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Consider a graph G with the property that any set of p vertices in G contains a
g-clique. Fairly tight lower bounds are proved on the clique number of G as a
function of p, ¢ and the number of vertices in G. € 1994 Academic Press, Inc.

1. THE PROBLEM

Let G be a graph and p > ¢ > 2 integers. We say that G has the (p, q)-
property if for every set P of p vertices in G, the graph induced by P
contains a clique of cardinality ¢. If every graph of order =n > p with the
(p, q)-property necessarily also has the (u, s)-property, we say that (p, q)
implies (n, s) and write (p, ¢) — (n,s). Thus — defines a partial order
relation on ordered pairs of integers. This relation is the subject of the
present paper, and our main objective is to determine, or estimate, for
given p, ¢, and n the least possible clique number of a graph of order n
with the (p, q) property.

This specific question is an instance of the meta-problem: How does the
local structure of a graph affect its global properties? A number of existing
results in graph theory fall in the same category. Consider, for example, the
classical question (Erdés [4]) asking how large the chromatic number
z(G) of an mn-vertex graph G may be, given its girth girth(G). In our
framework this question reads: provided that the 1girth(G )-neighbourhood
of every vertex in G is a tree, how large can (the global parameter) 3(G)
be? In this specific question “local” is taken in the metric sense; ie.,
assumptions are made on the nature of sets of small diameter in G. In the
present article “local” is taken in the sense of cardinality. Assumptions are
made on the structure of subgraphs induced by small sets of vertices (they
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must contain a sizable clique) and questions are posed concerning the
whole graph (its clique number w(G)).

Many questions in this general class of problems come up in the theory
of distributed processing (Linial [8]; Linial and Saks [9]), and many are
still expected to come up from both computational and purely com-
binatorial considerations. As it turns out, the study of the — relation has
to do with Ramsey type problems, with Turan’s theorem, as well as with
some aspects of matching theory. The earliest mention of a problem of this
type that we are aware of, is in Erdds and Rogers [7], who, in the present
terminology, studied the behavior of the smallest x such that (p, q)—
(x, g+ 1). A recent paper of Bollobas and Hind [3] further develops this
line of study. In the present terminology, that paper concentrates on
estimating the least n for which (p, g) — (n, s), where p is large and ¢, s are
small. Their main results are: for s> ¢ >3 there is a constant ¢ < 1, with

q+1

(p, q)—(cp’ ,5)

while for ¢ =3 and p big enough,

(P, )~ (p' 9w D0 g4 1),

For purposes of comparison, the reader should note that unlike [3] the
main focus of the present paper is on small p, ¢ and a large »n. Local and
global conditions on coloring numbers are studied in Erdés [5] as well.

In combinatorial geometry, the notion of (p, g)-properties first
(implicitly) occurs in Helly’s fundamental work in convexity and is
explicitly defined and studied by Hadwiger and Debruner. Further develop-
ments were obtained by numerous investigators in combinatorial and
computational geometry. For an overview and some recent advances, see
[6,12, 1, 10].

In what follows it will be convenient to have a notation for exact
implication: (p,q)=>(n,s) if (p,q)—(n,s) but (p,q)»(n—1,s). Our
considerations bring about also the notion of weak implication: Property
(p, q) is said to k-weakly imply (n, s), denoted (p, g}~ (n, s), if from
every G satisfying condition (p, q) it is possible to delete k vertices, so the
remaining graph satisfies (#, s).

For a graph G, and for ¢ not exceeding w(G), the clique number of G,
let w,(G) be the least p such that condition (p, ¢) holds in G. For instance,
wy(G)=a(G)+ 1, ie, one more than the largest cardinality of an inde-
pendent set in G. The characterization of sequences w, which arise in this
way, includes our problem as a special case, and seems interesting.
However, in this paper we confine ourselves to the aforementioned more
restricted problem.
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Fic. 1. A graph with the (5, 3) property lacking a four-clique.

2. AN ExaMPLE: (5, 3)= (8, 4)

Since a complete determination of the arrow relation determines the
values of all Ramsey numbers, this problem is certainly very hard. As an
illustration we show one small case which we managed to resolve
completely, viz,, (5, 3)= (8, 4).

The counterexample for (5, 3) —» (7,4) is given in Fig. 1. It remains to
show that a graph G of order 8 with the (5, 3) property must contain a
four-clique.

Let G have order 8 and satisfy the (5, 3) property. If G may be covered
by two cliques it obviously contains a four-clique. Otherwise, the com-
plementary graph G is not bipartite and must contain an odd circuit. Let
g be the length of the shortest odd circuit in G. If g = 3, the remaining five
vertices must form a clique, for any two nonadjacent vertices can be added
to the anti-triangle for a five-set with no three-clique, contradicting the
(5, 3) condition. Also, g =5 is out of the question, because a pentagon fails
to have property (5, 3). The last case, g =7, requires a simple case analysis,
according to the set of neighbours of the remaining vertex. It is not hard
to find a four-clique in this case as well.

3. STATEMENT OF THE THEOREM

The theorem has three parts, which provide the best bounds known to
us for the ranges, where (p — 1)/(q — 1) is, respectively, less than, equal and
bigger than two. The negative result in the third part yields nothing when
39 —4 > p. However, in this case the negative result in the second part can
be employed. The reader should note that, obviously, x which is defined by
(p, 9) = (n, x) increases with ¢ and » and decreases with p. Also, it is easy
to verify that for all p=2g=k+2, (p,q)=(p—k, g—k). In what follows
we concentrate mainly on »n 2 p.
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THEOREM 3.1.  The following implications hold:

e For p<2¢—2andallnzp—q—2
(p,g)=(n.n—p+gq)
e For p=2q—1 (q>3 in the positive implication) and all n> p
(P q)— (myn' 297 D20)  but (p,q) 4 (0! 7D,

e Forall s=2,

(h )= Rk )+ p= 1) (e s r=| L],
where R(r,s) is the off-diagonal Ramsey number and ¢ is an absolute
constant. On the other hand,

(P, q) p (577 Ve v etl) gy,

where T is Turan’s number, T=(p—b)(p+b—q+1)/2(q—1), with b=p
(mod(q — 1}). For large r the bounds become

(p.g)—(es" ), (pog)p (s s).

All 0(1) terms are taken for fixed p, q and large s.

Note that T appearing in the theorem is the largest number of edges in
a p-vertex graph with no independent set of ¢ vertices, as shown by Turan’s
theorem. The proof of the three parts of the theorem is the subject of the
following sections.

4. THE CASE 2q—22=p

Let G be a graph of order n with the (p, ¢) property, where 2¢—2 = p.
We wish to estimate the size of a maximum clique in G.

A simple argument shows that G has a clique of size n—2(p—gq).
Indeed, the (p, ¢) property implies that no matching in G has more than
(p— q) edges. For any maximal matching in G, the vertices outside it form
the desired clique. A stronger and, in fact, best possible result is given by
the following theorem.

THEOREM 4.1. A graph of order n has property (p,q) for 2g—22p if
and only if it has a clique of size (n— p+ q).
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The sufficiently part is obvious. For the necessity part we need two
preparatory lemmas.

Let 4, B be disjoint sets of vertices in a graph H. We say that A4 is
matchable to B if H contains a matching M of size | 4|, every edge of which
has one endpoint in 4 and the other in B. 4 is anti-matchable to B if A4 is
matchable to B in A.

LemMMma 4.1. A cliqgue Q of a graph G is of maximal cardinality if and
only if every clique in G — Q is anti-matchable to Q.

Proof. (Sufficiency) Suppose that every clique in G—Q is anti-
matchable to the clique Q. Let @, be any clique in G. We show |0} =10, |.
By assumption, the clique @, — @ is anti-matchable to Q. Since there are
no anti-edges between @, — Q and Q, n Q, the set @, — Q is anti-matchable
to 0 — Q,, whence

1O 1=1Q,nQI+10,—0I<IQinQI+10—-0,|=1QI
as claimed.

{Necessity) Let @ be a maximum size clique in G, @, a clique in G
so |@ =@, ]- Let 4 be any subset of @, — Q and let B be the set of mem-
bers in Q having an anti-neighbour in 4. Now Qu 4 — B is a clique in G,
and so its cardinality cannot exceed |Q|. Therefore |B| = |A|, and by Hall’s
marriage theorem the proof is complete. |

LeMMa 4.2, Let G=(A, B, E) be a bipartite graph, and let B'< B, be
matchable to A and have the largest cardinality under this condition. Then
any subset of A which is matchable to B is matchable to B’ as well.

Proof. Let M be a matching of B’ to A in G and let K< 4 be matchable
to B. We show that K is matchable to B’ as well. Let M, be a matching
of K into B. The symmetric difference M A M is a union of disjoint alter-
nating paths and cycles. The alternating paths come in three types:

1. Those starting and ending in A.
2. Those starting and ending in B.
3. Those with one end in 4 and one in B.

Note that in paths of the first two classes, one terminal edge is from M
and the other from M ,. Paths of the third class must start and end with
edges from M, for a path which starts and ends with an M edge is an
augmenting path for M which is, however, of maximum cardinality.

Let Z be the matching obtained from M, upon exchanging its edges in
paths of type (2) with the corresponding M-edges. We claim that Z
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matches K into B'. Like M, the matching Z matches K and we only have
to show that all B-vertices in Z are, in fact, in B'. A Z-edge whose B-vertex
meets also an M-edge is certainly in B’, so the only edges in Z that need
to examined are those which are either first (or last) in their path and
where the path starts (ends) in B. In particular, edges in Z which are in an
alternating cycle are taken care of. Type (1) paths have no endpoint in B,
so they create no problem. The switching performed on type (2) paths
makes the terminal Z-edge of such paths identical to an M-edge, so
incidence with B’ is guaranteed. Finally, as we pointed out, paths of type
{3} do not have Z-edges at their ends. This concludes the argument. |

We return to the proof of the theorem. Let G be a graph of order >p,
@ a maximum-size clique of G, and suppose by contradiction that
|G| — Q| > p—q. We claim that G fails to have the (p, g) property (recall
that 2¢g— 2> p 2 ¢ is assumed ).

By the assumption, |@|>¢ must hold. Let U be any set of p—g+1
vertices in G — @, and let G, be the subgraph of G induced on Uy Q.

Q is a clique of maximum size in G, as well, so Lemma 4.1 implies that
every clique contained in U is anti-matchable to Q. Consider the bipartite
graph H= (U, Q, F), where F is the set of anti-edges of G with one vertex
in U and one in Q. By Lemma 4.2 there is a subset R of Q of cardinality
at most |U| = p— ¢+ 1 such that each subset of U matchable in H may
also be matched to R. But, since p<2¢—2, |Q|>g—12p—q+1, so
there is Q, < Q, |Q,] =¢—1 with the same property as R.

Let G, be be the subgraph of G spanned by Q,u U, it has order
(p—qg+1)+(g—1)=p. Since every clique of U is anti-matchable to Q,,
an application of the sufficiency part of Lemma 4.1 shows that Q, 1s a
maximum size clique in G,. But |@,|=¢—1 and we found an induced
subgraph of G of p vertices without a g-clique. |

Remark. The statement of this section strengthens a corollary due to
Wegner (see [12]) that for any p, ¢ such that p<2g—2, a graph with
(p, q) property can be covered by p— ¢+ 1 cliques.

5. THE CASE (29— 1, q)

Let G be a graph of size n with the (2g—1, ¢) property. We wish to
estimate the size of a maximum clique in G.

First we note that (2¢—1, g) property either implies the property

9_,(2i—1,1) or weakly implies the property (2k — 2, k) for some kK <gq.
Indeed, assume that G does not have the (2i — 1, i) property for some i <gq.
This means that G has an induced subgraph G’ on 2i—1 vertices, where
the size of a maximum clique is at most i — 1. Let G, =G — G'. Since G has
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property (2g — 1, ), G, must have the (29— 1 —2i+ 1, g—i+ 1)= (29— 2i,
q — i+ 1) property.

In what follows we pursue only the first possibility and derive certain
bounds in that case. Note that the second possibility has already been
studied in the previous section and shown to yield bounds much better
than those obtained for the first case, which we now proceed to study. Thus
no generality is lost in considering only the first alternative.

An equivalent, more convenient statement of the property A¢Y_, (2i—1, i)
is that G contains no odd anti-circuits of length <2g—1. Clearly, the
existence of such an anti-circuit would contradict some (2i — 1, i) property.
On the other hand, the absence of such circuits implies that G is locally
bipartite, so any subset of 2¢ vertices in G can be covered by two cliques,
which implies the A?_, (2i — 1, i) property.

To establish a lower bound, we strengthen the assumption (incurring,
perhaps, a loss in the coefficient of 1/g in the next proposition) and suppose
that G contains no short cycles (even or odd ) at all, i.e., girth(G) =2 — 1. We
need the fact that the there exist graphs with a large girth and no large inde-
pendent sets. It is a classical result, of course (Erdds [4]), that graphs of large
girth and large chromatic number exist. A more careful reading of the proof
(e.g., in Bollobas [2, p. 256]) reveals that the result we need is proved as well.

PROPOSITION 5.1.  For any integers n, g there exists a graph H of order
n, with girth(H)> g, and o(H)<n' "V (w(H) is a size of a maximum
clique in H.)

The existence of G whose complement has the above-mentioned proper-
ties thus implies:

THEOREM S5.1. (2k—1, k) -» (n, n'— V=4,

We turn now to the upper bound employing the following recent
result of Linial and Saks [9]: The vertices of any graph of order » can be
colored with at most log n/log(1 — p) ! colors so that any monochromatic
connected subgraph has diameter <2 logn/log p~'. The parameter p can
vary anywhere between zero and one. Note that the said coloring is not
necessarily a proper coloring.

For p=n"?"%"" the above result implies that ¥(G) can be colored with
n** = log n colors so that each monochromatic connected component has
diameter at most k — 1. Since G has no odd circuits of length <2k — 1, each
monochromatic connected component is in fact bipartite. Indeed, consider,
for contradiction, a shortest odd circuit C contained in a monochromatic
connected component K, and denote its length by 2/+ 1. By assumption
Izk Let x,, x, be vertices on C whose distance along C is /. Since
diam(K) <k —1, there is a path P connecting x, to x, of length at most
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k — 1. Now P, together with one of the two arcs of C connecting x, to x,,
constitutes an odd circuit, shorter than C, a contradiction.

It follows that each of the original (generally improper) color classes
constitutes a two-colorable subgraph. Dedicate two separate colors for
each such class to obtain a proper coloring of G by 2 log n n** =" colors.
The largest color class in this coloring must have cardinality at least
(1/2log n)n' ~¥* =1 and this set is a clique in G. Therefore

THEOREM 5.2. (2k—1, k)= (n,12logn n' ~ 2% -1,

6. GENERAL CASE

In this section we establish general bounds on x defined by (p, g) = (x, s).
Property (p, 2) for a graph means that it contains no independent set of car-
dinality p. Thus (p, 2) implies (g(s), s) if and only if each graph H of order g(s)
has either an independent set of size p or a clique of size s. But this is exactly
the definition of the Ramsey number R(p, s), whence (p, 2) = (R(p, s), 5).
Using a well-known bound for Ramsey numbers, we obtain

s+p—2

p—1 >=0(s,,‘)

s =R(p.s) <
for a fixed p.

We turn to the general case. Note that the (p, q) property (p — 1)-weakly
implies property (r, 2), where r = p/(¢ — 1) 7. Indeed, suppose that G has the
{p, q) property and contains an independent set of size r. Delete this set and
proceed to look for another such set. This cannot go on for g — 1 times: Since
r(g — 1)z p, the union of these independent sets must contain a g-clique which
is, of course, impossible. Therefore, this union is a set of fewer than p vertices,
whose removal eliminates all independent sets of size r from the graph.

Combining the two remarks, we obtain an upper bound,

(P q) "= (r,2),
whence, for some constant C,
(ps q)—" (R(r’ S)+P—‘ 13 S)—’ (Csr¥ l’ S).

We turn now to the lower bound. Our aim is to show that given p and ¢
the (p, g) property does not imply property (s(7 ~1/7=2+eD ¢y In other
words, there exists a graph G satisfying property (p,gq) of order
N=sT-Dtp=2+e) with no s-clique. Here T is the largest number of
edges a graph of order p can have, if it contains no clique of size 4.
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Turan’s theorem shows T=(p—b)(p+b—q+1)/2(9—1), where b=p
(mod(g — 1)). The existence of such G is shown using a variant of the
Lovasz local lemma, much in the spirit of Spencer [11].

Consider a random graph on N vertices with edge probability (1 —¢),
where $>¢>0. For a set P of p vertices, let 4, be the event that the sub-
graph induced by P contains no g-clique. Also, By is the event that S, a set
of s vertices, forms a clique. s 5

An easy check shows that Pr(Bg)=(1 —-s)(z) <e76(2). To estimate
Pr(A4,) we argue as follows: Let & be the set of all labeled graphs on p
vertices containing no g-clique. Then

Pr(dp)= Y (1—¢)PD eV,

Je#F

where é(J) stands for the number of edges of the complement graph J.
Turan’s theorem implies &(J) > 7. According to our choice, & < 1, whence

Pr(dp<e,, (1 -0 e <c, o,

¢, , being the cardinality of &#.

In order to apply the Lovasz local lemma we need to set up a
dependency graph of the events. 4, and A, are independent except if P
and P’ have at least two vertices in common. The same is true for 4, and
B or Bg and Bg. Consider, then, the graph whose vertices correspond to
all A, with P ranging over all p-sets, and all B, where S is an s-set and
where two such vertices are adjacent iff the corresponding sets have at least
two vertices in common. Each A, has 3., (7)(,Y )= {1+ o(1))(5)(,",)
neighbouring A,. Similarly, each B is adjacent to ¥,.,(5)(,",) =
(1 +o(1))(§)(p’fz) of the 4,. (Both o(1) terms are for fixed p and large N.)
Each 4, or B is adjacent to at most (V) By (ie., all of them).

To apply the local lemma (the statement used here is that of [ 11, p. 62];
it is not the strongest version) associate the same y with every 4, and the
same z with every Bj. Suppose there exist positive y, z and 0 <& < 3 such
that

Cpayel <1; ze”n(?)<1;

In )><1:> IR C) I +o(1))y<§>(p]j2>sﬁ

lnz>::<N> ec(;)+(l+0(l))y<s>< N ).sf.
s 2/\p—2



14 LINIAL AND RABINOVICH

Then there is an order N graph where none of the events A, (|P| = p) and
Bs (|S]=s) hold; ie., this graph has property (p,g) but contains no
s-clique. How big can N be for the above inequalities to be feasible? An
elementary (although easy to become lost in) analysis shows that the
optimum is achieved at

Sl +all)

8:S—1+n(l); N=S('I'~1',r’(/772l+0(l|; e=e ; },:1+0(1)

Thus (p, g) » (s'7 W 21+el) oy ag claimed.

OPEN QUESTIONS

Our first comment is that the main problem of this article may be viewed
as a question about set systems, rather than about graphs. Namely, a
g-graph H (a hypergraph all edges of which have cardinality ¢) has
property [ p] if every set of p vertices contains an edge of H. A set of
vertices Y is said to be two-exhausted if every two-element subset of Y is
contained in some edge of H. Our question, then, is for given nz p=2g>2
to find the largest s, such that any ¢g-graph H on n vertices having property
[ p] must have a two-exhausted set of s vertices.

It should be obvious what it means for a set of vertices to be d-exhausted
by H, and one may ask for the largest s such that every n-vertex ¢g-graph
with property [ p] must d-exhaust some set of s vertices.

Our second comment is that the present theory can be extended to
infinite sets as well. The relevance of the Erdés—Rado arrow relation should
be obvious. We do not elaborate on this topic.
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