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Abstract

Recent studies (Alizadeh et al. 2000, Bittner et al. 2000, Golub et al. 1999) demonstrate the
discovery of disease subtypes from gene expression data. In this paper, we propose a princi-
pled and systematic approach to address the computational problem of partitioning the set of
sample tissues into statistically meaningful classes. We start by describing a method, called
overabundance analysis, for assessing how informative a given expression data set is with re-
spect to a partition of the samples. As we show, in several published expression datasets, an
overabundance of genes separating known classes is observed. Then, we use this method as
the foundation to a novel approach to class discovery. In this approach, we search for parti-
tions that have statistically significant overabundance score. We evaluate the performance of
our approach on synthetic data, where we show it can recover planted partitions. Finally, we
apply it to several published tumor expression datasets, and show that we find several highly
pronounced partitions.

�A preliminary version of this paper appeared in Fifth Annual International Conference on Computational Molecular
Biology, 2001, with the title “Class Discovery in Gene Expression Data”.

yContact author.
zNir Friedman was supported by ISF grant 244/99, Israeli Ministry of Science grant 2008-1-99, and an Alon fellow-

ship.



1 Introduction

An important application of gene expression profiling technologies, such as array-based hybridiza-
tion assays, is to study the differences, at the molecular level, between cell types. Such studies
collect expression level measurements of thousands of genes in multiple samples. Samples are la-
beled by properties of their source. For example, (Alon et al. 1999) report a data set comparing
gene expression in normal colon tissues to that in colon carcinomas, (Golub et al. 1999, Alizadeh
et al. 2000, Bittner et al. 2000) report data sets of tissues from different types of leukemia, lym-
phoma and melanoma, respectively.

Two cell types with dramatically different biological characteristics (e.g., a normal cells and
tumor cells from the same tissue) are expected to also have different gene expression profiles. It is
important, however, to realize that the majority of the active cellular mRNA is not effected by these
differences. That is, a dramatic biological difference does have a gene expression level manifesta-
tion, but the set of genes that is involved can be rather small. Thus, most of the genes measured in
these experiments are irrelevant to the distinction between the cell classes. However, other genes
play major roles in the biochemical pathways that underly those distinctions, and thus are differen-
tially expressed in the distinct cell classes. A central task of the data analysis phase is to identify
potentially relevant genes based on their expression profiles. For example, Golub et al. (1999) use
the separation score of a gene (Slonim et al. 2000) to measure whether a gene is differentially ex-
pressed in two classes of samples. Ben-Dor, Bruhn, Friedman, Nachman, Schummer & Yakhini
(2000), develop the Threshold Number of Misclassification (TNoM ) score to measure differen-
tial expression. In (Ben-Dor, Friedman & Yakhini 2000) we introduced the Conditional Entropy
(INFO) score. Both scoring methods are reviewed in details in Section 2.

By evaluating such scores for all genes in a dataset we can order the genes by their relevance
and identify the ones that are deemed most relevant to the distinction being studied. This, however,
does not suffice. To avoid inaccurate conclusions, it is crucial to assess the statistical significance
of the observed gene relevance scores. This is usually done by formulating a null-hypothesis, which
models the situation where the expression profiles are independent of the classification of interest.
We then compute the p-value, the probability of observing this score (or a better one) under the null-
hypothesis. One approach for evaluating p-values is via a permutation test, that consists of randomly
permuting the tissues labels (i.e., their class membership), and then computing scores under the new
partition. Repeating this process allows one to estimate significance levels of different scores. For
example, in Slonim et al. (2000), a permutation test was performed 400 times, and the 95% and
99% significance levels (p-values of � ���� and � ����, respectively) were estimated. Sampling
based methods are, however, computationally intensive, and can only examine a limited range of
p-values. Naive sampling cannot detect p-values of magnitude �����, such as the ones we find in
the leukemia data set. Therefore, sampling based methods have limited utility in highlighting and
distinguishing statistical significance levels.

Efficient methods for computing exact p-values at low orders of magnitude are, therefore, in-
strumental in analyzing expression data. In Section 3, we develop a closed form formula for the
distribution of the TNoM score and an efficient dynamic programming scheme for calculating the
exact distribution of the INFO score, under the uniform null model (permutations of the tissue
labels are uniformly drawn).

Relevance p-values are important for several aspects of the data analysis task. Many expression
datasets contain missing values. As a result, each gene is evaluated with respect to a different (and
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potentially unique) subset of the samples. Thus, it is not possible to directly compare the scores of
two genes from the same data set and same partition. However, by comparing the p-values of these
scores, we account for the different patterns of missing values for each gene. By the same virtues,
p-values provide a common scale for comparing individual gene relevance scores across different
datasets, different scoring methods, and different partitions of the same data.

Importantly, as noted above, p-values allow the identification of highly significant genes. Ex-
pression differences in genes with extremely low p-values are likely to have biological, mechanistic
or protocol reasons. These genes for which the latter two options can be ruled out, are interesting
subjects for further investigation and are expected to give deeper insight into the biology of the
different cell types.

Once we compute p-values of the scores for all the genes in a data set, we can also examine
the global pattern that emerges. Instead of searching for few genes with particularly small p-values,
we can examine the distribution of p-values for genes in the dataset. Then we can compare the
observed distribution of relevance scores in the dataset to the distribution expected under a null
model. This allows us to highlight an overabundance of informative genes in the dataset, and as
a result to assess the global statistical support for the partition of the set of samples. Indeed, as
we demonstrate below, several examples of biologically meaningful differences between cell types
yield high overabundance of informative genes. Such analysis was instrumental in a melanoma gene
expression study reported in (Bittner et al. 2000). The authors applied relevance scores and p-values
to statistically validate a putative cutaneous melanoma subtype and to select differentially expressed
genes. In Section 4, we propose methods for quantifying informative genes overabundance. Such
methods enable statistical evaluation of putative classifications of the set of samples.

Overabundance analysis allows us to compare the support of different partitions of the same data
set. This provides a statistical foundation for the task of class discovery. Recent studies (Alizadeh
et al. 2000, Bittner et al. 2000, Golub et al. 1999, Slonim et al. 2000) demonstrate the discovery of
putative disease sub-types from gene expression data. Alizadeh et al (2000) discover a putative sub-
class of DLBCL, a type of lymphoma. Bittner et al (2000) suggest a putative sub-class of cutaneous
melanoma. In both cases the findings were further biologically validated.

Recent examples of class discovery (Alizadeh et al. 2000, Bittner et al. 2000) involved the appli-
cation of supervised and unsupervised clustering methods. For example, Bittner et al (2000) applied
several clustering methods on expression profiles of melanoma tumors. One of these methods dis-
covered a classification that was then verified by other means to capture a meaningful distinction
in melanoma tumor behaviors. Alizadeh et al (2000) used a more complex protocol. They col-
lected experssion profiles of DLBCL (a type of lymphoma) samples, as well as samples of healthy
T-Cell and B-Cell in different development stages, and samples of other types of lymphoma. Then
they applied an agglomerative clustering over genes to find genes with similar behaviour, across
the different types of samples. From the resulting hierarchy they manually selected specific subsets
of genes. These were named according to the samples they were active in (e.g., “Germinal Center
B-Cell” genes were up-regulated in samples of B-Cells in the germinal center). Finally, they ap-
plied clustering to discover a partition of the DLBCL samples, by restricting a sample clustering
procedure to examine a particular subset of genes they have selected in this manner.

Such methodology of class discovery suffers from the need for manual intervention. This in-
tervention was required since typical clustering procedures used in gene expression analysis (Alon
et al. 1999, Ben-Dor et al. 1999, Eisen et al. 1998, Sharan & Shamir 2000, Tamayo et al. 1999, Tava-
zoie et al. 1999) attempt to find groups of samples such that the overall expression profiles are
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similar within clusters and different between clusters. In practice, however, dramatic phenotypical
differences might effect only a relatively small subset of the mRNA transcripts. Such differences
are “washed out” by uniform measures of similarity (such as the Pearson correlation used by many
clustering procedures). For example, the classification discovered by Alizadeh et al (2000) is not
apparent when tissues are clustered using all the genes. In this particular example, a set of relevant
genes was identified based on other considerations and prior hypotheses about potential sources of
differences between DLBCL subtypes.

In the current work we take a direct unsupervised approach to class discovery. The process we
develop consists of two components. We start by defining a figure of merit to putative partitions of
the set of samples. We are guided by the fact that biologically meaningful partitions of the samples
are typically manifested by a large overabundance of genes that are differentially expressed in the
different sample classes. That is, the number of genes that sharply separate two biologically mean-
ingful classes is extremely higher than that expected for a random partition of the data. Therefore,
reasoning in reverse, we seek partitions of the samples for which we observe an overabundance of
informative genes using the overabundance score of Section 4. In Section 5 we consider an alterna-
tive score that measures how well we can classify tissues according to the putative partition. This
score is based on a cross-validation procedure that learns the classifier from some of the tissues,
and evaluate prediction on others. We use the naive Bayesian Classifer with the leave-one-out cross
validation (LOOCV) test as specific embodiment of this process.

Once we define a figure or merit, we apply heuristic search methods, such as simulated anneal-
ing, exploring the space of all possible partitions of the set of samples. As described in Section 6,
this process is iterated to find several different partitions. In Sections 7 and 8 we assess the perfor-
mance of these methods applied to both simulated data (where we can know the “true” classification)
and actual biological data.

2 Informative Genes

We start with some definitions. Assume that we are given a data set D, consisting of M vec-
tors hx�� � � � � xM i. Each tissue or expression pattern, xi, is a vector in RN that describes the ex-
pression values of N genes/clones in a particular biological sample. A labeling for D is a vector
l � hl�� � � � � lM i, where the label li associated with xi is either � (negative sample), � (positive
sample), or � (control sample). Control samples can be ignored when genes are scored for relevance.

Consider an expression data with a known classification of tissues (typically based on histolog-
ical measurements, pathological analysis, or genetic level information). In order to highlight the
genes whose function underlie the molecular level differences between the different tissue classes
we are interested in scoring the genes according to their relevance to the distinction between the
different tissue classes.

In the literature several methods for scoring genes have been proposed. Parametric scores make
assumptions about the form of the distribution of the scores within each group. For example, the
t-test score (Alon et al. 1999, Schummer et al. 1999) compare the hypothesis that each group has a
different mean to the hypothesis that they have the same mean. This test assumes that both groups
of expression values have the same variance. The separation score of Golub et al (1999) attempts to
measure the difference between the distributions of expression values in the two groups. This score
estimates a Gaussian distribution for each group and then measures the distance between them in
terms of standard deviations.
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Non-parametric methods do not make distributional assumptions about the expression levels.
As such they are more robust. These include Wilcoxon test (DeGroot 1989), the TNoM score of
Ben-Dor et al (2000), and the INFO score of Ben-Dor et al (2000).

We now briefly describe the scores used in this work. Assume that a tissues are labeled as
positive, and b are labeled as negative. Let g be a gene we want to score for relevance with respect
to the positive vs. negative partition. Intuitively, g is relevant to the tissue partition if it is either
over-expressed in the positive tissues (compared to the negative tissues) or vice-versa.

To formalize this notion of relevance, we consider how g’s expression levels in the positive
tissues interlace with its expression levels in the negative tissues. To do so, we order the tissues
according to the expression levels of g. let � � h��� � � � � �a�bi be the permutation of the tissues
induced by the expression levels of g. That is, g expression level is minimal in ��, and maximal in
�a�b. The rank vector, v, of g, is a f���g vector of length a� b, where vi is the label of the tissue
�i.

For example, if g’s expression levels in the positive tissues are f��� ��� ��� ��� ��� 	�� ���� �
�g�
and g’s expression levels in the negative tissues are f
�� ��� ��� ���� ���� ���� ���g� then

v � h�����������������������������i� (1)

Note that the rank vector v captures the essence of the differential expression profile of g. If
g is under-expressed in the positive class, then the positive entries of v are concentrated in the left
hand side of the vector, and the negative entries are concentrated at the right hand side. Similarly,
for the opposite situation. In the latter case we can partition v into a prefix x, consisting of mostly
�, and a suffix y, consisting of mostly � (or vice versa). On the other hand, if g is not informative
with respect to the given labeling, the � and � in v are interleaved, and there no good partition
of v into homogeneous prefix and suffix. The TNoM and INFO scores, described below are two
natural ways to quantify the relevance (or information level) of a rank vector based on its most
homogeneous partition.

The TNoM score of v corresponds to the partition that best divides v into a homogeneous prefix
and a homogeneous suffix. Formally, the TNoM score of a rank vector v is defined as

TNoM 
v� � min
x�y�v

min
���
x� ���
y�� � ���
x� ���
y��� (2)

where �s
x� is the number of times a symbol s appears in the vector x. Thus, for each partition
x� y of v, we first consider the classification that labels x as positive and y as negative. In this case
the number of misclassifications is ��
x� ���
y�. Then, we consider the opposite classification,
where the number of misclassifications is ��
x����
y�. Finally, we return the partition for which
the best classification makes the smaller number of misclassifications.

For example, for the rank vector v in Equation 1, the best partition of v into two parts is

v � h�������������i� h���������������i� (3)

and thus, TNoM 
v� � � � � � �. Note that the partition of v is equivalent to choosing a thresh-
old expression level, and counting the number of induced misclassifications (and hence the name
Threshold Number of Misclassification TNoM ).

The TNoM score does not distinguish a rule that makes k one-sided errors (e.g., all the errors
are tissues of class � that are predicted as �) and a rule that makes k�� errors of the first kind and

5



k�� error the second kind. This distinction is important, since a rule that makes only one-sided
errors is performing quite badly on one of the classes. We now describe an approach that attempts
to make such finer distinctions.

Similar to the TNoM score, the INFO score of Ben-Dor, Friedman & Yakhini (2000) measures
the level of homogeneity of the partitions of the rank vector of g. However, instead of counting
misclassified sampled (as done in TNoM ), INFO score uses the information theoretic notion of
conditional entropy (Cover & Thomas 1991). Let x be a f���g vector, and let p denote the
fraction of positive entries in x. The entropy of x, is defined as

H
x� � �p log
p�� 
�� p� log
�� p��

The entropy measures the information in the vector x. This quantity is non-negative, and equal
to � if and only if p � � or p � �. That is, if x is homogeneous. The maximal value of H
x�
is � when x is composed of an equal number of positive and negative labels. Thus, H
x� is an
information-theoretic measure of (non-)homogeneity.

The INFO score of v is defined to be the minimal weighted sum of the entropies of a prefix-
suffix division. That is,

INFO
v� � min
x�y�v

�
jxj

jvj
�H
x� �

jyj

jvj
�H
y�

�
�

where j � j is the length of the vector. This is the conditional entropy of the rank vector given the
partition of the samples into two groups (these in x and these in y). The conditional entropy is a
non-negative quantity. It is equal to � if and only if the division of v in to two groups is perfect.
That is, x contains only ’+’ and y contains only ’-’ (or vice versa).

For example, if we consider rank vector v of Equation 1, the best partition for the INFO score
happens to be the same as in Equation 3. There we get

INFO
v� �
	

��
�H


�

	
� �

�

��
�H


�



�

�
	

��
� �����	 �

�

��
� ������ � ��	���

3 Computing p-values

When scoring a gene for how relevant it is with respect to a given partition of the set of samples it is
important to evaluate the result against a null model. To this end we want to compute the probability
of this gene (with the given expression values) being so relevant for a uniformly randomly drawn
partition of the samples. This number is the p-value corresponding to the scoring method in effect
and the given score level s. Genes with very low p-values are very rare in random data and their
relevance to the studied phenomenon is therefore likely to have biological, mechanistic or protocol
reasons.

We always compute p-values in the context of a null hypothesis. In the usual parametric tests, the
null-hypothesis is about the distribution of expression values of g. For example, the null hypothesis
underlying the t-test assumes that the expression values of g are sampled from a normal distribution
(with unknown mean and variance).
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In the context of gene expression data, we do not necessarily want to make assumptions about
the distribution. Instead, we only assume that the assignment of labels to tissues is independent of
the gene expression data. More precisely, under the null model we assume that the tissue labels are
randomly and uniformly permuted.

Formally, let f���g�n�p� denote all labelings with n ��� entries and p ��� entries. A scoring
method S (e.g., TNoM ) is a function that takes a rank vector v � f���g�n�p� and returns a score as
described in Section 2. Let V be a random labeling drawn uniformly over f���g�n�p�. The p-value
of a score level s is then

pV al
s� � Prob
S
V � � s� (4)

Ben-Dor, Bruhn, Friedman, Nachman, Schummer & Yakhini (2000) describe a dynamic pro-
gramming procedure for computing p-values for the TNoM score, and Ben-Dor, Friedman &
Yakhini (2000) describe a stochastic simulation procedure for computing p-values for the INFO
score. Here we describe how to efficiently compute exact p-values for both the TNoM and INFO
scores. Such efficient procedures enable the class discovery methods descried in Section 6.

3.1 TNoM p-Values

The combinatorial character of TNoM makes it amenable to rigorous calculations. Ben-Dor et
al. (2000) describe a dynamic programing procedure for computing p-values for the TNoM score.
In this section, we use the reflection principle, in a repeated manner, to develop a closed form
formula of the TNoM scores in f���g�n�p�. (It is easy to see how to extend these results to p-value
computations when we also have unlabeled samples.)

Let v � f���g�n�p� be a rank vector. We can think of v as defining a rectilinear path in the
plane, denoted �v . Specifically, at the i’th step we progress one unit on the x-axis, and either
add or subtract a unit on the y-axis depending on the i’th label in v. Formally, �v is a function
�v � f�� �� � � � �Mg �� Z where �v
i� � ��
v��i����
v��i�. Here, for v � hv�� v	� � � � � vM i we
use vi�j 
i � j� to denote hvi� vi��� � � � � vji.

The correspondence v �� �v is one to one and onto from f���g�n�p� to the set of rectilinear
paths that start at 
�� �� and end at 
M�C�, where M � n � p and C � p � n. We denote
by � �
xs� ys� �� 
xe� ye�� the collection of all rectilinear, unit step paths starting at 
xs� ys� and
ending at 
xe� ye�.

The following lemma characterizes the set of paths that corresponds to a set of vectors v �
f���g�n�p� with a given TNoM score.

Proposition 3.1 Let v � f���g�n�p�. Then, TNoM 
v� � s if and only if there is an i such that
�v
i� � p� s or �v
i� � s� n.

Proof:
Recall that the TNoM 
v� is defined by minimizing over the errors made by possible classifi-

cations over the rank vector . We start by considering the errors made by a specific classification.
Let v � f���g�n�p�, and suppose we partition v into the vectors v��i and vi���M . There are two
classifications we can make over this partition.

� If we classify v��i as ’+’ and vi���M as ’-’, then the number of errors of the rule is:

��
v��i� � ��
vi���M � � ��
v��i� � p���
v��i�

� p� �v
i�

7



� If we classify v��i as ’-’ and vi���M as ’+’, then the number of errors is:

��
v��i� � ��
vi���M � � ��
v��i� � n���
v��i�

� �v
i� � n

Thus, we can rewrite (2) as

TNoM 
v� � min
i

min
���
v��i� � ��
vi���M �� � ���
v��i� � ��
vi���M ���

� min
i

min
�p� �v
i��� �n� �v
i���

The claim follows immediately.

Let s be a score level of interest. Set A � p�s and B � n�s. (Note that we are only interested
in s for which both A � � and B � �, since otherwise the p-value is �.) By Proposition 3.1 we have

Prob 
TNoM 
L� � s� � �
A�B� �

�
M

p

���

(5)

where

�
A�B� �

����
�
� � � �
�� �� �� 
M�C�� � max

i
�
i� � A or min

i
�
i� � �B

�����
That is, �
A�B� is the number of paths that start at 
�� ��, terminate at 
M�C�, and visit either

the y � A or the y � �B line (or both). To compute �
A�B� we use the repeated reflection
principle. We start by classifying paths. An alternating A�B pattern is a word w � 
AB�� 	
B
AB�� 	 
BA�� 	 A
BA��, for example ABABA. Let jwj denote the length of a pattern, e.g
jABABAj � �. A path � � � �
�� �� �� 
M�C�� is said to visit the pattern w if there is a set of
indices t� � t	 � � � � � tjwj such that if the j’th symbol in the pattern is A, then �
tj� � A, and if
the j’th symbol of the pattern is B, then �
tj� � �B. For an alternating A�B pattern w we set

�
w� � jf� � � �
�� �� �� 
M�C�� � � visits wgj �

Lemma 3.2
�
A�B� �

X
w�jwj�d M

A�B
e


���jwj���
w��

Proof: This is an inclusion/exclusion like counting process. Explicitly: we count the paths that do
venture out of the strip between A and �B. First we count all paths that cross A: �
A�. We add
the number of paths that cross �B to get �
A���
B�. We have double counted all paths that visit
both A and �B. So, we subtract �
AB� � �
BA�. Now, however, paths that visit both AB and
BA are subtracted twice. So, we add �
ABA� � �
BAB�. We continue this process to obtain the
stated formula. Of course we only need to consider patterns up to length M�
A�B� since it takes
at least A�B steps to go from y � A to y � �B or vice versa.

Now it only remains to count the number paths that visit a particular pattern.
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Lemma 3.3 Consider an alternating A�B pattern w � w
��w
�� � � � w
l�. Set

t
w� �

�
�
Pl

i��w
i� if w
l� � A

��
Pl

i�� w
i� if w
l� � B

We then have

�
w� � j� �
�� t
w�� �� 
M�C��j �

�
M


C � t
w� �M���

�
�

Proof: The first equation follows by repeated reflection. The second is a simple calculation of the
number of paths connecting any point 
�� t
w�� to 
M�C�. For illustration purposes assume w � A.
To any path � � � �
�� �� �� 
M�C�� that goes through the line y � A we can match, in a one to
one and onto manner, a path �
�� � � �
�� �A� �� 
M�C�� by reflecting the part that is to the left
of the first visit to y � A, across the y � A line. Therefore, in this case:

�
w� � j� �
�� �A� �� 
M�C��j

To deal with the general case we repeatedly reflect across the lines y � A and y � �B. For more
on repeated reflection see (Feller 1970).

The combination of Eq. (5), Lemma 3.2 and Lemma 3.3 yields a closed form formula for com-
puting the distribution of the TNoM score, in f���g�n�p�.

3.2 INFO p-Values

Consider v � f���g�n�p�. Recall that

INFO
v� � min
i

i

M
H
v��i� �

M � i

M
H
vi���M ��

To compute the p-value for a score level s we examine the number of paths that do not achieve score
s. This collection of paths can be characterized as paths that are bounded within a certain region of
the plane.

Let v � f���g�n�p� be a rank vector, and let �v be the corresponding path from 
�� �� to 
M�C�.
Recall that �v
i� � ��
v��i����
v��i�. It is easy to see, that this implies that ��
v��i� �

�v�i��i
	

and similarly, ��
vi���M � � 	p��v�i��i
	 . Let

C
i� y� �
i

M
H

�
i� y

�i

�
�
M � i

M
H

�
�p� y � i

�
M � i�

�
�

This is the conditional entropy of a labels vector v for which �v
i� � y, achieved by dividing v into
the prefix with the first i symbols in v and the suffix with the last M � i symbols in v. Note that this
quantity does not depend on how the path �v reaches the point 
i� y�.

As INFO
v� � s if and only if C
i� �v
i�� � s for all i � �� � � � �M . we want to count the
number of paths that are restricted to the grid defined by

R
s� � f
i� y� � C
i� y� � sg�
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Figure 1: Conditional entropy regions, R
s� for some example score levels. The probability of
having a rank vector with INFO
v� � s is obtained by counting paths that venture out of the
corresponding region R
s�.

Figure 1 depicts example conditional entropy regions of this form.
To count the paths that don’t venture out of R
s� we now apply a dynamic programming

scheme. Fix s. For � � i �M and �n � y � p define

�
i� y� s� � jf� � � �
�� �� �� 
i� y�� � 
j� �
j�� � R
s� for all � � j � igj�

Then we have that �
�� �� s� � � and �
�� y� s� � � for y 
� �, and the recursion rule

�
i� y� s� �

	
�

�

�
i� �� y � �� s� � �
i� �� y � �� s� 
i� y� � R
s�

� otherwise
(6)

The entries �
i� y� s� can be computed by dynamic programing procedure that fills the O
M	�
possible entries. Once we compute �
M�C� s�, we set

Prob
INFO
L� � s� � �� �
M�C� s� �

�
M

p

���

�

4 Overabundance analysis

Consider a set of p positively labeled samples, and n negatively labeled samples. Let l denote the
vector of labels for the samples and let N denote the number of genes profiled for each tissue. In
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Section 2 we described how to compute relevance scores (TNoM and INFO) for each gene with
respect to l. In Section 3 we described efficient procedures for evaluating the significance levels
(p-values), for those score methods. More specifically, for each score level s, we can compute
the probability ps that a gene will attain this score (or better) assuming that the tissues labels are
randomly permuted.

In this section, we describe two methods that utilize the individual gene p-values in computing
a signficance score for the entire collection of expression profiles. We term this approach overabun-
dance analysis. For each possible relevance score s attained by the scoring method of choice (e.g.,
TNoM ), we can compare the actual number of genes in the dataset attaining a score of s or better
to the number of genes expected to have a score of s or better under random labeling (which is
N � ps).

Assume now that the given labeling vector l indeed captures a biologically meaningful classifi-
cation of the tissues (say tumor samples vs. normal samples, or samples treated with two different
drugs). Even without a complete understanding of the molecular basis of the difference between
the two tissue classes we expect to observe much more informative genes than would be expected
at random. Indeed, examining data sets with biologically meaningful classifications, we find an
over-abundance of significantly informative genes (Ben-Dor, Friedman & Yakhini 2000, Bittner
et al. 2000). Figure 2 contrasts the expected number of genes with particular p-value to the actual
number of genes for the TNoM and INFO scores in several published datasets.

The general trend is clear. The number of genes with small scores is much higher than expected.
For example, in the Leukemia data set (Golub et al. 1999), there are 3 genes with TNoM score �
(p-value 	�� � �����) while the expected number is ��� � �����. Moreover, there are 294 genes with
TNoM score 15 or less, while the expected number is roughly 1.

This is an overabundance of informative genes, meaning that the expression profiles carry infor-
mation relevant to the biological classification. Our next step is to quantify the statistical significance
of the this statement. This quantification is important for two types of situations.

� Consider a biologically meaningful classification (e.g., two subtypes of cancer, as in the case
of the Leukemia data set). Then, we want to ascertain whether gene expression patterns re-
flect that classification. The examples we discuss above show that this is the case without
doubt. In other classifications, when there are fewer tissue samples, or more subtle signal, the
situation might not be obvious. Using standard methods (e.g., using Bonferroni bounds), we
can determine whether a single gene is significant for the classification. Our aim, however, is
to take into account the global patterns. That is, the behavior of all the genes. An overabun-
dance of informative genes is an indication of statistical significance, even if no single gene
is Bonferroni significant.

� Consider a putative classification, as in Bittner et al (2000), that might correspond to a real
biological distinction. Clearly, the ultimate test for a putative classification is a biological
validation test (as described therein). However, statistics is a tool for evaluating classifications
before planning further experiments. Thus, we want to develop statistical scores that measure
the significance of suggested partitions.

We now present a method for scoring a proposed partition of the tissues.
The formal model is as follows. Let L � f���g�n�p� denote the set of possible labeling of

the samples with the same mixture of positive and negative labels as in l. Fixing a gene scoring
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Figure 2: Comparison of the number of significant genes in actual dataset to expected number under
the null-hypothesis (random labels). The x-axis denotes the p-value of the score. In the top part of
each graph, the y-axis is the number of genes, in the bottom part, the y-axis is the negative logarithm
of the probability of the observed number of genes given the binomial model, which is exactly the
surprise score (see below). Data sets: Leukemia from Golub et al (1999); Colon from Alon et
al (1999); and Lymphoma from Alizadeh et al (2000).
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method (e.g. TNoM ), let s� � s	 � � � � � sk denote the possible relevance scores. As described
in Section 3, we can compute the probability, pi of attaining score si, if the labeling is chosen at
random from L. We define qi
l� to be the fraction of genes that have a score of exactly si under the
labeling l. We now ask how rare it is to observe the distribution Q
l� � fqi
l�g when we expect to
see the distribution P � fpig. To answer this question we need to make an additional simplifying
assumption

Ind-Genes: The expression levels of the genes are independent

This assumption implies that knowing the scores of any subset of genes under a random labeling
l adds no information about the scores of other genes under the same labeling. It is clear that
this assumption oversimplifies things: expression levels of genes can be correlated, and thus their
scores on random labeling are not independent. Nonetheless, as in many modeling situations, this
simplifying assumption allows for efficient computations, and might capture the essence of the
results.

Intuitively, we consider each score level si independently. We compare the actual number of
genes with a score less than or equal to si to the expected number. The most striking overabundance
observed will determine the surprise score of the labeling l. Formally, we first define the surprise
at si. Let q�i
l� denote the observed fraction of genes with a score of si or better (for the labeling
l). Let p�i denote the expected fraction of genes with a score si or better (for a labeling chosen at
random from L). That is

q�i
l� �
X
j�i

qj
l�� and p�i �
X
j�i

pj�

Under the independence assumption, the number of genes with a score of si or better has a
binomial distribution, with parameters p�i and N . We define the surprise at score si with respect
to l to be

Surprise
si� l� � � logProb
Bin
p�i� N� � Nq�i
l��

We can compute the surprise score directly, or using a Chernoff bound on the tail probability of the
binomial distribution. Of course, at different score values we get different surprise values. However,
we can find the score si at which the observed number is most surprising:

Max-Surprise
l� � max
i

Surprise
si� l��

This quantity is employed to evaluate the labeling vector l. This matches our intuition that a good
labeling should have a surprisingly large number of informative genes.

5 Classification Scores

In the previous sections we studied scores that evaluate the quality of putative label vectors by mea-
suring significant deviations from the distribution of scores we expect under null-hypothesis models.
An alternative approach is to seek classes which are predictable based on the gene expression mea-
surements.

In (Ben-Dor, Bruhn, Friedman, Nachman, Schummer & Yakhini 2000, Slonim et al. 2000) the
problem of predicting tissue classification is examined. As demonstrated there, for actual labelings
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in real-life data sets, it is possible to train a classifier that has good predictive accuracy. More pre-
cisely, a classification algorithm is a function fD that depends on a data set D of patterns and sample
labels. Given a new query x � RN , this function returns a predicted label�l � fD
x�. Good predic-
tive accuracy means that predicted labels match the “true” label of the query. Several classification
methods were applied to gene expression data (Ben-Dor, Bruhn, Friedman, Nachman, Schummer
& Yakhini 2000, Ben-Dor, Friedman & Yakhini 2000, Slonim et al. 2000). For completeness we
briefly review the method used here.

The naive Bayesian classifier (Duda & Hart 1973, Friedman 1997, Friedman et al. 1997) is
based on a probabilistic approach to the problem. We start by estimating the probability of each
label (e.g., � or �) given gene g’s expression level. We model this distribution by a decision stump:
we learn a threshold t, and make one prediction if xg � t and another if xg � t. The threshold
t is chosen as in the INFO score, and the conditional distribution for xg above (resp. below) the
threshold is estimated from the proportions of � and � labels for samples where g’s expression
level is above (resp. below) t. Then, assuming that expression patterns of genes are independent
given the labeling (this is the “naive” assumption) and using Bayes rule, we get that

log
P 
� j x�

P 
� j x�
� log

P 
��

P 
��
� log

P 
x j ��

P 
x j ��

� log
P 
��

P 
��
�
X
g

log
P 
xg j ��

P 
xg j ��

� log
P 
��

P 
��
�
X
g

�
log

P 
� j xg�

P 
� j xg�
� log

P 
��

P 
��

�
�

Where the first step is an application of Bayes rule, the second depends on the independence as-
sumption, and the third step is again an application of Bayes rule. If logP ��jx�

P ��jx� is positive we
predict �, otherwise we predict �.

A key issue we need to address is how to evaluate the accuracy of a classification method
applied to a given labeled data set and labeling. We follow standard methodology and use leave
one out cross validation (LOOCV) to estimate the prediction accuracy of a classification method on
new examples. This procedure iterates on the samples in the data set. In each iteration, it removes a
single sample and trains the classification procedure on the remaining data. The trained classifier is
then applied to the held-out sample and the predicted label is compared to the true label. The fraction
of errors thus committed in the entire process, is our estimate of the error rate of the classification
procedure.

A final issue is feature selection. As (Ben-Dor, Bruhn, Friedman, Nachman, Schummer &
Yakhini 2000, Slonim et al. 2000) show, predictions based on an informative subset of genes are
more accurate than these that are based on all genes. In our procedure we employ a simple, but
surprisingly effective, procedure to select genes. Given a training data, we compute the score s that
attains max surprise. We then focus on genes that have this score or better. The learned classifier is
then based on these genes only. We stress that in each LOOCV iteration this procedure is applied
on the data set without the held-out sample. Thus, in each iteration a different score will attains
maximum surprise and a different set of genes is selected. In such a situation the LOOCV estimate
is the estimate of the performance of the combined classification procedure that uses the training
data for feature selection and then learns a classifier based on the selected genes.

Now suppose we are given a (putative) labeling of samples in our training data. The intuition
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we outlined above suggests that if the labeling captures a “true” phenomenon in the data, then a
LOOCV evaluation of a classification procedure (e.g., the naive Bayesian classifier) would lead to
accurate predictions. In other words, we can score a labeling by the accuracy reported by LOOCV
evaluation of classification with respect to this labeling. This suggests that the distinctions made
by the labelings are inherent in the data and not an artifact. From a different point of view: the
suggested classes can be successfully in-silico diagnosed.

We note that this classification score is related to the overabundance score. We can expect that
for partitions with high overabudnace of informative genes, we will also be able to find a good
classifier. Indeed, actual biological partition score high on both methods.

6 Class Discovery

In many experimental designs it is useful to find tissue classification in gene expression data. Such
classifications might be due to biological phenomena (e.g., disease subtypes), or due to mechanical
or protocol “noise”. Identifying classifications can lead to biological discovery or can uncover
experimental or data handling errors.

The strategy we propose is simple. As we demonstrated above, biologically meaningful classi-
fications are often characterized by overabundance of informative genes. This overabundance might
be due to a small set of genes that are highly informative about the classification, or due to a larger
set of genes, each of them not as surprising, but the collection of them is.

This suggests that we should examine partitions of the samples into two groups. We can then
evaluate these partitions and measure to what degree they have the overabundance of informative
genes. The partitions that display high overabundance are proposed a putative classifications. To
carry out this intuition we need to choose a score for overabundance and then to perform search for
high scoring partitions.

A somewhat more general formulation is to consider partitions of the samples to three groups,
’-’, ’+’ and ’0’, where the latter group corresponds to unlabeled samples that will not participate in
the learned classification. This provides an additional degree of freedom in discovering meaningful
classifications. Note that our surprise score inherently penalizes partitions with a high number of
unlabeled samples. Reducing the number of labeled samples causes the p-values to be typically
larger (there are fewer rank vector arrangements). Consequently, the surprise scores for partitions
with just a few labels are smaller.

In the previous sections we described two scores for overabundance, max-surprise, and the
classification score. The later score has several shortcomings for our purposes. First, it is com-
putationally intensive, since we need to perform LOOCV iterations, and in each of these perform
gene selection (which in turn, requires computing scores for all genes). Second, since the number
of samples is small, the range of the score is quite limited. This implies that the classification score
gives little guidance during search for high scoring labeling vectors. Third, if we use the classifica-
tion score during search we are going to perform large number of LOOCV evaluations; statistical
considerations show that even in random data, enough repetitions of this test will find high scoring
artifactual labeling vectors (Klockars & Sax 1986, Ng 1997). To avoid these problems, we mainly
use the classification score to evaluate candidate labeling vectors that are found using surprise scores
we discussed in the previous section.

Thus, we prefer to use the max-surprise score to guide the search for putative classifications.
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Once we choose a score for putative labeling vectors we need to find a labeling that maximizes
the score. This is a discrete optimization problem and we use heuristic search techniques to find
high-scoring labelings. We can formalize our problem as a search over a graph, where our goal is to
find a vertex with maximum score, where one assumes some locality in the scores (i.e., neighboring
vertices have similar scores). Presently, the vertices correspond to potential labelings of the samples,
and the score we attempt to maximize is the max-surprise score. The edges in the graph are between
pairs of labelings that agree on all labels except one sample, the labeling of which changed from
“0” to either “-” to “+”. Thus, we can move from one labeling to another by modifying the label of
exactly one sample from classified to unclassified, or vice versa. Note that over a set of M samples,
each vertex has at most �M neighbors.

A common search method is the first ascend hill climb. In this procedure we consider all the
neighbors of our current labelings in some random order. We evaluate the score of each neighbor,
and once we find a neighbor with a better score, we “move” there and continue. If all neighbors
have worse scores than the current candidate, we are at a local maximum, which is returned.

This procedure is straight forward and has the intuitive aspect of climbing up-hill toward better
solution. However, it can get “stuck” at local maxima. Unfortunately, local maxima are common in
the class discovery optimization landscape. A common method to escape local maxima is simulated
annealing (Kirkpatrick et al. 1983). This method resembles the first ascend procedure. However,
now the search procedure maintains a temperature parameter t. This parameter is updated during
the search by an exponentially decreasing cooling schedule: at the kth step of the process the tem-
perature is t
	�k�d� where 	 � � and d is an integer. Now, if the score of the current labeling is s,

and a random neighbor labeling scores s�, we move to that neighbor with probability min
�� e
s
��s
t �.

Thus, at very high temperatures the probability of taking a score-decreasing step is close to �. It
gets closer to � as the temperature decreases. The procedure terminates after a fixed number of steps
(or equivalently, after t reaches a pre-specified temperature) and returns the best scoring labeling it
encountered.

Recall that we want to construct several different partitions of the data. Toward this end, we
employ a simple strategy of peeling the data set. First, we perform a heuristic search and find a high
scoring putative labeling. Then, we “peel off” the genes that support this labeling from the data
set. More precisely, we remove all genes with score smaller than or equal to the score that attains
maximum surprise. We then reiterate the search on the remaining genes until either we exhausted
all genes, or the score of the best labeling on these genes falls below a pre-specified threshold. By
iteratively peeling the data set we discover a set of partitions, each supported by a disjoint set of
genes. Once we finalize the search, we reevaluate each of the labeling vectors with respect to the
original data set (since some previously removed genes can be relevant to a putative partition and
effect its score).

7 Model and Simulations

All attempts to stochastically model gene expression data are intrinsically problematic. It is im-
possible to make a reasonable set of model assumptions that is universally valid for a complicated
system such as the living cell. Modeling approaches are, however, successful in highlighting bio-
logical phenomena that do follow the model and thus allow for selective inference of knowledge
from data.
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The purpose of the stochastic simulation exercise we describe in this section is threefold: to
validate our computational class discovery methods on a general stochastic model; to identify the
mode of convergence to planted classes; to compare performance across methods and test the effects
of various parameter changes.

7.1 The Stochastic Model: Planted Classes

We assume that the gene expression dataset stochastically depends on a hidden, biologically signif-
icant, classification C of the tissues into subclasses. As in real datasets, we further assume that the
classification C effects only a small fraction of the genes, called the C-genes, while the other genes,
called random genes, express independently of C.

For simplicity we describe a binary classification model. Modelling data with more classes in
the same manner is straight forward. We assume that there exists a hidden classification C, that
partitions the M tissues into a class A tissues and b class B tissues. We denote by m the total
number of genes, and by �� e the fraction of C-gene. That is, there are 
�� e�m C-genes, and em
random genes.

For each C-gene, g, we model its expression levels in the different tissues using two distributions
- DA for class A tissues, and DB for class B tissues. We assume that DA and DB are normal
distributions with a constant coefficient of variation1, s. That is,

DA � N

A� 
As�� DB � N

B � 
Bs��

The means of the distribution, 
A, and 
B are uniformly chosen from the interval �����d� ���d�.
Thus, the expected distance between the two means is d (a parameter of the model).

The expression level of the random genes in all tissues, independent of their class, is assumed to
be normally distributed with zero mean and standard deviation of one. Note that any classification
of the tissues, C�, might be supported by some random genes. However, the true classification C,
will be supported by a statistically significant number of genes because of the C-genes.

In summary, the planted classification model is fully specified by a classification C, of the tissues
into two classes of sizes a and b respectively, and by the model parameters:

� m - the total number of genes.

� e - the fraction of random genes in the data.

� d - the expected distance between the two mean expression levels, pertaining to the two
planted classes.

� s - the coefficient of variation for expression level distributions.

7.2 Results on Synthetic data

In this section we report a simulation based evaluation of our discovery process. We varied the
model parameters 
a� b�m� e� d� s�, and employed Max-Surprise with the TNoM score in a simu-
lated annealing local search.

1This assumption is supported, for example, when the expression levels are logs of red to green signal ratios in a two
dye expression profiling measurement (Chen et al. 1997).
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Simultaneously varying d, s, and e, we observed that the search results were relatively insensi-
tive to the parameter d (compared to s and e). Hence, we concentrate on s and e in the rest of the
simulations.

In order to choose realistic parameter values we examined the leukemia data set (Golub et al.
1999) and best fit the model parameters to it. Omitting the details of the fitting process, the resulting
values are: m � 	���, a � ��, b � 
	, e � ��	�, d � ���, s � ��	�.

In our stochastic model we implicitly assume that all genes are independently distributed. How-
ever, in biological dataset, there are complicated dependencies among genes. Therefore, the ef-
fective number of independent genes in the real data set is much smaller than 7129. One way to
choose a better model value for m is to choose it such that the Max-Surprise score of the hidden
classification C (fixing the other parameters to the above values) would resemble the Max-Surprise
score of the AML/ALL classification in the leukemia data (which is 2603). Using this approach we
derive m � ���. Therefore, set the leukemia parameters to be

m � ���� a � ��� b � 
	� e � ��	�� d � ���� s � ��	�

To test the performance of our methods on leukemia parameters, we generated 10 synthetic
datasets according to the planted classification model, and compared the returned classification of
the tissues to the original, planted classification. In all 10 cases, the original class was recovered
perfectly.

To better study the effect of the model parameters on the algorithm performance, and to learn our
algorithm limits we have varied each of the parameters (m� d� e� s) in turn, while fixing the others to
their leukemia value. In the reported results below, we use C to denote the planted classification (that
has proportions of 25 class A tissues vs. 47 class B tissues), and by A the classification returned
by our algorithm. Recall that our algorithm searches for the tissue classification with the maximal
Max-Surprise score. As we vary the model parameters, the Max-Surprise score lead of C (compared
with the score of other classifications) changes, and thus the algorithm performance is accordingly
effected:

m - Increasing m, the number of genes, increases Max-Surprise
C�, and thus makes it easier for
the search heuristic to find it. We have found that m � ��� is the phase transition point. If
m is larger, then the algorithm consistently recovers the hidden classes. However, for smaller
m’s, C is not the optimal classification (with respect to the Max-Surprise score), and thus a
different classification, A , is recovered. The difference between A and C depends on m; the
smaller m is, the larger is the difference. For example, setting m � ���, we get that on
average Max-Surprise
C� � ���, while Max-Surprise
A� � ���. Still, A and C are very
close (differ on average only on 3 tissues).

d - We have found that d, the expected distance between the two means has very little effect on
Max-Surprise
C�, and thus has very limited effect on the algorithm performance. In partic-
ular, we have varied d in the range � through ����, and in all cases the algorithm recovered
C perfectly.

e - In our model, e represented the fraction of random genes in the data, genes that express
independently from the planted classification. Stated differently, we are trying to recover
planted classifications that are supported on a ��e fraction of the genes. As the Max-Surprise
score of a classification reflects the over-abundance of informative genes, we expect Max-
Surprise based methods to perform well even for high values of e. Indeed, in this study by
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Max-Surprise LOOCV Jaccard
Data set Labeling p/n/c Score p-Value # acc. (%) Coeff.
Leukemia original 47/25/0 2601 0.0154 1173 91.7 1

1 43/29/0 13784 0.0007 1890 98.6 0.469
2 32/40/0 7541 0.0126 2182 91.7 0.344
3 43/29/0 11524 0.0054 2400 93.0 0.469
4 46/26/0 2690 0.0558 2014 87.5 0.949
5 22/50/0 3891 0.1292 3483 70.8 0.376
6 45/27/0 2784 0.0759 2355 86.1 0.902

Lymphoma Original 50/46/0 8259 0.0010 1188 87.5 1
1 24/37/35 14514 ��� � ��

�� 1148 100 0.780
2 53/23/20 8342 0.0049 1598 100 0.382
3 34/36/26 7728 0.0012 1148 91.4 0.485
4 33/29/34 6674 0.0013 1046 88.7 0.539
5 35/35/26 1654 0.0319 937 85.7 0.323
6 53/17/26 5201 0.0545 2157 94.2 0.385

Lymphoma Original 23/22/51 545 0.0139 359 97.8 1
DLBCL 1 33/12/51 2669 0.0668 1625 88.9 0.362

2 23/22/51 2005 0.0139 776 95.5 0.324
3 25/20/51 917 0.0460 815 88.9 0.354
4 31/14/51 2171 0.1318 1975 82.2 0.350

Table 1: Evaluation of the discovered labelings and the original labelings in three data sets. The
table reports the composition of the labeling; theTNoM based max-surprise score, the p-value at the
point of max surprise and the number of genes with that p-value; LOOCV accuracy of predictions
the labeling (ignoring control samples); and the Jaccard coefficient that measures the similarity of
the labeling to the original labeling.

simulations we have varied e in the range ��� ����, and observed that the algorithm consistently
recovered C , up to e � ����. For higher values of e, we typically get Max-Surprise
A� �
Max-Surprise
C�.

s - The coefficient of variation, s, plays a major role in our model. It represents the inherent
random nature of the expression profile of a gene within tissues of the same class. For large
values of s we get very spread distributions, contributing to higher TNoM scores, and thus
a lower Max-Surprise
C�. In this study we varied s in the range ����� ��. The transition point
was found at around s � �. For smaller s, the planted classification C is recovered, for larger
C , we typically recover classification A with larger Max-Surprise score.

Our simulation study can be summed up as follows. First, the algorithm is very robust, performing
under high levels of noise, either in the form of random genes (e � ���), or in form of high coef-
ficient of variation (s � �). Second, for a wide range of parameters, even much more pessimistic
than those that correspond to the leukemia dataset, the algorithm consistently recovers the planted
classification. Finally, if either there are too few genes (m � ���), or too high noise level (e � ����,
or s � �), than the planted classification is no longer the optimal classification, and we cannot hope
to perfectly recover it.
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8 Class Discovery in Gene expression Data

To evaluate the usefulness of our approach, we applied it to several gene expression data sets. They
all come with a known classification that is either based on pathological considerations, or was
discovered using manual analysis of gene expression data. The data sets are:

� Leukemia: 72 expression profiles reported by Golub et al (1999). These samples are divided
to two variants of leukemia: 25 samples of acute myeloid leukemia (AML) and 47 samples
of acute lymphoblastic leukemia (ALL). mRNA was extracted from 63 bone marrow samples
and 9 peripheral blood samples. Gene expression levels in these 72 samples were measured
using high density oligonucleotide microarrays spanning 7129 genes.

� Lymphoma: 96 expression profiles reported by Alizadeh et al (Alizadeh et al. 2000). 46 of
these are of diffused large b-cell lymphoma (DLBCL) samples. The remaining 50 samples are
of 8 types of tissues. In our analysis we used gene expression measurements of 4096 genes
shown in (Alizadeh et al. 2000, Figure 1).

� Lymphoma-DLBCL: This data set is the subset of 46 DLBCL samples from the lymphoma
data set. Alizadeh et al separated these samples into two classes Germinal centre B-like
DLBCL, and Activated B-like DLBCL.

In each of these data sets we run the peeling procedure using the maximum surprise score of Sec-
tion 4 with the TNoM score. Table 1 summarizes the scores of the top discovered classifications
using the various scoring mechanisms we discussed above and also summarize their difference to
the published classification of the data sets. Note that LOOCV evaluation in this table is not an in-
dependent statistical validation of the discovered partitions, since information about the expression
profile of any sample is effecting the classifier learned from any m � � set. High LOOCV suc-
cess rate is, however, a statistical property that is typically associated with biologically meaningful
partitions.

On the leukemia data set we run our search procedure with the additional constraint that it
should only examine labeling without control tissues. Peeling found six labelings, the first four of
which are shown in Table 1. All six labelings score better than the original labeling by the max-
surprise score, and by the number of “significant” genes. The first three labelings also have better
LOOCV accuracy than the original score. Thus, we believe that each of these captures a significant
distinction. Note that the first three labelings are quite different from the original one (the Jaccard
coefficient is low). Of the next three labelings, two (4 and 6) are very similar to the original labeling,
yet receive slightly lower LOOCV scores.

In the Lymphoma data set, peeling also found 6 labelings. The top 2 labelings score better
than the original labelings both in terms of max-surprise score and LOOCV accuracy. The first
labeling contains a large group which contains mostly DLBCL samples (34 out of 37), and another
group consisting mostly of samples of other types of lymphoma (Fl and CLL) . We note though that
additional 12 DLBCL are set as controls. Thus, we suspect that this classification is based on genes
whose expression separates DLBCL samples from the types we mentioned above.

When we focused on the DLBCL samples (constraining all others samples to be controls),
peeling found 4 labelings. These labelings are all quite different than the one reported by Alizadeh et
al (Alizadeh et al. 2000). All three score higher in terms of max-surprise and are supported by larger
number of genes. The classification of Alizadeh et al, however, has higher LOOCV accuracy.
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We consider two ways for evaluating the discovered DLBCL partitions. We now briefly describe
both.

The Lymphoma data sets contains 51 samples other than DLBCL. These samples describe gene
expression profiles in related cell types. Alizadeh et al. use these samples to annotate clusters of
genes (e.g., “the genes that are up-regulated in activated B-cells”). Then, they classify DLBCL
samples according to their behavior in these gene clusters. The group labeled “Germinal centre like
DLBLC” exhibit up-regulation of genes that are also up-regulated in germinal centre samples.

We propose a more direct approach to assigning sample classes. After selecting the genes that
are significant for the partition (i.e., these with p-value better than the max-surprise p-value), we
train the naive Bayesian classifier on the proposed partition. We then apply this classifier to classify
the control samples. For example, in Figure 3 we plot the expression levels of these genes, and
sort the control samples by their classification score (logP ��jx�

P ��jx� ) to one of the classes discovered by
Alizadeh et al. As we can see, the germinal centre samples are most similar to the “germinal centre
like” DLBCL samples, and the blood B-cell samples are most similar to the “activated B-cell like”
DLBCL samples.

Performing the same procedure on our sample clusters also leads to proposed annotation of the
non-DLBCL samples. For example, for the 3rd partition found, we get the plot shown in Figure 3.
In this case, some of the B-cell samples receive classification scores that point to “class 1”. On the
other hand, samples of T-cells receive scores that are more extreme than these found in “Class 2”.
This suggests that this 3rd partition corresponds to T-cell vs. B-cell distinction.

Another way of evaluating these partition is by examining the clinical data about the patients.
For some of the DLBCL samples, Alizadeh et al report survival data (Alizadeh et al. 2000). They
show that the classification they discover in the data is a good predictor of patient survival chances.
They also show, that this distinction is informative even if they focus only on low clinical risk
patients. (Clinical risk is evaluated using international prognostic index, a standard medical index,
evaluated at the time the sample was taken.) In Figure 4 we plot survival rates for patients for the
four putative DLBCL classifications described in Table 1. As we can see, some of the classifications,
such as the forth one, are not predictive about patient survival. On the other hand, the second
and third classifications are predictive about the survival chances of patients with good prognostic
evaluation, and the third classification is also predictive for the whole patient population. Although
these survival curves are not as distinct as the ones for the classification of Alizadeh et al., this
shows that the classifications we discover might be relevant to the development of the disease.

In conclusion, in two of these data sets we manage to recover close approximations to known bi-
ologically meaningful classifications. In addition, in all three data sets we uncovered classifications
that are as strongly pronounced in the data (large number of genes at significant p-value). These
classifications might be biologically meaningful or artifacts of the sample preparation, or hybridiza-
tion procedures. In either case, it is important that the analysis of the results take into account such
strong signals in the expression data.

9 Conclusions

In this paper we put forth the problem of class discovery and distinguish it as a special subclass
of the broad category of clustering problems. We describe how to efficiently compute statistical
significance to how well individual genes separate tissue classes (for both the TNoM and the INFO
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methods). Based on these efficient methods, we propose several criteria for evaluating the statistical
significance of putative sample classifications. The central idea is to quantify the overabundance
of genes that are informative with respect to any such putative classification. We then combine
these methods with search heuristics and develop an efficient search procedure for finding multiple
significant classifications in data sets.

The main criterion we use in searching for new classifications is the max-surprise score. This
score is appealing both because of its clear definition and because it can be efficiently evaluated.
Our evaluation on synthetic data shows that searching using the max-surprise score can recover a
“true” classification under a wide range of operating parameters including the number of relevant
and irrelevant genes, the amount of variance in the expression level, and the difference between the
expression of genes in two classes.

When we applied this procedure to real-life cancer related gene expression data sets, we found
multiple highly pronounced classifications that were supported by independent evaluation methods.

The work reported here opens several intriguing research questions. First, the max-surprise
score exploits a strong independence assumption. This assumption can potentially overstate the sur-
prise of the scores we observe in the data. Thus, although our procedures performed well in practice,
we still might be able to improve upon them by relaxing this independence assumption. We would
like to estimate the distribution of Q
l� under the null hypothesis without assuming independence.
A first cut approach is based on stochastic simulation. Unfortunately, simple stochastic simulation
is useful only for estimating the distribution of scores with relatively large p-value. For scores with
small p-values, we will need massive repetitions of the simulation to get a single case where such a
score is attained. We are currently working on developing more sophisticated methods for estimat-
ing the distribution of Q
l� under the null-hypothesis, without assuming gene independence. These
estimates will be used to obtain better quantification of the surprise associated with any putative
partition.

Another issue is the search procedure. In this work we mainly focused on the criteria for eval-
uating putative classifications, and used simulated annealing, a fairly generic search method, with
parameters that ensure a wide search. In addition we used peeling for finding multiple classifica-
tions. In the future, we plan to study the theoretical properties of this optimization problem, aiming
at developing principled methods for this task.
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Figure 3: Expression patterns of genes relevant to a partition. Top: Paritition of Alizadeh et al,
Bottom: 3rd discovered partition. For each partition, we plot the expression level of the genes that
have relevance p-value (TNoM ) smaller or equal to the max-surprise of the partition (350 genes for
the original and about 800 for the 3rd discovered partition). Rows correspond to genes, columns
correspond to samples. Samples are sorted by the classification score induced by the partition (see
text).
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Figure 4: Kaplan-Meier survival plots for the 4 DLBCL classifications described in Table 1. The
x-axis is the number of years after the samples were taken, and the y-axis is the fraction of patients
survived so far. Each plot shows the survival rate for the two classes defined by a putative classifica-
tion. The plots on the left column show the survival rate of all 40 patients for whom survival data is
available. The plots on the right column, show the survival rate of the 24 patients with low clinical
risk (see (Alizadeh et al. 2000) for details).
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