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Abstract

Characterizing the DNA-binding specificities of transdoptfactors is a key prob-
lem in computational biology that has been addressed byipteulalgorithms.
These usually take as input sequences that are putativalyddaoy the same fac-
tor and output one or more probabilistic DNA motifs. A comnpactice is to
apply several such algorithms simultaneously to improwerage at the price of
redundancy. Two crucial tasks for interpreting such raesidgard clustering of
redundant motifs and attributing the motifs to transcaptfactors by retrieval of
similar motifs from previously characterized motif libi@s. Both tasks inherently
involve motif comparison. Here we present a novel methodc@mparing and
merging motifs, based on Bayesian probabilistic principl€his method takes
into account both the similarity in positional nucleotidstdbutions of the two
motifs and their dissimilarity to the background distribat We demonstrate the
use of the new comparison method as a basis for motif clagtend retrieval pro-
cedures, and compare it to several commonly used alteesatdur results show
that the new method outperforms other available methodsdaracy and sensi-
tivity. The resulting motif clustering and retrieval pralteges we incorporated in a
large-scale automated pipeline for analyzing DNA motifsisipipeline integrates
the results of various DNA motif discovery algorithms andoaoatically merges
redundant motifs from multiple training sets into a cohéamotated library of
motifs. Application of this pipeline to recent genome-widgnscription factor lo-
cation data irs. cerevisiae successfully identified DNA motifs in a manner that is
as good as semi-automated analysis reported in the literatloreover, we show
how this analysis elucidates the mechanisms of condifpatific preferences of
transcription factors.
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Chapter 1

Introduction

1.1 From DNA to Function

Living cells transfer information from one living cell tasilaughter cells through
nucleic acids chains, mainly Deoxyribonucleic Acid - DNAhwh contains the
genetic instructions for the development and function whf organisms. The
information in the DNA encoded by a four letters alphabetC &, T, which are
in fact different nucleotides. The long DNA chain contaihsis segments called
genes. In the transcription process, short ribonucleid @@NA) chains are syn-
thesized according to the information encoded in the gee®NA molecule
encodes the information needed to construct proteins, no@eps called transla-
tion. The proteins make an essential part of all living orgars and participate in
every process in the cells, defining both the cells functiwh structure.

One of the miraculous phenomena in nature is that cells etreir activity
significantly, in response to changes in their environmeskternal signals, while
their DNA, which is the blueprint for their function, remaithe same. An even
more intriguing fact is that different cells in the same nodliular organism have
identical copies of the DNA and nevertheless their funcema structure vary
considerably. For example, an epithelial cell in the skiasue has a completely
different function and shape from a neuron cell in the bréithe same organism.
This raises the question how do cells develop differenttions and structures
when this genetic instructions are identical?

The answer to this question is that in each cell, at a givea,tonly part of the
proteins encoded in the DNA are present. The activity andgire of the cell in
a given state is determined by its proteins, implying thaicéxlosage and content
of proteins at a given time is highly important for the cotriemction of the cell.
This highly specific content of functional proteins in eaeli ts achieved through
several layers of regulations. The first layer is transmptegulation, which



controls which genes are expressed and transcribed to RNAs&bond layer
of regulation regards the control of translation procesRNA to proteins. This
post-transcription layer includes regulation of the pssteg of the RNA molecule
in to a mature transcript. The third layer of regulation gmist-translationally,
controlling the function, location and degradation of thetpins themselves.

We focus in this work on specific aspects of the first layer gutation in
the cell, transcription regulation. Key players in the seniption regulation are
transcription factors which bind to sequence-specific fadatithe DNA and con-
stantly modulate (activate or repress) the expression afayegenes. These fac-
tors recognize specific sequence patterns on the DNA thatadledd transcrip-
tion factor binding sites. To understand transcriptiorutation it is essential to
construct a map of transcription factors and their targatticating when every
transcription factor is active, which genes it reqgulateg it lead to activation or
repression of genes and how this regulation is carried o @ the first steps in
building such a transcription regulation map is to definesthguence preferences
of each transcription factor and the distribution in theguee of its potential bind-
ing sites. This initial mapping indicates which factors ¢@amd to the DNA at a
given location and consequently are candidates for ragulaf proximal genes.
In addition, the location of DNA binding motifs can provideigence of phys-
ical interactions between transcription factors. In thrky we address several
computational challenges related to identifying the sagaespecific DNA mo-
tifs identified by transcription factors. In addition, fraime biological aspect, we
show here what DNA motifs can teach us about the complex nmésiing of gene
expression regulations by transcription factors.



Chapter 2
DNA Motifs

To understand how transcription factors associate witlDtia, one must specify
their DNA binding preferences. These preferences are lystlaracterized by a
motif that summarizes the commonalities among the binditeg ®f a transcrip-
tion factor.

2.1 DNA Motif Representation

In the literature there is an ongoing discussion regardiegest representation of
the DNA binding specificities of transcription factors [@szet al., 2004, Day and
McMorris, 1992, Benos et al., 2002, Stormo, 2000]. A DNA maifan abstrac-
tion that models the sequence preferences of DNA bindintgp® The motif is
built on the basis of multiple sequences known to be boundeytranscription
factor.

The simplest kind of motif representation is the consensgaence e.g. [Day
and McMorris, 1992], a string of nucleotides that represeéhé most abundant
nucleotides in each positions of the protein’s binding. $ter example: The con-
sensus sequence TGACTC represents the binding prefererbest@anscription
factor Gen4 inS cerevisiae. However, this model is not flexible enough, since
proteins often display variations in binding specificitigs common addition to
this model is the use of the IUPAC one-letter codes, also knass ambiguity
codes. For example, W represents A or T (weak interactioryd?2dgen bonds)
and S represents G or C (strong interaction, 3 hydrogen ho@dser commonly
used one letter codes are: R=GorA,Y=TorC,M=AorC,K=GorT. For
example: The following sequences are all binding sites etithnscription factor
Gcen4 in theS. cerevisiae genome: TGACTC, TTACTC, TGACTG. Thus a more
accurate consensus sequence for GCN4 based on these saqaeMEACTS.

Another common representation, which has the benefits ofgbeslatively



simple yet flexible, is a matrix of positions in the bindingesversus nucleotides.
In the matrix each row represents one residue (A, C, G or T),eauth column
represents a position in a set of aligned binding sites. &hez several types of
matrix representations which differ in the type of scoreytheld in the entries.
However, all matrix representations assume that the cludinacleotides in each
position of the motif is independent of all other positioAscommon matrix rep-
resentation is a matrix of nucleotide frequencies in eaditipo of the motif (i.e.
the frequencies of the nucleotides A, C, G and T in each pogiti®his matrix
is called a Position specific Weight Matrix (PWM) (Figure 2.dfken referred to
as a Position-Specific Probability Matrix, or a Profile. Afieis a more flexible
representation than the consensus sequence describeq fidv@xample it allows
us to differentiate between binding preferences®t A 50% T and preferences
of 70% A 30% T. We are often interested in considering the nucleotidentou
in each position which are more informative then the fregieshalone. We call
such a count matrix an un-normalized PWM (Figure 2.1), andrdresformation
between such a matrix and a profile is by simple normalization

Position weight Position weight Sequence
TF binding siles matrix (PWM) maltriz (PYWM) logo
- counis - frequencies representation
9?7 ad? l1;2i3:4 [1]2]3]4 =
~n" Altojojo]f 2] Al1/0/003 '
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Figure 2.1:Motif representation. Constructing a DNA motif for a transcription factor
based on given instances of genomic binding sites of the factor. In thisalliostra set of
binding sites are converted to an unnormalized PWM from the nucleotidésuaach
position of the sites. By normalizing each position we get to the alternative PBYM (
profile) representation, which contains the nucleotide frequencies impeesition in the
motif. From the PWM, a graphical representation for the motif can be cansttusing

a sequence-logo (Schneider and Stephens, 1990). In the logo ¥iwig-te information
content of a position and the height of each nucleotide is proportional teegséncy in
the relevant position of the motif.

Another common representation is a scoring matrix oftefedad Position
specific Scoring Matrix (PSSM)[Staden, 1984], where eactitipm holds the
log-likelihood score of each residue to be generated by tb&f model. This
log likelihood is the log-ratio of two probabilities: thegirability to observe the
nucleotide given the motif model (the matrix), and the piolig to observe the
nucleotide given the background model of the frequenciesach nucleotide in



the genomic context. Note that the names of the motif matraze not always
consistent in the literature. For example a PSSM is in someaslreferred to as a
PWM.

One weakness of the above matrix representation for DNAfsigtihat they
do not take into account higher order dependencies betvesetues, such as cor-
relations between different positions in the binding skap and Stormo, 2001,
Bulyk et al., 2002]. For example, if a transcription factoryrand to the se-
guence: ACGTCC or ACGTGG (CC or GG suffix at the end of the motif), we
cannot use a representation that assumes independemamosihce this will lead
to all possible combinations of suffixes including CG and GQGhis example, the
transcription factor has a finite set of binding preferenedsch can correlate to
different structural configurations of the protein. In tbhsse we can model the
binding motif relatively simply by a mixture of PSSMs, in whia transcription
factor can bind to any sequence that fits any one of the matriCther cases
may be more complex and require further modeling of highdeondependencies.
Pairwise positional dependencies can be modeled by usinmgmescorrelation
matrix with entries for each pair of positions in the motifi@hg and Marr, 1993].
A more compact and general model is a Bayesian Network, whaslbkeen used
to model arbitrary dependencies [Barash et al., 2003]. Takl@m in estimating
transcription factor binding preferences as a model witkitmmal dependencies
is that it requires a large amount of data. When sufficient deganot available
there is a risk of over-fitting.

It has been previously shown that in practice the simpleifmuaidels are of-
ten both useful and practical [Benos et al., 2002] and pro&idseful approxima-
tion to reality. In this work we are using the unnormalized P\Wégresentation (a
count matrix) for the description of a DNA motif and we referit for simplicity
as a PWM.

2.2 Motif Discovery Algorithms

Multiple tools were developed for finding DNA motifs. Mosgafithms identify
statistically significant overrepresented sequence patia a set of related DNA
sequences. These groups of related DNA sequences areelet@wbe control
regions in the DNA of a co-regulated group of genes. Thus vpeexto find in
the control regions the DNA binding motifs of a set of tramstoon factors that
mediate this co-regulation. Deriving the groups of co-tatpd sequences can be
done from ChIP-on-chip data that characterize a group of D&usences bound
by the same transcription factor from gene expression thatapirovide clusters
of co-expressed genes, or from functional analysis askaysléfine genes with a
related function, such as genes involved in the same métgiathway.



Finding over-represented motifs can be done by enumenaigtbods, which
count exhaustively all words in the dataset. Since this@gogr is computationally
expensive, most algorithms constrain the motif length erdilphabet size. An
example of an enumerative algorithm is Weeder [Pavesie2@0.1].

An alternative approach for finding over-represented raddiby a probabilis-
tic search which constructs a generative model of the segueéaia and searches
for a motif that maximizes the likelihood of the observedad@everal probabilis-
tic search algorithms are based on the Expectation Maxtraizanethod such as:
MEME [Bailey and Elkan, 1995], and EMnEM [Moses et al., 2004hjle others
are based on the Gibbs sampling method, such as AlignAcehétuet al., 2000],
MotifSampler [Thijs et al., 2001] and PhyloGibbs [Siddiman et al., 2005].

One of the problems in these motif discovery algorithmsag the input set of
sequences is usually noisy. One property that can be usextteake the noise is
to use the degree of confidence we have a-priori for each DNAes®e that it is
co-regulated with the rest of the group. The MDscan [Liu et2002] algorithm
is an example for such an algorithm, which receives as ar enpanked group of
sequences according to the confidence level of each onerabelgorithms inte-
grate evolutionary conservation information based ong¢lasaning that important
regulatory regions, such as transcription factor binditegsare under evolution-
ary pressure and as a consequence are more conserved gamootitoding DNA
sequences. The conservation information can be integmatie algorithms de-
scribed above by finding conserved and overrepresentedsmog group of re-
lated DNA sequences. This is done in the algorithm Phylo&il&ddharthan
et al., 2005] and EMnEM [Moses et al., 2004]. In addition, twservation
information can be used in a genome-wide motif discoveryopered on phy-
logenetically conserved non-coding regions [Kellis et 2003]. The drawback
of integrating conservation information is that regulgitcggions are not always
conserved [Tautz, 2000, Moses et al., 2006, Levine and ,Ti@603], especially
in remote species. Several studies show how different adgnyl programs in dif-
ferent species lead to similar function e.g. [Tsong et &Q6&2, which indicate
that the regulation program may be highly flexible. Thusgré¢éing conservation
considerations may lead to overlooking of the regulatogyai.

A different approach is to use structural knowledge to inffer binding mo-
tifs of transcription factors. This can be done as ab-irtiediction of binding
preferences from the structure of the DNA binding domain rotgins [Kaplan
et al., 2005, Morozov et al., 2005]. Moreover, structurabiedge can be inte-
grated as a bias to the motif discovery based on prior knaydexf the typical
motifs of structural families of transcription factors f#kelin and Wasserman,
2004, Maclsaac and Fraenkel, 2006]. In addition, the matéalery can be bi-
ased according to positional priors of structural claseeté genome [Narlikar
et al., 2006].



Different motif discovery methods were shown to have comgletary suc-
cesses, and no one is clearly superior [Tompa et al., 200i] therefore benefi-
cial to apply multiple methods simultaneously and coll&tgrtresults [Maclsaac
and Fraenkel, 2006].

2.3 Emergent Obstacles

There are several problems in interpreting the output ofifnaiécovery algo-
rithms: (a) Many of these methods output multiple resultscvinequire scoring
and ranking (b) The outputs of these motif discovery algong are frequently
redundant and the binding transcription factor is unknosee(example in Fig-
ure 2.2). (c) In large-scale experiments the motif outptitsseery large, and thus
the tasks of scoring, merging and identifying motifs neeth¢odone automati-
cally. Since it is beneficial to apply multiple methods sitankeously, the number
as well as the redundancy of the discovered motifs is amglifs similar motifs
may represent binding sites of the same protein, elimigatws redundancy is
essential for elucidating the true transcriptional regariaprogram.
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Figure 2.2:Motif discovery output. An example for a motif discovery output. six motif
discovery tools: MDscan[Liu et al., 2002], AligneAce[Hughes et alQ®IOPMEME [Bai-

ley and Elkan, 1995]M EM E. [Harbison et al., 2004], converge[Harbison et al., 2004],
SeedSearcher [Barash, 2005] and an additional method [Kellis et @B],2@ere applied
on a set of genes found to be bound by the cofactor DIG1 in a ChlPaslsgy [Harbison
et al., 2004]. Clearly, deciding which motifs represent the binding site afahee protein

is not a trivial task. This task gets more complicated as the number of motifagsese

The general strategy for reducing this redundancy invothestering similar
motifs together and merging motifs within each cluster &ate a library of non-
redundant motifs [Maclsaac and Fraenkel, 2006] (FigureB3.3An additional

v



important step in interpreting the output of motif discgvafgorithms is to relate
the discovered motifs to previously characterized redimmsequences of known
transcription factors. This task involves retrieval - givee query motif, find sim-

ilar motifs in a motif database (Figure 2.3.C). To address$ lioé¢ clustering and
the retrieval challenges, we need an accurate and sensigéitreod for comparing

DNA motifs

2.4 DNA Motif Comparison

To compare two PWMs, we can utilize the position-independerssumption to
decompose the similarity score of two motifs into the sumimilarities of single
aligned positions. Two motifs may be of different length everse complement
each other (meaning that they are taken from the complemyestiaand of the
DNA), and thus all possible alignments should be considerid similarity score
between two motifs is the highest score of all possible atignts of the motifs.
Several similarity scores can be used to compare a pairgriedi positions in a
PWM. One possible approach is based on statistical measudsas the Pearson
correlation coefficient (e.g. as used in CompareACE [Hughes. e2000],[Xie
et al., 2005]). This measure, however, might inappropgiatapture similarities
between probabilities (Figure 2.4). An alternative apploia to define a similar-
ity between two distributions. This can be a metric distasoeh as the Euclidean
distance [Harbison et al., 2004] or an information-théoreteasure, such as the
Jensen-Shannon divergence [Cover and Thomas, 2001]. Enalistances mea-
sure distance between vectors, thus they do not have tifi@gctstof the Pearson
correlation. Such measurements, however, equally weiggitipns with similar
nucleotide distributions that are specific (e.g., a strorefgpence for an A) and
similar positions that are non-informative (e.g., idealio the background distri-
bution); (Figure 2.4). It is important to differentiate txeten the two situations,
because the two positions whose similarity is due to a rekerob to the back-
ground distribution are less relevant to motif similardyg, they do not contribute
to sequence-specific binding of proteins [Yona and LevlZ. This argument
suggests that a proper motif comparison method should réfledikelihood that
the two motifs represent sites bound by the same factor. ¢je¢he motif com-
parison method should take into account the sequence simid@tween the two
DNA motifs and at the same time, also take into account thengxo which they
are different from the background distribution. In this Waeve use this intuition
to develop a novel method for comparing and merging DNA mptifased on
Bayesian probabilistic reasoning.
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Figure 2.3:Emergent obstacles and possible solution§A) Identifying DNA binding
sites of transcription factors: Applying motif discovery algorithms on a grfuglated
DNA sequences leads to finding putative transcription factor DNA binditeg.sThese
algorithms output a set of unidentified DNA motifs, which are frequently rddah To
infer the correct transcription regulation map from the discovered motif sstciucial
to reduce this redundancy and identify the newly discovered motifs. (Byéteg redun-
dancy by clustering and merging motifs: A redundant set of DNA motifs earetiuced
by clustering the motifs into groups of related motifs and merging the motifs in dash c
ter. In this example, a redundant set of 16 DNA motifs (a partial outputweraémotif
search algorithms, as in Figure 2.2 ) is clustered and merged to a finalns$tow of
three DNA motifs. For correct clustering an accurate and sensitive DN# similarity
score is needed. (C) Identifying the binding factors of DNA motifs: Thedcaption fac-
tors that bind unidentified DNA motifs can be revealed based on similarities\tmpsty
defined TF binding motifs. In this example, comparison of a newly discovaiad to
four known motifs reveals high similarity to the Gen4 known binding motif. From this
comparison the transcription factor that bind the motif is identified with high fnibba
ity. For the comparison of DNA motifs an accurate and sensitive motif similarityesso
needed. 9
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Figure 2.4: Motif comparison.(A) Differentiating between informative and non-
informative positions. Two pairs of aligned motifs that both have three idepiisitions
and two different ones. However, the identical positions in pair numberasa non-
informative, while the identical positions in pair number two are informativeusTive
would like our score to differentiate between these two types of similarities ssigraa
higher similarity score to pair number two. The nucleotide distribution in each motif is
represented schematically (with a sequence logo using probabilities ingteddrma-
tion content). (B) Problematic aspects of currently used motif similarity functidhg
similarity score of two PWMs decomposes into the sum of similarities of single aligned
positions, due to the position-independence assumption in the model. Henesentp
scores for pairs of positions in DNA motifs by the various similarity functiongdidition

to a proposed optimal score (all scores are normalized between 1 affthelhucleotide
distribution in each position is represented schematically (a sequence liogopusba-
bilities). As shown, the Pearson-Correlation does not reflect the toueeree similarity
and the Jensen-Shannon divergence (JS) and Euclidean distance differ between
informative and background uniform positions. Clearly, position 1 shgelda higher
similarity score than position 2, but the Pearson-Correlation scores f@ gositions are
equal. Position 3 should get the lowest possible score, but Pearsogiafion does not
capture this. Both in positions 1 and 4 identical distributions are compareppbiion 1,
which should get a higher score, fails to obtain this by all three methods. Pssitiand

5 should get similar scores, however, Pearson-Correlation gradé®pd significantly
lower than position 4.
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Chapter 3

A Novel Method for Motif
Comparison and Clustering

3.1 A Novel DNA Moaotif Similarity Score

Our goal is to determine whether two DNA motifs representgame binding
preferences (i.e., they describe binding sites of the saaresdription factor).
However, when comparing motifs, we have to remember that vgd ¥o dif-
ferentiate between two motifs with similarity in nucleagidistributions that are
specific (e.g. a strong preference for nucleotide A) and tvadifsawith similar
nucleotide distributions that are non-informative (edgntical to the background
distribution), since the less informative positions in atifndo not contribute to
sequence-specific binding of proteins [Yona and Levitt,Z200f0 address this
issue, we developed a similarity score that measures th&sgignbetween two
DNA motifs, while taking into account their dissimilaritydm the background
distribution. We now develop the details of the score. Befbet we need to
clarify how we represent DNA motifs. We can view DNA motifstiwo ways.
The first, and more common way is as a model that describesrtibalplity of
nucleotides in each position of the binding site (see in ndetail above). In this
work this model is a PWM where the probabilities of nucleaidé different po-
sitions are independent of each other. The second view fsedsst of sites from
which these probabilities were estimated. In this secoed we take into account
the amount of evidence that we have about the DNA bindingepeetes. This lat-
ter view also allows us to perform statistical evaluatiothef motifs. In this view,
we assume that each of the binding sites that are presumedaiogoto the mo-
tif was sampled independently from a common distributioarowcleotides. We
assume that this distribution satisfies the position inddpace properties (in cor-
respondence with the PWM representation). Then, we canagtedoe likelihood

11



ratio of different source distributions for the sampleddany sites. In practice,
we do not keep the actual binding sites, but the sufficietissitss that allow us
to evaluate the likelihood of the binding sites. Under thsian independence
assumption, these statistics are the counts of each nigigeéotach position. Our
score is composed of two components: the first measures it two motifs
were generated from a common distribution, while the secefiects the distance
of that common distribution from the background. Statatc the former com-
ponent translates to measuring the likelihood-ratio otwehypotheses:

Ho: The two samples were drawn from a common source distribution

Hi.: The two samples were drawn independently from differentedistribu-
tions.

The latter component translates to measuring the liketihatio of the two hy-
potheses:

Ho: The two samples were drawn from a common motif distributemgbove).
H.: The two samples were drawn from the background distribution

Our Bayesian Likelihood 2-Components (BLiC) score for matifsandms is:

Pr(my, ms|common  source) Pr(my, mg|common  source)

BL.Cscore =1 X
! 8 Pr(my, mylindependent  source) Pr(my, ma|background)

An important aspect of this score is that since we assumeath#ite relevant
distributions satisfy position independence, the scomugoses into a sum of
local position scores that examine only the distributiomoéleotides at one po-
sition in both motifs. More precisely, our likelihood-basscore measures the
probability of the nucleotide counts in each position of thetif given a source
distribution. For two aligned positions in the compared ifsptet n; andn, be
the corresponding count vectors, the similarity scoreeésth

Pr(n}, n2|P1,2)A +log Pr(n, + n2]]?12)
Pr(ni|Py)Pr(nq|Ps) Pr(ny,na|Pyy)
> yeacar(ny, +ng,)-log Pf,zy
ZyeA,C,G,T(nly) -log PA1U - ZyéA,C,G,T(”Zy) -log P;y
>yencar(n, +n,) log Py,
ZyeA,C,G,T(nly +ny,) - log P1i2y

BLiCscore = lOg

Where P, , P, and P, , are the estimators for the source distributionngfn,
and the common source distribution, respectively. And Rbthe background
nucleotide distribution.
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3.2 Estimating Distributions

Since the source distribution is unknown, we must estimdterm the nucleotide
counts in each position of the PWM. There are alternativeagygres towards this
goal. The simplest method is to use the maximum likelihodomegor (MLE).
For a multinomial distribution, as in our case, estimatismg the MLE is very
efficient. In addition, this estimator is asymptoticallynigsed, i.e., it is assured
we will predict the true distribution as the number of sampitereases to infin-
ity. However, in the case of DNA motifs, our sample size isffam the required
size for calculating the true source distribution. Understinconditions using the
MLE is too strict and may lead, for example, to estimationzeyb probability of
a DNA nucleotide in a certain position of the motif. For theason it is important
to soften our estimation. We use a Bayesian estimation apipreaere a priori
knowledge, as well as the number of samples, is integratedtie estimation
process. We considered two alternative priors. The firstdsaadard Dirichlet
prior [DeGroot, 1970]. The second, more flexible approacmlves a Dirichlet
mixture prior [Sjolander et al., 1996], which allows to dymaally choose be-
tween several typical distributions. We are using the farafl Dirichlet priors
because it is conjugate to the multinomial distributionjalirenables us to com-
pute the probabilities efficiently. In addition to efficignmonsiderations, the prior
should model the typical distribution of a position in a DNAtifl. Using Dirich-
let priors is very efficient and has the benefits of Bayesiammeasibn discussed
above. However, using a single component prior does noval® to model a
typical distribution of a position in a DNA motif. In DNA mds there are several
possible typical distributions: informative positionsntain positions where the
protein has a strong preference for a specific nucleotide; &,or T. In addition,
there are non-informative positions in the motif where thatgain does not have
strong binding preferences. For this reason we chose to nsgtare of priors,
which is suitable for representing a complex distributiathvwmore than one typ-
ical distribution. More specifically, we used a five-compainmixture prior, with
four components representing a typical informative disition, giving high prob-
ability for a single DNA nucleotide: A, C, G, or T. The fifth elemt represents
the uniform distribution.

1| 2 3
A | 5|15 100
For example: Given the following motif:C |O| O | O
G|0oj0]| O
T|I0O|O0O] O

Since we are assuming positional independence in the nvagifcalculate the
source distribution for each position of the motif sepdyate
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] Estimator type \ 5 samples \ 10 samples | 100 samples |
Maximum Likelihood Estimator (2,0,0,0) (2,0,0,0) (2,0,0,0)

Bayesian (Dirichlet prior): (0.67,0.11,0.11,0.11) (0.85,0.05,0.05,0.05) (0.97,0.01,0.01,0.01

Bayesian (Dirichlet-mix prior): | (0.76,0.08,0.08,0.08) (0.87,0.04,0.04,0.04) (0.97,0.01,0.01,0.01

In this example | used a Dirichlet prior with parameters (1,1,1,1), and Dirichieture
prior with uniform weights, where the parameters of the first four compisnare in the
form of : (5,1,1,1) for residue A, etc. and in the form of (2,2,2,2) for thh tomponent.

As we can see from this example, the maximum likelihood estimator does not take into
consideration the number of samples, and the estimation remains constartyasttict.
When the number of samples is small the Bayesian estimation is more flexible smce ou
confidence in the evidence is not high. In addition, The Dirichlet mixture fsionore
accurate than the uniform Dirichlet prior, especially when the numbemopkes is small.

This is because we integrated in the Dirichlet mixture prior our prior knovdemigthe
typical distributions in DNA motifs. As the number of samples grows the difiezen

between the three alternative estimators decreases.

3.2.1 Estimation Details

When using this estimator, the estimated distribution for position n can be calcatated

1

Pi = ]
Eje{A,C,aT} 1

It is easy to see that when assigning the MLE in the equation of the BLIiC Hueffest
component of our score is the known Jensen-Shannon (JS) dieergehich is a similar-
ity measure between two probability vectors based on information theory reeakhe
JS divergence is the symmetric form of the Kullback-Leibler distance, wikidefined

for two probabilities P and Q as:

Dxr(P|lQ) = ZP(Z') log

P(i)
Q(i)

For probability vectors?, Q andR = £+2Q the JS divergent is defined as:

ni+n2

ny n2

Dys(P|Q) = Dkr(P||R) +

Dkr(Q||R)

ny + n9 ny + ng

FOr pot, g @Nd S, ML estimators for the source distribution of positions, no and
the common source distribution, respectively. As we said above the firgpament of
our BLiC score can be represented in the form of a JS divergence:

Pr(ny,nsl$)

lo — =
& Pr(na|p) Pr(nzld)
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Bayesian estimation using Dirichlet prior: The Dirichlet prior is specified tsetof
hyper-parameters = (a1, as, ..., a,) and has the formPr(X) = ?‘[zrs [Tzt
For estimating the source distributions with a standard Dirichlet prior, we ni$erin
hyper-parameters (such as (1,1,1,1)). When using this prior, the estidisti¢oution for

the position n can be calculated a&:= S C’ZJ;O%(”,M‘) wherea is the vector of
JjE ,O,G, J J

hyper-parameters. For estimating the source distributions with a five-camponixture

of Dirichlet prior [Sjolander et al., 1996], we merge five standard Dirichlérs using

uniform weights. The four components, which represent uni-nucledigtiébutions, give
high probabilities for a single DNA nucleotide: A, C, G, or T in the hyperapagters
(such as (5,1,1,1) for residue A). The fifth component, which reptesba background
distribution, is modeled using uniform hyper-parameters (such as (2)2,2J8ng this

mixture-prior, the estimated source distribution for a count vector n is:

n; + o
=3 (Pr<a’“!n> o )

p Yieqacary(n+af)

This estimator is a weighted average of the estimators using each compagpesaitsky,
where the weights are the posterior probability of the component givenatze dhe
posterior reflects our belief that the source distribution in this position of thi&f o
a certain typical distribution after we are given the vector of counts. Tstepor is:

kpr(n|ak
Pr(a*|n) = SLrtled)

3.2.2 Alignment of Motifs

In the above discussion we assumed that the motifs are aligned. That ipo#itdn

1 in the first motif has the same meaning as position 1 in the second one. In@ractic
we want to compare two motifs that are not necessarily aligned. Thus, five dbe
similarity score for two motifs as the score of the best possible alignment betivem.
Since motifs are short sequences we do not allow gaps in the alignment aredanly
consider the offset of one motif with respect to the other. In addition weidenreverse
complement alignment where one motif is complementary to the other (on the opposite
DNA strand) Figure 3.1. Since the score decomposes to sum of positiEssee can
use a dynamic programming algorithm to find the best scoring alignment between
PWMs (including reverse complement alignments). The unaligned flankseahttif

are scored according to their distance from the background distribution fadtlpy a
relaxation factor of 0.2.

3.2.3 Assigning P-values to Motif Similarity Scores

To assign the statistical significance of each score, we have devisedpénical p-value
estimation, computed for each motif separately. For each motif, we computediee sc
distribution of alignments with partners from all possible lengths. This is dgrein-
paring the motif to 1000 random motifs of a specified length. These randomsmaetie
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Figure 3.1:Motif comparison and clustering. In this short example, the initial set con-
sists of four motifs, which are compared all against all. The score asbkigreach pair is

the score of the best possible alignment between them (including theeeamplement
form). In each step the highest scoring pair is merged into a new motif (byioorgtihe
evidence from both motifs). These steps are repeated until we are lefh wiitigle motif.

The order of merge operations results in a tree, where the leaves aretitenotifs.

Each frontier of this tree creates a set of motifs. In this example, a fromisaittng in

two motifs is chosen, one is an initial motif and the other is a motif created by merging
three initial motifs. These two motifs are the non-redundant set of motifs/edefiom

the initial set.

generated by sampling positions of known DNA motifs from the TRANSFAC lieta
[Matys et al., 2003]. The TRANSFAC database contains characterip&tl iiotifs of
known transcription factors. By this process we can create random mbis of any
length, while using the typical distributions found in transcription factorsibmndites.
When comparing a given DNA motif to another one, we will use the score disiibof
the first motif against the random motifs with the same length as the second motan\Ve
then assign a p-value to the similarity score by calculating the fraction of namalatifs
that got the same score or a higher one, which is an approximation forabalplity of
getting that score or a better one by chance.

3.3 Clustering Motifs

An important application of motif similarity scores is clustering. There are matgngial
ways of clustering motifs [A. K. Jain, 1988]. Here we consider one ofsiheplest and
straightforward clustering procedures where we combined a similaritg ssoch as our
BLiC score, within a hierarchical agglomerative clustering algorithm. Irhetsration

of the algorithm we have a set of motifs. The algorithm computes the similarity batwe

16



all pairs of motifs and then merges the pair with the highest similarity score intava ne
motif (Figure 3.1). This merge includes aligning the motifs according to the beshg
alignment between them, and then combining the evidence from both of thense The
iterations are repeated until we are left with a single motif. The order of nmgrgeations
results in a tree, where the leaves are the initial motifs, and inner nodesgond to
merged motifs that represent all motifs in the relevant sub-tree. Eactiefrasf this
tree stands for a non-redundant clustering of the motifs. We stress ihatticedure is
different than hierarchical clustering based on the similarities between itred get of
motifs (such as UPGMA(Unweighted Pair Group Method with Arithmetic meanjceS
we merge motifs to create a new one, the similarity of a merged motif to another motif
might be different than the average of the similarities of each of the mergedsrtwtifat
third motif.

3.3.1 Splitting the Clustering Tree

The clustering tree can be used to distill the set of input motifs into a concise no
redundant group. This is done by splitting the tree into a subset of clustah repre-
senting a group of redundant motifs. As mentioned above, in this tree, theslegpresent
initial motifs, and the inner nodes represent a merging of all motifs in the rcotedree.
Thus, to obtain a non-redundant set of motifs, which still covers the ingétalge choose
a frontier in the clustering tree. This is done using a bottom-up traversaltloedree.
Two adjacent nodes are inserted into the frontier if the ratio between their siyndleore
and their maximal possible score, is less than a certain threshold (Figurd8e2)two
nodes were inserted to the frontier, usually, additional nodes from thleitree should
be inserted for consistency. This is demonstrated in Figure 3.2.b, wheréngsthe top
two motifs in the tree to the frontier (separating them to different clustersiesethat
the bottom two motif will be separated from the rest of the clustering tree as well.

In this work we use a quite stringent threshold66fs of the maximal score when
splitting the clustering tree. This threshold was chosen as the optimal splihdfdes
compared to hand-curated splits of 10 trees into clusters (with 20 leaveshih ea

3.4 Comprehensive Evaluation of Similarity Scores

We set to compare our similarity score to existing ones in the literature. We airalto ev
ate scores both in the context of comparing motifs (whether they repitbegmteferences

of the same transcription factor) and clustering motifs. One of the challémgesform-

ing such evaluations is determining the ground truth against which to comgaresilits.

The approach we choose is to generate synthetic datasets where wihkrinye labeling

of motifs. This allows us to benchmark the different procedures, by rgl#tieir results
with the underlying truth. To make the dataset as realistic as possible, in terms of th
properties of binding sites and their preferences, we use predictidnigdihg sites in

real genomic sequences to generate this synthetic dataset. In more detaljtveeli-
brary of synthetic motifs where we know the origin of each motif. Each motifesated
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by sampling a set of binding sites from the genome-wide catalogue of tiptiscfactor
binding locations in S. cerevisiae [Harbison et al., 2004] (see Figure) 3Th& dataset
simulates the redundant output of motif discovery programs, with similar motifatise
from different runs over the same transcription factor, as well as pacigerlapping mo-

tifs that simulate truncated motifs. We compiled a noisy test data of motifs for nine TF
For each TF, we generated a set of 12 noisy motifs by randomly samplirzgatgof size
5,15 or 35) of its binding site locations, and trimming the original motif by taking only
the beginning, end or middle parts. Using these test data we compareédmifi@ssible
similarity scores for DNA motifs. Specifically, we compared the Pearsorledion coef-
ficient; the information-theory based Jensen-Shannon divergercEuttiidean distance;
and our BLIC score.

3.4.1 Motif Comparison Evaluation -
|dentifying Similar Motifs

We evaluated the sensitivity and specificity of motif similarity scoring methods by co
paring pairs of motifs from the test set described above, and testingevtibéprediction
of close similarity coincide with the true assignment to the pair of motifs, i.e. whethgr
were generated from the genomic binding locations of the same TF. Mariselse for
each pair the significance of the similarity of the first motif to the second waslatdd.
If the similarity is significant (p-value smaller than a chosen threshold) we taiseas
a positive pair, and otherwise call it a negative. By comparing this predittithe true
assignment of the motifs (true positive if the two are generated from bindegyaf the
same transcription factor) we calculated the sensitivity and specificity fdr pavalue
threshold to create an ROC curve for each similarity measure (Figure 3Gbjparing
the ROC curves of our score to those of Jensen-Shannon divergeaclidean distance
and Pearson Correlation coefficient we see that our BLiC score ootperdl all other
measures throughout the range of possible sensitivity/specificity tfadeof

3.4.2 Motif Clustering Evaluation - Reducing the Redundancy

To further evaluate the accuracy of the different similarity scores weerk the motifs
from the test set and examined if motifs originating from the same TF were i@ddste
gether. For this, we used the hierarchical agglomerative clusteringtalgodescribed
above. The results, based on the 108 noisy motifs for nine differenwErs conclu-
sive. Once again, our two-component score outperformed the ottrersssas Figure 3.3.c
shows.
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Figure 3.2: Splitting the clustering tree. Two alternative splits of the clustering tree.
The motifs are discovered in a set of genes found to be bound by the & Galer
three different environmental conditions in a ChIP-chip assay [Hantgsal., 2004]. We
applied six motif discovery algorithms (as in Figure 2.2). The splits are doing as
threshold of50% of the maximal score for these motifs in (a) asdo of the maximum
in (b). Red lines represent the splits of the tree into separate clusters.
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Figure 3.3:Evaluation of our score. (A) Generating the test dataset. For a given TF a
set of noisy motifs was generated, based on the TF binding locations in tdeecSisiae
genome. First, a subset of the genomic binding site locations was randonsigrciwith
varying number of sequences). Second, for several subsets,nigih lef the original
motif was changed by taking only the beginning, end or middle part of the motif. B
repeating this procedure a set of noisy motifs was built for each TF. €B}iBvity and
Specificity of the different scoring methods. Comparing all pairs of motdmfthe test
set, and assigning an empirical p-value for the score. Motifs generatedttie binding
sites of the same TF are the true positives. A ROC curve was plotted baskd tvue
positive rate (TPR) and false positive rate (FPR), computed for anigcetud p-value
threshold. The BLIC score (turquoise) outperformed all other similarityescalensen-
Shannon divergence (red), Euclidean distance (green) ancoRdzosrelation coefficient
(blue). (C) Clustering the test data set using various scores. Hereeaen the clustering
of a partial set of the test data, consisting of all motifs generated frosetsibf size 35
with altered lengths. This clustering d?@onstrates the BLIC score (right) rbormes
the Pearson-correlation(left). Similar results show our score outpesftite Euclidean
distance and Jensen-Shannon. (D) A more detailed view of the top pgas olustering
shown in C, using the BLIC score.



Chapter 4
Large-Scale DNA Motif Analyses

4.1 Analysis Pipeline

Based on our score we developed a three-step method for processirigtegrating
large-scale data of newly discovered DNA motifs into coherent and relgatgeof non-
redundant motifs. The inputs for this procedure are groups of adatsgl DNA se-
guences. As discussed above, examples for these co-regulated grewgroups of DNA
sequences bound by the same transcription factor according to ChdRregpts, or clus-
ters of co-expressed genes from gene expression analysis dataufplut for each group

of sequences is a set of ranked motifs (Figure 4.1). The advantagésdhtbe-step
pipeline is in the accurate and automatic analysis and integration method of DNA.motifs
The three steps of the pipeline include:

Step 1: Motif searching and filtering. We begin by applying complementary motif discov-
ery algorithms to each group of sequences. Then, the newly discovaréfd undergo

an initial filtration according to their abundance among the group of sequegae details
below).

Step 2: Clustering and merging motifs. The integrated sets of motifs (from all input
groups) are clustered and merged to create a non-redundant sethEigiscovered mo-
tifs for each group are clustered and merged separately. Then, motifisdit groups
are assembled, clustered and merged. After each stage of clusteruigsed of refined
motifs is automatically chosen based on the clustering tree (see details below).

Step 3: Ranking and identifying motifs. Finally, the non-redundant set of motifsiked
and filtered once again, using the abundance of the motifs in the origingdgyad DNA
sequences (see details below). The significant motifs are then couple@rsithyy com-
paring them to a known set of DNA moatifs from the literature. The output ofeghiysis

is a set of DNA motifs for each TF.
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4.2 Analysis Methods
4.2.1 Motif Analysis Pipeline

Motif discovery algorithms. In the analysis pipeline we applied several motif dis-
covery algorithms - Mdscan [Liu et al., 2002], AligneAce [Hughes et &I0®, MEME
[Bailey and Elkan, 1995], MEME[Harbison et al., 2004], converge [Harbison et al.,
2004], were used through the TAMO package [Gordon et al., 2008],the default pa-
rameters (apart from the MEME algorithm, for which we changed the pdeaste output
six motifs). We also included conserved and abundant motifs in the yeastnge[Kel-

lis et al., 2003], and the output of the SeedSearcher motif discoveryithlgoBarash,
2005]. All the discovered motifs underwent an initial filtration according &rtanrich-
ment among the initial group of sequences, using a hyper-geometric @-thakshold of
le-5. The hyper-geometric p-value is calculated based on the numbéardafich sites
that match a motif model that can be found within the initial group of genomic segse
as compared to the occurrences in the entire genome (or at least thacegjineall the
initial input sets). Since this is only an initial filtration, it is done using an efficgman

for motif matches where a sequence is considered a match to a motif if it hadea sco
of at least60% of the motif maximum. This is done using the TAMO package [Gordon
et al., 2005]. All motifs were converted to a PWM representation, clustemddnerged
as described in section 3.

Truncating motifs.  Uninformative positions at the two edges of motifs were truncated
automatically. This was done by testing the null hypothesis that the nuclectidesdif
position distribute according to background distribution. The hypothesdested using

a chi-square test with a p-value threshold of 0.05.

Ranking and filtering motifs. To score the motifs at the third step of the pipeline,
we scanned the entire genome (or set of promoters) using each motig{s@g,linding

all the set of occurrences of each motif in the genome. Then the enriclofregdth motif
relative to the input groups of DNA sequences was computed. The stdtiggicdicance

of the enrichment was evaluated by a hyper-geometric p-value. We filtieeephotifs
according to a threshold of 1e-3 after applying a Bonferroni corredtomultiple hy-
potheses. We then ranked the motifs by their enrichment in the input grasgigning
enrichment score to each motif as the -log of the hyper-geometric p-value.

Identifying the Motifs. To connect between the discovered motifs and known tran-
scription factor binding specificities, we used our motif comparison methadsigiatabases
of known motifs (TRANSFAC [Matys et al., 2003], SCPD [Zhu and Zhat@R9], YPD
[Csank et al., 2002]).
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4.2.2 Genomic scan

Estimating the motif probabilities from count matrices .To scan the genome
with our motifs, we first transferred them from PWMs (count matrices)dfilprrepresen-
tation (frequencies). This was done using a Bayesian estimator with theIBirioixture
prior described in section 3.

Identifying binding sites.  Finding all the genomic locations of a motif was done us-
ing the TestMotif program [Barash et al., 2005] combined with evolutionangervation
data. Particularly, we decide whether a DNA sequence contains a motif iffdhece
following criteria holds:

e The sequence contains a highly significant binding site (a good sequeatcé
between the motif and the binding site). For this, we used a p-value threshold o
0.01 (after applying a Bonferroni correction for multiple hypothesesmliag to
the average length of the scanned sequences).

e The sequence contains a less significant occurrence of the motif (p-taksh-
old of 0.1), which is highly conserved among seven species of the gaueh&
romyces. For this, we used the average conservation of the motif, &mgoodthe
UCSC conservation track, with a conservation threshold of 0.8. (phastfSe-
pel et al., 2005], through the UCSC Genome Browser Database [Kédc@thl.,
2003]).

e The sequence may contain a less significant occurrence of the motif tuawee
high confidence that the sequence contains a motif based on the entiemsequ
This criterion is composed of two factors. The first is the Bayesian pos{aob-
ability of a motif in any position in the sequence. Here not only strong instances
of the motif will indicate this promoter as being a target, but also a few weaker
instances of the motif. We require this probability to be at least 0.1. The decon
factor is the conditional posterior probability of finding a binding site at thés sp
cific location, if we know that there is a motif somewhere in the sequence. Here
the p-value will be in correlation to the degree of sequence match. We edbyisr
probability to be at least 0.5.

For example, scanning all the S.cerevisae promoters with the following vafitre
Skol motif:

TeASTATed

In the output set of targets, we find instances of the motif according tocrechf the
three criteria. For instance:

1. The sequence TTACGTAATGG has high sequence similarity with a p-vaflue
1.5e-06.
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2. The sequence CTGCGTAAAGG has quite low sequence similarity (p-alrg,
however the average conservation of the motif is very high and is 8.9.

3. The sequence TCACGTAAAGG has a lower sequence similarity than shesdir
quence (p-value 0.01), however the probability of the entire promoter tece
lated is 0.14 and the probability of finding a motif in this specific position, assuming
the promoter is regulated, is 0.99.

Parameter tuning. The threshold values listed above were chosen according to an ex-
tensive search of parameters that maximize the true positive rate, allowto@pfalse
positive calls. This optimization was based on location analysis data of Garbigen

et al., 2004], and location and expression data for Skol (unpublisitajl d
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Figure 4.1: Motif analysis pipeline overview. Based on our new score we developed
a large-scale analysis method of DNA motifs, which gets as an input grdupesated
sequences and outputs a set of ranked motifs for each group. Tirstdpof the pipeline
is searching for motifs in each group of DNA sequences, using complempentatif
discovery algorithms. The second step is reducing the redundancy iawtediscovered
set of motifs, which is done by clustering and merging the similar motifs. The dlugte
is done separately within each group and finally the entire set of motifs asterdd and
merged. The merging of motifs is done automatically as part of the clustericgguce.
The third step of the pipeline is ranking the motifs and identifying their bindintpfac
The refined motif set is ranked and filtered according to the enrichmere 660910 of
the hyper-geometric p-value in the relevant group of DNA sequentas)motif binding
factors are identified by comparing the discovered motifs to the set of kbdwmotifs
in the literature using the BLiC score. The output of this pipeline can be usadttlitional
analyses such as applying advanced clustering methods and integratfitignadisources

of information.
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Chapter 5

Biological Results

5.1 Yeast Transcription Map

We utilized our pipeline to understand how TFs alter their DNA binding pattedeivar-
ious environmental conditions. To this end, we applied our DNA motif analys&ipe
to genome-wide ChlP-chip data of 177 TFs under several environnmamtditions, a to-
tal of 301 experiments for different TFs and conditions [Harbison e2@04]. Initially,
we used seven motif discovery algorithms to produce a redundant settiéé foo each
ChIP experiment (as detailed above). In the second step of the pipelinkistered the
motifs - first the motifs discovered for each TF under each environmeonalitton were
clustered separately, then the (merged) motifs for each TF under altiooisgand finally
the entire set of motifs. The motifs were ranked according to their enrichimémé re-
lated sets of genes bound by the different TFs. The binding motifs wanestmpared to
the known motifs of the TFs, based on previous information (TRANSFACtyMat al.,
2003], SCPD [Zhu and Zhang, 1999], YPD [Csank et al., 2002])s Tésulted in a con-
cise set of DNA motifs attributed to each TF under each environmental camgtiiche
motifs sets can be found at www.cs.huji.ac.il/ naomih/conditionap.html). To further
analyze the DNA motifs learned from the entire ChIP data, we used EdgeClusclus-
tering algorithm recently developed in our lab [unpublished results, Mebi@versity,
2007]. The novelty in EdgeCluster is in the integration of various sourt@garma-
tion into the clustering process, including pair-wise information. Specificakyused
for each motif data from three different sources. We calculated the matifistenent in
different groups of genes: the original ChlP data, groups baséghational annotations
[Harris et al., 2004], and groups of genes which are up or downatgaccording to
gene expression data [Segal et al., 2003]. The pair-wise informatiarsae: was inter-
motif similarity scores (using our BLIiC score). In addition, as an input to therigno
we used an initial partition of the motifs into clusters according to our hieraatbias-
tering algorithm, which is based only on the sequence similarity of the motifs. Tiad in
partition was done by applying our hierarchical-clustering algorithm with aliger-
missive threshold on splitting the tree into clusters (of 0.3). Figure 5.1 deratesthe
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clustering for all the motifs. As we can see groups of similar motifs are gbtqueether.

So Gene Motif
annotations expression distance
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T Meml Dals1
Fa & Gin3
Sle1 A d !
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Cell cycle
(Swidi6 & Mbp1)

Figure 5.1:Results overviewTI he output of the EdgeCluster algorithm on the set of dis-
covered motifs. The Clustering is based on several types of data: mwmithof each
motif in different groups of genes: the original ChIP data, functionabtations [Harris

et al., 2004], groups of genes up or down regulated according to &qression data
[Segal et al., 2003], and pair-wise information of inter-motif similarity scqusing our
BLIiC score).

5.1.1 Comparison to Previous Work

In the work of Harbison et al. (2004) and Maclsaac et al. (2006)s#me ChIP data
was used to construct a global transcriptional regulatory map in yeasin®otif analyses
performed in these two works differ from ours, both in the similarity scoesl{the Eu-
clidean distance), as well as by applying different motif clustering andingergethods.
In addition, the output of these two works was a single motif for each TKerhbased on
the motifs enrichment score and its similarity to the known recognition sequertnes (
available). We should first note that our motif set might contain several nfiotiéssingle
ChIP experiment (TF and condition) - different variants for the bindirefgrences of that
TF, as well as additional motifs for other TFs that interact with it. To be cterdisvith
these previous works in the comparison, we narrow down our set to ke smagif. We
do that in two different manners. We compared our motifs to the ones lebgntitbse
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Figure 5.2: Comparison to previous analysis methods Comparison between DNA
motifs, of TFs with previously known binding motifs from the literature, discedeby us
to the motifs discovered by Harbison et al. and Maclsaac et al. The matifsoanpared
by three parameters and the fraction of motifs which got the highest somragathe
three motif sets is presented. The first parameter compared, is the similaritykiuothie
motif from the literature. The similarity was measured using the BLIC score (rom
set of motifs, for each TF, the motif most similar to the literature was used). ddund
and third parameters tested are the enrichment score and the percdntagerage of
the motifs in the relevant chromatin imunoperticipation group (from our set tifsntor
each TF, the top enriched motif which is similar to the known motif from the literature
was used for this comparison).

two methods based on similarity to known motifs from the literature (TRANSFAGyMa
etal., 2003], SCPD [Zhu and Zhang, 1999], YPD [Csank et al., 2002]choose a single
motif for each TF, we considered all motifs in the TF s motif set, and picked the thatif
is most similar to the known recognition element (as done in these previous)waile
then compared the similarity between the known motifs and the discovered mytéd# (b
methods). I0% of the cases, our motifs were found to have the highest similarity to the
known motifs. The motifs learned by the algorithms of Maclsaac et al andistar et
al, had the highest similarity i82.5% and17.5% of the motifs, respectively. We further
tested the motifs discovered for TFs with known and unknown binding rEnedes by
comparing the motifs based on their enrichments in the ChIP groups of sexpudn this
scenario, we have chosen the most significant motif for each TF, similarhh&h was
done in the previous methods. We scanned for putative target seguaineach motif
as described above, and then compared the enrichment (hyper-gegmeilue) of the
motif among the bound genes (using ChlIP data for the same TF and condiii@3ame
procedure and parameters were applied for motifs from all three meth@ds motifs
were found to have higher enrichmentsiits of the cases, see Figure 5.2).
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5.2 Elucidating Transcription Factors Conditional
Binding

Using the motif sets we have learned, we next turned to examine the changéinding
specificities of the TFs under different conditions, and its effect ondhefsargets. Under
different conditions a TF may either bind the same targets (condition-indep&nor it
may change its set of targets from condition to condition (condition-demgndé/hen
changing conditions, such a regulator may expand its targets in addition toéseito
already binds, it may bind to a different set of targets, or it may evenindtany targets at
all. Various mechanisms may be involved in monitoring the condition-depeniteting.
One possible mechanism regards a change in the dosage of active TRuclkes, which
may change the number of targets it can bind [Harbison et al., 2004]. Anptssible
mechanism involves changing the TFs DNA binding specificities. This may bseda
by post-translational modifications of the TF or cofactor binding, resultingaifations
of the TF recognition site. In addition, when a TF does not bind the DNA onwts, 0
a change in the protein binding partner may be the cause for the altered tavgats,
which may be detected through co-occurrence of DNA recognition sitéfefent TFs.
Also, a change of targets may be caused by a change in the accessibilitylmhtling
site due to a modified chromatin state. However, in this case there is no chatige in
motifs recognition site on the DNA. As stated above, we derived a set of naotdnts
for each TF at every condition. By analyzing these motif sets, we gain iigsigto
the mechanism through which a TF changes the DNA targets it binds to, either b
change in its DNA binding specificities (different variants of motifs), or yding of a
co-factor (co-occurrence of motifs). Out of the 72 TFs for whichREbhip experiments
were carried out in more than one condition, 32 TFs alter their target dgpet@sen two
conditions (in total, 65 pairs of differential conditions). In 27 of thesegwaie did not
find significant motifs in at least one of the compared conditions and thdg notisearch
for differential motifs. Finding a motif only on one condition could be meanihgfuits
own, since this may indicate that there is no direct binding of the factor to th&. QX
the other hand it could results from technical reasons, such as noise inptit set of
sequences, and thus in this work we do not analyze these cases. tBeiremaining 38
pairs (spanned over 21 different TFs), we found differential moti&9Hs of the pairs (34
cases spanned over 19 TFs) with a p-value of less than 0.05.

5.2.1 Testing for Differential Motifs

We define a TF as altering its target genes between two conditions, if the nohthryet
genes in the intersection is less than half the number in each condition sgpahate
addition, we consider only TFs with at least 20 target genes in each of theomditions
(a sufficient number for motif discovery purposes). To define a difféal motif, we
looked for motifs that are enriched among the targets of a TF at one conditibnot in
the other (excluding the genes in the intersection). This was calculatedausiigquare
test, with a p-value threshold of 0.05
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5.2.2 Condition-Dependent Binding of Ste12 Under Conditions
of Mating and Filamentous Growth

Stel2 provides a known example of a TF that shows condition-depenideind This
TF activates genes in two alternative pathways - the mating pathway and fitareen
growth pathway [Zeitlinger et al., 2003, Chou et al., 2006] (Figure 5.3U)der fila-
mentous growth signaling (induced by Butanol) we find that Stel12 binds &sgehose
promoters are enriched with its known recognition sequence [Madhdrfriaik, 1997],
as well as the known recognition sequence of Tecl [Madhani and 8K, a co-factor
of Ste12 under filamentous growth [Chou et al., 2004, 2006](Figure)5 ISdvertheless,
under mating signaling (induced by Alpha factor) we find that Stel2 birstagers en-
riched with another variant of its recognition sequence - a near-peagiedem repeat of
its known site. This motif variant suggests that Stel2 acts as a dimer followirgaAlp
factor induction, as was previously suggested [Schaber et al., 20f1tg Wwhd Dohlman,
2006](Figure 5.3.b). Interestingly, the exact same motifs were learmé&ida - a cofac-
tor that apparently does not bind the DNA directly, but is essential foritidirig of Ste12
.An additional player found in our analysis is the TF Mcm1. We found its knmeog-
nition sequence [Gelli, 2002] enriched among promoters bound by SteftRiromating
and filamentous growth, consistent with previous knowledge on the rol&tdrat plays
in expression inhibition of mating genes in diploid cells [Gelli, 2002]. We spé¢eukeat
Mcm1l plays a similar role in the filamentous growth pathway. While haploid cells un-
dergo invasive growth, diploid cells undergo pseudohyphal growtluisTusing only the
motif sets we discovered, we can track a transcription factor altered DNiigjipattern,
caused by a change in the DNA binding partner when the environmentditioms is
changed.

5.2.3 Condition-Dependent Binding of the Iron-Regulated
Factor AFT2

Another interesting example is provided by the iron-regulated transcripictorf Aft2,
required for iron homeostasis and resistance to oxidative stress J@bate 2005]. This
TF exhibits a significant environmental-dependent binding, switchingtiabgéween low
and high H202 conditions (Figure 5.4.a). The role of Aft2 in iron homeostasisre-
sistance to oxidative stress is poorly understood. In low H202, we findftatbound
promoters are highly enriched with a motif similar to the known recognition seguen
of Aft2 (GgGTG) [Courel et al., 2005]. However, in high H202 we firtsladant low-
complexity repeats of Poly-GT (Figure 5.4.b). This result indicates that M liinding
specificity of Aft2 changes over these conditions, a possible explanatiché change
in its DNA targets. We can further speculate that the repeated poly-GT motsr tigh
H202 may suggest that Aft2 binds the DNA as a homodimer. However, wie oot
support this speculation with experimental data. Interestingly, we do findi& simoilar
to the known recognition sequence of Aftl (Rcsl)[Courel et al., 2G0phralog of Aft2,
enriched among the Aft2-bound promoters in low H202 condition. This impliexsaip
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Figure 5.3: Ste12(A) A diagram representing the results of the ChIP-chip experiment
[Harbison et al., 2004] for the Stel2 under mating (induced by alpharjeatal fila-
mentous grows (induced by butanol). As it is demonstrated Stel2 alters gtdaig-
nificantly between these two conditions. (B) From the motif analysis we seeildar
filamentous growth signaling we find enrichment for a motif similar to the previously
characterized Ste12 motif, as well as the known recognition sequen@edf Which is

a known co-factor of Stel2 under filamentous growth. Under mating signaknfind a
near-perfect tandem repeat of Ste12 known binding site. This motifntagisygests that
Stel2 acts as a dimmer in mating. A motif similar to the known Mcm1 motif is found to
be enriched under both conditions, especially under filamentous grassisiconsistent
with the known role of Mcm1 as an inhibitor of mating in diploid cells.

ble overlap between the targets of Aft2 and Aftl, which is indeed suppbyt€hlP-chip
data of the two TFs (Figure 5.4.b). Based on our analysis, we reportitmiaus(but not
identical motifs) for the two paralogs (as suggested by Courel et al.. R@berford, et
al. 2001). Since it is known that Aft2 and Aftl have independent antigiigmredundant
roles in iron regulation [Rutherford et al., 2001, Courel et al., 2008]agsume that Aft2
DNA binding does not depend on Aftl and the change in Aft2 targets is duetiange in
its specificity to the DNA. The ChIP data and our motif analysis suggest thuztrurigh
H202 conditions Aft2 has a unique role in gene regulation. Here agairg osily the
motif sets, a transcription factor altered DNA binding pattern was elucidaaeded by a
change in its DNA specificity when the environmental conditions have cldange

5.2.4 Condition-Independent Example

As opposed to the cases presented above, the motif sets learned fial Jéwe re-
mained constant under different environmental conditions. For exatmgesondition-
independent TF Fhll is a master regulator of ribosomal genes (Figurg RS.@xpected,
we find similar sets of motifs enriched in all the conditions tested (Figure 5.310)thee
most highly enriched motif is similar to the previously known Fhll binding motif. This is
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Figure 5.4: Aft2.(A) A diagram representing the results of the ChlIP-chip experiment
[Harbison et al., 2004] for the TF Aft2 under high and low H202 stressit#s demon-
strated Aft2 alters it's targets significantly between these two conditions. r@h Ehe
motif analysis we see that under low H202 stress we find enrichment for a simiiar

to the previously characterized Aft2 motif, as well as the known recogniggaence of
Rcsl, a paralog of Aft2 which is known to have an independent and lparedundant
role as Aft2 in iron homeostasis. Under high H202 stress we only find aimirolw-
complexity repeats of Poly-GT. This indicates that the DNA binding specifidi#ft2
changes over these conditions, and may suggest that Aft2 binds the ®alAamodimer

consistent with previous studies that show that Fhl1 remains bound to ittgergs, and
the environmental dependant regulation of the ribosomal genes is detdryitiiee two
cofactors IFH1 (a coactivator) and CRF1 (a corepressor) thattbikthl1[Martin et al.,
2004].

These results suggest that our two-component score, and the motigiargpeline,
improve the specificity of the discovered motifs. In addition, our sets of matsigned
to each TF in each condition, contain additional information, which is importaniri-
derstanding the mechanisms of transcriptional regulation. To demonstrgtev¢hlbave
applied our motif discovery pipeline on transcription factors which alter thefatsior
under environmental changes.
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Figure 5.5: Fhl1.(A) A diagram representing the results of the ChlIP-chip experiment
[Harbison et al., 2004] for the TF Fhl1l under YPD conditions, amino-aeit/ation and
nutrient deproved conditions. As it is demonstrated the targets of Fhll restabie
under these changing environments. (C) From the motif analysis we seentiet all
conditions a motif similar to the known Fhl1 motif is found to be highly enriched under
all conditions.
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Chapter 6

Discussion

Building maps of transcription regulation requires comparison of DNA motifa. aé-
curate motif comparison method is important for clustering redundant DNA mintds
coherent groups and for connecting the discovered motifs to previokhighacterized mo-
tifs of known TFs. In this study we present a novel similarity score, the BidGre,
based on Bayesian probabilistic principles. Our score reflects the simildrétesen
transcription factors binding preferences, while taking into accountnlgtthe similar-
ity in positional nucleotide distributions of the two motifs but also their dissimilarity to
the background distribution. We use the new comparison method as a basistfb
clustering and retrieval procedures, and compare it to several comrasety alterna-
tives. This comparison shows that our BLiC score is more accurate thanmiksible
scores, and improves the specificity and sensitivity of motif comparisonlaster-
ing tasks. The resulting motif clustering and retrieval procedures arepioiied in a
large-scale automated pipeline for analyzing DNA motifs, which integrates utpib
of various DNA motif discovery algorithms and automatically merges redundatits
from multiple training sets. The output of our pipeline is a coherent annoliatady of
motifs. Application of this pipeline to genome-wide location data of transcription fa
tors in S. cerevisiae, successfully identified DNA motifs in a manner that ined gs
semi-automated analyses reported in the literature. Moreover, we dent@hstramotif
analysis can lead to insights into regulatory mechanisms. More specificallyusie e
date mechanisms of transcription factor condition-specific binding, bysfogwur motif
analysis on transcription factors that alter their targets as a responsarigeshin their
environmental conditions, and by searching for differential motifs fosehEFs.

Hierarchical agglomerative clustering We used our BLiC score to develop a hi-
erarchical agglomerative clustering algorithm for merging similar motifs. Qlingtehe
motifs hierarchically ensures that the motifs within every sub-tree are pyogléggned.
Furthermore, such an approach allows us to trim the cluster tree at vaealds, thus
splitting the motif library into different numbers of non-redundant grodiegending on
the requested resolution. In addition, the inner nodes in the tree areccatag the run
of the algorithm by aligning and merging all motifs in the relevant subtree. Sossibil-
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ities are not always available in alternative clustering methods. For instédrecpopular
k-means clustering algorithm is based on a fixed number of clusters, whishiadly not
known in advance. Choosing a wrong number of clusters, might lead t@ aitedundant
set of clusters, or to mis-aligned, mixed clusters. Moreover, in k-meastediog there is
not necessarily a good alignment for all the motifs within a cluster, thus mesginigar
motifs cannot be done automatically from the clustering itself.

Motif analysis We developed a motif analysis pipeline based on our BLIC score and
the hierarchical agglomerative clustering, designed to process discolZNA motifs
into a set of non-redundant, identified motifs. As we have shown, suelpamach im-
proves the sensitivity and specificity of standard motif discovery outputauBymating
all the analyses (including the trimming of cluster trees into discrete sets of met#s)
enable the analysis of hundreds of input groups. In addition, we achiavider view
on transcription regulation by running several motif discovery algorithmsialfel, and
integrating their outputs. By comparing motifs from different input groupsave able to
connect between transcription factors that play a role in differenigss®s. In our analy-
sis, we assigned a set of motifs for each input group of genes, amagdhbat for many
input groups, a set of non-redundant motifs captures the regulatocgidn of the input
genes better than a single DNA motif. Many of these cases include TFs tHataaper-
atively with other TFs (e.g. Stel12). The regulatory mechanism is captureagth a set
of motifs related to all the involved factors. In addition, some TFs change tivading
specificity under different conditions, as we suggest here for theffx Bor these cases,
several DNA motifs better capture the DNA binding preferences of the @ ¢hsingle
motif.

From DNA motifs to regulatory mechanisms Sequence information is a highly
accessible resource, and thus it is interesting to ask what can we learrséguence
information alone on transcription regulation? We demonstrated in this studgxiat-
ining DNA motifs elucidate the regulation mechanisms of transcription factorshive
that motifs can give an indication for the mechanism involved in altered DNAitgnd
in cases where it involves a change in the TFs specificity to the DNA or its lgjrpdint-
ner, as we discussed thoroughly for the TFs Stel2 and Aft2. In addigoexamined all
the TFs that alter their binding in response to a change in their environnesaurdng
to the ChIP-chip data), and found a differential motif for 89% of the TRSTBs). A
differential motif is a motif that is over-represented in the set of targetsdbyrihe TF
in one condition but not in the other. These differential motifs can point taxduse of
the altered DNA binding. An additional important factor affecting DNA bindindpich
we have not discussed here, is the dosage of the active transcripiorsfen the nucleus.
It has been previously suggested [Harbison et al., 2004] that thgel@$dhe TF can be
inferred as well from DNA motif analysis, by examining the similarity of the boomudif
to the consensus sequence. The rational behind this is that when tlemtration of the
protein is low it will bind sites similar to the consensus since it has a higher affinity
them.

35



Still, motif analysis obviously does not reveal the whole picture. For instamee
can learn from the motifs if a TF changes its specificity to the DNA, but theecafithat
change in specificity still remain unknown. This cause could be, for examphedifica-
tion of the protein or binding of a cofactor that does not bind the DNA. @itawh, other
regulatory mechanisms, such as chromatin remodeling mediated regulationt &&n
inferred from motif analysis. Thus, for a complete understanding of tipdatory mech-
anisms additional information such as nucleosome positions and dynamicslednee
significant limitation of motif analysis is that an instance of the DNA motif in the genome
is not a sufficient indication for binding of a TF and even less an indicatipitd activity.
There are several methodologies trying to overcome this obstacle, navigabf solves
the problem completely. A common approach is to consider only conservedides of
motifs eg. [Harbison et al., 2004], since functional motifs are under &eolary con-
straints. This reduces the false positives, but may lead to loss of funictibes since
the regulatory program undergoes rapid evolution compared to codijpgisees [Tautz,
2000, Moses et al., 2006, Levine and Tjian, 2003]. Another possibility altbinforma-
tion, which may separate between functional and non-functional sitesifgpfor each
TF), such as the distance from the transcription start site, co-occerihmotifs and
more. Our inability to differentiate between functional and nonfunctional shoéises
the question addressed many times before [Barash et al., 2003], ifpreseatation of
transcription factor binding preferences is sufficiently accurate? #giexit approach for
reducing this noise in motif analysis could be to use additional biological datawiag
down the motif search to certain regions in the genome. We based our wddcan
tion data from low resolution arrays which focused mainly on promoter regittsing
genome wide arrays with increased resolution can help point out the gebommid re-
gions. In work in progress we are using our motif analysis pipeline to a@alsiza from
such arrays.

In this study we overcome a basic obstacle in DNA motif analysis, by develeping
accurate motif comparison method. Our motif analysis pipeline, which includste g
and retrieval procedures based on our novel score, is fully autoraatedroduces accu-
rate results. This is highly important in large-scale analysis, such as tiated here.
We showed here the power of motif analyses, which are very usefamypto building
regulatory maps, but also for understanding more profoundly regulatechanisms.
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