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Plan of this talk

• A very brief review of expansion and its connection with the spectrum.

• A very brief review of lifts, random lifts and their spectra.

• Statement of the new results.

• A little about the proof - Word maps and the associated cycle structure
of permutations.
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A very quick review on expansion in graphs

There are three main perspectives of expansion:

• Combinatorial - isoperimetric inequalities

• Linear Algebraic - spectral gap

• Probabilistic - Rapid convergence of the random walk (which we do not
discuss today)

For (much) more on this: Our survey article with Hoory and Wigderson
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The combinatorial definition

A graph G = (V,E) is said to be ε-edge-expanding if for every partition
of the vertex set V into X and Xc = V \X, where X contains at most a
half of the vertices, the number of cross edges

e(X,Xc) ≥ ε|X|.

In words: in every cut in G, the number of cut edges is at least
proportionate to the size of the smaller side.
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The combinatorial definition (contd.)

The edge expansion ratio of a graph G = (V,E), is

h(G) = min
S⊆V, |S|≤|V |/2

|E(S, S)|
|S|

.
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The linear-algebraic perspective

The Adjacency Matrix of an n-vertex graph G, denoted A = A(G), is
an n × n matrix whose (u, v) entry is the number of edges in G between
vertex u and vertex v. Being real and symmetric, the matrix A has n real
eigenvalues which we denote by λ1 ≥ λ2 ≥ · · · ≥ λn.
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Some simple things the spectrum of A(G) tells about G

• If G is d-regular, then λ1 = d. The corresponding eigenvector is
v1 = 1/

√
n

• The graph is connected iff λ1 > λ2. We call λ1 − λ2 the spectral gap.

• The graph is bipartite iff λ1 = −λn

• χ(G) ≥ −λ1
λn

+ 1

• A substantial spectral gap implies logarithmic diameter.
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Spectrum vs. expansion

Theorem 1. Let G be a d-regular graph with spectrum λ1 ≥ · · · ≥ λn.
Then

d− λ2

2
≤ h(G) ≤

√
(d+ λ2)(d− λ2).

The bounds are tight.

• Left inequality is easy and powerful.

• Right inequality is surprising but, unfortunately, it is weak.
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What’s a ”large” spectral gap?

If expansion is “good” and if a large spectral gap yields large expansion,
then it’s natural to ask:

Question 1. How small can λ2 be in a d-regular graph? (i.e., how large
can the spectral gap get)?

Theorem 2 (Alon, Boppana).

λ2 ≥ 2
√
d− 1− o(1)
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What is the meaning of the number 2
√
d− 1 ?

A good approach to extremal problems is to come up with a candidate
for an ideal example, and show that there are no better instances.

What, then, is the ideal expander? A good candidate is the infinite
d-regular tree. It is possible to define a spectrum for infinite graphs (we’ll
see this later). It turns out that the supremum of the spectrum for the
d-regular infinite tree is....

2
√
d− 1
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Some questions

How tight is this bound?

Problem 1. Are there d-regular graphs with second eigenvalue

λ2 ≤ 2
√
d− 1 ?

When such graphs exist, they are called Ramanujan Graphs.

What is the typical behavior?

Problem 2. How likely is a (large) random d-regular graph to be
Ramanujan?
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What is currently known about Ramanujan Graphs?

Margulis; Lubotzky-Phillips-Sarnak; Morgenstern: d-regular Ramanujan
Graphs exist when d− 1 is a prime power. The construction is easy, but
the proof uses a lot of heavy mathematical machinery.

Friedman: If you are willing to settle for λ2 ≤ 2
√
d− 1+ε, they exist.

Moreover, almost every d-regular graph satisfies this condition.
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Some open problems on Ramanujan Graphs

• Can we construct arbitrarily large d-regular Ramanujan Graphs for every
d? Currently no one seems to know. The first unknown case is d = 7.

• Can we find combinatorial/probabilistic methods to construct graphs
with large spectral gap (or even Ramanujan)? Constructions based on
random lifts of graphs (Bilu-L.) yield graphs with

λ2 ≤ O(
√
d log3/2 d).
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The signing conjecture

The following, if true, would prove the existence of arbitrarily large
d-regular Ramanujan graphs for every d ≥ 3.

Conjecture 1. Every d regular graph G has a signing with spectral radius
≤ 2
√
d− 1.

A signing is a symmetric matrix in which some of the entries in the
adjacency matrix of G are changed from +1 to −1. The spectral radius of
a matrix is the largest absolute value of an eigenvalue.

This conjecture, if true, is tight.
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Covers and lifts - the abstract approach

Definition 1. A map ϕ : V (H) → V (G) where G,H are graphs is a
covering map if for every x ∈ V (H), the neighbor set ΓH(x) is mapped
1 : 1 onto ΓG(ϕ(x)).
When such a mapping exists, we say that H is a lift of G.

This is a special case of fundamental concept from topology. From that
perspective a graph is a one-dimensional simplicial complex, so covering
maps can be defined and studied for graphs.
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Figure 1: The 3-dimensional cube is a 2-lift of K4
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Figure 2: The icosahedron graph is a 2-lift of K6
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Making this definition more concrete

We see in the previous examples that the covering map ϕ is 2 : 1.

• The 3-cube is a 2-lift of K4.

• The graph of the icosahedron is a 2-lift of K6.

In general, if G is a connected graph, then every covering map ϕ : V (H)→
V (G) is n : 1 for some integer n (easy).
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Fold numbers etc.

• We call n the fold number of ϕ.

• We say that H is an n-lift of G.

• Sometime we say that H is an n-cover of G.
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A direct, constructive perspective

The set of those graphs that are n-lifts of G is called Ln(G).

• Every H ∈ Ln(G), has vertex set V (H) = V (G)× [n].

• We call the set Fx = {x} × [n] the fiber over x.

• For every edge e = xy ∈ E(G) we have to select some perfect matching
between the fibers Fx and Fy, i.e., a permutation π = πe ∈ Sn and
connect (x, i) with (y, π(i)) for i = 1, . . . , n.

• This set of edges is denoted by Fe, the fiber over e.

• We refer to G as our base graph.
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Figure 1: Lifting an edge
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Random lifts - A new class of random graphs

• When the permutations πe are selected at random, we call the resulting
graph a random n-lift of G.

• They can be used in essentially every way that traditional random graphs
are employed:

– To construct graphs with certain desirable properties. In our case, to
achieve large spectral gaps.

– To model various phenomena.
– To study their typical properties.
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A bit more on lifts

• Vertex degrees are maintained. If x has degree d, the so do all the
vertices in the fiber of x. In particular, a lift of a d-regular graph is
d-regular.

• The cycle Cn is a lift of Cm iff m|n.

• The d-regular tree covers every d-regular graph. This is the universal
cover of a d-regular graph. Every connected base graph has a universal
cover which is an infinite tree.

• An important special case: Every 2r-regular graph is a lift of the
r-bouquet: The graph with a single vertex and r loops.
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A few words on the spectrum of the universal cover

Let T be the universal cover of some finite graph, and let A be the
adjacency matrix of T .

We think of the (infinite) matrix A as a linear operator on l2(V (T )).
As such, A need not have any eigenvalues at all, and a modified definition
is in place:

• The spectrum of T is defined as the set of all real numbers t for which
the operator A− tI is not invertible.

• In the finite-dimensional case this reduces to the usual definition, but
here things are different. Two major differences are that
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• T has a continuous spectrum. In particular, for T = Td, the infinite
d-regular tree, the spectrum is the whole interval [−2

√
d− 1, 2

√
d− 1].

• Moreover, note that d is not in the spectrum of Td since the constant
function 1 is not in l2(V (T )).

The largest absolute value of points in T ’s spectrum is called the spectral
radius of T and is usually denoted by ρ(T ).

Thus in particular ρ(Td) = 2
√
d− 1.
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Irregular Ramanujan Graphs?

• The second eigenvalue of every d-regular graph G is at least

2
√
d− 1− o(1)

.

• The spectral radius of the universal cover of G (i.e. the infinite d-regular
tree) is

2
√
d− 1

.

• We say that a d-regular G is Ramanujan if every eigenvalue λ of G,
except for the highest eigenvalue d satisfies |λ| ≤ 2

√
d− 1.
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Irregular Ramanujan Graphs? (contd.)

This suggests the following definition:

Definition 2. A (not necessarily regular) graph G is said to be
Ramanujan, if every eigenvalue λ of G, except for the highest eigenvalue
(the Perron eigenvalue) satisfies

|λ| ≤ ρ

where ρ is the spectral radius of G’s universal cover.

Work by Lubotzky-Greenberg (’95) shows that for large graphs
(|V (G)| → ∞) this inequality is best possible.
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This further suggests

Problem 3. Do there exist arbitrarily large irregular Ramanujan graphs?

Recall Friedman’s Theorem: For every ε > 0, almost every d-regular
graph satisfies λ2 ≤ 2

√
d− 1 + ε.

If we view a 2r-regular graph as a random lift of the r-bouquets, this
raises the question:

Problem 4. What can be said about the eigenvalues in random lifts of a
given graph G?
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Old vs. New Eigenvalues

Here is an easy observation:

The lifted graph inherits every eigenvalue of the base graph.

Namely, if H is a lift of G, then every eigenvalue of G is also an
eigenvalue of H (Pf: Pullback, i.e., take any eigenfunction f of G, and
assign the value f(x) to every vertex in the fiber of x. It is easily verified
that this is an eigenfunction of H with the same eigenvalue as f in G).

These are called the old eigenvalues of H. If G is given, the old
eigenvalues appear in every lift, and we can only hope to control the values
of the new eigenvalues.
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The exact formulation of the problem

We now understand what we should ask:

Problem 5. What can be said about the new eigenvalues in random lifts
of a given graph G?

(The old eigenvalues, namely the eigenvalues of G will be present in
every lift).
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Friedman strikes again - twice

Theorem 3 (Friedman ’03). Let G be a finite connected graph and let D
be its largest (Perron) eigenvalue. Let T be the universal cover of G and
let ρ be the spectral radius of T . Then for almost every lift H of G it
holds that every new eigenvalues of H satisfies

µ ≤ D1/2ρ1/2 + o(1).

Conjecture 2 (Friedman, ibid.). With the same notations, for almost
every lift H of G it holds that every new eigenvalues of H satisfies

µ ≤ ρ+ o(1).
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So, what’s new?

Theorem 4 (L + Doron Puder, ’08). With the same notations, for almost
every lift H of G it holds that every new eigenvalues of H satisfies

µ ≤ O(D1/3ρ2/3).

We also have several conjectures that suggest an approach to proving
the same statement with O(ρ).
A bit about this - below.
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A little about the proof - The trace method

This is an adaptation of a very old and powerful idea in the study of
spectra which goes back to Wigner in the early 50’s. Here is how it works:

Let H be an n-lift of G and let AG, AH be the adjacency matrices of
G,H resp. New eigenvalues of H are denoted by µ. The trace of A t

H

equals the number of closed paths of length t in H. Therefore:

µ t
max ≤

∑
µ

µt =

∑
µ

µt +
|V (G)|∑
i=1

λ ti

− |V (G)|∑
i=1

λ ti = tr(A t
H )− tr(A t

G )
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The trace method (contd.)

Each closed path in H is a lift of a closed path in G. If G’s edges are
labelled g1, . . . , gk, then every closed path in G corresponds to some formal
word w in g±1

1 , . . . , g±1
k . Closed lifts of this path correspond to fixed points

of w(σ1, . . . , σk) - The permutation that’s obtained when you plug σi for
gi in w, i.e. when you select the permutations that define the random lift.

– We denote by CPt(G) is the set of all closed paths of length t in G
(in particular, |CPt(G)| = tr(A t

G)).

– We denote by X
(n)
w (σ1, . . . , σk) is the random variable that counts the

number of fixed points in the permutation w(σ1, . . . , σk) when the σi are
sampled at random from Sn.
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The trace method (contd.)

µ t
max ≤ tr(A t

H )− tr(A t
G ) =

∑
w∈CPt(G)

[
X(n)
w (σ1, . . . , σk)− 1

]

Taking expectations and using Jensen’s Inequality, we obtain:

E(µmax) = E
[(
µ t
max

)1/t] ≤ [E (µ t
max

)]1/t≤
 ∑
w∈CPt(G)

[
E(X(n)

w )− 1
]1/t
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Word maps

We were led to study fixed points in random permutations of the form
w(σ1, . . . , σk). These questions are related to a subject that goes back 100
years or so to Frobenius and Schur. Let

w = gα1
i1
· · · gαmim

be a formal word in formal letters g±1
1 , . . . , g±1

k . We consider w also
as a map from w : Skn → Sn as follows: Select for each j, uniformly and
independently a permutation σj ∈ Sn and define

w(σ1, . . . , σk) = σα1
i1
· · ·σαmim
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Word maps (contd.)

Question 2. Given a formal word w, a fixed integer L and n→∞
consider the random variable that counts the number of L-cycles in a
random word in the image of w. How is this random variable distributed?

We say that a formal word w is imprimitive if it can be expressed as
w = vr for some integer r ≥ 2.
Every word can be uniquely expressed as w = ud with u primitive. The
above question was answered in
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Word maps (contd.)

Theorem 5 (A. Nica ’94). Let w = ud with u primitive. Let X(n)
w,L be

the random variable that counts the number of L-cycles in a random
permutation of the form w(σ1, . . . , σk), where the permutations σi are
selected uniformly at random from the symmetric group Sn. Then the
limit distribution of X(n)

w,L (as n→∞) depends only on the integer d. In
particular it is the same as when w = xd (here x is a single letter).

39



Open U., March ’08

Counting fixed points

To calculate E(X(n)
w ), the expected number of fixed points in

w(σ1, . . . , σk), we count fixed points in w(σ1, . . . , σk) in all choices of
(σ1, . . . , σk) ∈ S k

n .

Let w = g α1
i1
g α2
i2

. . . g αmim
with αi ∈ {−1, 1}. If s0 ∈ {1, . . . , n} is a

fixed point of w(σ1, . . . , σk) we draw the following closed trail:

s0

σ
α1
i1−→ s1

σ
α2
i2−→ s2

σ
α3
i3−→ . . .

σ
αm−1
im−1−→ sm−1

σ αmim−→ s0
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Counting fixed points - categorizing trails

Let
s0 → . . .→ sm−1 → s0

and
s′0 → . . .→ s′m−1 → s′0

be the trails of the fixed points s0 and s′0 in w(σ1, . . . σk) and
w(σ′1, . . . , σ

′
k) respectively.

We put them in the same category, if they have the same coincidence
pattern, i.e., if ∀i, j ∈ {0, . . . ,m− 1},

si = sj ⇔ s′i = s′j
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A counting formula for fixed points

It is now easy to count the number of realizations for every Γ that is a
consistent quotient of the word w.

NΓ(n) = n(n− 1) . . . (n− vΓ + 1)
k∏
j=1

[
n− ejΓ

]
!
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Counting fixed points (contd.)

Therefore

E(X(n)
w ) =

1
(n!)k

∑
σ1,...,σk∈Sn

X(n)
w (σ1, . . . , σk) =

1
(n!)k

∑
Γ∈Qw

NΓ(n) =

∑
Γ∈Qw

(
1
n

)eΓ−vΓ
∏vΓ−1
l=1 (1− l

n)∏k
j=1

∏e
j
Γ
−1

l=1 (1− l
n)
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The beginning of the end...

• Study the Taylor expansion of
∑

Γ∈Qw

(
1
n

)eΓ−vΓ
QvΓ−1

l=1
(1− l

n)Qk
j=1

Qe
j
Γ
−1

l=1
(1− l

n)

• Concentrate on the leading term:
(

1
n

)eΓ−vΓ (1 + o(1))

• Note that the exponent eΓ − vΓ + 1, that determines the highest order
term is the Euler Characteristic of Γ.

• For Nica’s Theorem - A quotient Γ of a cycle satisfies eΓ − vΓ = 0 iff Γ
is a cycle as well.
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... and beyond ...

The route to a proof of Friedman’s conjecture should probably start with
questions such as:

Conjecture 3. For every formal word w and for every n ≥ 1,

E(X(n)
w ) ≥ 1
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