
Tight Products and Graph
Expansion

Amit Daniely1 and Nathan Linial2

1DEPARTMENT OF MATHEMATICS, THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL
E-mail: amit.daniely@mail.huji.ac.il

2DEPARTMENT OF COMPUTER SCIENCE, THE HEBREW UNIVERSITY
JERUSALEM, ISRAEL

E-mail: nati@cs.huji.ac.il

Received January 20, 2010; Revised November 17, 2010

Published online 18 February 2011 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.20593

Abstract: In this article, we study a new product of graphs called tight
product. A graph H is said to be a tight product of two (undirected multi)
graphsG1 andG2, if V (H)=V (G1)×V (G2) and both projection maps V (H)→
V (G1) and V (H)→V (G2) are covering maps. It is not a priori clear when two
given graphs have a tight product (in fact, it isNP-hard to decide). We inves-
tigate the conditions under which this is possible. This perspective yields
a new characterization of class-1 (2k+1)-regular graphs. We also obtain a
newmodel of random d-regular graphs whose second eigenvalue is almost
surely at most O(d3/4). This construction resembles random graph lifts, but
requires fewer random bits. � 2011 Wiley Periodicals, Inc. J Graph Theory 69: 426–440, 2012

Keywords: expanders; random graphs; lifts of graphs

1. INTRODUCTION AND BACKGROUND

A. Notations and Conventions

All the graphs in this article are undirected, possibly with multiple edges and self-
loops. We denote the group of permutations on a set V by SV . A 2-factor in a
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graph G is a spanning subgraph that is the disjoint union of cycles. A 2-factorization
is a partitioning of E(G) into 2-factors. It is well known [5] that every 2d-regular
graph G has a 2-factorization. In other words, every 2d-regular graph G on vertex
set V can be constructed as follows: There are d permutations �1, . . . ,�d∈SV , such
that E(G)={v�i(v)|v∈V , i=1, . . . ,d}. We denote such a graph by G(�1, . . . ,�d). In
calculating vertex degrees, multiple edges are counted by multiplicity and by conven-
tion, the loop corresponding to �i(v)=v is also counted twice. The neighbor set of
vertex v in a graph G is denoted by NG(v) (or just N(v)). Note that NG(v) is also a
multiset.

By E(G) we denote the set of ordered pairs −−→v1v2 such that v1v2∈E(G).

B. Expanders and Ramanujan Graphs

Let G= (V ,E) be an n-vertex d-regular graph. We denote the eigenvalues of its adjacency
matrix by d=�1≥·· ·≥�n≥−d. We say that G is an (n,d,�) graph if |�i|≤� for every
i=2, . . . ,n. We recall some basic facts about expander graphs and refer the reader
to [9] for a recent survey on expander graphs and the rich theory around them. The
Alon–Boppana [1] bound states that �2≥2

√
d−1−on(1). If �2≤2

√
d−1, we say that

G is a Ramanujan graph. It is known [15–17] that if d−1 is a prime power, then
there exist infinitely many d-regular Ramanujan graphs (with explicit constructions).
For other values of d, it is still unknown whether arbitrarily large d-regular Ramanujan
graphs exist. A major result due to Friedman [7] is that for every d≥3 and every �>0,
almost every d-regular graph satisfies �2≤2

√
d−1+�.

C. Lifts of Graphs

Definition 1.1. We say that a graph H is a lift of a base graph G (or that H covers G)
if there is a map � :V(H)→V(G) (a covering map) such that for every v∈V(H), �
maps NH(v) one to one and onto NG(�(v)). For every v∈V(G), the set �−1(v) is called
the fiber of v. Similarly, for e∈E(G), we say that �−1(e) is the fiber of e. (We remind
the reader that multiple edges and loops are allowed and the definitions here should be
modified accordingly).

We recall some basic facts on lifts of graphs and refer the reader to [11, 12, 2, 14] for
a more thorough account and some recent work on the subject.

Proposition 1.2. Let � :V(H)→V(G) be a covering map between two finite
graphs.

1. For every v∈H, deg(v)=deg(�(v)). In particular, if G is d-regular then so is H.
2. If f :V(G)→R in an eigenfunction of G with eigenvalue �, then f ◦� is an

eigenfunction of H with eigenvalue �. Such an eigenfunction–eigenvalue pair
of H is considered old. The other eigenfunctions and eigenvalues of H are
considered new.

3. If G is disconnected, then so is H.
4. �(G)≥�(H).
5. If G is connected then all the fibers of vertices in G have the same cardinality,

which we call the covering number of the lift.
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Let G be fixed connected graph. Denote by Ln(G) the collection of all lifts of G
with covering number n. It is not hard to see that every member H∈Ln(G) has the
following description. It has vertex set V(H)=V(G)×[n] where the projection on the
first coordinate is the covering map from H to G. To define the edges in H, fix an
arbitrary orientation on the edges of G and associate a permutation �e∈Sn to every
edge e∈E(G). The edge set of H is E(H)={(v, i)(u,�e(i)) : i∈ [n],e= (v,u)∈E(G)}. This
definition lends itself naturally to randomization. In particular, H is a random n-lift if
the �e’s are chosen uniformly at random from Sn. It was shown in [13] that for every
d-regular G, it holds with probability 1−on(1) that all new eigenvalues of a random
H∈Ln(G) are bounded by O(d2/3).

D. Tight Products

If H is a lift of both G1 and G2, we say that H is a common lift of these graphs.
This notion has been studied by Leighton [10] who showed that two finite graphs G1
and G2 have a common finite lift iff they share the same universal cover. Thus, in
particular, every two d-regular graphs have a common finite cover (as observed already
by Angluin and Gardiner [3]).

In this article, we study a special kind of common lift.

Definition 1.3. A graph H is called a tight product of graphs G1 and G2 if
V(H)=V(G1)×V(G2) and both projection maps V(H)→V(G1) and V(H)→V(G2)
are covering maps.

This definition extends in the obvious way to tight products of more than two
graphs.

In Section 2, we study some basic properties of tight products. Specifically, we find
conditions for its existence. It turns out that G1 and G2 can have a tight product only
if they are regular graphs of the same regularity. We also give sufficient conditions for
the existence of a tight product. E.g. for d even, every two d-regular graphs have a
tight product. On the other hand, some complication is to be expected here, because
when d is odd it is NP-hard to determine whether a given pair of d-regular graphs has
a tight product.

In Section 3, we present some random models for regular graphs based on
tight products. We start with a 2d-regular graph GB=G(�1, . . . ,�d) as defined
above, where �1, . . . ,�d are permutations on V(GB). We choose permutations
�1, . . . ,�d∈Sn uniformly at random and define H=G((�1,�1), . . . , (�d,�d)). Namely,
V(H)=V(GB)×[n] and E(H)={(v,u)(�i(v),�i(u)) : (v,u)∈V(H), i∈ [d]}. Note that H
is a tight product of GB and the random graph GR=G(�1, . . . ,�d). We use the trace
method to show that all the new eigenvalues of H are bounded (in absolute value)
by O(d3/4). An adaptation of the methods of [13] might improve this upper bound
to O(d2/3).

An interesting feature of this model is that compared with the standard model of
random lifts, it offers a reduction in the necessary number of random bits. Whereas
a random lift uses a random permutation for each edge of the base graph, this model
uses only d random permutations. In addition, the generated graph has a concise
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representation. We discuss those aspects in the last subsection of Section 3 and suggest
some questions for future research.

2. EXISTENCE AND BASIC PROPERTIES

A. Basic Properties

In this section, H is always a tight product of G1 and G2. Here are some fairly obvious
consequences of Proposition 1.2 and the definition of tight product:

Proposition 2.1.

1. Every eigenvalue of G1 or G2 is also an eigenvalue of H.
2. If G1 or G2 is bipartite then so is H.
3. If G1 or G2 is disconnected then so is H.
4. If both G1 and G2 are bipartite then H is disconnected.
5. If G1 and G2 have a tight product H, then G1 and G2 are d-regular with the

same d.

The only fact that needs some elaboration is 4. To see it, let B1∪W1 and B2∪W2
be bipartitions of V(G1),V(G2) respectively. There is no edge between (B1×W2)∪
(B2×W1) and (B1×B2)∪(W1×W2).

We now turn to prove that every pair of 2d-regular graphs has a tight product. This
is a simple but useful observation.

Proposition 2.2.

1. Every two 2d-regular graphs have a tight product.
2. If both G1 and G2 are (2d+1)-regular and have a perfect matching, then G1,G2

have a tight product.

Proof. Since G1, G2 are 2d-regular graphs, they can be expressed as

G1=G(�1, . . . ,�d), G2=G(�1, . . . ,�d)

for some permutations �i∈SV(G1),�i∈SV(G1). We note that the graph

H=G((�1,�1), . . . , (�d,�d))

is a tight product of G1, G2. Indeed the neighbor set of the vertex (v,u)∈V(H)
is NH((v,u))={(�±1

i (v),�±1
i (u)) : i∈ [d]}. It follows that the projection maps V(H)→

V(G1), H→V(G2) map NH((v,u)) one to one and onto NG1 (v) and NG2 (u), respectively.
The first claim follows.

The second claim can be proved in a similar manner, since a (2d+1)-regular graph
that contains a perfect matching is the union of (d+1) permutations, one of which is
an involution with no fixed points (and corresponds to the perfect matching). The proof
follows along the same lines, but the edges that correspond to the perfect matching are
counted only once and not twice. �
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The above construction suggests a method for generating random tight products. Start
with a fixed 2d-regular graph G1 and pick a random 2d-regular graph G2. Now let H
be a tight product of G1, G2. To simplify matters, we can choose a fixed 2-factorization
of G1 and compose G2 from d random permutations. Alternatively, both G1 and G2
can be selected at random. In Section 3, we investigate the expansion properties of
such graphs.

The rest of this section concerns the problem of finding a tight product for a given
pair of graphs.

B. Class Classifier and the Computational Hardness of Finding

a Tight Product

Proposition 2.2 may suggest that every two d-regular graphs have a tight product. This
is, however, not true as we observe below.

Recall Vizing’s Theorem: If �(G) is the largest vertex degree in G, then G’s edge-
chromatic number, �E(G), is either �(G) or �(G)+1. Accordingly, G is said to be of
class 1 or class 2. It is known [8] that it is NP-Hard to determine the edge-chromatic
number, even if we restrict ourselves to cubic graphs. We prove that:

Theorem 2.3. For every positive integer k, there is a (2k+1)-regular graph, G2k+1,
with the property that every 2k+1-regular graph G is of class-1 if and only if it has a
tight product with G2k+1.

Consequently:

Theorem 2.4. The following decision problem TIGHTPRODUCT is NP-complete.
Input: Two finite graphs G1,G2.
Output: Do G1,G2 have a tight product?

Before we turn to prove Theorem 2.3, we discuss two notions—neighborly permutations
and semi-coloring.

Neighborly permutations: Suppose that H is a tight product of G1 and G2. As in
every lift, every edge −−→v1v2∈E(G1) defines a bijection �−−→v1v2

from the fiber of v1 to
the fiber of v2 and we denote PG1 (H)={�−−→v1v2

:−−→v1v2∈E(G1)}. Since the lift H is a
tight product, �−−→v1v2

is a permutation of V(G2) that maps every vertex to one of its
neighbors. A permutation � on the vertex set of a graph G with this property is called
neighborly permutation. Note that neighborly permutations correspond to oriented
spanning subgraphs of G that are the union of vertex-disjoint cycles (where we permit
a single edge to be considered as a cycle as well).

Neighborly permutations are useful in characterizing tight products:

Proposition 2.5. Let G1 and G2 be d-regular graphs. Suppose that H is a tight
product of G1 and G2 with PG1 (H)={�−−→v1v2

:−−→v1v2∈E(G1)}. Then:

1. For every −−→v1v2∈E(G1), �−1−−→v1v2
=�−−→v2v1

.

2. For v1∈V(G1),u1∈V(G2), the mapping v→�−→v1v(u1) from NG1 (v1) to NG2 (u1) is
one to one and onto.
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Conversely, consider a collection P={�−−→v1v2
:−−→v1v2∈E(G1)} of neighborly permutations

of G2 that satisfies the above conditions. There is a unique tight product H of G1 and
G2 with PG1 (H)=P.

Proof. Suppose that H is a tight product of G1,G2. As in every lift, each �−−→v1v2
∈

PG1 (H) satisfies �−1−−→v1v2
=�−−→v2v1

. For condition 2, suppose that �−−→v1v2
(u)=�−−→v1v3

(u)=w

for v2,v3∈NG1 (v1). Then, (v1,u)(v2,w), (v1,u)(v3,w)∈E(H). As a covering map, the
projection V(H)→V(G2) maps NH(v1,u) one to one and onto NG2 (u); so we have
v2=v3. We showed that the mapping is one to one and since |NG1 (v1)|=|NG2 (u)|=d,
it is also onto.

Suppose now that P satisfies the above conditions. We define a tight product H of
G1 and G2 by setting V(H)=V(G1)×V(G2) and E(H)={(v1,u)(v2,�−−→v1v2

(u)) :−−→v1v2∈
E(G1),u∈V(G2)}. It is clear that the projection V(H)→V(G1) is a covering map and
that PG1 (H)=P. By condition 2, for every (v,u)∈E(H), the projection �2 :V(H)→
V(G2) maps NH(v,u) one to one and onto NG2 (u); so �2 is a covering map and H is
indeed a tight product. The uniqueness of H is clear. �

Note 2.6. Every regular graph G has a neighborly permutation. To see that, consider
the standard 2-lift, Ĝ of G (The vertex set is {1,2}×V(G) and (i,v) is adjacent to (j,u)
iff i 	= j and vu∈E(G)). The regular bipartite graph Ĝ contains a perfect matching M̂
where the corresponding edges M⊂E(G) form a collection of cycles (some of which
may be single edges viewed as a cycle of length 2). We orient those cycles arbitrarily
to obtain a neighborly permutation.

Semi-coloring: Let G= (V ,E) be a graph and let �=�(G) be the largest vertex
degree in G. A semi-coloring is a coloring of E with color set [�]∪([�]

2

)
, i.e. each

color is either an element of [�] or an unordered pair of such elements. In the latter
case, we view the edge as being colored “half i and half j”. The coloring must satisfy,
for every v∈V:

1. For every i∈ [�], the total weight of i on the edges incident with v is at
most 1.

2. For every i 	= j∈ [�], there are either 0 or 2 edges colored {i, j} incident with v.

Note that, for d-regular graphs, the total weight of i∈ [d] on the edges incident with
some vertex v is exactly 1. Also note that if G is semi-colored, then the collection of
edges colored by a specific pair is a union of vertex-disjoint cycles.

This seemingly strange concept is related to tight products via the following
proposition:

Proposition 2.7. Let G1, G2 be (2k+1)-regular graphs such that G1 is semi-colored
and G2 is of class-1. Then G1 and G2 have a tight product.

Proof. To prove the existence of a tight product of G1 and G2, we construct a
collection P={�−−→v1v2

:−−→v1v2∈E(G1)} of neighborly permutations of G2 that satisfies the
conditions of Proposition 2.5.

Since G2 is of class-1, there is 1-factorization E(G2)=⋃2k+1
i=1 Fi. We define neigh-

borly permutations on G2 as follows: For 0≤ i, j≤2k+1, Fi∪Fj is a union of
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vertex-disjoint cycles. Fix some orientation on those cycles and define �ij=�ji to be
the corresponding permutation. Note that �ii is an involution.

We now define:

1. If v1v2∈E(G1) is colored by 1≤ i≤2k+1, we define �−−→v1v2
=�−−→v2v1

=�ii.
2. The set of edges in G1 colored by the pair {i, j} is the union of vertex-disjoint

cycles and we arbitrarily orient those cycles. If v1v2∈E(G1) is colored by {i, j}
and the orientation is v1→v2, we define �−−→v1v2

=�i,j, �−−→v2v1
=�−1

i,j .

It is clear that P satisfies the first condition in Proposition 2.5. To see that condition
2 holds, we note that if v1v2,v1v3∈E(G1) with v2 	=v3 then �−−→v1v2

(u1) 	=�−−→v1v3
(u1) for

every u1∈V(G2). For example, if v1v2 is colored by i∈ [d], and v1v3 is colored by j 	= i,
then �−−→v1v2

(u1) is the vertex that is matched to u1 by the matching Fi and �−−→v1v3
(u1) is

the vertex that is matched to u1 by the matching Fj. Since Fi and Fj are disjoint, those
vertices are different. Consequently, the mapping v→�−→v1v(u1) is one to one, and since
both graphs are d-regular, it is also onto and condition 2 holds. �

Proof (of Theorem 2.3). We postpone the construction of G2k+1 to the end of the
proof, and mention two properties it has on which we rely:

1. There is a vertex, v0∈V(G2k+1), that does not belong to any proper cycle, i.e. all
edges incident with v0 are bridges.

2. G2k+1 has a semi-coloring.

By Proposition 2.7, every (2k+1)-regular graph of class-1 has a tight product with
G2k+1. Conversely, let G be a (2k+1)-regular graph, and suppose that H is a tight
product of G and G2k+1. We must show that G is of class-1.

Denote PG(H)={�−−→v1v2
:−−→v1v2∈E(G)}. First, we claim that �−−→v1v2

(v0)=�−−→v2v1
(v0) for

every −−→v1v2∈E(G). To this end, express the permutation �−−→v1v2
= (u11,u12, . . . ,u1�1 ) . . .

(ur1,ur2, . . . ,ur�r ) as a product of disjoint cycles. By the defining property of neigh-
borly permutation, for all indices t, (ut1,ut2, . . . ,ut�t ) is a (graph theoretic) simple
cycle in G2k+1. But the only simple cycles in G2k+1 that contain the vertex v0

are of length 2 (i.e. a single edge); hence, �−−→v1v2
(v0)=�−1−−→v1v2

(v0)=�−−→v2v1
(v0) as

required.
By the last discussion, we can define a (2k+1)-edge coloring c of E(G) as follows:

c(v1v2)=�−−→v1v2
(v0). To see that this yields a proper edge coloring of G, consider

two incident edges uv1,uv2∈E(G),v1 	=v2. By Proposition 2.5, c(uv1)=�−→uv1
(v0) 	=

�−→uv2
(v0)=c(uv2).

The construction of G2k+1. We take k copies of K2k+2 and remove one edge from
each copy. We add new vertex called the secondary pivot and connect it to every
vertex that belonged to one of the removed edges. The graph we obtained is called
cluster. To construct G2k+1, we start with 2k+1 clusters and add a new vertex called
the main pivot and connect it to each of the secondary pivots. We enumerate the pivots
by {0, . . . ,2k+1} where 0 is the main pivot and 1, . . . ,2k+1 are the secondary pivots.
A picture is worth more than thousand words (Fig. 1).

It is clear that no cycle goes through the vertex 0; so it only remains to find a
semi-coloring of G2k+1.
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FIGURE 1. G5.

For 1≤ i≤2k+1, consider the subgraph Hi of G2k+1 that is the cluster whose
secondary pivot is i together with the edge i0. We can choose a perfect matching
Mi⊂E(Hi) such that i0∈Mi. The graph that is obtained from Hi upon removal of the
edges in Mi and the vertex 0 is 2k-regular. Therefore, it has 2-factorization F1

i , . . . ,Fk
i .

We decompose [2k+1]\{i} into k pairs c1, . . . ,ck. For each v1v2∈E(Hi), if v1v2∈Mi

we color v1v2 by i, and if v1v2∈Fj
i we color v1v2 by cj. It is easy to check that this

coloring is semi-coloring. �

C. Existence of Tight Products for Cubic Graphs and Vizing’s

Theorem

This section is devoted to the following claim:

Theorem 2.8. Every graph G, with �(G)=3, has a semi-coloring. Consequently, a
class-1 cubic graph has a tight product with every cubic graph.

As an aside, we obtain a new proof to Vizing’s theorem for the case of cubic graphs.

Proof. It is convenient to introduce some terminology for the available colors—
we denote Blue= 1, Red= 2, Green= 3, Bright Blue={2,3}, Bright Red={1,3}, and
Bright Green={1,2}.

Let us assume first that G is bridgeless; in particular, all vertices have degree 2 or 3.
If G is cubic, then by Petersen’s theorem, it has a perfect matching M⊂E(G).

We color all the edges in M blue and the rest of the edges bright blue. This is a
semi-coloring.

Journal of Graph Theory DOI 10.1002/jgt
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Suppose now that {v1, . . . ,vk} is the set of degree 2 vertices in G and k≥1. We
can construct a 3-regular graph Ĝ, with at most one bridge, that contains a copy
of G as an induced subgraph of Ĝ (E.g. take two copies of G and connect each
corresponding pair of degree 2 vertices). By Petersen’s theorem, Ĝ has a perfect
matching and like in the previous discussion, Ĝ has a semi-coloring �̂ (note that we
used a version of Petersen’s theorem claiming that every cubic graph with at most
two bridges have a perfect matching). Let � be the restriction of �̂ to G. Clearly, the
conditions for semi-coloring hold for � at every vertex v of degree 3. It might happen,
however, that a degree-2 vertex v has exactly one brightly colored edge, say bright
blue. However, in this case v is the end vertex of a bright blue path P. We recolor P
alternately red and green instead, thus eliminating the problem without creating any
new problematic vertices. Repeating this procedure, if necessary, concludes with a
semi-coloring.

If G contains a bridge e, we remove it and deal separately with the two components
using induction. By renaming the colors, if necessary, at one of the two components,
we can combine them and color e as well to semi-color the whole G.

Although this proof is formulated in the language of simple graphs, it carries
through easily also when G may include parallel edges or loops. The only thing worth
mentioning is that it is easy to observe that Petersen’s Theorem remains valid in
this case. �

Our approach sheds some new light on Vizing’s classical theorem.

Theorem 2.9 (Vizing’s theorem for cubic graphs). Every cubic graph G can be
4-edge-colored.

Proof. We start with a semi-coloring of G. Let C be a cycle colored brightly,
say bright-red. If C has even length, we recolor its edges green/blue alternately. If
C has odd length, we do likewise, except that the last edge is given our fourth
color. �

Finally, we derive a necessary condition for two cubic graphs to have a tight
product.

Proposition 2.10. Let H be a tight product of the graphs G1,G2. If G2 has a bridge
then G1 has a perfect matching.

Proof. Suppose u1u2∈E(G2) is a bridge. Denote PG1 (H)={�−−→v1v2
:−−→v1v2∈E(G1)}

and define M={v1v2∈E(G1) :�−−→v1v2
(u1)=u2}. Since u1u2 is a bridge, M is well

defined—i.e. �−−→v1v2
(u1)=u2⇔�−−→v2v1

(u1)=u2 (As in the proof of Theorem 2.3).
By Proposition 2.5, for every v1∈V(G1) there is exactly one v2∈N(v1) such that

�−−→v1v2
(u1)=u2; so M is a perfect matching. �

Corollary 2.11. If two cubic graphs have a tight product, at least one of them has a
perfect matching.

Proof. Suppose that G1,G2 are cubic graphs having a tight product. If G2 is
bridgeless, it has a perfect matching by the Petersen Theorem. Otherwise, the above
proposition implies that G1 has a perfect matching. �
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FIGURE 2. When does a tight product exist for two d-regular graphs (d odd)?.

D. Conclusion and Open Questions

Let G1,G2 be d-regular graphs with d≥3 odd. Figure 2 summarizes our knowledge
and open questions regarding the existence of a tight product of G1 and G2.

Completion of the bottom left box in the table might be achieved by answering the
following question:

Open question 2.12. Does every graph have a semi-coloring?

In this context, we note that the following families of graphs can be semi-colored:

1. Class-1 graphs (The �(G)-edge-coloring will do).
2. 2k-regular graphs (Find a 2-factorization and color the ith factor half i half k+ i).
3. (2k+1)-regular graphs containing a perfect matching (Use one color for the

perfect matching. The remaining graph is 2k-regular and can be handled as above).
4. Graphs with maximum degree ≤3 (Theorem 2.8).

It is of interest as well to seek tight products with additional properties, e.g.:

Open question 2.13. Assume that G1,G2 have a tight product. When do they have
a connected tight product? What can be said about the possible chromatic number of
their tight products. Likewise for other graph parameters.

We also wonder whether Vizing’s theorem can be proved in full along the same lines
of Theorem 2.9.

3. RANDOM MODELS

The spectrum of graph lifts (and more specifically random lifts of graphs) has attracted
considerable interest. We now consider some basic questions in this vein in the context
of tight products.

A. Background: Word Maps

Let �d be the alphabet consisting of the letters g±1
1 , . . . ,g±1

d . We denote by �k
d the set of

all the words 	=gj1
i1

. . .gjk
ik

with j�∈{−1,1} of length k with letters from �d. We asso-

ciate a word map 	 :Sk
n→Sn with every word 	=gj1

i1
. . .gjk

ik
∈�k

d as follows: For every
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(�1, . . . ,�d)∈Sd
n , we define 	(�1, . . . ,�d)=�jk

ik
◦· · ·◦�j1

i1
. With the uniform probability

measure on Sk
n, 	 is a random (not necessarily uniform) permutation. We are interested

in fixed points of such permutations and define p(	)=Pr[	(1)=1].
A word 	∈�k is called reduced if it does not contain two inverse consecutive letters.

If 	∈�k is not reduced, we can drop a pair of consecutive inverse letters. This can be
repeated until a reduced word is attained. We denote the resulting word by 	′. It is not
hard to see that 	′ does not depend on the order at which reduction steps are performed.
It is clear that 	=	′; so p(	)=p(	′). We now define the order of 	, denoted by
o(	), to be the largest integer l, such that 	′ can be written as 	′ =	a	l

b(	a)−1 with
nonempty 	b (and o(	)=0 when 	′ is empty). If o(	)=1, we say that 	 is primitive.

Bounds on p(	) are the backbone of the analysis we will present in the next subsec-
tion as well as in many theorems regarding expansion of random graphs (e.g. [6]). We
now state two such bounds (proofs can be found in [9]). The first lemma says that for
a primitive 	, the behavior of 	(�1, . . . ,�k) resembles that of a random permutation.
The second lemma bounds the number of imprimitive words.

Lemma 3.1. Let 	∈�k be a primitive word. Then p(	)≤1/ (n−k)+k4 / (n−k)2.

Lemma 3.2. The number of imprimitive words in �2k is ≤k2(2
√

2d)2k.

A refined analysis of word maps can be found in [13]. The (more involved) method
of that article might yield better bounds than what is shown below.

B. First Model—Fixed Base Graph

Fix a positive integer n and a 2d-regular graph GB expressed as

GB=G(�1, . . . ,�d)

where �1, . . . ,�d are permutation on V(GB). Choose permutations �1, . . . ,�d∈Sn
uniformly and independently at random and define:

H =G((�1,�1), . . . , (�d,�d))

GR =G(�1, . . . ,�d)

H is called the random product of the random graph GR with the base graph GB. Note
that H is indeed a tight product of GB and GR (see Proposition 2.2). By Proposition 2.1,
all the eigenvalues of GB (as well as of GR) are also eigenvalues of H. We use the
trace method to bound 
(H)—the absolute value of the largest new eigenvalue of H.

In [6], Friedman proved that the largest new eigenvalue in a (standard) lift of
2d-regular graph is bounded in absolute value by O(d3/4) a.a.s. The proof we present
is an adaptation of his proof.

Theorem 3.3.

E[
(H)]≤ 321/4 ·d3/4+o(1)

Consequently, 
(H)=O(d3/4) a.a.s. as n→∞.
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Proof. Denote by AH ,AGB the adjacency matrices of H and GB. By Jensen’s
inequality,

(E[
(H)])2k≤E[
(H)2k]≤E[
∑

�2k]=E[Tr(A2k
H )]−Tr(A2k

GB
) (1)

where the sum in the third expression is over all new eigenvalues. But Tr[A2k
H ] has a

combinatorial interpretation—it counts the closed paths of length 2k in H.
Denote by Pk

GB
the set of all paths of length k in GB. We view Pk

GB
as the set

V(GB)×�k
d in the following manner: given a pair (v0,gj1

i1
· · ·gjk

ik
), the corresponding

path is v0→v1→···→vk where vt=�jt
it
(vt−1). It is clear that this correspondence is

a bijection between V(GB)×�k and Pk
GB

. In the same manner, we denote the paths of

length k in H and in GR by Pk
H , Pk

GR
respectively (and associate them with V(H)×

�k
d,V(GR)×�k

d). We denote by Ck
GB
⊂Pk

GB
the set of closed paths in GB.

Given (u,	)∈Pk
GR

, denote by 1(u,	)
GR

the indicator function of the event that (u,	)

is a closed path in GR and observe that E[1(u,	)
GR

]=p(	). We define 1(v,	)
GB

, 1((v,u),	)
H

similarly. It is clear that a path ((v,u),	) in H is closed iff its projections on GB and
GR are both closed. Consequently, 1((v,u),	)

H =1(v,	)
GB
·1(u,	)

GR
. With these notations and the

lemmas from the previous subsection, we obtain:

E[Tr(A2k
H )]= E

⎡
⎣ ∑

((v,u),	)∈P2k
H

1((v,u),	)
H

⎤
⎦

= E

⎡
⎣ ∑

((v,u),	)∈P2k
H

1(v,	)
GB
·1(u,	)

GR

⎤
⎦

= E

⎡
⎣ ∑

(v,	)∈P2k
GB

1(v,	)
GB

∑
u∈V(GR)

1(u,	)
GR

⎤
⎦

= ∑
(v,	)∈C2k

GB

∑
u∈V(GR)

E[1(u,	)
GR

]

= ∑
(v,	)∈C2k

GB

n ·p(	)

Following [6], we split the sum according to whether 	 is primitive or not. For non-
primitive 	, we overestimate p(	) by 1. We then use the lemmas from Section 3A.

= ∑
(v,	)∈C2k

GB
,o(	)=1

n ·p(	)+ ∑
(v,	)∈C2k

GB
,o(	) 	=1

n ·p(	)

≤
⎡
⎣ ∑

(v,	)∈C2k
GB

,o(	)=1

n ·p(	)

⎤
⎦+n|V(GB)| |{	 :o(	) 	=1}|
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≤
⎡
⎣ ∑

(v,	)∈C2k
GB

,o(	)=1

n

n−2k
+ n ·(2k)4

(n−2k)2

⎤
⎦+n|V(GB)|k2(2

√
2d)2k

≤Tr[A2k
G ]+

⎡
⎣ ∑

(v,	)∈C2k
GB

,o(	)=1

2k

n−2k
+ n ·(2k)4

(n−2k)2

⎤
⎦+n|V(GB)|k2(2

√
2d)2k

By (1) we obtain:

(E[
(H)])2k≤
⎡
⎣ ∑

(v,	)∈C2k
GB

,o(	)=1

2k

n−2k
+ n ·(2k)4

(n−2k)2

⎤
⎦+n|V(GB)|k2(2

√
2d)2k

For k=o(n) (as we actually assume below),

(E[
(H)])2k ≤ Tr[A2k
GB

]
5(2k)4

n
+n|V(GB)|k2(2

√
2d)2k

≤ |V(GB)|(2d)2k · 5(2k)4

n
+n|V(GB)|k2(2

√
2d)2k (2)

The last inequality is justified since every entry on the diagonal of AGB is bounded
by (2d)2k. To finish, we choose k= log2d/(2

√
2d)(n)⇐⇒ n= ( 2d

2
√

2d
)k. Then, from (2) we

obtain:

(E[
(H)])2k ≤ |V(GB)|5(2k)4(4d
√

2d)k+|V(GB)|k2(4d
√

2d)k

≤ |V(GB)|100k4(4d
√

2d)k

Therefore,

E[
(H)]≤ (|V(GB)|100k4)
1
2k

√
4d
√

2d=
√

4d
√

2d+o(1)

�

C. Conclusions and an Open Problem

How large can 
(H) be? Again, following [6] we raise:

Conjecture 3.4. Let H be a random tight product as defined in the beginning of
Section 3A. Then, for every �>0, 
(H)≤2

√
2d−1+� a.a.s.

The potential advantage of this conjecture over Friedman’s is that it may allow
to construct graphs with a near optimal spectral gap, using very limited randomness.
More generally it is of interest to find a distribution 
 on Sn, with small entropy, such
that if we choose �1, . . . ,�d independently at random from the distribution 
, then
G(�1, . . . ,�d) has small second eigenvalue w.h.p. In this context we should mention
[4], where it is shown that there is �<2d such that if g1, . . . ,gd∈SL2(Fp) are chosen
uniformly and independently at random, then the spectral radius of the Cayley graph
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of SL2(Fp) with generates {g1,g−1
1 , . . . ,gd,g−1

d } is a.a.s. (with respect to p) bounded
by �.

Tight products suggest another approach to this problem, as follows: Consider Sk
n

as a subset of Snk . Here we allow k to grow with n, so that |Sk
n| is much smaller than

|Snk | and we indeed save in entropy. Does this yield an expander family? Can we do
this even with k that grows with n?
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