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Abstract
Many temporal processes can be naturally mod-
eled as a stochastic system that evolves con-
tinuously over time. The representation lan-
guage of continuous-time Bayesian networks
allows to succinctly describe multi-component
continuous-time stochastic processes. A crucial
element in applications of such models is (ap-
proximate) inference. Here we introduce a varia-
tional approximation scheme, which is a natural
extension of Belief Propagation for continuous-
time processes. In this scheme, we view mes-
sages as inhomogeneous Markov processes over
individual components. This leads to a rela-
tively simple procedure that allows to easily in-
corporate adaptive ordinary differential equation
(ODE) solvers to perform individual steps. We
provide the theoretical foundations for the ap-
proximation, and show how it performs on a
range of networks. Our results demonstrate that
our method is quite accurate on singly connected
networks, and provides close approximations in
more complex ones.

1. Introduction
The dynamics of many real-life processes are naturally
modeled in terms of continuous-time stochastic processes,
allowing for a wide range of time scales within the same
process. Examples include biological sequence evolu-
tion (Felsenstein, 2004), computer systems (Xu & Shel-
ton, 2008; Simma et al., 2008), and social networks (Fan
& Shelton, 2009).

While the mathematical foundations of continuous-time
stochastic processes are well understood (Chung, 1960),
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the study of efficient computer representations, inference,
and learning of complex continuous-time processes is
still in early stages. Continuous-time Bayesian networks
(CTBNs) (Nodelman et al., 2002) provide a sparse rep-
resentation of complex multi-component processes by de-
scribing how the dynamics of an individual component de-
pends on the state of its neighbors. A major challenge is
translating the structure of a CTBN to computational gains
in inference problems—answering queries about the pro-
cess from partial observations.

As exact inference in a CTBN is exponential in the num-
ber of components, we have to resort to approximations.
Broadly speaking, these fall into two main categories. The
first category is stochastic approximations (Fan & Shelton,
2008; El-Hay et al., 2008), which sample trajectories of
the process. While these can be asymptotically exact, they
can be computationally expensive and incur computational
penalties when sampling rapidly evolving processes. The
second category of approximations is variational methods.
Nodelman et al. (2005) and Saria et al. (2007) developed an
approach based on expectation propagation (Minka, 2001;
Heskes & Zoeter, 2002), where the posterior distribution
over a process is approximated by piecewise homogeneous
factored processes. This involves an elaborate message
passing scheme between the approximations for different
components, and an adaptive procedure for determining
how to segment each time interval. More recently, Cohn
et al. (2009) introduced a mean-field approximation (Jor-
dan et al., 1998), which uses factored inhomogeneous pro-
cesses (Opper & Sanguinetti, 2007). This allowed them to
build on the rich literature of adaptive ODE solvers. While
the mean-field approximation provides a lower-bound on
the likelihood, it suffers from the expected drawbacks when
approximating highly coupled processes.

Here we introduce a variational approximation that com-
bines insights from both previous approaches for varia-
tional inference in CTBNs. Our approximation is a natural
extension of the successful Bethe approximation (Yedidia
et al., 2005) to CTBNs. Alternatively, it can be viewed
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applying the approach of Nodelman et al where the seg-
ment length diminishes to zero. Our approximation finds
a collection of inhomogeneous processes over subsets of
components, which are constrained to be locally consistent
over single components. We show that this approximation
is often accurate on tree-networks, and provides good ap-
proximations for more complex networks. Importantly, the
approximation scheme is simple and allows to easily ex-
ploit the large suites of computational tools offered in the
field of ODEs.

2. Continuous-Time Bayesian Networks

Consider a d-component Markov process X(t) =
(X(t)

1 , X
(t)
2 , . . . X

(t)
d ) with state space S = S1×S2×· · ·×

Sd. A notational convention: vectors are denoted by bold-
face symbols, e.g., X , and matrices are denoted by black-
board style characters, e.g., Q. The states in S are denoted
by vectors of indexes, x = (x1, . . . , xd). We use indexes
1 ≤ i, j ≤ d for enumerating components and X(t) and
X

(t)
i to denote the random variable describing the state of

the process and its i’th component at time t.

The dynamics of a time-homogeneous continuous-time
Markov process are fully determined by the Markov transi-
tion function,

px,y(t) = Pr(X(t+s) = y|X(s) = x),

where time-homogeneity implies that the right-hand side
does not depend on s. These dynamics are captured by a
matrix Q—the rate matrix, with non-negative off-diagonal
entries qx,y and diagonal entries qx,x = −

∑
y 6=x qx,y .

The rate matrix is related to the transition function by

d

dt
px,y(t)

∣∣∣∣
t=0

= qx,y.

The probability of being in state x at time t satisfies the
master equation (Chung, 1960)

d

dt
Pr(X(t) = x) =

∑
y

qy,xPr(X(t) = y).

A continuous-time Bayesian network is a structured multi-
component continuous-time Markov process. It is de-
fined by assigning each component i a set of components
Pai ⊆ {1, . . . , d} \ {i}, which are its parents in the net-
work (Nodelman et al., 2002). With each component i we
then associate a family of rate matrices Qi|Pai

·|ui , with entries

q
i|Pai
xi,yi|ui , that describe the rates of change of the i’th com-

ponent given the state ui of the parents Pai. The dynamics
of X(t) are defined by a rate matrix Q with entries qx,y

that combines the conditional rate matrices as follows:

qx,y =


q
i|Pai
xi,yi|ui δx,y = {i}∑
i q
i|Pai
xi,xi|ui x = y

0 otherwise,

(1)

where δx,y = {i|xi 6= yi}. This definition implies that
changes occur one component at a time.

Given a continuous-time Bayesian network, we would like
to evaluate the likelihood of evidence, to compute the prob-
ability of various events given the evidence (e.g., that the
state of the system at time t is x), and to compute condi-
tional expectations (e.g., the expected amount of time Xi

was in state xi). Direct computations of these quantities
involve matrix exponentials of the rate matrix Q, whose
size is exponential in the number of components, making
this approach infeasible beyond a modest number of com-
ponents. We therefore have to resort to approximations.

3. A Variational Principle
Variational inference methods pose the inference task in
terms of an optimization problem. The objective is to max-
imize a functional which lower-bounds the log probability
of the evidence by introducing an auxiliary set of varia-
tional parameters (Wainwright & Jordan, 2008). Recently,
Cohn et al. (2009) introduced a variational formulation of
inference in continuous-time Markov processes. We start
by reviewing the relevant results of Cohn et al.

For convenience we restrict our treatment to an interval
[0, T ] with boundary evidenceX(0) = e0 andX(T ) = eT .
The posterior distribution of a homogeneous Markov pro-
cess given evidence e = {e0, eT } on the two boundaries
is a non-homogeneous Markov process. Such a process can
be represented using a time varying rate matrix Q(t) that
describe the instantaneous transition rates. However, such
a representation is unwieldy, since as t approaches T the
transition rates from x 6= eT to eT approach infinity.

To circumvent the problem of unbounded values near the
boundaries, Cohn et al introduce marginal density sets
which represent the posterior process in terms of uni-
variate and joint pairwise distributions. More formally, if
Pr denotes the posterior distribution, its marginal density
set is the following family of continuous functions:

µx(t) = Pr(X(t) = x)

γx,y(t) = lim
h↓0

Pr(X(t) = x,X(t+h) = y)
h

, x 6= y.

(2)
In addition to providing a bounded representation to the
posterior, this representation allows to easily compute ex-
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pected sufficient statistics using numerical integration:

E [Tx(t)] =
∫ t

0

µx(s)ds, E [Mx,y(t)] =
∫ t

0

γx,y(s)ds,

where Tx(t) is the residence time in state x in the inter-
val [0, t], and Mx,y(t) is the number of transitions from
x to y in the same interval. Thus, this representation is
analogous to sets of mean parameters that are employed in
variational approximations over exponential families with a
finite dimensional parametrization (Wainwright & Jordan,
2008; Koller & Friedman, 2009).

Families of functions µ, γ that satisfy (2) for some Pr,
must satisfy self-consistent relations imposed by the master
equation.

Definition 3.1 : (Cohn et al., 2009) A family η =
{µx(t), γx,y(t) : 0 ≤ t ≤ T} of continuous functions is
a Markov-consistent density set if the following constraints
are fulfilled:

µx(t) ≥ 0,
∑
x

µx(0) = 1,

γx,y(t) ≥ 0 ∀y 6= x,

d

dt
µx(t) =

∑
y 6=x

(γy,x(t)− γx,y(t)) .

and γx,y(t) = 0 whenever µx(t) = 0. For convenience,
we define γx,x = −

∑
y 6=x γx,y .

The evidence at the boundaries impose additional con-
straints on potential posterior processes. Specifically,
the representation η corresponding to the posterior dis-
tribution PQ(·|e0, eT ) is in the set Me that contains
Markov-consistent density sets {µx(t), γx,y(t)}, that sat-
isfy µx(0) = 11x=e0 , µx(T ) = 11x=eT and γxy(T ) = 0 for
all y 6= eT . In addition, since these sets are posteriors of
a CTBN, they also change one component at a time, which
implies that γx,y(t) = 0 if |δx,y| > 1.

Using this representation, the variational formulation of
Cohn et al is reminiscent of similar formulations for dis-
crete probabilistic models (Jordan et al., 1998).

Theorem 3.2: (Cohn et al., 2009) Let Q be a rate matrix
and e = (e0, eT ) be states ofX . Then

lnPQ(eT |e0) = max
η∈Me

F(η; Q),

where
F(η; Q) = E(η; Q) +H(η),

is the free energy functional which is a sum of an average
energy functional

E(η; Q) =
∫ T

0

∑
x

µx(t)qx,x +
∑
y 6=x

γx,y(t) ln qx,y

 dt,

and an entropy functional

H(η) =
∫ T

0

∑
x

∑
y 6=x

γx,y(t)[1+lnµx(t)− ln γx,y(t)]dt .

To illustrate this principle, we can examine how to derive
an exact inference procedure. We can find the optimum
of F(η; Q) by introducing Lagrange multipliers that en-
force the consistency constraint, and then find the station-
ary point of the corresponding Lagrangian. Since we are
dealing with a continuous-time formula, we need to use
the Euler-Lagrange method (Gelfand & Fomin, 1963). As
Cohn et al. (2009) show, the maximum satisfies a system of
differential equations:

d

dt
ρx = −

∑
y

qx,yρy ρx(T ) = 11x=eT

d

dt
µx =

∑
y 6=x

(γy,x − γx,y), µx(0) = 11x=e0

γx,y = µxqx,y
ρy
ρx
, y 6= x, ρx 6= 0,

(3)

where we omit the (t) argument for clarity. The auxiliary
functions ρx(t) are Lagrange multipliers.

These equations have a simple intuitive solution that in-
volves backward integration of ρx(t), as we have a bound-
ary condition at time T and ρx(t) does not depend on
µx(t). This integration results in

ρx(t) = Pr(eT |X(t) = x)

Once we solve for ρx(t), we can forward integrate µx(t)
from the boundary conditions at 0 to get the solution for
µx and γx,y . This analysis suggests that this system of
ODEs is similar to forward-backward propagation, except
that unlike classical forward propagation, here the forward
propagation takes into account the backward messages to
directly compute the posterior. Note that applying this ex-
act solution to a multi-component process results in an ex-
ponential (in d) number of coupled differential equations.

4. Continuous-Time Expectation Propagation
Approximate variational inference procedures are derived
by posing an optimization problem that is an approximate
version of the original one. Different approximations differ
in terms of whether they approximate the objectives, limit
or relax the allowed set of solutions, or combine several
such approaches. Here, we follow a strategy which is
based on the approach of expectation propagation, in which
the set of admissible solutions is extended to ones that are
consistent only on the expectations of statistics of interest,
and in addition, use an approximate functional.



Continuous-Time Belief Propagation

Figure 1. A CTBN and a corresponding factor graph.

4.1. Approximate Optimization Problem

To represent potential solutions, we follow methods used
in recent approximate inference procedures that use factor
graph representations (Yedidia et al., 2005; Koller & Fried-
man, 2009). Specifically, we keep only marginal density
sets over smaller clusters of components.

We start with definitions and notations. A factor graph is an
undirected bipartite graph. One layer in the graph consists
of component nodes that are labeled by component indexes.
The second layer consists of clusters nodesA , where each
cluster α ∈ A, is a subset of {1, . . . , d}. The edges in the
graph are between a component node i to a cluster node α
if and only if i ∈ α. Thus, the neighbors of α are N(α) =
{i : i ∈ α} and the neighbors of i are N(i) = {α : i ∈ α}.

A factor graph is family preserving, with respect to a given
CTBN, if there exists an assignment function ξ(i) that
maps components to clusters, such that for every i, we have
that {i} ∪Pai ⊆ ξ(i). We denote by A(α) the set of com-
ponents i for which ξ(i) = α. From now on, we assume
that we deal only with family preserving factor graphs.

Example 4.1: Figure 1 shows a simple CTBN and a cor-
responding factor graph. In this specific factor graph,
A(a) = {1, 2}, A(b) = {3} and A(c) = {4}.

Given a factor graph, we use its structure to define an ap-
proximation for a distribution. Instead of describing the
distribution over all the components, we use a family of
density sets η̃ = {ηi : i = 1, . . . , d} ∪ {ηα : α ∈ A}. A
family of marginal density sets can be inconsistent. We do
not require full consistency, but only consistency between
neighboring nodes in the following sense.

Definition 4.2: A family of density sets η̃ is said to be
locally consistent if for all α ∈ A and all i ∈ N(α) we
have µi = µα|i where

(µα|i)xi =
∑
xα\i

µα[xα\i,xi] (4)

and [xα\i, xi] is the assignment to xα composed from xα\i

and xi. Likewise, γi = γα|i where

(γα|i)xi,yi =
∑
xα\i

γα[xα\i,xi],[xα\iyi]. (5)

Let M̃e be the set of locally consistent densities that cor-
respond to evidence e

The local consistency of ηα and ηi does not imply that the
distribution Prηi(Xi) is equal to the marginal distribution
Prηα(Xi), as marginalization of a Markov process is not
necessarily a Markov process. Rather, Priη is the projection
of Prηα(Xi) to a Markov process with the matching expec-
tations of E [Txi(t)] and E [Mxi,yi(t)] (Koller & Friedman,
2009).

Such locally consistent sets allow us to construct a tractable
approximation to the variational optimization problem by
introducing the continuous-time Bethe functional

F̃(η̃; Q) =∑
i

Ei(ηα(i); Qi|Pai) +
∑
α

H(ηα)−
∑
i

ciH(ηi)

where

Ei(ηα; Qi|Pai) =∫ T

0

∑
xα

[
µαxα(t)qi|Pai

xi,xi|ui +
∑
y 6=x

γαx,y(t) ln qi|Pai
xi,yi|ui

]
dt,

and ci = N(i)− 1 ensure that the total weight of sets con-
taining component i sums up to 1. This functional is anal-
ogous to the well-known Bethe approximation for discrete
models (Yedidia et al., 2005).

Combining the two approximations the approximate opti-
mization problem becomes:

max
η̃∈M̃e

F̃(η̃; Q) (6)

Once the optimal parameters are found, we can use the rel-
evant marginal density set to answer queries.

4.2. Stationary Point Characterization

To characterize the stationary points of the approximate op-
timization problem (6) we use again the Euler-Lagrange
method, where we introduce Lagrange multiplier func-
tions to enforce the cluster-wise constraints, d

dtµ
α
xα =∑

y 6=x(γ
α
yα,xα

− γαxα,yα) as well as the local consistency
constraints defined in equations (4) and (5). Differentiat-
ing the Lagrangian, equating the derivatives to zero, and
performing some algebra, which we omit for the lack of
space, we obtain fixed-point equations that consist of the
initial constraints and two classes of coupled equations.
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The first class consists of equations similar to (3), which
refer to the dynamics within each cluster. To simplify the
presentation, we introduce some definitions.

Definition 4.3: Assume we are given a time-varying matrix
function G(t), and boundary conditions x0 and xT . Define
the operator η = R(G,x0,xT ) to return η = (µ, γ), the
unique solution of the following ODEs

d

dt
ρx = −

∑
y

gx,yρy, ρx(T ) = 11x=xT

d

dt
µx =

∑
y 6=x

(γy,x − γx,y), µx(0) = 11x=x0

γx,y = µxgx,y
ρy
ρx
, ρx 6= 0,y 6= x.

Note that this set of equations is identical to (3), but re-
places the constant rate matrix Q by a time varying matrix
function G(t). Using this terminology, the first part of the
fixed-point equations is

ηα = R(Gα, e0|α, eT |α), (7)

where Gα(t) is the time-dependent matrix with entries

gαxα,yα = (8)
(qi|Pai
xiyi|ui)

11i∈A(α) · ni→αxi,yi δxα,yα = {i}∑
i∈N(α)

(
11i∈A(α)q

i|Pai
xixi|ui + ni→αxi,xi

)
xα = yα

0 otherwise,

and ni,α are time-dependent functions that originate from
the Lagrange multipliers that enforce local consistency
constraints,

∏
α∈N(i)

ni→αxi,yi =

(
γixiyi
µixi

)ci
, xi 6= yi

∑
α∈N(i)

ni→αxi,xi = ci
γixixi
µixi

.

(9)

These equations together with, (4) and (5) form the second
set of equations that couple different clusters.

Equation (7) suggests that the matrix Gα plays the role
of a rate matrix. Unlike Q, Gα is not guaranteed to be a
rate matrix as its rows do not necessarily sum up to zero.
Nonetheless, even though it is not a rate matrix, this system
of equations has a unique solution that can be found using a
backward-forward integration. Thus, since the matrix func-
tion Gα corresponds to a unique density set, we say that Gα

is an unnormalized parametrization of the process Pηα .

At this point, it is tempting to proceed to construct a mes-
sage passing algorithm based on this fixed point charac-
terization. However, we are faced with a problem. Note
that limt→T

γxiei
µxi

= ∞. Therefore, according to Equation
(9), when t approaches T , there exists some α ∈ N(i) for
which ni,αxieT,i(t) approaches∞ as t→ T . This implies that
a simple-minded message passing procedure is susceptible
to unbounded values and numerical difficulties.

4.3. Gauge Transformation

To overcome these numerical difficulties, we now derive
an alternative characterization, which does not suffer from
unbounded values. We start with a basic result.

Proposition 4.4: Let G be a unnormalized rate matrix func-
tion, and let ωx(t) be a smooth positive vector-valued func-
tion, where ωx(t) > 0 in [0, T ). Let Gω to be the matrix
function with

gωxy =
{
gxy · ωx

ωy
y 6= x

gxx − d
dt logωx y = x.

(10)

Then,R(G,x0,xT ) = R(Gω,x0,xT ).

Proof sketch: Let ρ, η satisfy the system of equations of
Def. 4.3 with G. Define ρω = ρ · ω, and show that ρω, η
satisfy the same system of equations with Gω .

This result characterizes transformations of (8–9) that do
not change the fixed point solutions for cluster density sets.
We seek transformations that reweigh the functions ni,α so
that they remain bounded using the following result.

Proposition 4.5: Assume G is a unnormalized rate matrix
function such that gx,y(t) 6= 0 for all x,y, gx,y(t) is con-
tinuously differentiable in [0, T ], and η = R(G,x0,xT ).
If ω(t) is a family of smooth functions satisfying ωx(T ) =
11x=xT and d

dtωx(T ) < 0 for x 6= xT , then

lim
t→T

γx,y(t)
µx(t)

ωx(t)
ωy(t)

<∞, ∀x 6= y

and

lim
t→T

(
γx,x(t)
µx(t)

− d

dt
logωx(t)

)
<∞, ∀x.

Example 4.6: One function that satisfies the conditions
of Proposition 4.5 is ωx(t) = 1 − t/T, ∀x 6= eT and
ωeT (t) = 1.

Using this result, we introduce weight functions ωixi
(as above) and define ωαxα =

∏
i∈N(α)(ω

i
xi)

ci/(ci+1).
Using these weight functions, we define mi→α

xi,yi =

ni→αxi,yi(
ωixi
ωiyi

)ci/(ci+1) andmi→α
xi,xi = ni→αxi,xi−

ci
ci+1

d
dt logωixi .
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Algorithm 1 Continuous-Time Belief Propagation
Initialize messages: for all α and all i ∈ N(α)

Choose ηα ∈Mα
e

Compute ηα→i using (14)
Set mi→α

xi,yi = 1 ∀xi 6= yi, mi→α
xi,xi = 0

repeat
Choose a cluster α:
1. ∀i ∈ N(α), set mi→α

xi,yi using (15)
2. Update G̃α using (11)
3. Compute ηα from G̃α using (12)
4. ∀i ∈ N(α) compute ηα→i using (14)

until convergence

Now if we define the time-dependent matrix G̃α with en-
tries

g̃αxα,yα = (11)
(qi|Pai
xiyi|ui)

11i∈A(α) ·mi→α
xi,yi δxα,yα = {i}∑

i∈N(α)

(
11i∈A(α)q

i|Pai
xixi|ui +mi→α

xi,xi

)
xα = yα

0 otherwise,

then G̃α = (Gα)ω
α

. By Proposition 4.4,

ηα = R(G̃α, e0|α, eT |α). (12)

Plugging the definition ofmi→α
xi,yi andmi→α

xi,xi into (9) we get

∏
α∈N(i)

mi→α
xi,yi =

(
γixiyi
µixi

ωixi
ωiyi

)ci
, xi 6= yi

∑
α∈N(i)

mi→α
xi,xi = ci

(
γixixi
µixi

− d

dt
logωixi

)
.

(13)

If the preconditions of Proposition 4.5 are satisfied, the
terms in (13) are bounded. Together (11)–(13) provide an
alternative characterization of the fixed point(s) of the op-
timization problem.

4.4. Message Passing Scheme

We now use the above characterization as justification for
a message passing scheme, that if converged, will satisfy
the fixed point equations. While (11) and (12) are readily
transformed into assignments, (13) poses a challenge.

We start by noting that (13) contains the terms µixi and
γixi,yi . We can get these terms from ηα for any α ∈ N(i).
Thus, for α ∈ N(i), we define

µα→i = µα|i γα→i = γα|i (14)

We view these as the messages from cluster α to the com-
ponent i. At convergence, µα→i = µβ→i for α, β ∈ N(i),
but this is not true before convergence.

Next, we rewrite (13) as an assignment

mi→α
xi,yi =



∏
β∈N(i)
β 6=α

1

mi→β
xi,yi

γβ→ixiyi

µβ→ixi

ωixi
ωiyi

xi 6= yi

∑
β∈N(i)
β 6=α

(
γβ→ixixi

µβ→ixi

− d

dt
logωixi −m

i→β
xi,xi

)
xi = yi

(15)

where we write
γixiyi
µixi

=
γβ→ixiyi

µβ→ixi

once for each β.

The algorithm is summarized in Algorithm 1. The imple-
mentation of these steps involve a few details. We start with
the initialization of messages. The only free parameter is
the initial values of ηα. To ensure that these initial choices
are in Mα

e , we choose initial rates, and perform compu-
tations to get a valid posterior for the clusters. Another
degree of freedom is the order of cluster updates. We use
a randomized strategy, choosing a cluster at random, and if
one of its neighbors was updated since it was last chosen,
we update it.

The computation in Step 3, involves reverse integration fol-
lowed by forward integration (as explained in Section 3).
We gain efficiency by using adaptive numerical integration
procedures. Specifically, we use the Runge-Kutta-Fehlberg
(4,5) method (Press et al., 1992). This method chooses
temporal evaluation points on the fly, and returns values
at these points. The computations of Step 2 is done on
demand only at the evaluation points. To allow efficient
interpolation, we use a piecewise linear approximation of η
whose boundary points are determined by the evaluation
points that are chosen by the adaptive integrator. Fi-
nally, as might be expected, we do not have convergence
guarantees. However, if the algorithm converges, the fixed
point equations are satisfied, hence giving a stationary point
(hopefully a local maximum) of problem (6).

5. Experiments
We tested our method on three representative network
structures: a directed tree, a directed toroid, and a bidi-
rectional ring (Fig. 2). The tree network does not have any
cycles. The toroid network has cycles, but these are fairly
long, whereas the bidirectional ring has multiple short cy-
cles. All networks are parametrized as dynamic Ising mod-
els, in which neighboring components prefer to be in the
same state. Specifically, we use the conditional rates

q
i|Pai
xi,yi|ui = τ

(
1 + exp

(
−2yiβ

∑
j∈Pai

xj

))−1

where xj ∈ {−1, 1}, β is a coupling parameter and τ is
a rate parameter. Small values of β correspond to weak
coupling, whereas τ determines how fast components tend
to switch states. For each experiment we set evidence at
times 0 and 1 (Fig. 2, left panel).
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Network Residence time Number of Transitions Estimated log-likelihood

Figure 2. Simulation results for a tree network (top row), a toroid network (middle), and a bidirectional chain (bottom). Left network
structure and the evidence at start and end points; black is +1 and white is −1. Middle-left: scatter plot of expected conditional
residence times for networks with β = 1, τ = 8. Each point corresponds to a single statistic, the x-axis is the exact value and the
y-axis is the approximate value. Middle-right: same for expected conditional transition times. Right: exact and approximations of
log-likelihood as function of β, the strength of coupling between components (τ = 8).

We compare the Bethe approximation to exact inference
and mean-field (Cohn et al., 2009). We start by comparing
the value of sufficient statistics (residence time and number
of transitions of each component for each state of its par-
ents) computed by each method. For example, for a par-
ticular choice of β and τ , (Fig. 2 middle columns) we can
see that the Bethe approximation is virtually exact on the
tree model and the toroid, but has some bias on the bidi-
rectional ring model. These scatter plots also shed light
on the nature of the difference between the two methods.
Specifically, in the most likely scenario, two components
switch from −1 to 1 near the beginning and the other two
switch from 1 to −1 near the end, and so through most of
the interval all the components are in the same state. The
mean-field algorithm gives a uni-modal solution, focusing
on the most likely scenario, resulting in zero residence time
for the less likely states. These states are represented by the
points close on the x-axis. The Bethe representation on the
other hand can capture multiple scenarios.

Another aspect of the approximation is the estimation of the
likelihood. In Fig. 2 (right column) we compare these esti-
mations as function of β, the problem hardness. Again, we
see that the Bethe approximation is essentially exact on the
tree network, and provides close approximations in the two
other networks. When we push β and τ to extreme values
we do see inaccuracies even in the tree network, showing

that the algorithm is an approximation.

While the ODE solvers used here allow adaptive integra-
tion error control, we do not have an a-priory control on
the propagation of this error. To test this effect on over-
all accuracy, we repeated these experiments using standard
grid refinement. Specifically, we computed integrals us-
ing uniformly spaced evaluation points and systematically
halving integration intervals until no changes in the output
were observed. Final results of these tests were practically
the same as those obtained using adaptive integration.

Figure 3. Run time vs. the number components in the three net-
works types (β = 1, τ = 8).

Next, we examine how the algorithm scales with the num-
ber of components in the networks. In all three networks
we see that the magnitude of relative error is essentially
independent of the number of components (not shown).
Fig. 3 shows that the run time scales linearly with the num-
ber of components. In harder networks the algorithm re-
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quires more iterations leading to slower convergence.

6. Discussion
Here, we introduce a message passing scheme that provides
a variational approximation for CTBNs. This scheme is
derived from an approximate free energy functional, based
on the principles of expectation-propagation, where we re-
quire the posteriors on clusters to be locally consistent in
terms of the Markovian projections on individual compo-
nents. We show that stationary points of this optimization
problem are the fixed points of a message passing algo-
rithm, whose structure closely mirrors Belief Propagation.

In contrast to Belief Propagation on discrete (atemporal)
networks, our algorithm is not guaranteed to be exact on
tree CTBNs. The source of inaccuracy is the projec-
tion of the marginal distributions over components onto
Markov processes. While this projection looses informa-
tion, our empirical results suggest that this approximation
is relatively accurate. In contrast to methods in Dynamic
Bayesian Networks (DBNs) (Koller & Friedman, 2009)
that approximate the distribution over all components in
each time slice, our approach approximates the temporal
behavior of a single component over the whole time inter-
val.

The works that are closest to ours are those of Nodelman
et al. (2005) and Saria et al. (2007) which are also derived
from an expectation-propagation energy functional. The
main difference between the two methods is the structure of
the approximation. Nodelman et al use a piecewise homo-
geneous representation, allowing them to represent the rate
in each homogeneous segment by a constant (conditional)
rate matrix. This, however, requires introducing machinery
for deciding how to segment each component. As Saria et
al show, this choice can have dramatic impact on the qual-
ity of the approximation and the running time. In contrast,
our approach uses a (continuously) inhomogeneous repre-
sentation, which is essentially the limit when segment sizes
tend to zero. Surprisingly, rather than making the problem
more complex, this choice simplifies the mathematics and
also the implementation. In particular, our solution decou-
ples the probabilistic issues (dependencies between com-
ponents) and numerical issues (adaptive integration) and
allows us to build on well-understood methods from nu-
merical integration for efficient and adaptive selection of
the number and placement of discretization points.

Our results show how a careful choice of representations
and operations over them can narrow the gap between in-
ference methods in discrete and continuous-time graphical
models. Our constructions can be naturally generalized to
capture more complex dependencies using methods based
on Generalized Belief Propagation (Yedidia et al., 2005).
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