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Abstract

A seriougproblemin learningprobabilisticmod-

els is the presenceof hiddenvariables. These
variablesarenot obsenred, yet interactwith sev-

eral of the obsenedvariables.Detectinghidden
variablesposestwo problems: determiningthe

relationsto othervariablesin the modelandde-

terminingthenumberof statesof thehiddenvari-

able.In this paperwe addresshelatter problem
in thecontext of Bayesiametworks. We describe
anapproachhatutilizesascore-basedgglomer

ative state-clusteringAs we shaw, this approach
allows us to efficiently evaluatemodelswith a

range of cardinalitiesfor the hidden variable.
We shov how to extend this procedureto deal
with multiple interactinghiddenvariables. We

demonstrat¢éheeffectivenesof thisapproactby

evaluatingit on syntheticandreal-life data. We

shaw that our approachearnsmodelswith hid-

denvariableghatgeneralizebetterandhave bet-

ter structurethanpreviousapproaches.

1 Introduction

In thelastdecaddherehasbeenagreatdealof researclio-
cusedon the problemof learningBayesiametworks from
data(e.g.,[11]). An importantissueis theexistenceof hid-
den(latenf) variablesthatare never obsered, yet interact
with obsenredvariables Hiddenvariablesoftenplayanim-
portantrole in improving the quality of the learnedmodel
andin understandinghe natureof interactionsin the do-
main. A crucial problemis the questionof how to deter
minethe dimensionalityof a hiddenvariable. This issueis
relevantbothwhenlearningwith fixed structure(e.g.,one
assesselly an expert) andin caseswherethe learningal-
gorithmattemptdo introducenew variables.

The numberof statesa hiddenvariablehascanhave sig-
nificanteffecton the performancef themodelandalsoon
its compleity. For example, Figurel demonstrateacom-
mon phenomenonWhenstatesof a parentvariable X are
merged, X’s childrenmay no longer be conditionally in-
dependengiven X. As a consequencenorecomplicated
networks,wherethereareedgesamongchildren,might be
neededo describethe domain. This phenomenoiis more
pronouncedwhen the variable X also hasparents. The

@ze{l,...,n} MOze{l,...,(n—1)Un}
Figurel: lllustrationof thechangan a network thatmight
resultsfrom the memging of two statesf a parentvariable.

child variablesare no longer separatedrom their ances-
torsby X, andsoadditionaledgesareneededWe cansee
thatthe correctdeterminatiorof the cardinalityof ahidden
variablecanaffect the complexity of the learnednetwork,
whichin turn hasimportantramificationson robustnesf
learnedparametersandcomplexity of inference.

In this paper we proposean agglomeraire, score-based
approachfor determiningthe cardinality of hidden vari-
ables. Our approactstartswith the “maximal” numberof
statespossibleand memgesstatesin a greedyfashion. At
eachiterationof the algorithm, it maintainsfor eachtrain-
ing instancea “hard” assignmento the hiddenvariable.
Thus, we canscorethe datausing completedata scoring
functionsthat are ordersof magnitudemore efficient than
standardEM-basedscoredor incompletedata. The proce-
dure progressedy choosingthe two stateswhosemermger
will lead to the bestimprovement(or leastdecrease)n
the score. Thesestepsarerepeateduntil all the statesare
melgedinto one state. Basedon the scoresof intermedi-
ate stages,we choosethe cardinality of the hiddenvari-
able.We shaw thatnetworkslearnedrom theintermediate
stagesarealsogoodinitial startingpointsfor EM runsthat
fine-tunethe parameters.

Wethenmove onto considemetworkswith multiple hid-
denvariables.As we shav, we cancombinemultiple invo-
cationsof thesingle-\ariableprocedurdo learntheinterac-
tionsbetweerseveralhiddenvariable.Finally, we combine
ourmethodwith thestructuraldetectiorof hiddenvariables
of Elidanetal. [7] andshaw thatthis leadsto learningbet-
ter performingmodels,ontestandreal-life data.

2 Background

2.1 Learning Bayesian Networks

Considera finite setX = {Xj,...,X,} of discreteran-
domvariablesvhereeachvariableX; maytake statedrom



afinite set,denotedby Vul(X;). A Bayesiametworkis an
annotatedlirectedacgyclic graphthatencodes joint prob-
ability distribution over X'. The nodesof the graphcorre-
spondto the randomvariablesXy, ..., X,,. Eachnodeis
annotatedvith aconditionalprobability distribution (CPD)
that representsP(X; | Pax,), wherePax, denotesthe
parentsof X; in G. A Bayesiannetwork B specifiesa
uniquejoint probability distribution over X givenby:

n

,X,) = [] P(Xi[Pax,)

i=1

P(Xy,...

The graph G representonditional independencerop-
erties of the distribution. Theseare the Markov Inde-
pendencies Eachvariable X; is independenbf its non-
descendantgivenits parentsn G. Oneimplicationof the
Markov independencieis that a variable X; interactsdi-
rectly only with its Markov Blanket This blanketincludes
the X;'s parentschildren,andspousegadditionalparents
of childrenof X;). We denoteby MBx, the variablesin
the Markov Blanket of X;.

We are interestedin learning Bayesiannetworks from
examples. Assumewe are given a training set D =
{x[1],...,x[M]} of instancesof X, that were sampled
from anunknown distribution. We wantto find a network
B thatbestmatdesD. If the structureof the network is
givento us,we canusethe maximumlik elihoodapproach
to estimatethe parameters.A more challengingproblem
is to learnthe structureof the network. The commonap-
proachto this problemis to introducea scoringfunction
thatevaluatescandidatenetworkswith respecto thetrain-
ing data,andthento searchfor the bestnetwork accord-
ing to this score. A commonlyusedscoringfunction to
learn Bayesiannetworks is the Bayesianscoring (BDe)
metric [12] which we denoteby Scorepe. This scoring
metric usesa balancebetweenthe likelihood gain of the
learnedmodelandthe complexity of the network structure
representation.

An importantcharacteristiof the scorefunctionwe use
is thatwhenthe datais complete(thatis, eachtrainingin-
stanceassignsvaluesto all the variables)the scoreis de-
composableMore precisely the scorecanbe rewritten as
thesum

ScordG : D) = »  FamScorex, (Pax, : D).
i
wherethe contribution of eachvariable X; to thetotal net-

work scoredependnly on the statesof X; andPax, in
thetraininginstancesAssumingPax, = U,

FamScoreyx, (Pax, :

I'(auw
S (108 ks + o, log

D) =log P(Pax, = U)+

F(N[m,u]—i—ami,u))
T(oz;,u)

Thetermsa, andea,, o arehyperparametersf the prior
distributions over the parameterizationsThe terms N [u]
and N{z;,u] are countsof the numberof occurrences

of eachevent in the data. The vector of the counts
N[X;,Pax,] is called a suficient statistic vector for the
family P(X; | Pax,).

Oncewe specifythescoringfunction,thestructurdearn-
ing taskreducedo a problemof searchingpverthe combi-
natorialspaceof structuregor thestructureghatmaximizes
the score. The standardapproachs to usea local search
procedure suchasgreedyhill-climbing, that changesne
edgeatatime.

Thelearningproblemis differentwhenthetraining data
isincompletethatis, someof the statesn thetrainingdata
aremissing,or whenwe learna network thatcontainshid-
denvariableghatarenotobsened. In thissituationthetask
is both computationallyandconceptuallymuchharder In
orderto learnparameterfor a givennetwork structure we
can usethe ExpectationMaximization(EM) algorithmto
searchfor a (local) maximumlikelihood (or maximuma
posteriori)parameteassignmenfs, 14].

In the presenceof incompletedata, scoring candidate
structuress morecomplex. We cannotefficiently evaluate
the maminal likelihood and needto resortto approxima-
tions. A commonlyusedapproximatioris the Cheeseman-
Stutz (CS) score[3, 4], which combinesthe likelihoods
of the parameterdound by EM, with an estimateof the
penaltyterm associatedvith structure.The structural EM
algorithmof Friedman[8] extendsthe ideaof EM to the
realmof structuresearch Roughlyspeakingthealgorithm
usesan E-stepas part of the structuresearch. The cur
rent model— structureas well as parameters— is used
for computingexpectedsuficient statisticsfor other can-
didatestructures.The candidatestructuresarethenscored
basedn theseexpectedsufiicient statistics. The searchal-
gorithm movesto a new candidatestructure.We canthen
apply EM againfor the new structure,to getthe desired
expectedsufiicient statisticsandscorenew candidatestruc-
tures.Thisalgorithmcornvergesto a“local” maximum.The
searchspaceof this algorithmcontainsmary suchcorver-
gencepoints,andso careshouldbe takenin choosingthe
initialization point.

2.2 Detecting hidden variablesin Bayesian networks

As mentionedn theintroduction,we areinterestedothin
casesvherethe hiddenvariableis givenbut its dimension-
ality is unknavn andin constructingnew hiddenvariables.
For this purposewe will usethe methodfor detectinghid-
denvariablesthatwas suggestedy Elidanetal. [7]. We
now briefly review this method.

The generalideaof the methodis to detecthiddenvari-
ablesby finding structural signatuesin a Bayesiannet-
work learnedover the obsened variables. As Elidan et
al. shaw, the “signature” formed by removing a hidden
variable H is a clique over the children of H. How-
ever, whenreconstructinghe network from data,we might
miss someedges. Thus, insteadof searchingfor perfect
cligues, the FindHidden algorithm searchedor approxi-
matecliques(relaxationonthenumberof neighborsyalled
semi-cliques A semi-cliqueis a setof variablessuchthat



eachvariablehasanedgeto atleasthalf of thevariablesin
theset.

Oncea semi-cliqueS is found, a new hiddenvariable
is proposed.To evaluatethis variable,the algorithmcon-
structsa network, with anew variableHg. Thisvariableis
madea parentof thevariablesin S. In addition,all edges
amongthesevariablesareremoved. Then,the algorithm
appliesa constrainedrersionof structuralEM to adaptthe
structurewith Hg andto estimateparametergor the new
network. The scoreof the learnednetwork is then com-
paredto the scoreof the original one. The changen score
reflectsthe utility of introducingthe hiddenvariables.

The resultsof Elidan et al. shav that this algorithmis
successfuin introducing hidden variablesand improves
performancen testdata.

3 Choosing the Cardinality of a Hidden
Variable

We now addresshefollowing problem.We aregiventrain-
ing dataD of samplesromX = {X;,..., X, }, andanet-
work structureG over X andanadditionalvariableH. We
needto determinewhat cardinalityof H leadsto the best
scoringnetwork.

A straightforvard way to solve this problemis as fol-
lows: We canexamineall possiblecardinalitiesof H upto
a certainpoint. For eachcardinality k, we canapply the
EM algorithmto learnparametersor the network contain-
ing H with k£ states. SinceEM might get stuckin local
maxima,we shouldperformseveral EM runsfrom differ-
entrandomstartingpoints. Given the parametergor the
network, we canapproximatehescoreof thenetwork with
k statedor H using,say the Cheeseman-Stutgpproxima-
tion [3]. At theendof the processwe returnthecardinality
k thatrecevedthebestscore.

This approachis in commonusein probabilistic clus-
tering algorithms, e.g.,[3]. The central problemof this
approachs its exhaustveness.The EM algorithmis time
consumingasit requiresnferencan theBayesiametwork.
For simpleNaive-Bayesnetworks thatare usedin cluster
ing, this costis not prohibitive. However, in othernetwork
structureghe costof multiple EM runscanbe high. Thus,
we strive to find a methodthatfindsthe bestscoringcardi-
nality (or agoodapproximatiorof it) significantlyfaster

We now suggestan approachthat works with hard as-
signmentsto the statesof the hiddenvariables. This ap-
proachis motivatedby agglomemtive clusteringmethods
(e.g.,[6]) andBayesiarmodelmegingtechniquesrom the
HMM literature[17].

Thegenerabutlineof theapproachs asfollows. At each
iterationwe maintaina hardassignmento H in thetrain-
ing data. We canrepresenthis assignmentisa mapping
o from 1,..., M, to the set Val(H). The assignment,
o (m) is the statethat H holdsin them/th instance.We
initialize the algorithmwith a variable H that hasmary
states(we describethe detailsbelon). We then evaluate
the scoreof the network with respecto the datasethatis

Figure2: Traceof the agglomeratiorprocessn a simple
syntheticexample. We sampled1000instancesrom the
Alarm network, andthenhid the obsenationsof the vari-
able HYPO/OLEMIA in the data. We then attemptecdto

reconstructits cardinality Eachleaf in the treeis anno-
tatedwith thevaluesof thevariablesn theMarkov Blanket
(LVEDVOLUME,LVFAILURE and STROKEVOLUME).

Nodescorrespondo stateghat resultfrom meming oper

ations. They are numberedaccordingto the order of the
melging operationsand are annotatedwith the changein

scoreincurredby the meige operation. Note that at each
stagethemergechoseris theonethatproduceghelargest
increase(or smallestdecrease}o the score. Diamond-
shapedodescorrespondo thefinal cardinalitychosen.

completedby o. Next, we meige two statesof H to form
avariablewith smallercardinality Thisleadsto a new as-
signmentfunction. We then reevaluatethe network with
respecto this new assignmentandsoon. Thesestepsare
repeatedintil H hasasinglestate.We returnthenumberof
statesk thatrecevedthe highestscore. Figure2 shovs a
concreteexampleof thetreebuilt duringsuchanagglomer
ationprocessWe now considetin morethedetailthe steps
in the process.

We startwith theinitialization point of thealgorithm,that
is settingtheinitial statefor thevariableH. Recallthatthe
Markov blanketM By of H separates from all othervari-
ables.This impliesthattwo instancesn which MBg has
the samestate,areidenticalfrom H'’s perspectie. Thus,
the largestnumberof statesthat are relevant for a given
datasets,is the numberof distinct assignmentso MByg
in the data. We initialize H to have a statefor eachsuch
assignment.In the exampleof Figure 2 only 13 assign-
ments(out of 16 possible)wereobsenedin the data. We
thenaugmentour training datawith theseassignmentso
H. Thatis, for eachassignmenti € Val(MBpg), we have
astateh,, andfor eachinstancemn we seto(m) to bethe
stateh,, consistentvith the Markov blanket assignmenbf
instancem.



Oncewe setoy (), we needto evaluateits usefulness.
Since,o g () assignsa specificstateof H for eachinstance,
it completeghe training datacy (D). Thus,we canap-
ply a standarccompletedatascorefunction (e.g.,BDe) to
our now completeddataset. Recallthatwhenthe datais
complete Scorgpe canbeevaluatedefficiently asa closed
formformula. Moreover, thescoredepend®nly onthesuf-
ficientstatisticsvectors.Eachsuchvectorcountsthe num-
berof occurrencesf eachassignmento a variableandits
parentsWe denoteby N[ X;, Pax;] thesufiicientstatistics
that correspondo the family (the nodeandits parents)of
X; which we denoteby Familyy . To evaluateoy, we
only needto considerfamiliesthatcontain H: Familyy
andFamily - for eachchild C of H.

At eachiteration of the algorithmwe chooseto memge
two statesof H, suchthat the resulting setof stateshas
the bestScorgpe. Now, supposehat h; andh; aretwo
statesof H thatwe wantto merge. This meanghatfor all
instancesvhereH is assignedy; or h;, we now assignid
to anew state sayh;.;. Formally, we defineanew function
oYy, sothataly (m) = hy.; if og(m) = h; orif og(m) =
h;, otherwiseg’; (m) = o (m). We canthenevaluatesy;
andcompareits scoreto the scoreof o. This difference
is theimprovement(or loss)of the mergeoperation.

We note that when memging stateswe actually do not
needto modify thetraining data.Insteadwe simply apply
themeging operationon the sufficient statisticshatcorre-
spondo H andits children.Thatis, wesetN [h;.;, pag]| =
Nh;, pay] + N[h;, pagy] for eachassignmenpay to the
parentof H. Similarly we computethe sufiicient statistics
for H'schildrenandtheirfamilies.

To determinethe best memge operation,the algorithm
considersall pairs of statesof H. This can potentially
lead to cubic running time (since eachiteration require
guadraticamountof computation) However, with suitable
choiceof prior, we canshow thatthe BDe score(andthe
MDL score,aswell) arelocally decomposableTo make
this more precise,supposehat o; is the resultof memg-
ing the statesh; andh; in og. DefineA; ; = ScordG :
HUo'y)—ScordG : HUoy ). Thescores locally decom-
posablef A; ; doesnotdependbn otherstatesof H. Thus,
oncewe computethis changen scoreasaresultof meig-
ing ¢ andj, we do not needto recomputet in successie
iterations.

A closerlook atthe propertief thescorerevealsthebe-
havior we canexpectto seewhenapplyingour procedure.
Recallthatthescoringfunctiontrades-of betweerthelik e-
lihood of the dataandthe complexity of the model. When
we considerplots of scorevs. H's cardinality we obsene
threeeffectsthatcomeinto play.

1. Whenmeming statesof H, the numberof parameters
in thenetwork is reduced.This givesapositive contri-
bution to the scoresincethe complexity of the model
is reduced.

2. WhenH hasfewer statesthe probability of H's state
givenits parentsis larger Thus,the likelihoodterm
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Figure3: Typical behaior of the scoreasa functionof the
numberof statesn anagglomeratiomun. BDe scoreof the
agglomeratiormethod,CS scorebasedon an EM run that
startsat agglomeratioroutput,and CS scorebasedon the
bestEM run from multiple startingpoints. Theseresults
shawvn arefor recovering the STROKEMOLUME variable
in the Alarm network.

associateavith Familyy improvesaftereachmerge
operation.

3. When H hasmary states,it canprovide betterpre-
diction of its children. In fact, in our initialization
point, H's childrenarea deterministicallydetermined
by H's state(sinceH hasa statefor eachjoint assign-
mentto the Markov Blanket). Whenthe numberof
statesis reducedthe predictionsof H's childrenbe-
comemorestochasti@andtheir likelihoodis reduced.
Thus, after a meme, the likelihood of H’s children
will decrease.

This suggestshatthe scorewill increaseapidly dueto
thecontributionof thefirst two effects,will thenslow down
but still increasedueto the steadycontribution of the first
effect, andfinally decreaseand, as we approacha single
state,jndeed"plunge” dueto thethird effect.

Figure 3 shovs an example of the graphwe get when
we track the scoreduringiterationsof the algorithm. This
figurealsoshows therelationsbetweerthe scoreour algo-
rithm assigngo eachcardinalityk andthe oneassignedy
the standardraditional methodthat runsEM at eachcar
dinality. In Section5 we analyzein more detail the two
methods.

4 Deciding the Cardinality of Several
Hidden Variables

In the previous sectionwe examinedthe problemof de-
ciding the cardinality of a single hiddenvariable. What
happensf our network containsseveral hiddenvariables?
We start by noting thatin somecases,we can decouple



the problem: If a hiddenvariable H is d-sepaated from
all the other hiddenvariablesby the obsened variables,
thenwe canlearnit independenbdf the rest. More pre-
cisely if MBgy consistsof obsenablevariablesonly, we
donotneedto worry aboutH 'sinteractionswith otherhid-
denvariables.

However, whentwo or more hidden variablesinteract
with eachotherthe problemis morecomple. A decision
aboutthe cardinality of one hiddenvariablecan have ef-
fect on the decisionsaboutother hiddenvariables. Thus,
we needto considera joint decisionfor all the interact-
ing variables.The standardEM approachmentionecat the
beginning of the last sectionbecomesmore problematic
heresincethe cardinality spacegrows exponentiallywith
thenumberof hiddenvariables We now describea simple
heuristicapproactthat attemptsto approximatethe cardi-
nality assignmentor multiple variables. Theideasaremo-
tivatedby a similar approachto multi-variablediscretiza-
tion [9].

Thebasicideais to applytheagglomeratie proceduref
the previoussectionin around-robinfashion.At eachiter-
ation,we fix the numberof statesandthe stateassignment
to instancedor all the hiddenvariablesbut one. We ap-
ply theagglomeratie algorithmwith respecto this hidden
variable. At the next iteration, we selectanothervariable
andrepeatheprocedurelt is easyto checkthatwe should
reexaminea hiddenvariableonly afteroneof thevariables
in its Markov Blanked haschangedThus,we continuethe
procedureuntil no hiddenvariablehaschangedits cardi-
nality andstateassignment.

One crucial issueis the initialization of this procedure.
We suggesto startin a network wereall hiddenvariables
have onestate.Thus,in theinitial roundsof theprocedure,
eachhiddenvariablewill be “trained” with respectto its
obsenableneighbors.Only in lateriterations,theinterac-
tionsbetweerhiddenvariableswill startto playarole.

It is easyto seethateachiterationof this procedurewill
improve the scoreof the “completed”datasetspecifiedby
the stateassignmenfunctionsof the hiddenvariables. It
immediatelyfollows thatit mustcorverge.

5 Experimental Resultsand Evaluation

We setout to evaluatethe applicability of our approachn

variouslearningtasks. We start by evaluatinghow well

our algorithm determinesvariablecardinalityin synthetic
datasetsvherewe know the cardinalityof the variablewe
hid. We sampledinstancesrom the Alarm network [1],

and manually hid a variable from the dataset. We then
gave our algorithmthe original network and evaluatedits

ability to reconstructhe variables cardinality Figure 3

shavs atypical behaior of the Scorgpe vs. the numberof

states.We repeatedhis procedurewith 24 variablesin the
Alarm network. (We did not considervariablesthat were
eitherleafsor hadfew neighbors.)}Usingtraining setswith

10,000instancesthe predictionsof cardinalitycanbe bro-
kendown asfollows:
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Figure4: Deviationsof the predictedcardinalityof the ag-
glomerationmethodfrom the true cardinality for 24 vari-

ablesin the Alarm network asa function of the numberof

instances.Shawn are curvesfor true cardinality collapse
into a single statesanda singlemissingstate(otherdevia-

tionswererare).

e For 15 variables the agglomeratie procedurerecor-
eredthecorrectcardinality

¢ For 2variablestheestimatedardinalityhadonestate
lessthanthetrue cardinality

e For 2 variablesthe estimatectardinalityhadonead-
ditional state. Examiningthe network CPDssuggest
that children of thesetwo variablesare stochastidn
somestatef the parentgwith almostuniform prob-
ability). Initial stepsin the agglomeratiorattempted
to modelthis distribution, which leadto sub-optimal
aggrejatestatedn later phase®of theagglomeration.

e For 5 variables, the agglomeratie proceduresug-
gesteda completecollapseinto a single state. This
is equivalentto removing the variable. A closelook
at the probabilitiesin the network shaows that these
variableshave little effectif arny ontheir childrenand
thusthey indeedseemalmostredundant.In orderto
confirmthis claim, for eachof the five variablesand
for eachcardinality we ran EM from multiple start-
ing pointsto find the bestscoringnetwork. For all the
variablesthe bestscorewasachieved whenthe vari-
ablewascollapsedo asinglestate.

To summarizefor 19 of 24 of thevariablesve gotthe cor
rector nearperfectpredictionof cardinality For theother
5 variables the characteristic®f the dataaretwo weakto
reachstatisticallysignificantresults.

Next, we testedthe effect of thetrainingsetsizeonthese
decisionsWe appliedtheagglomeratiomethodfor all the
abovevariableontrainingsetswith differentsizes.Figure4
shaws the deviation from the true cardinalityasa function
of thetraining setsize. We seethatevenfor small sample



(a) original network

(b) learnedwith agglomeration

(c) learnedwith binary states

Figure5: Performancef theagglomeratioralgorithmon anetwork with severalinteractinghiddenvariables.Comparison
of the modellearnedwith agglomeratior(b) to the modellearnedwith binary values(c) demonstratethe importanceof
determiningthe cardinalityof hiddenvariables(dashedight edgesareedgeghatwereremoved,thin edgesareedgeghat

wereadded)

sizesthepredictionsor mostvariablesareeitherperfector
underestimatethe cardinalityby 1. This canbe expected
sincethe training set doesnot manifestrare assignments
to the Markov blanket of eachvariableandlessstatesare
neededo explainthe data.

We thencomparedour approachto the standardnethod
of evaluating different cardinalitiesusing EM. We com-
paredtwo variantsof EM. The first, performedmultiple
EM runsfrom 5 differentrandomstartingpoints. The sec-
ond variant performeda single EM run startingfrom the
parametersve learnfrom the “completed”dataduringthe
agglomeratiorstep.Figure3 compareshe scoresassigned
to differentcardinalitiedy theagglomeratieapproactand
thesetwo EM variantsfor onevariable. Note that for all
methodsthe casek = 3, which is indeedthe correctcar
dinality, recevedthe highestscore.Also notethatthetwo
EM variantsgive similar scores.This suggestshatthe ag-
glomeratve approacHindsusefulstartingpointsfor EM.

In termsof runningtime, eachEM run for eachcardinal-
ity in thisexampletakesover250secondsTheagglomera-
tion procedurdakesalittle overonesecondo agglomerate
the 15 initial states. Onemight claim thatfor determin-
ing cardinality it sufficesto run only few iterationsof EM,
which arecomputationallycheaperTo testthis,werun EM
with anearlystoppingrule. Thisreduceddown therunning
time of EM about60 seconddgor eachrun. However, this
alsoresultedin worse estimatesof the cardinality which
wereworsethanthesemadeby the agglomeratre method.

We concludethat significanttime canbe sazed by using
our methodto setthe numberof statesandthenapply EM
for fine-tuning.This typical behaior wasobsenedin sim-
ilar comparisonsvhenwe hid othervariablesn the Alarm
network.

Next we wantedto evaluatethe performanceof our al-
gorithmwhendealingwith multiple hiddenvariables. To
do so, we constructeda syntheticnetwork, shovn in Fig-
ure 5(a)), with several hiddenvariablesand generateca
matchingdata set with the appropriatevariableshidden.
Usingthetrue structureasa startingpoint, we appliedour

agglomeratie algorithmfollowed by structuralEM. As a
stravmanwe also apply a structuralEM with binary val-

uesfor all hiddenvariables. Becauseof the flexibility of

StructuraEM andthechallengingstructureof our network,

we canexpectthatalearningalgorithmthatis not precise,
will quickly deviatefrom thetruestructure.Theresultsare
summarizedn Figure5 whereh0, h1, h2 and h3 have 3,

2, 4, and 3 states respectiely, andthe visible nodesare
all binary. It is evidentthatthe agglomeratiormethodwas
ableto effectively handleseveral interactinghiddenvari-

able. The cardinalitywas closeto the original cardinality
with extra statesintroduceso betterexplain stochastiae-

lationsthatdo notlook stochastidn thetrainingdata. The
structurelearnedusing the binary model emphasizeshe
importanceof determiningthe cardinality of hiddenvari-

ablesassuggestedh the exampleof Figurel. In termsof

log-lossscoreontestdata,the modellearnedwith agglom-
erationwas superiorto the original modelthat was better
thenthemodellearnedwith binaryvalues.

We now turnto theincorporationof thecardinalitydeter
mining algorithminto the hiddenvariablediscovery algo-
rithm of Elidanetal. [7] (seeSection2). Givenacandidate
network, FindHiddensearchegor semi-cliquesandoffers
candidatehiddenvariables. It thenappliesour methodto
the candidatenetwork to determinethe cardinality of the
hiddenvariable. Finally, we allow StructuralEM to fine-
tunethe candidatenetwork.

We applied this to several variablesin the synthetic
Alarm network. We also experimentedon the following
real-life datasets: Stock Data: a datasetthat tracesthe
daily changeof 20 major US technologystocksfor several
years(1516 trading days). Thesestateswere discretized
to threecategories: “up”, “no change”,and“down”. TB:
a datasethatrecordsinformationabout2302tuberculosis
patientsin the SanFranciscacounty(courtesyof Dr. Peter
Small, StanfordMedical Center). Thedatasetcontainsde-
mographicinformation suchasgendey age,ethnicgroup,
andmedicalinformationsuchasHIV status,TB infection
type, and othertestresults. News: datasetthatcontains
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Figure 6: Log-lossperformanceon testdataof the Find-
Hidden algorithmwith andwithoutagglomeratioron syn-
theticandreal-life data.Baseline is the performancef the
Original network givenasaninputto FindHidden

message$rom 20 newsgroups[13]. We representeach
messag@sa vectorcontainingoneattribute for the news-

groupandattributesfor eachword in the vocalulary. We

removedcommonstopwords,andthensortedwordsbased
ontheir frequeng in thewhole dataset. The datasetused
hereincludedthe groupdesignatorandthe 99 mostcom-

monwords. We trainedon 5,000messagethatwereran-
domly selectedrom thetotal dataset.

Figure6 shovsthelog-lossperformancef the networks
on testdata. The baseline is the original network learned
without the hiddenvariableandsuppliedasinput to Find-
Hidden. The solid diamondsarethe scoreof the network
with thehiddenvariablebut noagglomeratiorghiddenvari-
able is arbitrarily setto two states)and the squaresare
the network with hiddenvariablewith the agglomeration
methodapplied. As we cansee,in all casesthe network
with the suggestedhiddenvariableoutperformedhe origi-
nalnetwork. Thenetwork learnedisingagglomeratiomper
formedbetterthenthelearnednetwork with noagglomera-
tion (excluding 2 casesvheretheagglomeratiorsuggested
exactly two statesandis thusequivalentto theno agglom-
erationrun).

It is interestingto look atthestructuregoundby our pro-
cedure. Elidan et al. [7] found an interestingmodel for
the TB patientdataset. One stateof the hiddenvariable
captureswo highly dominantsegmentsof the population:
older, HIV-nggative, foreign-born Asians, and younger
HIV-positive, US-bornblacks. The hiddenvariables chil-
dren distinguishedbetweenthe two aggreyatedsubpopu-
lations using the HIV-result variable, which was also an
ancestorof several of them. They notedthat it is possi-
ble that additionalstatesfor the hiddenstatesmight have
furtherseparatedhesepopulations Figure7 compareghe
modellearnedby the FindHidden algorithmandthemodel

learnedwith the integrationof our agglomeratie method.
The modeldoesnot only performbetteron testdata(see
Figure 6) but doesindeeddefine4 separatgopulations:
US born,under30 or over 60, HIV-negative; US born, be-
tween 30 and 60 years, with higher probability of HIV;

Foreign-born,Hispanics,with some probability of HIV;

andForeign-bornAsians,HIV-negative.

6 Discussion and Future Work

In this paper we proposedan agglomeratie, score-based
approachfor determiningthe cardinality of hidden vari-
ables.We comparedurmethodto theexhaustve approach
for setting the cardinality using multiple EM runs and
shaved its successfulnesi® generatingcompetinglearn-
ing models. The importanceand plausibility of usingthe
agglomeratiormethodasa pre-processingtepto alearn-
ing algorithmis animportantconsequencéhussaving sig-
nificant computationaleffort. The algorithm proved ro-
bustto the numberof instancesn the training set. It was
alsoableto dealeffectively with severalinteractinghidden
variables. Finally, we evaluatedthe methodaspart of the
hiddenvariable detectionalgorithm FindHidden on syn-
theticandreal-life dataandshavedimprovedperformance
aswell asmoreappealingstructures.

Several works are relatedto our approach. Several au-
thorsexaminedoperationsof valueabstractiorandrefine-
mentin Bayesiannetworks[2, 16, 15, 19]. Theseworks
weremostly concernedwith the ramificationsof theseop-
erationson inferenceand decision making. Decisions
aboutcardinality also appearin the contet of discretiza-
tion. Althoughthe datais obsenable,the introductionof
a discretizedvariablecanbe modeledas addinga hidden
variable. For example, Friedmanand Goldszmidt[9] in-
corporatedthe discretizationprocessinto the learning of
Bayesiannetworks. Like our approach,they usea de-
composablecoreto trade-of betweenik elihoodgainand
compl«ity penaltyresultingfrom a particulardiscretiza-
tion. Their approachto discretizingmultiple interacting
variableds alsosimilarto ours.

In the context of learninghiddenvariablesthe mostrel-
evant are the works of Stolcke and Omohundro[17, 18§].
In theseworks, they learn hidden Markov models and
probabilistic grammarby performing a bottom up state-
agglomeration.Similar to our method,they startby span-
ning all possiblestatesandtheniteratively merging states
usinginformationvs. compleity measuresOur work can
be viewed as a generalizationof their work by applying
it to generalBayesiametworks andcombiningit with the
hiddenvariabledetectionalgorithm.

The structural EM algorithm of Friedman[8] followed
by the work of Elidan et al. [7], and with this work are
all aimedtowardlearningnon-trivial structuresith hidden
variablesfrom data. Theincorporationof hiddenvariables
is essentiabothin improving predictionon nev examples
andto gainunderstandingf the underlyinginteractionsof
the domain. We plan to continuethis researchprojectin
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Figure7: Improvementin structureof the TB network dueto incorporationof the cardinalitydeterminingalgorithminto
FindHidden. The hiddenvariableswith 4 statescapturesnoredistinct populationsandimprovesthe predictive ability of

themodel.

severaldirections.We intendto exploreadditionalmethods
for detectingthe dimensionalityof hiddenvariablessuch
asestimatinginformationtheoreticmeasuresn situations
similarto thatof Figurel. In orderto dealeffectively with

sparsadatadomainswherestructuralsignaturesareweak,
further methodsfor the discovery of hiddenvariableneed
to be developed. Anotherdirectionis to extendthe meth-
odsfor learninghiddenstructurdn moreexpressvemodels
suchasProbabilistic RelationalModels[10].
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