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In this paper we study the Hadwiger and Hajés numbers of lifts of graphs.
We provide both upper and lower bounds on these parameters for lifts, and
analyze the typical behavior of random lifts. We restrict ourselves to lifts of
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the complete graph K™. This, however, easily yields some bounds on lifts of
general graphs, as shown in Section 5.

m(n, ) | A <m<n 2(72=)
T(n,¥£) O(n) e ( IOén ' n) @ (\/% . n)
M(n, ) ee-n)
o |
Viogn logn Vn

Table 1: Bounds on Hadwiger numbers as function of ¢

Table 1 above summarizes the main results proven here. Here m(n, /),
M(n,¢) and T(n,f) stand for the smallest, largest and typical Hadwiger
number of an /-lift of K™. It can be seen that the bounds are tight for
most values of £. The case of £ = 2 is fully characterized : m(n,2) = %,
M(n,2) =n, and T" achieves the lower bound (%). All bounds are tight. For
general ¢ we have the following:

e m(n,f) > 545 and m(n,{) ZQ(\AZ@)'

o ”T‘/z < M(n,f) < n\/?
e For random lifts:
— T(n,£) = O(n) for £ < O(logn)
— T(n,0)=6 ( nv/e ) for Q(logn) < £ < nb <

Viogn
— For larger values of £, Q <\710é> < T(n, ) <nVi

We start with a simple and thought provoking example - the icosahedron.
It is a 2-lift of K® without K® minor. Indeed the most interesting question
that remains open, is how small the Hadwiger number can be in any lift
of K™. We return to this in the sequel. Generally speaking, we found it
easier to prove lower bounds on both Hadwiger and Haj6s numbers (both are
questions in NP), and more difficult to establish non-trivial upper bounds on
these parameters.



1.1 Lifts

Definition 1.1. An /¢-/ift of the labelled undirected graph (V, F) is a graph
with vertices V x [¢]. The edge set is the union of a perfect matching between
{u} x [¢] and {v} x [¢] for each edge uv € E. In a random ¢-lift of G, these
matchings are selected uniformly at random. The set {v} x [£] is called the
fiber over v. Let Ly(G) be the set of all £-lifts of G.

Definition 1.2. A section of a lift L € Ly(G) is a set of vertices, exactly
one from every fiber. A levelling is a given partition of L into sections, each
section called a level. A flat edge is an edge between two vertices at the same
level. A star levelling is a levelling where each level contains a spanning star.
If G contains a vertex that is adjacent to all the other vertices, then such
levelling exists, by making the edges of the appropriate star flat.

A comprehensive introduction to random lifts can be found in [1, 2, 3].

1.2 Minors and topological minors

Definition 1.3. We recall that a minor H of G (denoted H < G) is a graph
that is obtained from G by a series of edge contractions and deletions, and
possibly omitting vertices. Thus, each vertex v € V(H) corresponds to a
connected subset of V(G), called the branch set of v. The branch sets are
dependent on the way G was contracted. n(G) = maz {n € N | K™ < G} is
called the Hadwiger number of G.

Definition 1.4. A graph that is obtained by replacing the edges of H with
openly disjoint paths is called a subdivision of H. If X is isomorphic! to a
subgraph of G, and X is a subdivision of a graph H, we say that H is a
topological minor of G. The vertices of G which correspond to the original
vertices of H are called branch vertices.

0(G) = mazx{n € N| K" is a topological minor of G} is called the Hajds
number of G.

Definition 1.5.
M(n,£) = max {n(G) | G € Ly(K")}

m(n,£) = min{n(GQ) | G € L,(K")}

'We occasionally identify between graphs that are isomorphic.

3



7(n, ¢,8) = max {h | Probger,(xn)[n(G) > h] >1—6}

We also say that T'(n,f) = h if 7(n,¢,5) = h for every 6 > 0 and n large
enough. That is, m is the smallest Hadwiger number of /-lifts of K™, M is
the largest, and 7" indicates the typical Hadwiger number.

We recall several relevant results from extremal graph theory. The Had-
wiger number of a graph with average degree d is €2 (\/%gd). The bound is

achieved by random graphs, as Bollobds, Catlin and Erdos first proved in
[4].

Theorem 1.6 (Kostochka 1982 [11]; Thomason 1984 [14]). There
exists a real ¢ > 0 such that for every h € N, every graph of average degree
d > chy/logh has a K" minor. This bound is tight up to the value of c.

Theorem 1.7 (Thomason 1999 [15]). Let c(t) be the minimum number
such that for every graph G with average degree d > c(t), K* < G. Then
c(t) = (e + o(1)) ty/logt, where o = 0.6382...

2 Two-Lifts

In this section we consider the special case of 2-lifts. First we exhibit exam-
ples for 2-lifts of K™ without a K™ minor. Next, we show tight bounds on
the Hadwiger number: % < n(G) < n. And finally we show that a random
lift achieves the lower bound (for n — 00).

2.1 Examples

Let us first see a 2-lift of K% without even a K® minor. This is the graph of
the icosahedron, which is a 2-lift of K% as shown by the labelling in Figure
1. Since the graph of the icosahedron is planar, it has no K® minor.

Other such clean and simple examples are not known. However, a com-
puter program was written in order to seek for more examples. It found
(among others) the 2-lift of K® shown in Figure 2, which has Hadwiger
number 7. For simplicity only the first level with its flat edges is shown.
This is clearly enough to define the graph (for more details see Section 2.3).
We omit the (somewhat tedious) verification that indeed n = 7.



Figure 1: The icosahedron as a 2-lift of K¢ with n =4

A

Figure 2: A 2-lift of K® with n =7

2.2 The largest possible Hadwiger number

The answer and the proof are simple.

Theorem 2.1.
M(n,2)=n

Proof. The trivial lift (two disjoint copies of K™) achieves n(L) = n, so we
only need to show the upper bound on M. Suppose that K™ < L. If there
is a branch set of size 1, then it is adjacent to n — 1 branch sets, since L
is (n — 1)-regular. Hence, m < n as required. But if all branch sets are of
size 2 or more, there are at most n branch sets, since L has only 2n vertices.
Again, m < n.

O



2.3 The smallest possible Hadwiger number

Here the answer is simple, but the proof already requires some work.

Theorem 2.2.
9) > =
m(n,2) > 5
The proof of Theorem 2.2 requires a detailed analysis of 2-lifts of K*.
To do so, we need some basic facts from the theory of switching classes (also
known as two-graphs). For a survey of switching classes, and their many
connections to other parts of mathematics, see Seidel [12], Seidel and Taylor
[13], and Cameron [7].

Definition 2.3. For a graph G' = vV, E) and S C V, the switch of G by S
is the graph G° = (V, E), where zy € E if and only if :

(zy € EAHz,y} N S[=0 (mod 2)) V (zy ¢ EA[{z,y}NS[=1)
The switching class of G is [G] = {G® | S C V'}.

Every L € Ly(K™) can be uniquely encoded by G, the n-vertex graph
consisting of the flat edges (in one of the levels). It is easy to observe that
G and G® encode the same lift of K™ for every n-vertex graph G and every
set S C V(G). Therefore, we freely identify between L and [G].

Remark 2.4. Notice that (G%)T = G597 and that GV(\$ = G5. Therefore
every switching class of (V, E) is of size 2!V 1

We turn to explore all the switching classes of graphs with 4 vertices.
This will come in handy in the analysis of 2-lifts in general.

Lemma 2.5. If |V| > 4 then no switching class contains two distinct graphs
with a single edge.

Proof. For every G and nonempty S & V, every edge in the cut (S,V \ S)
appears in either G or G°. But |V| > 4 and so |S||V \ S| > 3, and therefore

at least one of G and G must have more than one edge.
U

By Remark 2.4 each switching class of any 4-vertex graph contains ex-
actly 8 graphs. There are 64 labelled graphs on 4 vertices, and therefore 8
distinct switching classes. By Lemma 2.5 six of the switching classes are the

classes defined by a single edge. The other two classes are shown in Figure
3.
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Figure 3: Two of the switching classes on 4 vertices

Remark 2.6. Notice that the lift [K*] is disconnected. Also, each of the seven
other lifts contains two connected sets, each containing a fiber.

Lemma 2.7. Let L € Ly(K"™) be such that every four fibers form the lift
[K*]. Then L is [K™].

Proof. By induction on n. This is clear for n = 4. Assume it is true for
n — 1. Let G be a representative of the switching class defined by L. Pick
n — 1 vertices from G. By induction, they can be switched to form K" 1.
Assume that the remaining vertex v is now adjacent to some (but not all) of
the other vertices. Pick v and three other vertices of which it is adjacent to
one or two. These four vertices form one of the following graphs:

pad A

But none of them is in [K*] - a contradiction. Hence, v is either adjacent to
all or none of the vertices. Switch on v, if needed, to get K™.

O

Proof of Theorem 2.2

Let L € Ly(K™). Construct a set F of disjoint quadruples of fibers,
none of which form [K*]. This is done by picking such disjoint quadruples
as long as possible. Let f = |F|. By Lemma 2.7, the subgraph induced on
the remaining vertices is [K"~%/]. As mentioned in Remark 2.6, in every
quadruple of F' we can find two connected sets, each containing a fiber.
Choose each of them to be a branch set, and so we have 2f branch sets so
far. Choose the section K™ */ out of the remaining vertices, and let every
vertex of it also be a branch set. We have selected n—2f connected sets, and
it remains to show they are pairwise adjacent. Naturally the n—4f singleton



branch sets form a clique. Each of the other branch sets contains a fiber and
is therefore adjacent to every vertex. Therefore, n(L) >n —2f > 7.
O

2.4 The typical case

In this section we show that the Hadwiger number of a random 2-lift of K™
is almost always very close to the lower bound in Theorem 2.2.

Theorem 2.8. T'(n,2) < 5% for every ¢ > 0 and n large enough.

In order to show that, we even relax the condition that branch sets span
connected subgraphs. This leads to the notion of pseudoachromatic number
(see [6,9]) :

Definition 2.9. A (typically improper) coloring C' : V > [k] of a graph H
is called pseudocomplete if for every 1 < ¢ < j < k there is an edge zy of
H with C(x) =i and C(y) = j. We think of each color class as a possible
branch set in a complete minor of the graph H. The maximal order of a
pseudocomplete coloring of V is called the pseudoachromatic number.

Proof of Theorem 2.8

The proof is probabilistic. We estimate the probability that any of the
(only n?™) colorings is pseudocomplete in the space of all the 2-lifts of K™
(there are 2(3) such 2-lifts). Let ¢t = 3 and fix a coloring C' : [2n] > [t].
The average size of a color class is 27” < 4, so we consider only those Q(n)
colors that appear 3 times or less. We may assume that no such color class
contain a fiber (or else it is disconnected). For each color class A, eliminate
all (at most three) color classes that meet any fiber that contain a vertex
in A. We still have a collection S of Q(n) color classes, with at most three
vertices each, and they reside in distinct fibers. It follows that :

Proby, /\ There is an edge zy in L with C(z) =4,C(y) =j| =

i#j€S

= H Proby, [ There is an edge zy in L with C(z) =1i,C(y) = j| <
i#j€S

< I (1—(%)9> < 279w

i#j€S



The first equality follows since the events (for distinct pairs i,j € S) are
independent. This follows from the fact that | J,. s C~'(7) meets every fiber at
most once. For the second inequality, note that we select independently with
probability % from the edges of K,; with a,b < 3. And so, the probability
that no edge is chosen is at most 1 — (3)°.

There are t>* < n?" possible colorings, and so the union bound implies
that a random lift L has no K* minor almost always, and so T'(n,2) < t, if
n is large enough.

O

3 (-Lifts

We now shift our attention from 2-lifts to ¢-lifts. Here our results are more
fragmentary. The bounds on the Hadwiger number of random lifts are quite
tight:

e T(n,t) =0(n) for £ < O(logn)

—€

ol

o T(n,t) =0 (;1%) for Q(logn) < £ < n

e For larger values of £, 2 { & L) <T(n,t) < nv//¢
Viog?

We determine M (n, £) up to a multiplicative constant, i.e. M (n,£) = O(n\%).

As for the lower bound, Theorem 1.6 implies m(n,£) > Q (\/1(?@) This is

at most O(y/logn) away from the truth since m(n,£) < n follows from the
trivial lift. We also show n(L) > 55 which is useful for £ < O(y/logn). In
particular for £ = O(1) both m(n, ¢) and M(n,¢) (and certainly T'(n, ¢)) are
O(n).

3.1 The smallest possible Hadwiger number

Theorem 3.1.

For every n,t, m(n,t) > [%n_ 1-‘

Lemma 3.2. Every connected £-lift of K™ contains a connected £-lift of K™
for some m < 20 —1.



Proof. Let L € Ly(K"™) be a connected ¢-lift. Consider a star levelling of L,
and let F' be the fiber defined by the centers of these stars. Let G be the
graph that result by contracting each level to a vertex. G is connected and
so it contains a spanning tree 7', with £ — 1 edges. Let E be edges in L that
correspond to the edges of T' (if there are more than one edge corresponding
to the same edge of 7', pick one arbitrarily). Construct the desired lift from
the fibers intersecting with F (at most 2¢ — 2), and F itself.

O

Remark 3.3. Suppose that L is a disconnected /¢-lift of a connected graph G.
Find a spanning tree of G’ and keep its edges flat, so each level is connected. It
follows easily that each connected component is the disjoint union of several
levels. In other words, each connected component of L is an /-lift of G, for
some £ < £.

Proof of Theorem 3.1

Let L € Ly(K™). If L is disconnected, the previous remark shows that
it contains an (-lift of K™ for some ¢ < ¢, and so we finish by induction
on ¢. If L is connected, then by Lemma 3.2 it contains a connected sub-
graph H € L,(K™) for some m < 2¢ — 1. By induction on n, the graph
L\ H € Ly(K™ ™) has a complete minor on at least [272] vertices. Now H
is connected and since it contains a whole fiber it can be added as a branch

set to yield a complete minor of order > [g;_"ﬂ +1> [%”—_J

O

Remark 3.4. Notice that for £ < 0.319+/logn, this bound is better than the
bound that follows from Theorem 1.7. For constant ¢-s we get n(L) > Q(n).
For large ¢ Theorem 1.7 yields the best bound known to us.

Remark 3.5. To prove upper bounds on m(n,£) we need to find lifts with
no complete minors. In the case of the icosahedron (as a 2-lift of K) this
followed from the planarity of the lifted graph. Could a similar argument
be applied for higher n as well (with embeddability into higher-genus sur-
faces)? This will unfortunately not work when n > 8. Euler’s formula

implies that the genus of a graph G is at least > [w-‘ (and

g> w-‘ for the nonorientable case). It follows that for a fixed

base graph with |E(G)| > 3|V (G)|+ 6, the genus of an ¢-lift grows like Q(¥¢).
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3.2 The largest possible Hadwiger number
Theorem 3.6.

For every n, £, {%J {\/ZJ < M(n,t) < [n\/z-‘

Proof. We prove the lower bound by constructing a lift L with Hadwiger
number |2]| [v/4], as shown in Figure 4. The numbers in the sketch stand
for the relevant steps described below.

¢ %

II1

II

Figure 4: Sketch of an (-lift with n > 2] | V]

1. Partition the fibers of L into quadruples, with up to three remaining
fibers.

11



2. In every level three edges (the “I” edges in the sketch) remain flat to
make the 4-vertex graph connected.

3. Another edge (edge “II” in the sketch) is defined by the permutation
i— i+ 1 (mod ¢), so that it connects every two consecutive levels.

4. Partition the levels of each quadruple into |v/Z] blocks of size |v/2].

5. In each quadruple, connect the i’ level of the j® block to the 5™ level
of the i block, by swapping the fifth edge (edge “III” in the sketch)
between them.

6. Between two quadruples we lift the edges so that every block in one is
adjacent to all the blocks of the other.

The last two steps can be done thanks to the fact the the number of levels
in each block is not smaller than the number of blocks in each quadruple.
Now every block is connected (by steps 2, 3), and we choose it as a branch

set. We have found a K [%] v minor, because every two branch sets are
adjacent (by steps 5, 6).
To prove the opposite inequality, note that L has /¢ (g) < ("2 Z) edges, so

it cannot contain a K™ minor.
O

3.3 The typical case

We saw before that the Hadwiger number of a random 2-lift roughly equals
the lowest possible value (The bounds in Theorems 2.2 and 2.8 are nearly
equal). On the other hand for £ > Q(logn), the Hadwiger number of a
random lift is closer to the largest possible value, as we show next. It is
interesting to compare 7 of a random lift with the trivial lift (for which
n = n). This change in behavior occurs around ¢ ~ logn. For smaller values
of ¢, the Hadwiger number is smaller than n, and for larger values of ¢, it is
bigger.

Theorem 3.7. For every € > 0 and large enough n :

1. £ < O(logn) = T(n,£) = O(n)

2. Qlogn) < £ <n3~¢ = T(n, ) = 0O (;b%)

12



3. 0>ns—¢ = (\7%) <T(n,¢) < nV?

In the proof of this Theorem, we deal with the different ranges for £ in
the Lemmas below. We begin with upper bounds on 7" :

Lemma 3.8. If ¢ < 2logn, then T'(n,f) <n
Lemma 3.9. For every € > 0 and large enough n, if logn < { < ns= then

T(n,t) <O (n\/g).

The upper bound in case 3 of Theorem 3.7 is contained in Theorem 3.6.
Next we turn to the lower bounds :

Lemma 3.10. For every n and £, T(n,£) > Q(n).
Lemma 3.11. If ¢ > 2.5logn, then :

nV/{
Viogn + /log?

Remark 3.12. 1t is of interest to determine the critical value for the equal-
ity T(n,¢) = n. If £ > 289logn then T(n,¢) > n, as implied by Lemma
3.11 (with a more careful analysis of the constants). On the other hand for
¢ < 2logn, T(n,£) < n by Lemma 3.8. We do not know whether T'(n, £)
can be significantly lower than n. Specifically, is there some £ > 0 such that
T(n,£f) < (1 — ¢e)n for infinitely many n, £.

T(n,t) > (

The following Lemmas will be useful in proving the above Lemmas :
Lemma 3.13. Let A/ BC [{], |[A|=a, |B|=0b. Ifa+b </, then :

(£ — a)l(¢—b)!

Probres[m(A)N B =0] = 57— —3

And Furthermore,
Probycg,[r(A)NB=0]<e %
The proof is by simple calculation.

Lemma 3.14.

2
Proby,c k4L is disconnected | < 7

13



Proof. Fix a star levelling of L. By Remark 3.3, L is disconnected if and
only if its levels can be partitioned to two sets, say of k and £ — k levels, with
no edge between them. Every level has three free (non star) edges. So, if we
fix such a partition of the levels, there are (k!(£ — k)!)° lifts that satisfy this
condition. Therefore:

¢/2
1 14
Proby,cr,k+)[L is disconnected | < — (k) (K¢ —k)))? =
k=1

/2

EO 60

Proof of Lemma 3.9
We use an argument similar to the proof of the upper bound for random

2-lifts (Theorem 2.8). Let k = ,/m. Notice that 2 < k < /, since

logn < £ < o(/n). Let t = 2kn. We will show that T'(n, ¢) < ¢, and conclude
the Lemma. Pick a coloring C' : [nf] — [t], and let us consider the probability
that C'is pseudocomplete relative to a random ¢-lift. Clearly C' must be onto.
Also, we distinguish between color classes of more than ﬁ vertices and smaller
color classes. For the former we pessimistically assume the color classes to
be connected and adjacent to all other color classes. For a color class that is
no bigger than % to be connected, it must contain fewer than ﬁ vertices in
each fiber it meets, so we assume this about C.

Now let 1 < a; < --- < a; be the sizes of the color classes. Suppose that
am < % < Gpy1. Clearly,

O

nEzZai2m+(t—m)(£+1):>m2 <1+%>t—kn>/~m
We now select a sub-collection of the m smaller color classes. Pick such a
color class A, and eliminate all (at most %) color classes that reside the same
fiber with a vertex in A. Select one of the remaining small classes and do
the same. Repeat until exhaustion. This process yields a collection S of at
least ’“;—2” color classes, with at most f vertices each, that reside in distinct
fibers. Denote Ay, the set of all the vertices from fiber F; that are colored

with color ¢, and af, = |Af.|. Lemma 3.13 implies that :

Probr[ There is no edge between color classes ¢ and d | >

14
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Z I I (E' (E f;c) ( ga;‘) > I |e t—ag +1 > e 2 l—af . Z e 27[—[/2]0 —
. —a —a .
f9 fe ™ Tgd f9
o
— e 2k%2-k

The second inequality follows by simple calculation as ay,, agq < £. And so,

Proby, /\ There is an edge zy in L with C(z) =14,C(y) = j

1#£jES

= H Proby, [ There is an edge zy in L with C(z) =i,C(y) = j] <
i#j €S
Ein?
< 1 (1) = (- o) 0
i#j €S

There are less than n™ possible colorings and therefore the union bound
implies:

o o edn?
Probr[L has pseudoachromatic number < ¢] < n”l(l —e 2k2—k> (T) <
wi-ctogn-o((42) (2)1) _ wsiogn-o(22)
<e ‘ " =e ® tog? n
And this is arbitrarily small when n is large enough.
]

Proof of Lemma 3.8

The proof is a small variation of the former one. Let ¢ = (HL1 + l%) n.
We show that T'(n, £) < t. As before, pick a coloring C' and observe its color
classes of size ¢ or less. In this case m > (1 + %) t—n> e% and we can find
a collection S of at least 7z color classes, with at most £ vertices each, that

reside in distinct fibers.

Proby, /\ There is an edge zy in L with C(z) =1¢,C(y) = j
i#j€s

<

15



And so,

n?
Probr[L has a pseudoachromatic number < ¢| < n”eefo(ﬂﬁz‘)

And this is arbitrarily small when ¢ < 2logn.
O
Proof of Lemma 3.10
We prove that T'(n,£) > 521;2%. Fix a partition of the fibers into sets of
size four (quadruples). Let X, be the following indicator random variable :

Y = 1 if quadruple ¢ is connected,
471 0 otherwise.

Let X = ) X, be the number of connected quadruples in L. Lemma 3.14
implies that p = E[X] = Y E[X;] > [%] [;;2. Chernoff inequality implies
that :

1 22 2
Prob [X< (Z—e) ¢ Iz n] = Prob[X < (1 —4e)p] < e ®* -0

We have thus found at least 42@2 [(i — 6) nJ disjoint connected quadruples,
for every ¢ > 0. Let each be a branch set. Each of them contains a whole
fiber and they are therefore adjacent to each another.

O
Proof of Lemma 3.11

The proof is based on the following two properties of random lifts :
e Almost every four fibers form a connected subgraph (Lemma 3.14).

e Two big enough portions of two distinct fibers are almost surely adja-
cent (Lemma 3.13).

Since every connected quadruple of fibers contains a spanning tree, we can
find there many large enough subtrees that will serve as branch sets. Each of
the branch sets is limited to four fibers and therefore contains big portions
of some of the fibers. Consequently, the branch sets are very likely to be
adjacent to each other, as needed.

Let L € Ly(K™) with fibers {F;}",. Fix k = /32flogn + /16¢1log/.
Consider a partition of the fibers into quadruples. As we saw in the proof of

Lemma 3.10, we can almost always find (i — 5) Zzefn connected quadruples.

16



Fix a spanning tree in such a quadruple. We show how to find subtrees of
size s where k < s < 3k — 2, thanks to the fact that the maximal degree
is 3. Pick an arbitrary root, and select the largest child subtree. Proceed
this way and stop just before you need to pick a subtree smaller than k& — 1.
The tree you are left with is of size at least k (with the current root), and
at most 3k — 2, since there are at most 3 subtrees. Hence, we may assume
(pessimistically) that we have found % subtrees of size k that way. Let each

subtree be a branch set, and denote them {B;}7,, where m = © (%) =

o (%) Let A; = F; N B;. For every 7, [{i | Ay # 0} < 4, and
so we can denote the four subsets into which Bj; is split, by «;, 3;, 7; and
d;, such that |o;| > |B;| > |vj] > [6;|]. Notice that it is always true that
g <laj| < g Next we show that :

2
Prob [Bj and By are not connected] < e tu

Let i, be the fibers of o, 5ole a = Ajjo = Ag IHa # 7 we can use
Lemma 3.13 to get :

ajllaz| L2

Prob[N(Bj) N B: = 0] < Prob[N(oj) Naz =0l <e ¢ <e te

Suppose i = i. Assume w.l.0.g. that laj| < \a~\ Hence \B;| > k- |a]‘ > b |a l

Vo e[k & B2y > '1“6 and therefore |8;||cs] > k- Surely BJ is 1ncluded

in a fiber other than 7 and so we can use Lemma 3. 13 once again to get :

18|l
Prob[N(B;)NB; =0] <e" T < e ta

Hence, it is very likely that the branch sets form a complete minor.

J

2 2 2
Prob [EI j,;' s.t. N(B;) N B; = (b] < (7;) e~ Tot <0 (%Ee_glﬁzz>

This upper bound is o(1) by our choice of k, and so

Prob |n

V¢
(L)EQ<\/M+\/W>] -1
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4 Topological Minors of Lifts

We show tight bounds on the Hajés number of an /-lift L of K™ :

Q(vn) <o(L)<n (1)

Furthermore, we show that random lifts span this whole range for different
values of £ = £(n). For £ = O(1) there holds o(L) = ©(y/n), and for £ = ©O(n)
we get o(L) = ©(n).

4.1 Bounds

The upper bound is very easy :
Theorem 4.1. For every L € Ly(K™), o(L) < n. This bound is tight.

Proof. Every vertex in L has only n — 1 neighbors, and thus only n — 1
different paths leaving it. The bound is attained by the trivial lift.
O

The lower bound follows immediately from a known Theorem :

Theorem 4.2 (Komlés Szemerédi 1996 [10]; Bollobds Thomason

1996 [5]). Every graph of average degree d, contains a subdivision ofKQ(‘/a).

Corollary 4.3. For every L € Ly(K™), o(L) > 2 (y/n).

The lower bound is tight up to a constant. It is attained for random 2-lifts
(or the union of random 2-lifts, for higher order lifts), as we show below.

4.2 Random lifts
Theorem 4.4. For almost every L € Ly(K™) we have o(L) < O (\/ﬂ)

Proof. Let t = (2 4 €)v/nf and suppose L contains a subdivision of K*. Let
V be the set of its branch vertices, and X be the random variable that counts
the number of missing edges in the induced subgraph L[V]. Every missing
edge must be replaced by a path with at least one additional vertex. Since
there are only nf vertices in L, the number of missing edges cannot exceed
this bound.
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By simple calculation, for every ¢ > 2, E[X]| > (1 - %) (;) Let us cal-

culate the variance - When does a pair of edges have a bigger probability to
be missing together? Only when they are between the same two fibers and
are disjoint. There are at most O (¢?) pairs of fibers, and for each such only
O (¢*) choices of the two pairs of vertices, and so the total number of such
pairs is less then O(¢°n). For such edges e and f we have :

Pr(both e, f are missing) — Pr(e is missing) Pr(f is missing) <

b))
Y 14 (-1 14 2(-1)
And Therefore :
Var(X) = B(X?) — E*(X) =
= Z Pr(e, f are missing) — Pr(e is missing) Pr(f is missing) < O(¢*n)
e,feV?2
And so, Chebyshev bound implies

Var(X)
Pr(X <nf) < Pr(|X —E[X]| > E[X] —nf) < EX] -t

But as we saw, E[X] > (1 - 1) (), so E[X] —nf > Q(nf) and it follows that
Pr(X <nt) <O (%). Therefore :

Pr(K" is a topological minor of L) < Pr(X < nf) — 0

O

We have just seen that for random lifts of constant height, o typically
takes the lower bound in Equation 1. However for higher values of /¢, it
reaches the upper bound.

Theorem 4.5. If n > Q(¢) then o > Q(¢) almost always.

Proof. Let 0 < e <1and k= (1—5)%. Picknzlog(E(f—JrE)) A+L+1. We

construct a K* topological minor, by selecting all the branch vertices from
a single fiber f, and connecting them by paths of length five. To do so, we
choose a star levelling by f and partition the other fibers into two classes:
the class R, regarded “horizontally” as a collection of levels (rows), and C
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which is considered “vertically” as a collection of fibers (columns). Allocate
¢ fibers for C', and log (5(14—+e)> - £ fibers for R (ignore the rest of the fibers, if

there are any left). Enumerate arbitrarily the levels in R as {R'}%_, and the
fibers in C as {C;}f_;. The path between the branch vertices f; and f; will
be (see Figure 5 below):

fi=R —-C;—C;— R — f

R

T T
log (ﬁ) w4 14

Figure 5: The path found between f; and f;

Next we show that these paths exist and are disjoint :

Let R, and C;* be the v-th vertex in R* and Cj, respectively. For every
1 <4 </ do the following : Omit all the vertices in C; with no neighbor
in R'. Every vertex C;° that is not omitted is adjacent to some R, and so
we define ;(c) = r. Notice that ; is injective due to the structure of lifts.
(¢i(c) = r = ¢;i(c') would mean that R', has two neighbors in the fiber C;).
Lemma 4.6 below implies that there are at least 3k edges between the first
k fibers (we assume they are first w.l.0.g.). Hence, for each 1 <14,j < k we
can pick an edge between C; and Cj, say C;° — C’jd, and omit its vertices.
The f; — Ri%(c), Rj%.(d) — f; edges exist because of the star levelling, and
the Ry ) — Ci, C; — BRI, (q) exist by the definition of ¢. We have just
shown the paths exist, and it remains to show that they are disjoint, but this
follows directly from our choice of distinct C;-C; edges, and the fact that ¢
is bijective. Thus we have found a subdivision of K* as promised. O
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Lemma 4.6. After omitting vertices in C; with no neighbor in R', there
remain almost always at least k fibers with at least (1 — %) { vertices each.

Proof. Let X be the random variable that counts the number of vertices
omitted from C;. Markov inequality implies :

Pr(X > —ef) < 7

1
—(1
5 <2( +¢€)

1, 2EX] 2(¢-1 tog ity )
el €

Let Y be the random variable that counts the number of fibers from C for
which X < Llet.

EY] = (1—PT(X> %sﬁ))ﬁ > %(1—5)5:%

Chernoff bound implies (Notice that Y is a sum of independent variables,
since they count the different fibers) :

Pr(Y <k)< eféE[Y](k%)z ceml
l—o0

O

What can be said about o for larger /7 We expect that if £ > Q(n) then
almost surely o = O(n).

5 Lifts of general graphs

So far we have restricted our discussion to lifts of complete graphs. Note,
however, that all the upper bounds we have proved apply for any base graph
G on n vertices. We can offer a little less immediate, but more informative
observation regarding the lower bounds :

Theorem 5.1. Let H < G be graphs and £ > 2 an integer then :
1. For every L € Ly(QG) there is a graph L' € Ly(H) with L' < L.
2. For every L' € Ly(H) there is a graph L € L,(G) with L' < L.

Proof.
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1. In every branch set of H < G pick a spanning tree 7;. It is well known
(see [1]) and easy that we may assume (by an appropriate relabelling
of the vertices) that each level in L contains flat copies of all the T;.
Contract every 7; in every level to a vertex (i.e. take the 7;’s as branch
sets). Next, delete arbitrarily edges (if necessary) so that every vertex
will have exactly one edge for each edge of H. The resulting graph is
an (-lift of H as claimed.

2. Given L' € L,(H), replace every vertex in H by the correspond-
ing branch set, and connect all the edges of the branch set together.
Namely, if uv € E(H) replace u, v with branch sets V,,V, and add
the edges {uv | u € V,, x {i}, v € V,, x {m(¢)}} where 7 is the match-
ing that belongs to uv in L'.

]
The basic definitions for complete base graphs extend to the general case:

Definition 5.2.

Mg(f) = max {n(H) | H € Li(G)}
ma(l) = min{n(H) | H € L,(G)}

76(£,6) = maz {h | Probgecr,)[n(G) > h] >1—14}

(@)
(@)

Corollary 5.3.
Mg(0) > M(n(G),?)

mg(t) = m(n(G), )

Clearly this bounds hold with equality when the graph G is complete,
but for general base graph, the bound on M is not tight. For example take

£>16, G = W the £ spoked wheel. In this case Mg (¢) > ¢ whereas

M(n(Q),£) < 4V/¢, since G is planar and therefore 7(G) = 4.
We may use the same principle of Theorem 5.1 to prove a bound on a
random lift of any fixed graph :

Theorem 5.4. For every e > 0, § > 0 and G with large enough Hadwiger
number, if £ > 2.5log (n(G)) then

e(0,8) > Q ( n(G)Ve )

log(n(G)) + Vlog?
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Proof. Simply repeat the proof the Lemma 3.11, but instead of vertices
and their fibers, refer to branch sets of K% in G, and their fibers. The
probability will only grow since each branch set may be adjacent to a few
branch sets in another fiber (see Theorem 5.1).

O

Notice that here too, there is a gap between 7¢(¢,d) and 7(n(G),¥,0).
E.g., let G be a disjoint union of 2(3) K™s. Then 7(n(G), £, 0) =~ %, while in
a 2-lift of G one copy K™ will probably remain flat, and so 74 (¢, §) > n.

We can repeat the same arguments for topological minors, only that in-
stead of looking on spanning trees, we look at the paths. Therefore :

o o(L) > Q( 0(G)).

e (L) > (1 —¢)f almost always for o(G) > (log (5(14—+5)> + 1) £+ 1.

6 Open Questions

In the last section, we have only scratched the surface on general base graphs.
Essentially all questions in this direction are still open. In fact, the question
that got us started on this project remains untouched. We were hoping to
understand, for a given graph, which minors are “essential” and which are
not. Namely, which minors of a given G persist and are to be found in all
lifts of G and which are not. We think that this is an interesting concept
that is worth studying.

In the more restricted context of lifts of cliques, the most intriguing ques-
tion that remains open is whether there are lifts of K™ with n(L) = o(n). If
the answer is positive then the explicit construction of such graphs would be
a very interesting challenge.

Furthermore, we were not able to determine the typical behavior of ¢ in
¢-lifts of K™ for large £. We suspect that o is almost surely equal to ©(n)
for £ > Q(n), but this remains open.

References

[1] A. Amit and N. Linial, Random graph coverings I: General theory and
graph connectivity, Combinatorica 22 (2002), 1-18.

23



[2] A. Amit, N. Linial, and J. Matousek, Random lifts of graphs: Indepen-
dence and chromatic number, Random Structures and Algorithms 20
(2002), 1-22.

[3] A. Amit, N. Linial, J. Matousek, and E. Rozenman, Random lifts of
graphs, SODA ’01: Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms (2001), 883-894.

[4] B. Bollobés, P.A. Catlin, and P. Erd6s, Hadwiger’s Conjecture is True
for Almost Every Graph, Europ. J. Combinatorics 1 (1980), 195-199.

[5] B. Bollobéds and A. Thomason, Proof of a Conjecture of Mader, Erdés
and Hajnal on Topological Complete Subgraphs, Europ. J. Combinatorics
19 (1998), 883-887.

[6] J. Bosék, Decompositions of Graphs, Kluwer Academic, 1990.

[7] P.J. Cameron, Cohomological Aspects of Two-graphs, Math. Z. 157
(1977), 101-119.

[8] D.G. Corneil and R.A. Mathon (eds.), Geometry and Combinatorics:
Selected Works of J.J. Seidel, Academic Press, Boston, 1991.

[9] R. P. Gupta, Bounds on the Chromatic and Achromatic Numbers of
Complementary Graphs, Recent Progress in Combinatorics (ed. W. T.
Tutte) (1969), 229-235.

[10] J. Komlés and E. Szemerédi, Topological Cliques in Graphs II, Combi-
natorics, Probability and Computing 5 (1996), 79-90.

[11] A. V. Kostochka, The minimum Hadwiger number for graphs with a
given mean degree of vertices, Metody Diskret. Analiz 38 (1982), 37-58,
in Russian.

[12] J.J. Seidel, A Survey of Two-graphs, Colloquio Internazionale sulle
Teorie Combinatorie I (Rome, 1973), 481-511, Rome, 1976. Acc. Naz.
Lincei. Reprinted in [8].

[13] J.J. Seidel and D.E. Taylor, Two-graphs, a second survey, Algebraic
Methods in Graph Theory IT (Proc. Internat. Colloq., Szeged, 1978),
689-711, Amsterdam, 1981. North-Holland. Reprinted in [8].

24



[14] A. Thomason, An Extremal Function for Contractions of Graphs, Math.
Proc. Cambridge Philos. Soc. 95 (1984), 261-265.

[15] , The Extremal Function for Complete Minors, Journal of Com-

binatorial Theory, Series B 81 (2001), 318-338.

25



