joint distributions
- Generic methods for performing tasks with these representations

In this tutorial we will examine these in the context of modeling biological systems.

Outline

- ◆Introduction
- Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- Markov Networks
- ◆Protein-Protein Interactions
- ◆ Discussion

Example: Pedigree

A node represents an individual's genotype

Joint distribution

$$P(G_{Bart}, G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

$$= P(G_{Bart} \mid G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

$$P(G_{Lisa} \mid G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

Modeling assumption:

 Ancestors can effect descendants' genotype only by passing genetic materials through intermediate generations

$$P(G_{Bart}, G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

$$= P(G_{Bart} \mid G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

$$P(G_{Lisa} \mid G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

Modeling assumption:

 Ancestors can effect descendants' genotype only by passing genetic materials through intermediate generations

$$P(G_{Bart}, G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge}, ...)$$

$$= P(G_{Bart} | G_{Homer}, G_{Marge})$$
 $P(G_{Lisa} | G_{Maggie}, G_{Homer}, G_{Marge}, ...)$

• • •

Modeling assumption:

 Ancestors can effect descendants' genotype only by passing genetic materials through intermediate generations

$$P(G_{Bart}, G_{Lisa}, G_{Maggie}, G_{Homer}, G_{Marge},...)$$

$$= P(G_{Bart} | G_{Homer}, G_{Marge})$$

$$P(G_{Lisa} | G_{Homer}, G_{Marge})$$

• • •

Extending this argument, we can derive a functional form for general pedigrees

Descendants

$$P(G_1, G_2,...) = \left(\prod_{j \in Ancestors} P(G_j)\right) \left(\prod_{i \in Descendants} P(G_i \mid G_{father(i)}, G_{mother(i)})\right)$$
Probability of genetic transmission within family

Probability of random genotype in population

Sequence evolution

Each random variable is the sequence of a taxa (ancest or current day)

Assumption (neutral changes):

◆Past history does not affect how the sequence will change in the future

$$P(S_{A}, S_{B}, S_{C}, ..., S_{I}) = P(S_{A} | S_{B}, S_{C}, ..., S_{I})$$

$$P(S_{B} | S_{C}, ..., S_{I})$$
...
$$P(S_{F} | S_{G}, S_{H}, S_{I})$$

$$P(S_{A}, S_{B}, S_{C}, ..., S_{I}) = P(S_{A} | S_{F})$$

$$P(S_{B} | S_{C}, ..., S_{I})$$

$$...$$

$$P(S_{F} | S_{G}, S_{H}, S_{I})$$

$$P(S_{A}, S_{B}, S_{C}, ..., S_{I}) = P(S_{A} | S_{F})$$

$$P(S_{B} | S_{F})$$
...
$$P(S_{F} | S_{G}, S_{H}, S_{I})$$

$$P(S_A, S_B, S_C, ..., S_I) = P(S_A \mid S_F)$$

$$P(S_B \mid S_F)$$
Probability of mutations over the given time period
$$P(S_E \mid S_G)$$

. . .

Markov Assumption

Generalizing to DAGs:

 A child is conditionally independent from its non-descendents, given the value of its parents

Often a natural assumption for causal processes

 if we believe that we capture the relevant state of each intermediate stage

Ancestor

Bayesian Networks

Bayesian Networks

Ind(C ; B | A)

Ind(D; A, B | C)

Ind(E; B, C | A, D)

. . .

$$P(A,B,C,D,E) = P(A)$$

$$P(B \mid X)$$

$$P(C \mid X, X)$$

$$P(D \mid X, X, X)$$

$$P(E \mid X, X, X, X)$$

Bayesian Networks

- ◆Flexible language to capture a range Maximal independence → Full dependence
- ◆Formal correspondence between
 - Acyclic directed graph structure
 - Factorization of joint distribution as a product of conditional probabilities
 - A set of (conditional) independence statements

Example Structures

- ◆Markov chain
- Hidden MarkovModel (HMM)

◆Factorial HMM

◆Tree

Local Probability Models

Bayesian Network Structure

⇒Simpler product form

To specify a distribution we need to supply these conditional probabilities

◆Describe to "local" stochastic effects

Bayesian Network Semantics

Qualitative part

conditional independence statements in BN structure

Quantitative part

local

probability = distribution
models

Unique joint
over domain

Compact & efficient representation:

♦ nodes have \leq k parents \Rightarrow $O(2^k n)$ vs. $O(2^n)$ params

Example: "ICU Alarm" network

Domain: Monitoring Intensive-Care Patients

♦37 variables

MINVOLSET ♦509 parameters KINKEDTUBE INTUBATION VENTMACH DISCONNECT ...instead of 254 SHUNT VENITUBE MINOVL FIO2 VENTALV ANAPHYLAXIS **PVSAT** ARTCO2 EXPCO2 SAO2 INSUFFANESTH LVFAILURE HYPOVOLEMIA CATECHO HISTORY ERRBLOWOUTPUT (ERRCAUTER) PCWP HRBP

Hidden Variable(s)

A simple model of clustering

- ◆C gene's cluster
- $X_1, ..., X_n$ expression of the gene in different experiments

Independence assumption:

 $\bullet I(X_i, X_j \mid C)$

Hidden Variable(s)

Marginal distribution:

$$P(X_1,...,X_n) = \sum_{c} P(X_1 \mid c) \cdots P(X_n \mid c) P(c)$$

- No conditional independencies in the marginal distribution
- ◆The variable C "channels" the dependencies between observed variables

Hidden Variables

Hidden Markov Model

Phylogentic Trees

The topology of hidden variables poses different constraints on the marginal distribution

Inference - Queries

- Posterior probabilities
 - Probability of any event given any evidence
- Most likely explanation
 - Scenario that explains evidence
- Rational decision making
 - Maximize expected utility
 - Value of Information
- ◆Effect of intervention

Inference - Algorithms

Complexity:

Worst case - exponential cost

Yet,

- Generic exact inference algorithms based on dynamic programming
 - Efficient in some network topologies
- Approximate inference algorithms
 - With the appropriate "dark art" they perform well

For the purposes of this tutorial we assume we can solve queries in networks.

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- Markov Networks
- ◆Protein-Protein Interactions
- ◆Discussion

Transcriptional Regulation

Transcription Factor Binding Sites

- Gene regulatory proteins contain structural elements that can "read" DNA sequence "motifs"
- The amino acid DNA recognition is not straightforward
- Experiments can pinpoint binding sites on DNA

Zinc finger

Helix-Turn-Helix

Leucine zipper

Modeling Binding Sites

Given a set of (aligned) binding sites ...

- Consensus sequence
- Probabilistic model (profile of a binding site)

A												
C	1	3	0	0	0	0	13	6	0	0	1	9
G T	5	5	13	13	14	14	0	8	14	12	13	1
T	4	3	0	0	0	0	0	0	0	1	0	3

GCGGGGCCGGGC
TGGGGGCCGGGG
TAGGGGCCGGGC
TGGGGGCCGGGC
TGGGGGCCGGGC
ATGGGGCCGGGC
ATGGGGCCGGGC
AAAGGGCCGGGC
GGGAGGCCGGGC

Is this sufficient?

How to model binding sites?

 $P(X_1 X_2 X_3 X_4 X_5) = ?$ represents a distribution of binding sites

Profile: Independency model

Tree: Direct dependencies

Mixture of Profiles:

Global dependencies

Mixture of Trees:

Both types of dependencies

Arabidopsis ABA binding factor 1

Profile T

Test LL per instance -19.93

Test LL per instance -18.47 (+1.46) (improvement in likelihood > 2.5-fold)

Mixture of Profiles

Test LL per instance -18.70 (+1.23) (improvement in likelihood > 2-fold)

The Knowledge Acquisition Bottleneck

How do we construct these models?

- Knowledge acquisition is an expensive process
- ◆Often we don't have an expert

Harnessing Data

- Amount of available information growing rapidly
- Learning allows us to construct models from raw data
- ◆The the details of learned models provide insights about the data

Learning Bayesian networks

Known Structure, Complete Data

- Network structure is specified
 - Learner needs to estimate parameters
- Data does not contain missing values

Unknown Structure, Complete Data

- Network structure is not specified
 - Inducer needs to select arcs & estimate parameters
- Data does not contain missing values

Known Structure, Incomplete Data

- Network structure is specified
- Data contains missing values
 - Need to consider assignments to missing values

Unknown Structure, Incomplete Data

- Network structure is not specified
- Data contains missing values
 - Need to consider assignments to missing values

The Learning Problem

	Known Structure	Unknown Structure
Complete Data	Statistical	Discrete optimization
	parametric	over structures
	estimation	(discrete search)
	(closed-form eq.)	
Incomplete Data	Parametric	Combined
	optimization	(Structural EM, mixture
	(EM, gradient	models)
	descent)	

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- Markov Networks
- ◆Protein-Protein Interactions
- ◆Discussion

Learning models: Aligned binding sites

Aligned binding sites

GCGGGGCCGGGC TGGGGGGGGT **AGGGGGGGGG** TAGGGGCCGGCC TGGGGGGGGT **AAAGGGCCGGGC GGGAGGCCGGGA** GCGGGGCGGGC GAGGGGACGAGT CCGGGGCGGTCC **ATGGGGCGGGC**

Learning based on methods for probabilistic graphical models (*Bayesian networks*)

Likelihood improvement over profiles

TRANSFAC: 95 aligned data sets

Motif finding problem

Input: A set of potentially co-regulated genes

Output: A common motif in their promoters

Sources of data:

- ◆Gene annotation (e.g. Hughes et al, 2000)
- ◆Gene expression (e.g. Spellman et al, 1998; Tavazoie et al, 2000)
- ◆ChIP (e.g. Simon et al, 2001; Lee et al, 2002)

Example

◆Upstream regions from yeast *Sacharomyces cerevisiae* genes (300-600bp)

Probabilistic Model

- Background probability: given
- ◆Motif model parameters being learned

Hidden variable:

Location of motif within each sequence

Learning models: unaligned data

EM (MEME-like)

- Identify binding site positions
- Learn a dependency model

ChIP location analysis

Yeast genome-wide location analysis

Target genes annotation for 106 TFs

Example: Models learned for ABF1 (YPD)

Autonomously replicating sequence-binding factor 1

Known profile (from TRANSFAC)

Learned profile

Learned Mixture of Profiles

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- Gene expression
- ◆Markov Networks
- ◆Protein-Protein Interactions
- ◆Discussion

Transcriptional Regulation

Expression Data

- ♦1000s of genes
- ♦10-100s of arrays
- Possible designs
- Biopsies from different patient populations
- ◆Time course
- Different perturbations

Clustering Gene Expression Profiles

Gene Cluster

Clustering model

- "Cluster" hidden variable explains dependencies among measurement of a gene in different conditions
- Each gene is viewed as a sample from the same distribution

Clustering Genes

Clustering Conditions

Can we cluster both genes and conditions?

Joint Clustering?

A single network that spans the whole data

- Each expression variable has its own parameters
- •# parameters >> # observations

Relational Approach

Key Idea:

Expression level is "explained" by properties of gene and properties of experiment

Probabilistic Relational Models

Unrolling a Relational Network

Expression +Annotations

Array annotations:

Tissue type, Clinical conditions, Treatments, Prognosis

Gene annotations:
Function, Process,
Regulatory regions
Cellular location,
protein family

Relational models!

Adding Additional Data

- Annotations
- Binding sites
- Experimental details

Semantics

TF to Expression

Key Question:

◆Can we explain changes in expression?

General model:

◆Transcription factor binding sites in promoter region should "explain" changes in transcription

Goal

ACTAGTGCTGA

CTATTATTGCA

CTGATGCTAGC

t₂ Motif t₁ Motif

 $R(t_2)$

PAGACTGCACACTGATCGAG JACTGCGCTATA TAGACTGCAGCTAGTAGAGCTCTGCTAG AGCTCTATGACTGCCGATTGCGGGGCGT CTGAGCTCTTTGCTCTTGACTGCCGCTT TTGATATTATCTCTCTGCTCGTGACTGC TTTATTGTGGGGGGGACTGCTGATTATGC TGCTCATAGGAGAGACTCCGT CGTAGGACTGCGTCGTCGTGATGATGCT GCTGATCGATCGGACTGCCTAGCTAGTA GATCGATGTGACTGCAGAAGAGAGAGGGG TTTTTTCGCGCCCCCCCCCCGCGACTGCT CGAGAGGAAGTATATATGACTGCGCGCG CCGCGCGCACGGACTGCAGCTGATGCAT GCATGCTAGTAGACTGCCTAGTCAGCTG CGATCGACTCGTAGCATGCATCGACTGC **AGTCGATCGATGCTAGTTATTGGACTGC** GTAGTAGTGCGACTGCTCGTAGCTGTAG

Segal et al, RECOMB 2002, ISMB 2003

"Classical" Approach

- Cluster gene expression profiles
- Search for motifs in control regions of clustered genes

- Apply separate method to each txpe of data
- Use output of one method as input to the next
- Unidirectional information flow

Flow of Information

Unified Probabilistic Model

Segal *et al*, *RECOMB* 2002, ISMB 2003

Unified Probabilistic Model

Segal *et al*, *RECOMB* 2002, ISMB 2003

Unified Probabilistic Model

Probabilistic Model

Goal: Reconstruct Cellular Networks

Biocarta. http://www.biocarta.com/

Causal Reconstruction for Gene Expression

 Use language of Bayesian networks to reconstruct causal connections

Critical question: do we believe the structure?

Discovering Structure

- ◆Model selection
 - Pick a single high-scoring model
 - Use that model to infer domain structure

Discovering Structure

Problem

- Small sample size ⇒ many high scoring models
- Answer based on one model often useless
- Want features common to many models

Bayesian Approach

- Posterior distribution over structures
- Estimate probability of features
 - Edge $X \rightarrow Y$
 - Path $X \rightarrow ... \rightarrow Y$

$$P(f \mid D) = \sum_{G} f(G)P(G \mid D)$$
Feature of G methods: Indicator function

300tstrap

Indicator function for feature f

Markov Chain Monte Carlo

Bayesian score for G

Experiment

- ◆300 deletion knockout in yeast [Hughes et al 2000]
- ♦600 genes
- Color code showing confidence on edges

Markov Relations

Question: Do X and Y directly interact?

Parent-Child (one gene regulating the other)

ARG5

Arginine

Hidden Parent (two genes co-regulated by a hidden factor)

Separators: Intra-cluster Context

- All pairs have high correlation
- Clustered together

Separators: Intra-cluster Context

- ◆SLT2: Pathway regulator, explains the dependence
- Many signaling and regulatory proteins identified as direct and indirect separators

Global network→ Local features → Sub-network

Subnetworks in Compendium Dataset

From Networks to Modules

Idea: enforce common regulatory program

- ◆Statistical robustness: Regulation programs are estimated from *m*k* samples
- Organization of genes into regulatory modules:
 Concise biological description

Learned Network (fragment)

Segal et al, Nat Gen 2003

Segal et al, Nat Gen 2003

A Major Assumption

degradation

Realistic Regulation Modeling

Model the closest connection

- Active protein levels are not measured
- Transcript rates are computed from expression data and mRNA decay rates

New Proposed Scheme

Nachman et al, ISMB 2004

General Two Regulator Function

I. Compute distribution of promoter states

 $f(TF_1, TF_2)$ should describe mean transcription rate of G

General Two Regulator Function

II. Assign activation level to each state

Example: One Activator Function

$$\kappa_{b}[S^{-}][tf] = \kappa_{d}[S^{tf}]$$

$$[S^{-}] + [S^{tf}] = 1$$

$$\kappa_{b}$$

Adding a Temporal Aspect

For time series – add explicit time modeling

Caulobacter CtrA regulon

Caulobacter CtrA regulon

i1

show in animation:

input r -> model -> predicted h -> pred r -> error

remove p-val and say in words

stress "realistic"

iftach, 3/31/2004

Multiple Regulon Experiments

Can we describe the cell transcriptome using a small number of hidden regulators?

- "Realistic" dimensionality reduction
- Allows prediction of target gene dynamics

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- Markov Networks
- ◆Protein-Protein Interactions
- ◆Discussion

Protein-Protein Interactions

Using Protein-Protein Interactions

Can we use interactions to better understand protein attributes?

Intuition: Interacting proteins tend to be similar

- In the same cellular compartment
- Involved in the same function
- Have similar expression patterns

• ...

Motivation

How do we formulate this type of reasoning?

WEUJ

		_		
	Α	В	f_1	
	0	0	-1	
	0	1	0	
	1	0	1	
Define jd	1	1	1	\

$$P(A,B,C,D) = \frac{1}{Z} Exp(f_1(A,B) + f_2(B,C) + f_3(C,D) + f_4(D,E))$$

Normalization constant

Potential function

Undirected graph:

 Edge X – Y if there is a factor that includes both X and Y in the same scope

Markov Networks vs Bayesian Network

- Undirected graph
 - → no acyclicity constraints
- ◆Potential functions
 - →less natural and interpretable than conditional distributions

- ◆Inference is similar to that of Bayesian networks
- Learning is computationally harder

Relationship between Directed & Undirected Models

Relational Markov Networks

◆Similar to Relational Bayesian Networks

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- ◆Markov Networks
- Protein-Protein Interactions
- ◆Discussion

Relational Markov Networks for Protein-Protein Interaction

- Random variable for each attribute of protein
 - Pre7.nucleus
 - Pre7.mitochondria
 - Pre7.cytoplasam
 - . . .
 - Pre7.ribosomal
 - Pre7.DNA-binding
 - ...

Cellular compartment

Functional category (GO)

Introduce potential between interacting pairs

 $\prod_{p \text{ interacts with } q} f_{\text{nucleus}}(p.\text{nucleus}, q.\text{nucleus})$

Relational Markov Networks for Protein-Protein Interaction

Three phase process

- Model construction
 - Use interaction network to construct model
- Learning phase
 - Use know proteins attributes to estimate potentials for each type of attribute
- ◆Prediction phase
 - Use inference to predict attributes for all proteins given evidence
 - Simultaneous predictions for all the proteins in the network

Relational Markov Networks for Protein-Protein Interaction

Inferring "Pathways"

- ◆Assumption: pathways exhibit two properties
 - Have similar expression profiles
 - Protein products more likely to interact
- ◆Use both types of data to find pathways

Probabilistic Model

- ◆Genes are partitioned into "pathways":
 - Every gene is assigned to one of 'k' pathways
 - Random variable for each gene with domain {1,...,k}
- **◆**Expression component:
 - Model likelihood is higher when genes in the same pathway have similar expression profiles
- ◆Interaction component:
 - Model likelihood is higher when genes in the same pathway interact

Expression Component

Naïve Bayes

Protein Interaction Component

Interacting genes are more likely to be in the same pathway

Joint Probabilistic Model

Comparison to Clustering

- Check enrichment of known gene annotations in pathways
- ◆Calculate significance (negative log p-value)

Predicting Protein-Protein Interactions

Predicting Interactions

Motivation

Design Plan

New variables denoting

- Whether two proteins interacts
- Experimental observations about each interaction

Main difficulty:

High connectivity between these variables

Building the Model

Using a Relational Model

So far, equivalent to integrated prediction of each interaction independently

$$p(x) = rac{1}{Z} \prod_{i \neq j} \left(\prod_{l} \psi(I_{i,j}, L_i^l, L_j^l) \prod_{a} p(IA_{i,j}^a) I_{i,j}) \right)$$

IA(Pre7,Pre9)

Srb1
Pup3
I (Pre7,Pre9)
IA(I

Building the Model

The Complete Model

Learning the Parameters

Maximizing the likelihood (fully observed case)

Model Evaluation: S.cerevisiae

Large scale data:

- Yeast two hybrid (Ito et al. + Uetz et al.)
- Complexes (MIPS)
- Correlated domain signatures (Sprinzak et al.)
- Protein localization (Huh et al.)

38,000 potentiais

37 free parameters

ain

Evaluation: Cross Validation

Evaluation: Parameter Estimation

Hide a set of test interactions and learn parameters

Evaluation: Validate Predictions

Decluced ped diation eters to predict hidden interactions

Evaluation: ROC curve

Outline

- ◆Introduction
- ◆Bayesian Networks
- Learning Bayesian Networks
- Transcriptional regulation
- ◆Gene expression
- Markov Networks
- ◆Protein-Protein Interactions
- Discussion

Philosophy

Recap

- Models of evolution
 - Pedigree analysis
 - Sequence evolution
- Transcription Factors
 - Binding sites
- ◆Gene Expression
 - Clustering, interaction networks
- ◆Protein-Protein interaction networks
- Combination of subsets of these

Additional Areas

- ◆Gene finding
 - Extended HMMs + evolutionary models
- Analysis of genetic variation
 - SNPs, haplotypes, and recombination
- ◆Protein structure
 - 2nd-ary and 3rd-ary structure, molecular recognition

Take Home Message

Graphical models as a methodology

- Modeling language
- Foundations & algorithms for learning
- Allows to incorporate prior knowledge about biological mechanisms
- Learning can reveal "structure" in data

Exploring unified system models

- Learning from heterogeneous data
 - Not simply combining conclusions
- Combine weak evidence from multiple sources
 - ⇒ detect subtle signals
- Get closer to mechanistic understanding of the signal

The END