
Structured Representation of Complex Stochastic Systems

Nir Friedman
�

Computer Science Division
387 Soda Hall
U.C. Berkeley

Berkeley, CA 94720
nir@cs.berkeley.edu

Daphne Koller
Computer Science Department

Stanford University
Gates Building, 1A

Stanford, CA 94305-9010
koller@cs.stanford.edu

Avi Pfeffer
Computer Science Department

Stanford University
Gates Building, 1A

Stanford, CA 94305-9010
avi@cs.stanford.edu

Abstract

This paper considers the problem of representing complex sys-
tems that evolve stochastically over time. Dynamic Bayesian
networks provide a compact representation for stochastic pro-
cesses. Unfortunately, they are often unwieldy since they
cannot explicitly model the complex organizational structure
of many real life systems: the fact that processes are typically
composed of several interacting subprocesses, each of which
can, in turn, be further decomposed. We propose a hierarchi-
cally structured representation language which extends both
dynamic Bayesian networks and the object-oriented Bayesian
network framework of [9], and show that our language allows
us to describe such systems in a natural and modular way. Our
language supports a natural representation for certain system
characteristics that are hard to capture using more traditional
frameworks. For example, it allows us to represent systems
where some processes evolve at a different rate than others,
or systems where the processes interact only intermittently.
We provide a simple inference mechanism for our represen-
tation via translation to Bayesian networks, and suggest ways
in which the inference algorithm can exploit the additional
structure encoded in our representation.

1 Introduction
Consider the problem of representing and reasoning about a
complex system such as a computer network, a factory, or a
busy highway system. We may be interested in estimating
the current status of the system, in predicting its behavior
over the near future, or in understanding the cause for a cer-
tain sequence of observations. These applications, as well
as many others, have some common characteristics. First,
they require that we represent the system and its evolution
over several time points. Second, there is significant uncer-
tainty over the projected evolution of the system, leading us
to prefer stochastic models, which provide an explicit repre-
sentation for the various possibilities and their likelihoods.
Finally, the system represented is usually quite complex. It
is composed of several subprocesses that interact with each
other; the subprocesses can, in turn, be decomposed into yet
�
Current address: Institute of Computer Science, The

Hebrew University, Givat Ram, Jerusalem 91904, Israel.
nir@cs.huji.ac.il.

Copyright 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

finer grained processes. Thus, for example, a computer net-
work is usually composed of several sub-networks, each of
which is composed of servers and clients, and so on.

How do we represent such a stochastic dynamic system?
A standard approach, in the AI literature, is to use a dy-
namic Bayesian network (DBN) [3]. A DBN is a temporally-
extended version of a Bayesian network (BN) [11], and shares
many of the same advantages. It provides a natural represen-
tation of the different states of the process via a set of time-
indexed random variables, clear and coherent probabilistic
semantics for our uncertainty, and a compact representation
of our probabilistic model using a set of conditional indepen-
dence assumptions (including the Markov assumption).

Unfortunately, despite their appealing properties, DBNs
are not ideally suited for the type of task that concerns us
here. In many real-life domains, including the ones above,
the high-level processes are structured entities, each com-
posed of lower-level processes. These processes interact,
thereby probabilistically influencing each other. However,
most of the “activity” of a process is internal to it, and there-
fore encapsulated from the rest of the world. Simon [13]
has observed that this type of hierarchical decomposition of
complex systems in terms of weakly interacting subsystems
is extremely common. For example, in a highway system [6],
most of the activity inside a car is local to it; only limited as-
pects, such as lane occupancy and speed, influence other cars
on the highway. DBNs do not support the notion of a process,
far less the ability to refer to its interactions with others. Our
inability to refer to components of the process also prevents
us from declaratively reusing parts of the model that occur
more than once. For example, if our computer network uses
many servers of the same type, we would like to utilize the
same model for all of them.

Our earlier work on the Object-Oriented Bayesian Net-
work (OOBN) framework [9] addresses these problems for
the case of static models. This framework supports decom-
position and modularity by defining the domain in terms of a
set of objects. An object has attributes, which can be simple
variables (such as the speed of a car), or complex attributes
which are themselves objects (e.g., the car’s engine). Com-
plex objects can depend on other objects via a set of input
attributes, and can affect other objects via a set of output
attributes. By defining classes of objects, the OOBN frame-
work also supports reuse of model fragments for multiple
objects.

Unfortunately, the basic OOBN framework cannot be di-

rectly applied to the task of representing interacting pro-
cesses.� An OOBN object is a black box that does not interact
with the rest of the world except via its inputs and outputs.
Its probability model is a stochastic mapping from the inputs
to the outputs. To avoid a cyclic mapping, the framework
requires that objects can be ordered so that the inputs of an
object precede it in the ordering. Obviously, this requirement
prohibits us from describing interacting objects, where each
takes as input some of the other’s outputs.

To avoid these shortcomings, we define a new representa-
tion, called dynamic OOBNs (DOOBNs), which applies the
hierarchical decomposition approach of OOBNs to evolving
processes. We allow a process to be hierarchically decom-
posed into subprocesses, which interact repeatedly over time.
We show how we can perform inference in our framework
using standard inference tools for BNs and OOBNs.

Our representation allows us to obtain many of the ad-
vantages of OOBNs in the temporal setting. We can easily
provide modular and reusable specifications of hierarchical,
composable Markov models. DOOBNs also allow us to ex-
plicitly represent important properties of process-based sys-
tems that cannot naturally be described using DBNs. In par-
ticular, our framework supports a natural representation for
processes that are changing with different time granularity
and for processes with sparse interactions. As we show, the
explicit representation of such properties allows us to model
the system in terms of a smaller number of variables, thereby
potentially making inference more efficient.

2 Object-oriented Bayesian networks
We begin with a brief overview of the OOBN framework [9],
on which our current work is based. An OOBN is a hier-
archically structured probabilistic model, based on Bayesian
networks (BNs). BNs provide a concise representation of a
joint probability distribution over a set of variables. A BN
is a directed acyclic graph whose nodes are the random vari-
ables and whose edges are direct probabilistic dependencies
between them. Each variable is associated with a conditional
probability table (CPT), encoding the local dependence of a
variable on its parents. The complete joint distribution over
the set of variables is defined as the product of the conditional
probability of each node given its parents [11].

OOBNs extend BNs by allowing structured objects, which
are hierarchically composed of other objects. Specifically, an
object has a set of attributes. Some of these are simple, and
correspond to nodes in a traditional BN. Others are complex,
and take other objects as their value. The value of an object
is a tuple consisting of the values of all its attributes.

Definition 2.1 : A simple type is an enumerated set���
1 ���	���
� ����
 ; a value for a simple type � is any element

of � . A complex type is a tuple ������� 1 : � 1 �����	�
� � � : � ��� ;
a value for � is a tuple ��� 1 : � 1 ���	���
� � � : � ��� where each ���
is a value for �
� . The elements ��� are called attributes of � .
We require that types are stratified, i.e., non-recursive.

We use the term object to denote an entity in the domain.
A simple object has a simple type. A complex object has a
complex type � , and three subsets � , � and � of the attributes
of � , where � � � are a disjoint partition of

� � 1 �	������� � ��
 , and� �!� . The sets � , � , and � are called input attributes, value
attributes, and output attributes.

The type of an object " is denoted #%$&"(' . An object also
has an output type, denoted �)#*$&"(' . The output type of a
simple object � is simply � itself. The output type of a com-
plex object " with output attributes ��� � �,+ 1 ���	���-� �,+
.
 is
defined as �)#%$/"0'1�2���,+ 1 : �)#%$3�4+ 1 ' ���	���
� �1+�. : �)#�$4�4+
.�' � .
An attributechain for an object " is a (possibly empty) chain5 �6� 1 � � 2 �	7�7�7�� � + such that � 1 is an attribute of " , � 2 is
an attribute of " � � 1, and so on.

Aside from its type, the specification of a complex object
includes a probability model that describes the conditional
probability of value attributes, given the input attributes.

Definition 2.2: Let " be a complex OOBN object with type� . A probability model 8 for " defines the following for
each " � ���:90�;$&"(' .< If �
� is simple, 8 specifiesfor ��� a set of parents Par $&���-':�� 5

1 ���	���
� 5>=
 and a CPT. For each ? , 5 + must be an attribute
chain of " such that " � 5 + is simple. The CPT for � � maps
from joint values of Par $/� � ' to distributions over � � .< If �@� is complex, 8 associates with ��� a probability model8;� and an input binding that for each AB9(�C$&"D�3' assigns
some object E � 5 such that �)#%$&E � 5 'F�G#%$3A�' .1

The probabilistic model of an object defines the way in which
its attributes depend on eachother. In order for the probability
distribution to be well-defined, it is important that there are
no cycles in the dependency graph.

Definition 2.3: The dependency graph H,$/"(' associated with
an OOBN object " is a directed graph with a node for each
of the attributes of " , and an edge from I to � if< � is a simple attribute, and I � 5 9 Par $/�J' .< � is complex, and I � 5 is assigned to one of � ’s inputs.

An OOBN object " is well defined if H1$/"0' is acyclic.

Given this acyclicity requirement, the probabilistic model
for an OOBN object is guaranteed to define a coherent con-
ditional probability distribution.

Theorem 2.4: [9] The probability model for a well defined
OOBN object defines a conditional probability distribution
over its value attributes given its input attributes.

The OOBN framework also allows classes of objects to be
defined. A class defines the set of attributes for a complex
object as well as its probabilistic model. Multiple objects
can therefore be defined from the same class, allowing reuse
of model components. The encapsulation properties of the
OOBN language allow objects from the same class to be used
in a variety of contexts. An OOBN model is simply a complex
OOBN object without input and output attributes. By build-
ing on the reusable class definitions, very large structured
models can be constructed from a set of modular compo-
nents.

It is easy to see that an OOBN that has only simple at-
tributes is essentially a Bayesian network. In general, Koller
and Pfeffer show how to “unwind” complex OOBN objects
into a “flat” Bayesian network that is equivalent to it, in a
precise sense. We briefly review this construction.

1Input binding results in objects having several names. For
example, if K binds L%M N to L%MPOQM R , then LSM N and L%M OTM R refer to
the same object.

Let " be an OOBN object. We define UV$&"(' to be the
set ofW simple attributes of " as follows. If " has simple
type, then UV$&"('X� � "
 . If " has complex type, thenUV$/"(',�ZY � UC$&" � �J' : �[9(�1$/"0'
 . Let \ be an OOBN. It is
easy to prove that an assignment of values to UV$/\,' uniquely
determines the value of \ . Thus, a distribution over UV$/\,'
determines a distribution over the (complex) value of \ .

Definition 2.5: Let \ be an OOBN. The induced network
BN $&\,' is a Bayesian network over UC$&\,' , such that the parents
of each "]9BUV$/\,' arePar $&"(' and the conditional probability^ $/"`_ Par $/"0'a' is the CPT of " in \ .

Koller and Pfeffer show that the induced network is well-
defined and captures the distribution defined by \ :

Theorem 2.6: [9] Let \ be an OOBN, then
^:b $/UV$&\1'-' , the

distribution \ defines over simple attributes, is the same as^
BN c bed $/UV$&\,'a' .
The construction of the induced network allows us to use

any standard BN inference algorithm to answer queries about
the distribution described by an OOBN. However, OOBNs
give us the ability to represent models that are much larger
and more complex, thereby raising the problem of inference
in these very large networks. Luckily, we can exploit the
encapsulation properties of OOBNs to guide the application
of inference procedures on the induced BN. That is, the input
and output attributes of an object “shield” its internals from
rest of the OOBN. More precisely, we can define as follows:

Definition 2.7: The interface of an OOBN object " , denoted
Interface $/"0' , contains all the simple attributes in �C$&"(' or in�S$&"(' . Note that the interface of a simple object is the object
itself.

The interface of " can be used to separate the inference
for simple objects within " from the inference in the rest of
the model. In particular, we can divide the inference process
for BN $/\,' into a separate computation for each complex
object " , one which need only look at the simple variables
in Interface $&"('�YQfDg:hji clk d Interface $&�J' . Koller and Pfeffer
define a cost function Cost $&"(' that measures the complexity
of this computation for an object " , one which is (in the
worst-case) exponential in the number of simple variables in
Interface $/"0':Y fDg:hji clk d Interface $&�J' . They show that

Theorem 2.8: [9] The complexity of the inference in BN $&\,'
is mD$3n k Cost $&"('-' .
This result is important, since it provides guarantees about
the complexity of inference in an OOBNs based on properties
of the object classes that are used to construct it.2

3 Interacting objects
While OOBNs are useful for describing hierarchical models
of objects, they are limited by their inability to describe in-
teracting processes that mutually influence each other. Con-
sider, for example, a pair of computational processes, e.g., a
client process and a server process, who go through several
rounds of communication. If we were to draw a high-level

2Note that one of the complex objects is the OOBN o itself. In
particular, if the OOBN corresponds to a standard BN, then Cost p&orq
is simply the cost of inference in the BN.

dependency graph, as above, we would see that the state of
each process depends on that of the other.

Introducing cycles into an OOBN may lead to an inco-
herent probability model, just as it does for BNs. However,
a cyclic description of a process at a high level may ob-
scure an acyclic process at a finer level of granularity. In the
client-server example, it is clear that there are many possi-
ble acyclic models at the finer model: the client sends the
server a request, the server in turn sends a result to the client,
influencing its next query, and so on.

We could, of course, accommodate such models simply
by dropping the acyclicity requirement for the dependency
graph of an object. In order to guarantee coherence of our
model, we could simply test, on a case-by-casebasis, whether
an OOBN object defined an acyclic model at the lowest level
of granularity, i.e., whether BN $/\,' is acyclic.

This approach, while straightforward, defeats the purpose
of providing modular, composable models of objects. There
would be no guarantee that a set of objects, each of which
has a coherent model of its own, would compose into a co-
herent object at a higher level. We therefore take a different
approach, that allows an object to provide guarantees about
its own internal ordering. Each output of an object " will
declare the inputs on which it depends. When " is used
in a higher-level object, the only thing required to ensure an
acyclic process is that no output of " can influence any of the
inputs on which it depends. In other words, the output cannot
be used before the inputs on which it depends are supplied.

Definition 3.1: An interacting object " is an OOBN object,
as before, except that 8 associates complex attributes with in-
teracting objects, and that 8s$/"(' defines a dependency modelt k which is a function from �S$&"(' to subsets of �V$/"0' .
Intuitively, if " is an interacting object, the value of an output
attribute " � m depends only on the inputs specified in

t k $4mu' .
To ground this intuition, consider the interacting OOBN

in Figure 1(a), representing a simple client/server system.
There are two computations to be processed, and two servers
available to process them. An allocator receives requests
from each of the computations and decides what job to send
to each server. The two servers each have the simple attribute
FREE, indicating whether the server is available for computa-
tion, and the complex output attribute RESULT, which in turn
has the simple attributes COMPLETE and SIZE. The servers
also take as input the complex attribute JOB, which has sim-
ple attributes PRIORITY and COMPLEXITY. Presumably, the
servers will also have various other complex attributes repre-
senting their components, such as their processors, memory
and hard drive, but they are not shown in this simple model.
Note that we can use the same model to describe the two
server objects, and similarly for the computation objects. A
computation object has the simple output attribute SUCCESS,
the complex value attribute RESULT (of the same type as
SERVER.RESULT), and a complex attribute QUERY. It also has
a simple input RESPONSE, which is a notification from the
allocator as to which process, if any, is serving its request.

The model of Figure 1(a) is not a legal OOBN, since
there are numerous cycles: for example, between each
computation and the allocator, and between each server
and the allocator. All the cycles are broken, however, be-
cause the QUERY output of the computation objects and the
FREE output of the server objects do not depend on any

Result

Result

ResultServer 1

ResultServer 2

Job

Job

Free

Free

Allocator

Request1

Request2Response2 Job2

Job1

Free1Response1

Free2

Result2

Result1Response

Computation 1

Success

Result2

Result1Response

Computation 2

Success

Query

Query

Status

Status-
Result2

Result1Response
Success

Query

Computation
Request Response

Allocator[0]
Free

Free[0]

Job

Job[0]

Request Response

Allocator[1]
Free

Free[1]

Job

Job[1]

Response

Allocator[2]

Request

Free

Free[2] Job[2]

Job

Result[2]Result[1]Result[0]Response[0]Query[0] Query[2]

Status

Response[2]

Success[0] Success[1] Success[2]

Computation

Server
Result[0] Result[2]Result[1]

Query[1] Response[1]

(a) (b) (c)

Figure 1: (a) A high-level picture of an interacting OOBN. (b) The DOOBN model for a computation object. (c) The
interacting OOBN for 3 time slices of the client-server DOOBN.

of their inputs. The model can express this fact by as-
serting that their dependency lists are empty. The depen-
dency list for COMPUTATION.SUCCESS, on the other hand, is�

RESPONSE, RESULT1, RESULT2

.

Recall that the dependency graph of an OOBN object en-
sures that the probability model of the object does not contain
cycles. Since an OOBN treats an enclosed object as a black
box, Definition 2.3 assumes that all outputs of an object are
dependent on all of its inputs. We now modify this defini-
tion to use the declared dependency model of the contained
objects of " to get a more refined representation of the de-
pendencies among attributes. To do so, however, we need to
define the graph over input/output attributes of objects rather
than over complete objects.
Definition 3.2: The dependency graph Γ $/"(' of an interact-
ing object " is a directed graph whose nodes are the input
attributes of " , the simple value attributes of " , and the
input and output attributes of complex value attributes of " .
There is an edge from node v to node w in Γ $&"(' if:
1. v � 5 9 Par $&wx' , for a simple attribute w .
2. w is of the form � � A (where we use A to denote input

attributes and m to denote output attributes), and some
expression of the form v � 5 is assigned to � � A by 8s$/"(' .

3. w is of the form � � A , v is of the form I � m , and I was
assigned to � � A .

4. w is of the form y � A , v is of the form y � m , and A is int k1z { $3mu' .
The cases (1) and (2) are similar to the cases we saw in

Definition 2.3, except that in case (2) the edge points to � � A
rather than to � as a whole. Case (3) deals with situations
in which an entire top-level attribute I is assigned to � � A ;
there, any of I ’s output attributes may be used within � ,
so we must have an edge between each of them and � � A .
Case (4) simply reflects the dependencies reported by the
complex attributes. This graph allows us to state the basic
definitions that force an interacting object to define a coherent
probability distribution.
Definition 3.3: An object " is said to respect

t k if, whenever
there is a causal path in Γ $&"(' from an input attribute " � A to
an output attribute " � m or to one of " � m ’s attributes (if " � m
is complex), then AB9 t k $3mu' . An interacting object " is
coherent if Γ $/"0' is acyclic, " respects

t k , and all complex
attributes of " are also coherent.

We can now state the main theorem of this section:

Theorem 3.4: If " is a coherent interacting object, then "
defines a conditional probability distribution over its value
attributes given its input attributes.

Thus, the use of declarative dependency models allows us
to extend OOBNs for interacting objects, without requiring
other changes to the representation. The main difference
is that the semantics of an interactive object is no longer
in terms of one stochastic map from inputs to outputs, but
rather as a more complex collection of such mappings. In
spite of the different semantics, we still perform inference
by constructing the induced BN; in fact, the construction of
Definition 2.5 applies unchanged.

Theorem 3.5: Let \ be a coherent interacting OOBN. Then,
the network BN $/\,' is well-defined, and

^:b $/UV$&\1'-' is the same
as
^

BN c bed $&UV$/\,'-' .
As for OOBNs, the ability to construct a ground-level BN

provides us with an inference algorithm for the richer rep-
resentation. More importantly, the encapsulation properties
of objects also remain unchanged. Technically, it is easy
to show that the value of an object " is independent of the
remaining objects in the OOBN (those not enclosed in ")
given values for " ’s inputs and outputs. Thus, as for OOBNs,
we can utilize the structure encoded in our representation to
provide guidance to the inference algorithm. Using the same
definitions for Interface and Cost, we can thus show:

Theorem 3.6: The complexity of the inference in BN $&\1' ismD$ n k Cost $&"('a' .
4 Dynamic OOBNs

Interacting OOBNs allow us to describe complex interacting
objects. Yet, they are still unwieldy for dealing with tasks
such as modeling a computer network or a freeway system,
which involve repetitive interactions. In this section we in-
troduce a compact representation for such domains.

Let us reconsider the example of the previous section, but
now under the assumption that the computations are long-
lived: they generate a stream of queries and wait for one
to be answered before sending the next. In each round, the
allocator will attempt to dispatch incoming queries to the
servers. The servers themselves may take several rounds to
process a query.

To capture such repetitious interaction patterns between
objects,| we define dynamic OOBNs (DOOBNs), which have
the same relationship to OOBNs as dynamic Bayesian net-
works (DBNs) have to BNs. In a DOOBN, we have dynamic
objects whose state—the values of its objects—changes over
time. We define the dynamics of the object using a standard
Markov assumption, i.e., that the future state of the process
is independent of its past given its future. As usual, this as-
sumption allows us to represent the process via a transition
model that describes the conditional probability of the current
state given the current inputs and the previous state.

The objects in a DOOBN are of two kinds: persistent and
transient. A persistent object exists for the entire duration
of the system; its state changes over time, but its state at
one time point can influence its state in the future. We often
refer to persistent objects as processes. A transient object" , on the other hand, has a limited lifetime; every time the
system changes, " is replaced by a new object of the same
type. In our running example, the computation and server
objects have state, and so they are persistent. On the other
hand, queries and results, which are communicated between
the various units, are transient. They are replaced by new
queries and results every round of communication.

Definition 4.1: A dynamic object " is declared to be ei-
ther transient or persistent. A transient object is exactly an
interacting OOBN object. A persistent object is defined in
the same manner as an interacting object, except that it also
allows parents of simple attributes and inputs of complex at-
tributes to be of the form � � 5~} , where � is a value attribute
of " . Additionally, the model 8 of a persistent object can
associate attributes with either persistent or transient objects.
However, input and outputs attributes must be transient.

The dependency graph Γ $&"(' for a dynamic object " is
the same as that for an interacting object. The definitions of
when " respects

t k and when " is coherent are the same
for dynamic objects as for interacting objects.

Intuitively, the attribute � � 5e} refers to the value of the
object that was assigned to � � 5 at the preceding point in
time. (Recall that � � 5 must be a transient object.) To make
this definition precise, we assume that a process changes state
at fixed time intervals, each of which is called a time slice.
Thus, � � 5~} is simply the value of � at the previous time slice.
We now get the following as a corollary of Theorem 3.4.

Theorem 4.2: If " is a coherent dynamic object, then "
defines a conditional probability distribution over its value
attributes given its input attributes and its previous value.

Figure 1(b) shows the DOOBN model for a computation
object. Since the computation is persistent, it may itself
contain persistent attributes, and in fact the STATUS attribute,
representing the accumulated result of computation, is per-
sistent. STATUS has, among other things, the simple attribute
WORK-TO-GO. The current query depends on the status at the
previous time slice, while the status at the current time slice
is affected by the current result.

To fully describe an evolving process, we must provide a
starting point as well as a transition probability.

Definition 4.3: A Dynamic OOBN (DOOBN) is a pair ������ 0 � ��� � , where �)� is a dynamic object without inputs,
and � 0 is an (interacting) OOBN object of the same type as

��� . For simplicity, we also assume that � 0 and ��� have
the same dependency model

t
.

Intuitively, ��� describes the transition probability from one
time slice to the next, while � 0 is an OOBN (that therefore
lacks the � } attributes) that describes the distribution over
the initial state. As a whole the DOOBN model describes a
complex Markov process, where the value of the process at
each step is of type #S$�����' .

To reason about such a process, we need to reason about
the values of the process at different points in time. To do
so, we unroll the DOOBN into an interacting OOBN that has
many copies of the same objects, one for each time slice.
To unroll a DOOBN for � time slices, we unroll each of
its attributes. A transient object is duplicated � times; a
persistent one is unrolled recursively. The inputs and outputs
are then connected appropriately by the enclosing object.

Definition 4.4: Let � be a DOOBN, let " be a persistent
object in � , and let ��� 0 be the number of non-initial time
slices. The unrolled object �F�)$&"(' is an interacting OOBN
object defined as follows:< If � is a transient attribute of " , then ���u$/"0' contains an

attribute �D� 0 �—a copy of " � � in � 0—and � attributes��� 1 � ���	���-� ���P�*� , each of which is a copy of " � � . If � �
(or � 0 for �(� 0) assigns I � 5 to � � A or a parent I � 5 to� , then �F�D$&"(' assigns � = $4I � 5 ' to �D�P��� � A or to Par $&�D� ����'
respectively. If � is simple, the CPT of ���P��� is the same
as that of � .< If � is a persistent attribute of " , then �F�D$&"(' contains
the single attribute ���D$&�J' . If I � 5 is assigned to � � A in " ,
then a time � snapshot � = $3I � 5 ' is assigned to � � $&�J' � Ae�P��� .< The dependency list

t	��� clk d $3mS� ����':� � A~� ?�� : ?���� � As9�V$&"('
 Y � Ae�P��� : AD9 t k $3m)'
 .
The definition of � = $3I � 5 ' is straightforward: � = $3I � 5~} '��� = } 1 $3I � 5 ' ; if I is transient, � = $4I � 5 '1�6I%�P��� � 5 ; otherwise,
letting 5 �[m � 5�� , � = $4I � 5 '1��I � m%�P��� � 5�� .

At its most basic, the construction generates a copy of
each simple attribute for each time slice. These attributes
are encapsulated in a way that matches the process structure:
persistent attributes are represented by a single long-lived
subobject, while transient attributes have a separate object
for each time slice. Figure 1(c) shows part of the interacting
OOBN for 3 time slices of the DOOBN for our example.

Theorem 4.5: If ������� 0 � � � � is a DOOBN where � 0 is
a coherent interacting OOBN object and ��� is a coherent
DOOBN object, then �F�u$��s' is a coherent interacting OOBN.

If we now take the resulting interacting OOBN, and apply
the transformation described in Theorem 3.5, we obtain a BN
with �6� 1 time slices, each containing the simple attributes
in ��� ; These are connected appropriately both within and
between time slices. This transformation is illustrated in
Figure 2, which shows two time slices of the BN constructed
from the DOOBN for our example. (For simplicity, the model
for the size of the result has been omitted.) Recall that the
same simple attribute can have a number of names, because
values are passed from the outputs of one object to the inputs
of another. In the BN, we use the name of the attribute at the
time it is created. For example, COMP.STATUS.WORKTOGO
depends on COMP.RESULT.COMPLETE, which is the

Comp.Query[0].Complexity Allocator[0].Job.Complexity Comp.Query[1].Complexity Allocator[1].Job.Complexity

Allocator[1].Job.PriorityComp.Query[1].Priority

Server.Result[1].Complete

Comp.Status.WorkToGo[1]

Comp.Success[1]

Server.Free[1]

Allocator[1].ResponseServer.Result[0].Complete

Comp.Status.WorkToGo[0]

Allocator[0].Job.PriorityComp.Query[0].Priority

Allocator[0].Response

Comp.Success[0]

Server.Free[0]

Figure 2: The DBN for 2 time slices of the client-server DOOBN. Edges between the time slices are shown in bold.

same as SERVER.RESULT.COMPLETE. This is repre-
sented by an edge from SERVER.RESULT.COMPLETE to
COMP.STATUS.WORKTOGO in each time slice.

Since the BN was built from an interacting OOBN, The-
orem 3.6 on the cost of inference still applies. Since the
number of objects in an � -time slice interacting OOBN is
linear in � , one might think that the cost of inference is also
linear in � . Unfortunately, this is not the case—the cost
of inference in the subobjects grows exponentially with � .
The reason is that the interface to a persistent object contains��� 1 copies of its inputs and outputs, and the cost of rea-
soning in an OOBN is exponential in the size of the largest
interface.

Of course, there is no requirement that we use the guidance
given to us by object boundaries in performing the inference.
After all, the resulting BN structure is a familiar one: it is
exactly the type of structure that we obtain by unrolling a
DBN for � time slices; perhaps we can employ standard
DBN inference algorithms. As we mentioned above, the
key to most BN algorithms is the separation of the inference
problem into two pieces using a set of variables that render
the pieces conditionally independent (e.g., the interface of
an object in OOBNs). DBN inference algorithms, even the
most sophisticated [8], rely on the same basic idea. Largely,
DBN inference algorithms focus on Markovian separators,
which separate the future of the process from its past. Unfor-
tunately, in order to render the future and past independent,
our separator must contain some set of variables that block all
paths through which influence can flow. In Figure 1(c), for
example, a Markovian separator would have to “cut” both
the computation process and the server process, rendering
their future independent of their past. This separator would
have to contain (at least) all the simple variables in these pro-
cesses whose value at the previous time step is referenced.
For complex processes the number of such variables may be
quite large. The inference algorithm has to maintain a joint
distribution over the separator, rendering the cost exponen-
tial in the number of variables in it.3 Since we are interested
in reasoning about fairly complex systems, using Markovian

3One might think that, in highly structured processes, it would
be possible to use conditional independence to decompose the joint
over the separator. Unfortunately, this is not the case. Except for
the first few time slices, all of the variables in a Markovian separator
are correlated. Intuitively, for almost any two variables, there is an
influence path leading back through earlier time slices, that renders
them dependent.

separators is often infeasible.
It would appear that we are faced with two unpalatable

alternatives. We can either use a method that is exponen-
tial in the number of time slices, or one that is exponential
in the size of a time slice. If both are large, neither op-
tion will be feasible. This problem also occurs in traditional
DBNs, and approximate algorithms for DBN inference is an
important area of current research [4, 7, 2]. The work of
Boyen and Koller [2] is particularly relevant to our discus-
sion, as it explicitly utilizes a decomposition of a complex
process into weakly interacting subprocesses. They utilize
this decomposition to approximate the joint distribution over
a Markovian separator by assuming that the states of the sub-
processes are independent. They then provide bounds on the
error incurred by approximation using the degree to which
the different subprocesses interact. In their current work,
the decomposition of the process into subprocesses is given
as input to their algorithm, presumably by some user. Our
DOOBN representation makes this structure explicit, allow-
ing their algorithm to take advantage of the process structure
automatically.

5 Time granularity
By making the notion of a process explicit, we obtain the
ability to refer directly to its properties and distinguish them
from the properties of other processes in the system. In
particular, our framework gives us the tools to avoid one of the
main deficiencies of the DBN representation. In a standard
DBN model, we begin by picking some fixed granularity of
time, and then generating multiple instances of each state
variable in our domain, one instance for each time slice.
For example, in the traffic surveillance application of [6],
accurate tracking requires that the locations of vehicles be
modeled at the rate of 30 time slices a second. All other
variables in the system are therefore modeled at the same
level of granularity. However, most of these variables, e.g.,
the weather or the alertness of the driver, evolve much more
slowly than the car’s location. Clearly, had the presence of
the location variables not forced them to do so, it would not
have occurred to the designers of [6] to model these other
variables so finely.

What we want is a framework that allows us to model
different parts of the system at different levels of time gran-
ularity. One could imagine trying to extend the DBN frame-
work directly in order to achieve this goal. For example, we
could annotate each variable with a time granularity, using

that number to dictate the frequency with which it is modeled.
Aside� from leading to unwieldy notation, such a solution suf-
fers from a serious knowledge engineering problem: DBNs
provide no notion of a high-level process consisting of several
variables; thus, if we decide to change the time granularity at
which one of our processes is modeled we have to manually
change the annotation on all of the relevant variables.

We now describe how to represent such situations by mak-
ing a small extension to the basic DOOBN model. We sim-
ply add an optional additional granularity argument, ��$&"(' ,
to each persistent attribute " in the DOOBN, that denotes
how frequently we should model the process represented by" . If " is not labeled with a granularity value, it simply
inherits its granularity value from its enclosing object.

Let us analyze the behavior of a process containing pro-
cesses at different granularities by examining our transforma-
tion from Definition 4.4. The number of times that a transient
object is duplicated depends on ��$&"(' , where " is the enclos-
ing process. We start with one copy at time 0; each instance
lasts for exactly � seconds, at which point a new instance is
generated from the appropriate transition probability model.
Thus, the � th “time slice” of the object maintains its value
over the half open interval �P�e� � $4�Q� 1 'a��' .

In this context, it no longer makes sense to index time-
specific instances of an object � with a natural number �
representing its time slice. Instead, we use ��� � 1 � � 2 � to index
an object by the interval over which its holds. We use the
notation �D� �4� as a shorthand reference to the (unique) time
indexed object �D� � 1 � � 2 � for which �19�� � 1 � � 2 ' .

The probability distribution over the values of a transient
object depends on values of other objects, both from the cur-
rent time and from the previous time. To understand the
nature of this dependence, consider the (imaginary) process
by which a new value for � is chosen at time � 1. A parentI of � represents a dependence of �D� � 1 � � 2 � on a contempo-
raneous variable. Thus, the appropriate parent for ��� � 1 � � 2 �
would be I%� � 1 �—the value of I at the time � ’s value is se-
lected. On the other hand, a parent of the form I } represents
a dependence of � on the value of I at a preceding moment
in time. We choose to interpret I } as referring to the clos-
est preceding moment, i.e., I%� � 1 � � � for arbitrarily small � .
Intuitively, � looks at the value of I � 5 immediately before� 1, and then changes its value at � 1. Clearly, this interpreta-
tion is not the only legitimate one. In particular if some of� ’s inputs evolve much more quickly than � , we may wish
to have � depending on an their earlier values, or perhaps
on some appropriate aggregate value. Space limitations pre-
vent us from discussing these ideas, but the extensions are
straightforward and introduce no new subtleties. We now
formalize this intuition by extending Definition 4.4.

Definition 5.1: Let " be a persistent DOOBN object, and
let ¡¢� 0 be some time point. Let � be the time granularity
of " and �£��¤l¡V¥��§¦ . The unrolled object �©¨,$/"0' is simply� � $/"(' , with the following changes:< Any attribute in �F�u$/"(' of the form ���P��� is renamed to���P�e� � $3�Q� 1 'a�§� .< The function � = is replaced by the function �eª
$4I � 5 ' , de-

fined as follows: if I is transient, �eªa$3I � 5 '«�]IS� �4� � 5 ;
otherwise, letting 5 �¬m � 5�� , � ª $3I � 5 '�� I � m%� �4� � 5�� .� ª $4I � 5e} ' is defined to be � ª }x­ $4I � 5 ' for an � so small
that � ª }x­ $4I � 5 'F�Z� ª }x­�® $3I � 5 ' for any � � 9«$ 0 � � ' .

Theorem 5.2: If �¯�°�l� 0 � ��� � is a DOOBN with time
granularities where � 0 is a coherent interacting OOBN ob-
ject and ��� is a coherent DOOBN object, then �©¨,$��%' is a
coherent interacting OOBN.

The proof is based on defining the set of time points at
which some object in the model determines its value. Al-
though this set of time points no longer has regular structure,
it is still finite. The same techniques as in the previous section
can be used to show that the probability model over the vari-
ables at these time points is acyclic, and that the conditional
distribution is well-defined given the values at the previous
time point.

If we now take the resulting interacting OOBN, and apply
the transformation into a BN described in Theorem 3.5, the
result is still a BN, but it is no longer a standard DBN. Vari-
ables that evolve more slowly have fewer copies than their
more volatile counterparts. The dependencies between vari-
ables are resolved automatically by our construction process.

While modeling processes at their appropriate granularity
is a worthwhile goal on its own, it can also provide some help
with the inference task. As we saw in the previous section,
using the OOBN structure to perform inference in a DOOBN
is exponential in the number of time slices. However,
if some processes evolve much more slowly than others,
their interfaces will be fairly small. Therefore, it may make
sense to use interface-based separators, at least for slowly
changing processes. The resulting fragments might involve
fewer processes, and thus would allow for efficient use of
Markovian separators. A combined approach that uses both
kinds of separators suggests itself. This topic deserves a full
investigation, which is beyond the scope of this paper.

6 Sparsely interacting processes
Up to now, we have assumed that the interaction between
processes is regular; at each point in time, they receive in-
puts from other processes, change their state, and export their
outputs. Clearly, this type of regular communication is not
an aspect of all systems. In our client/server example, it is
reasonable to assume that a server output representing the
size of the query result influences the client state only if the
client has issued a query to the server at some previous time
point, and if the server has just indicated that the processing
is complete. If queries are only issued rarely and their pro-
cessing takes a variable amount of time, the interaction model
is far from regular. As another example, consider modeling
cars traveling on a highway. While the behavior of one car
is definitely influenced by attributes of others, this influence
might be intermittent; e.g., a driver might examine the status
of cars on the left only when he tries to change lanes.

Such situations are represented very naturally in the tran-
sition system framework of Manna and Pnueli [10]. There,
each process can take one of several possible transitions,
which affect its state. However, each transition is associated
with a guard, which may or may not be true in a given state.
A transition is said to be enabled in a state if its guard is true at
that state; at a given state, a process can only take a transition
if it is enabled. In our client/server example, we may have
an additional processing-complete variable in the server and
a query-issued variable in the client. The transition which
updates the client’s state based on the query results would be
enabled only if both of these variables are true.

We can extend this idea to our probabilistic framework
by using± the techniques of Boutilier et al. [1]. They de-
fine a notion of context specific independence (CSI), which
corresponds to situations in which the variables on which
some variable depends are different in different situations (or
contexts). They also show how these situations can be rep-
resented explicitly within the language, by using structured
CPT models such as trees. In our example, the state of the
client object will only depend on the server’s other output
variables if both of these variables are true.

Boutilier et al. also propose ways in which the CSI struc-
ture can be exploited to speed up BN inference. We believe
that these ideas can be extended to DOOBN models, allowing
our inference algorithm to take advantage of sparse interac-
tion between the processes. We conclude this section by
sketching one possible mechanism by which computational
advantage can be gained.

Recall that applying the OOBN inference idea to models
generated from DOOBNs led us to consider the use of pro-
cess interfaces to decompose the BN computation. When
interactions between the processes are sparse, the actual “in-
formation” content of the interface is much smaller. For
example, assume that our client is unlikely to issue very
many queries to the server, perhaps because it intersperses
queries with other (lengthy) tasks. We can define an active
interaction to be a state in which both the query-issued and
processing-complete variables are true, so that the client state
is influenced by the server. At a time slice where there is no
active interaction, none of the other server outputs affect the
client; otherwise, the client state depends on some set of ²
variables describing the query results. If we know that there
are exactly � “active interactions” in � time slices, there are
only ³ � =e´ interaction patterns, and a total of ³ � =~´ 2 =
µ possible
interactions between the server and the client. Using a pro-
cess of global conditioning [12], we can do a case analysis
on the different possible interactions, thereby separating the
client and server processes. The cost of this separation is³ � = ´ 2 =
µ , which (for small �) is exponentially smaller than
the 2 � µ required without using the sparsity. We can also
extend these ideas to situations where we have no specified
bound on the number of interactions. If we only know that
“runs” where there are many queries are highly improbable,
most of the probability mass would be on those runs where
the interaction pattern is sparse. The bounded conditioning
algorithm of [5] can then be used to restrict attention only to
runs with sparse interaction.

7 Conclusion
In this paper, we have presented a new language for rep-
resenting complex dynamic systems with uncertainty. The
language supports structured hierarchical representations of
systems in terms of interacting subprocesses,and allows large
models to be constructed from modular, reusable compo-
nents. Our language can express important aspects of com-
plex systems, such as the different rates at which various
processes evolve, and the sparse interactions that take place
between processes. Our framework also allows additional
features to be incorporated easily; for example, we may be
able to represent asynchronous stochastic systems by extend-
ing our time granularity framework to allow for stochastic
models of when processes wake up.

We provide an inference algorithm for answering queries
over models in our language by converting them to Bayesian
networks. Unfortunately, as with standard DBNs, inference
in DOOBNs can be extremely costly. However, as our dis-
cussion above illustrates, the types of structure that can be
expressed in our language can potentially lead to improved
inference algorithms. We believe that approximations are
crucial for inference in large complex processes, and we hy-
pothesize that the encapsulation structure of our representa-
tion can guide approximation methods such as these of [4, 2].
We plan to examine these issues in future work.

Acknowledgments Part of this work was done while Nir
Friedman was at Stanford. This work was supported by ARO
under the MURI program “Integrated Approach to Intelligent
Systems”, grant number DAAH04-96-1-0341, by ONR con-
tract N66001-97-C-8554 under DARPA’s HPKB program,
by DARPA contract DACA76-93-C-0025 under subcontract
to Information Extraction and Transport, Inc., and through
the generosity of the Sloan Foundation and the Powell Foun-
dation.

References
[1] C. Boutilier, N. Friedman, M. Goldszmidt, and

D. Koller. Context-specific independence in Bayesian
networks. In Proc. UAI, 1996.

[2] X. Boyen and D. Koller. Tractable inference for com-
plex stochastic processes. Submitted to UAI ’98, 1998.

[3] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Comp. Int., 5(3), 1989.

[4] Z. Ghahramani and M. I. Jordan. Factorial hidden
Markov models. Machine Learning, 29, 1997.

[5] E.J. Horvitz, H.J. Suermondt, and G.F. Cooper.
Bounded conditioning: Flexible inference for decisions
under scarce resources. In Proc. UAI, 1989.

[6] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao,
S.J. Russell, and J. Weber. Automatic symbolic traffic
scene analysis using belief networks. In AAAI, 1994.

[7] K. Kanazawa, D. Koller, and S.J. Russell. Stochastic
simulation algorithms for dynamic probabilistic net-
works. In Proc. UAI, 1995.

[8] U. Kjaerulff. A computational scheme for reasoning in
dynamic probabilistic networks. In Proc. UAI, 1992.

[9] D. Koller and A. Pfeffer. Object-oriented Bayesian
networks. In Proc. UAI, 1997.

[10] A. Manna and A. Pnueli. Temporal Verification of Re-
active Systems. Springer Verlag, 1995.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

[12] R. Shachter, S. Andersen, and P. Szolovits. Global con-
ditioning for probabilisitic inference in belief networks.
In Proc. UAI, pp. 514–522, 1994.

[13] H. Simon. The Sciences of the Artificial. MIT Press,
1981.

