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Abstract. To any generic curve in an oriented surface there corresponds an oriented chord

diagram, and any oriented chord diagram may be realized by a curve in some oriented

surface. The genus of an oriented chord diagram is the minimal genus of an oriented surface

in which it may be realized. Let gn denote the expected genus of a randomly chosen oriented

chord diagram of order n. We show that gn satisfies:

gn =
n

2
− Θ(lnn).

I.e., there exist 0 < c1 < c2 and n0 such that c1 lnn ≤ n

2
− gn ≤ c2 lnn for all n ≥ n0.

1. Introduction

The study of plane curves dates back to C.F. Gauss, [8]. Gauss has assigned to any plane

curve with n double points a 2n letter word, as follows. To each double point attach a

letter, and then register the letters you encounter as you travel along the curve. One obtains

a word of length 2n, where each of the n letters appears precisely twice. Such a word is

called a Gauss code. Clearly not every Gauss code may be realized by a plane curve, and

Gauss has pointed out a necessary condition for it to be realizable. One can enhance the

Gauss code of a curve with a mark on one of the two occurrences of each letter, signifying

the order on the pair of strands at the given double point, induced by the orientation of

the plane. Various necessary and sufficient conditions for a Gauss code to be realizable

in the plane have been eventually given, both in the marked and unmarked settings. See

[3],[4],[6],[12],[13],[16],[17],[18] and references therein.

To avoid the arbitrariness of the assignment of letters to the different double points,

one can replace Gauss codes with chord diagrams. To a marked Gauss code corresponds

an oriented chord diagram, which is by definition a splitting of the set {1, . . . , 2n} into n

ordered pairs. This may be represented as a circle with 2n designated points, and n oriented

chords connecting pairs of these points.
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Though not every oriented chord diagram may be realized by a curve in the plane, it

may be realized by a curve in some oriented surface. J.S. Carter in [5] has given a direct

construction for the minimal genus surface in which a given diagram may be realized, as

follows. Take an annulus, which is thought of as a regular neighborhood of the curve, and

identify n pairs of regions along the annulus according to the prescription of the diagram.

One obtains an orientable surface F with some d boundary components. Capping off the

boundary components with discs produces the required minimal genus surface. The genus of

this surface is g = 1
2
(n + 2− d) and so 0 ≤ g ≤ 1

2
(n+ 1). We will refer to this minimal genus

as the genus of the given diagram. A diagram being realizable in the plane is equivalent to

it having genus 0.

For fixed n, we are interested in the distribution of genera of the oriented chord diagrams

with n chords, and we ask: What is the expected genus gn of a randomly chosen diagram?

(By “random choice” we will always mean that we are choosing with uniform probability.)

We show that the expected genus is very close to the maximal possible genus 1
2
(n + 1), in

fact, we show that

gn =
n

2
− Θ(ln n).

Since g = 1
2
(n + 2− d), this is equivalent to showing that the expected number of boundary

components is Θ(ln n). (We say f(n) = Θ(h(n)) if there are 0 < c1 < c2 and n0 such that

c1h(n) ≤ f(n) ≤ c2h(n) for all n ≥ n0.)

Though the above description is geometric, counting the number of boundary components

may be described in a purely combinatorial manner. Traveling along a boundary component

of our surface corresponds to a walk on the chord diagram according to the following rule.

When moving along the circle of the diagram, and arriving at an end of a chord, continue your

motion along the chord to its other side. If your motion along the chord is in the direction

(respectively, against the direction) of its orientation, then continue your motion along the

circle in the same (respectively, opposite) direction as you have moved before entering the

chord. So, to identify a boundary component, one travels along the diagram according to

the above rule, until returning to the starting point. Repeating this process, one obtains all

boundary components.

This combinatorial walk along a chord diagram is reminiscent of the walk along the cy-

cles of a permutation. The distribution of the number and lengths of cycles of a random



THE EXPECTED GENUS OF A RANDOM CHORD DIAGRAM 3

permutation on n letters is well understood (see [1]), and the expected number of cycles is

also Θ(lnn). As will be seen, the setting of the present work is substantially more compli-

cated than that of permutations, yet, in the concluding section we will demonstrate that it

is for similar reasons that the expected number of cycles in a permutation and the expected

number of cycles of the walk along our chord diagrams are both Θ(ln n). In the concluding

section we will also present a matrix integral for the distribution of the number of boundary

components.

Since our problem may be formulated both in a topological and a purely combinatorial

manner, it may be of interest to both topologists and combinatorialists, and indeed the text

is aimed for both audiences. This work may be viewed as part of the recent expanding

interest in probabilistic questions in topology, as appears in [2],[7],[11],[14],[15].

2. Definitions and statement of result

Let F be an oriented surface. A generic curve in F is an immersion c : S1 → F for which

the only self intersections are transverse double points. We fix n once and for all, and call a

point of S1 = {z ∈ C : |z| = 1} a dot if it is one of the 2n points {eπik/n : 1 ≤ k ≤ 2n}.
If a generic curve c has n double points, then there are 2n points in S1 mapped into them,

and we will always assume that these 2n points are precisely our 2n dots. A generic curve

with such n double points will be called an n-curve.

An oriented chord diagram of order n is a splitting of the set of dots into n disjoint ordered

pairs. One can represent an oriented chord diagram in the plane, by drawing an oriented

chord connecting each ordered pair, where the orientation of the chord represents the order

of the pair. An oriented chord diagram will also be called simply a diagram. (We emphasize

that since we have chosen 2n fixed points in S1 as our dots, we distinguish between different

splittings obtained from each other by a rotation.)

We denote the set of all diagrams of order n by Dn, and we have |Dn| = (2n)!
n!

(indeed, any

ordering i1, i2, . . . , i2n of 1, . . . , 2n determines a splitting into ordered pairs (i1, i2), (i3, i4), . . . ,

but in this way each splitting is counted n! times). Any n-curve determines a diagram

D(c) ∈ Dn as follows. The double points of c split the 2n dots into pairs, and the orientation

of the surface F induces an ordering on each pair, in the following way. If c(a) = c(b) for
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Figure 1. Chord (a, b).

dots a, b, and c′(b), c′(a) is a positive basis with respect to the orientation of the surface,

then the ordered pair (a, b) is taken. See Figure 1.

Any diagram may be realized by a curve on some oriented surface, and a regular neighbor-

hood of the curve in all such surfaces is the same, as we now explain (compare [5]). Given a

diagram D ∈ Dn, take the annulus A = S1 × [−ǫ, ǫ] with a fixed orientation, and identify S1

with S1 × {0}. For each dot a let Sa ⊆ A be the 2ǫ × 2ǫ square centered at (a, 0). We now

identify pairs of dots a, b according the prescription of D, and we identify the corresponding

squares Sa, Sb with a positive or negative π
2

rotation, so that the self intersection of the curve

at the identified square will be as prescribed by the orientation of the chord between a and b

in D. We obtain an oriented surface with d(D) ≥ 1 boundary components, which we denote

F (D). Clearly, the embedding S1 → A given by z 7→ (z, 0), composed with the quotient

map A → F (D), is an n-curve S1 → F (D) which realizes D, and a regular neighborhood of

any curve in any surface realizing D, is identical to F (D). It follows that the genus of the

closed surface obtained by capping off the d(D) boundary components of F (D) with discs,

is the minimal genus of a surface in which D may be realized.

Definition 2.1. Given a diagram D, we define g(D), the genus of D, to be the minimal

genus of a closed oriented surface admitting a curve c : S1 → F with D(c) = D.

The image in F (D) of our n-curve is a graph with n vertices and 2n edges, and so 2 −
2g(D) = n − 2n + d(D), or, g(D) = 1

2
(n + 2 − d(D)). Since d(D) ≥ 1, we deduce that

0 ≤ g(D) ≤ 1
2
(n + 1).
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[a,a+1]

a+1a

[a+1,a]

Figure 2. Dots, squares, edges, and their labels.

In this work we study the following question: What is the expected genus of a randomly

chosen diagram D ∈ Dn? We will show that the expected genus is close to the maximal

possible genus 1
2
(n + 1). More precisely we will show:

Theorem 2.2. The expected genus gn of a random oriented chord diagram D ∈ Dn satisfies:

gn =
n

2
− Θ(ln n).

In fact we show that n
2
− 3

2
ln n − 200 ≤ gn ≤ n

2
− 1

36
ln n, for n ≥ 50.

We think of g(D) and d(D) as random variables defined on a randomly chosen D ∈ Dn.

That is, our sample space is Dn, each diagram having equal probability n!
(2n)!

. We denote the

expected values by gn = E[g] and dn = E[d]. We will show that dn = Θ(lnn), from which

Theorem 2.2 follows via gn = 1
2
(n + 2 − dn).

3. The random procedure

We label the dot eπik/n, and its corresponding square, simply by k, and so k± 1 will mean

addition mod 2n. The interval along the boundary of the annulus A between two adjacent

squares will be called an edge, so we have 4n edges. We orient the edges according to the

orientation induced on ∂A from that of A, and we denote the oriented edge from square a

to square b by [a, b]. The edge [b, a] will then be the parallel edge in the other boundary

component. So, all edges in S1×{ǫ} are of the form [a, a+1], and they will be called positive

edges, and all edges in S1 ×{−ǫ} are of the form [a + 1, a] and will be called negative edges.

See Figure 2.

We would like to see how our edges are attached to each other due to the gluing of two

squares. We will say an attachment [a, b]− [c, d] takes place if the end point of [a, b] is glued

to the beginning point of [c, d]. So, say we have identified the two squares a and b according

to the oriented chord (a, b). As seen in Figure 3, the eight edges involved are attached to
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Figure 3. Edge attachments due to chord (a, b).

each other as follows: [a − 1, a] − [b, b + 1], [b + 1, b] − [a, a + 1], [a + 1, a] − [b, b − 1],

[b − 1, b] − [a, a − 1]. This can be summarized by the following rule:

Rule 3.1. An attachment [a, b] − [c, d] holds if the oriented chord (b, c) exists, and the signs

of [a, b] and [c, d] are the same, or if the oriented chord (c, b) exists and the signs of [a, b] and

[c, d] are opposite.

Traveling along a boundary component of the surface F (D) corresponds to a walk along

the diagram D, which by Rule 3.1 proceeds as follows: When moving along the circle of the

diagram, and arriving at an end of a chord, continue your motion along the chord to its other

side. If your motion along the chord is in the direction (respectively, against the direction) of
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its orientation, then continue your motion along the circle in the same (respectively, opposite)

direction as you have moved before entering the chord.

We may thus read all boundary components directly from the diagram D, as follows:

Choose an arbitrary edge, and start traveling along the diagram in the above way, alter-

natingly passing edges and chords, until you return to your initial edge. Then choose some

unvisited edge, and similarly travel until you return to it. Continue until all edges have been

visited. Notice that when this is done, each chord of the diagram has been visited four times,

each visit corresponding to one of the four corners of the glued square.

For k ≤ n, a k-n-diagram is a choice of 2k out of the 2n dots, and a splitting of these 2k

dots into k oriented chords, i.e. ordered pairs. The remaining 2n − 2k dots will be called

vacant dots. So, an oriented chord diagram of order n is an n-n-diagram.

Definition 3.2. A path in a k-n-diagram D, is a sequence [a1, b1] − [a2, b2] − · · · − [ar, br]

of distinct edges, attached via oriented chords of D according to Rule 3.1. A path in D is

called a loop if the attachment [ar, br] − [a1, b1] also holds. A path in D is called a segment

if a1 and br are vacant dots (perhaps the same dot). Loops and segments are precisely those

paths that cannot be further extended.

We now specify our procedure for choosing a random n-n-diagram. Our procedure will

choose the chords one by one. We first fix an ordering e1, . . . , e4n of our edges, once and for

all. Before the procedure begins, we announce e1 as the “pointer” edge. Assume that after

the (j − 1)th step, we have already chosen j − 1 oriented chords, and the pointer edge lies in

a segment (rather than a loop) of the given (j−1)-n-diagram. The next chord is now chosen

with one of its dots being the concluding dot of the segment in which the pointer lies, and

its other dot is randomly chosen from the other 2n − 2j + 1 vacant dots. The orientation

of the new chord is also randomly chosen. If in the new j-n-diagram, the pointer’s segment

continues to be a segment, i.e. it does not close into a loop, then the same edge remains the

pointer. If on the other hand, after the jth chord is added, the pointer’s segment closes into

a loop, then the edge with smallest index which lies in a segment in the new j-n-diagram,

becomes the new pointer.

This procedure indeed produces all n-n-diagrams with equal probability. To see this note

that at the jth step we randomly choose one of the 2n − 2j + 1 vacant dots, and then
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Figure 4. A four step run of the random procedure.

randomly choose an orientation for the new chord. So the probability for each choice is

1
2·(2n−2j+1)

, and so the probability for any particular history of the random procedure is

1
2n·(2n−1)(2n−3)···3·1 = n!

(2n)!
. Then note that any diagram may be obtained via a unique history

of the random procedure.

Examples of two runs of our random procedure appear in Figures 4 and 5, demonstrating

some of the interesting features of the possible evolution of the pointer’s segment. In both

figures the edge e1 is the edge [a, a + 1] and is marked by 1.

In Figure 4 the chords are chosen in the following order: (a + 1, b), (c, b + 1), (c − 1, c +

1), (a, a + 2). The segment of e1 after the four steps of this run is [a + 3, a + 2]− [a, a + 1]−
[b, b + 1] − [c, c − 1] − [c + 1, c] − [b + 1, b] − [a + 1, a + 2] − [a, a − 1] and these edges are

marked in the figure by 0, . . . , 7, in this order. The evolution of e1’s segment throughout the

four steps of this run is 1− 2, 1− 2− 3, 1− 2− 3− 4− 5− 6, 0− 1− 2− 3− 4− 5− 6− 7.

Note that after the third step the segment revisits some chords that were chosen in previous

steps. Note that after the fourth step the segment extends in both directions, and so 1 is no

longer the first edge in the segment. We point out the following difference between this run,

and the run of Figure 5. In Figure 4 the initial and final dots of the pointer’s segment are

distinct, whereas in Figure 5 it is the same dot.
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Figure 5. A five step run of the random procedure.

4. Upper bound for dn

In this section we establish our upper bound for dn. If ℓ is a loop in an n-n-diagram D,

then the size of ℓ is the number of distinct chords visited by ℓ. If k is the size of the loop ℓ

and r is the number of edges it visits, then since ℓ alternatingly visits an edge and a chord,

and since each chord is visited at most four times, we have k ≤ r ≤ 4k.

For given n, let Lk = Lk(n) denote the expected number of loops of size k in a random

n-n-diagram, then dn =
∑n

k=1 Lk. We will show in Proposition 4.5 below, that for k ≤ n
100

,

Lk ≤ 3
k
. On the other hand, since any chord is visited by at most four different loops, the

total number of all loops of size k > n
100

is at most 400, and so its expected value
∑

k> n
100

Lk
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is at most 400. Together this gives

dn =
∑

k≤ n
100

Lk +
∑

k> n
100

Lk ≤
∑

k≤ n
100

3

k
+ 400 ≤ 3 lnn + 400.

In order to obtain our bound Lk ≤ 3
k

we will need to bound the probability that at a given

kth step, the pointer’s segment closes into a loop. We now prove the following:

Proposition 4.1. For k ≤ n
100

, the probability that the pointer’s segment will close into a

loop at the kth step is at most 3
4n

.

Let S be the pointer’s segment in our (k − 1)-n-diagram after step k − 1, and let p be

its concluding dot. We now need to choose the kth chord, with one end being p. We must

determine how many choices will result in closing S into a loop. Let q be the initial dot

of S. If q 6= p (that is, the initial and final dots are distinct, as occurs in the example in

Figure 4), then for S to be closed into a loop, we must choose q as the second dot for the

kth chord, and so the choice of unoriented chord is unique. Though usually only one of the

two choices of orientation for this chord will indeed close the segment S into a loop (as is

the case in Figure 4), it may in fact occur that both orientations accomplish this. Since we

are seeking an upper bound for the probability, we will always count both orientations as

possible, or in other words we will ignore the choice of orientation in the computation of the

probability. Since there are 2n − 2k + 1 vacant dots from which we may choose the second

dot for the new chord, the probability of choosing the correct dot q is 1
2n−2k+1

, and since we

assume k ≤ n
100

we have 1
2n−2k+1

≤ 1.1
2n

.

If q = p (that is, the initial and final dot is the same, as occurs in the example of Figure 5),

then at first sight it may seem that closing the pointer’s segment into a loop is impossible,

and in most cases this is in fact true. But on the other hand, there are cases with q = p

where not only does there exist a choice of chord that closes the given segment into a loop,

but there are in fact many such choices. The example in Figure 5 is such case. The oriented

chords (a, a + 4), (a, a + 7) or (a, a + 11) may each be added in the present step to close the

pointer’s segment into a loop. For the analysis of this phenomenon, we define the following

notion.

Definition 4.2. A plug is a segment [a1, b1] − · · · − [ar, br] for which a1 = br. The vacant

dot a1 = br is called the entrance to the plug.
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Figure 6. Plugs.

Examples of two plugs are depicted in Figure 6. In Figure 6a, the chord (a − 1, a + 1)

produces the plug [a, a−1]− [a+1, a] with entrance a. In Figure 6b, the chords (a+1, a+3)

and (a + 4, a + 2) produce the plug [a, a + 1]− [a + 3, a + 4]− [a + 2, a + 3] − [a + 1, a] with

entrance a. Note that the same vacant dot can be the entrance to two different plugs.

In our present case, where q = p, the pointer’s segment is itself a plug, but this fact is not

of interest to us. What enables us to close the pointer’s segment into a loop in Figure 5, is

each one of the additional plugs that are present in the given 5-n-diagram, namely the three

plugs [a+4, a+3]−[a+5, a+4], [a+7, a+6]−[a+8, a+7], and [a+11, a+10]−[a+12, a+11]

(each of which is similar to the plug in Figure 6a). In fact, the next lemma shows that in

order to close the pointer’s segment into a loop in the case q = p, it is necessary that the

second dot of the new chord will be an entrance to a plug.

Lemma 4.3. Let D be a (j−1)-n-diagram, and let a be a vacant dot in D. Let e be an edge

entering a, (i.e. e is [a − 1, a] or [a + 1, a]). Assume Q is an additional oriented chord with

one end at a and the other end at some other vacant dot b, such that in the j-n diagram
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Figure 7. Proof of Lemma 4.3.

obtained by adding Q, the path beginning at e leads to an edge e′ which is one of the two

exiting edges at a (i.e. e′ is [a, a + 1] or [a, a − 1]). Then b is the entrance to a plug in D.

Proof. Assume b is not an entrance to a plug. In Figure 7, edge e is marked, and the two

possibilities for e′ are marked. The path beginning at e passes the point x, and in order for

it to lead to e′, it must eventually arrive back into the region depicted in the figure. It does

not arrive at y1 or y3 since we have assumed that b is not an entrance to a plug. If it arrives

at y4 then it closes a loop without passing either possibility for e′. So, it must arrive at y2

as depicted, and it then exits our region through point z. This time its only possibility for

returning is through y4, which as before prevents it from ever arriving at either possibility

for the exiting edge e′. �

As we have seen, there may be many plugs available for completing our segment into a

loop, but fortunately, the expected number of available plugs is small. The main technical

effort of this work is the following proposition whose proof we defer to Section 6.

Proposition 4.4. For k ≤ n
100

, the expected number of plugs present after k steps of the

random procedure is at most 1
4
.

Back to the proof of Proposition 4.1 for the case q = p. By Lemma 4.3, in order for S to

close into a loop, the second dot we choose for the new chord must be the entrance to some

plug. By Proposition 4.4, the expected number of plugs existing in the present stage of the

random procedure (i.e. after k−1 steps), is at most 1
4
. Together with the case q 6= p we have

on average at most 1 + 1
4

choices for the new unoriented chord. (As before, we ignore the

additional choice of orientation.) Note that we must take the sum and not the maximum of
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the bounds for the two possibilities q 6= p and q = p, since the expectation for the number

of plugs that we bound in Proposition 4.4 is not conditional on q = p.

We obtain that for k ≤ n
100

, the probability that the pointer’s segment closes into a loop

at the kth step of the random procedure is at most (1 + 1
4
) · 1.1

2n
≤ 3

4n
, which completes the

proof of Proposition 4.1.

Proposition 4.5. Let Lk denote the expected number of loops of size k in a random n-n-

diagram. Then for k ≤ n
100

we have Lk ≤ 3
k
.

Proof. It is clear from the definition of our random procedure, that if the segment of e1

closes into a loop at the kth step, then this loop is of size k. So the event that the edge e1

lies in a loop of size k is the same as the event that e1 survives as pointer until step k, and

then at step k its segment closes into a loop. The probability for this event is at most the

probability that at the kth step the pointer’s segment closes into a loop, and by Proposition

4.1 this probability is at most 3
4n

. Now, our random procedure produces each n-n-diagram

with equal probability, and so by the symmetry of our annulus, the probability for any given

edge to lie in a loop of size k is also at most 3
4n

, or alternatively, the probability Pk that a

randomly chosen edge will lie in a loop of size k is at most 3
4n

.

We obtain a lower bound for Pk by noting that each loop of size k includes at least k

edges, and the total number of edges is 4n, and so Pk ≥ kLk

4n
. Together we get kLk

4n
≤ Pk ≤ 3

4n

which proves our claim. �

As already explained above (before Proposition 4.1), the bound Lk ≤ 3
k

for k ≤ n
100

implies

the following upper bound for dn:

dn ≤ 3 lnn + 400.

5. Lower bound for dn

We have asked in the proof of Proposition 4.5, what is the probability Pk that a randomly

chosen edge will lie in a loop of size k. We have noticed that this is precisely the probability

that in our random procedure, the segment of e1 survives until the kth step, and then at the

kth step it closes into a loop. In this section we will find a lower bound for Pk, for n ≥ 50

and k ≤ √
n, which in turn will provide a lower bound for dn.
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A run of j − 1 steps of the random procedure is called good if after these j − 1 steps e1

is still the pointer, and its segment is of the form [a1, b1] − · · · − [aj , bj] with all the dots

a1, b1, . . . , aj , bj being distinct. When j − 1 = 0, i.e. before starting the random procedure,

then the pointer’s segment is simply e1 = [a1, b1], so the run is good. If the run is good after

j − 1 steps, and at the jth step the second dot chosen for the new chord is not adjacent to

any of the dots a1, b1, . . . , aj, bj , then the run is still good after the jth step. This restriction

for the choice of the jth chord means that if an edge of the segment is say [a, a + 1], then

the four dots a−1, a, a+1, a+2 are not chosen. So, at the jth step we have at most 4j dots

which we are forbidden to choose, so the number of allowed choices for a new dot at the jth

step is at least 2n− 4j. Since the total number of dots from which we choose is 2n− 2j + 1,

the probability for such restricted choice at the jth step is at least 2n−4j
2n−2j+1

.

If after k − 1 steps of the random procedure the run is still good, then in particular, the

initial and final dots of e1’s segment are distinct. So, at the kth step there exists a choice

of oriented chord that closes e1’s segment into a loop, and the probability for this choice

is 1
2(2n−2k+1)

. So together, for n ≥ 50 and k ≤ √
n, the probability that the segment of e1

survives until the kth step, and then at the kth step closes into a loop satisfies:

Pk ≥ 1

2(2n − 2k + 1)

k−1
∏

j=1

2n − 4j

2n − 2j + 1
≥ 1

4n

k−1
∏

j=1

(1 − 2j + 1

2n − 2j + 1
) ≥ 1

4n

k−1
∏

j=1

(1 − j + 1

n − k
)

≥ 1

4n

k−1
∏

j=1

e−
6

5
· j+1

n−k =
1

4n
e−

6

5

Pk−1

j=1

j+1

n−k ≥ 1

4n
e−

3

5
· k2

+k
n−k ≥ 1

4n
e
− 3

5
·n+

√
n

n−
√

n ≥ 1

9n
.

We use the assumption n ≥ 50 in the fourth inequality, observing that 1 − x ≥ e−
6

5
x for

0 ≤ x ≤
√

50
50−

√
50

, and in the last inequality, observing that e−
3

5
x ≥ 4

9
for 0 ≤ x ≤ 50+

√
50

50−
√

50
.

As before, let Lk be the expected number of loops of size k in a random n-n-diagram, then

since the number of edges in a loop of size k is at most 4k we have Pk ≤ 4kLk

4n
. Together, for

n ≥ 50 and k ≤ √
n we get 1

9n
≤ Pk ≤ 4kLk

4n
, so Lk ≥ 1

9k
. We may now establish our lower

bound for dn, for n ≥ 50:

dn =

n
∑

k=1

Lk ≥
√

n
∑

k=1

1

9k
≥ 1

9
ln
√

n =
1

18
ln n.
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Together with the upper bound of Section 4 we obtain dn = Θ(ln n), which proves Theorem

2.2, stating that the expected genus gn of a random diagram of order n satisfies:

gn =
n

2
− Θ(ln n).

6. Upper bound for the expected number of plugs

In this section we prove Proposition 4.4, stating that for k ≤ n
100

, the expected number of

plugs present in our k-n-diagram after k steps of the random procedure is at most 1
4
.

Definition 6.1. Two vacant dots in a k-n-diagram D are called neighbors, if they are the

two end points of a segment in D.

Definition 6.2. A positive plug is a plug [a1, b1] − · · · − [ar, br] for which the two edges

[a1, b1], [ar, br] are of the same sign, that is, they are of the form [a, a + 1], [a − 1, a] or

[a, a − 1], [a + 1, a]), (as in Figure 6a). A negative plug is a plug for which these two edges

are of opposite sign, that is, they are of the form [a, a + 1], [a + 1, a] or [a, a − 1], [a − 1, a],

(as in Figure 6b). Note that if the same vacant dot is the entrance to two different plugs,

then these two plugs must be of the same sign.

Lemma 6.3. Under the assumptions of Lemma 4.3, if e and e′ are of opposite sign, and if b

is not the entrance to a positive plug (and so by Lemma 4.3 it is the entrance to one or two

negative plugs), then either a and b are neighbors (Definition 6.1), or a is also an entrance

to a plug.

Proof. Assume a and b are not neighbors. In order for us to arrive at e′, given that b is not

the entrance to a positive plug and a and b are not neighbors, our path must be as in Figure

8, which shows that a is the entrance to a (negative) plug. �

Any chord is involved in at most four different segments, and so at each step, when adding

a new chord, at most four new plugs can be created. But we will show that in fact the

expected number of plugs created at each step k ≤ n
100

is at most 25
n

. This implies that the

expected number of plugs present after k ≤ n
100

steps is at most 1
4
. To establish this bound

we will in fact need to prove the following more detailed proposition, which distinguishes

between positive and negative plugs.

Proposition 6.4. The following holds for k ≤ n
100

:
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e’

e

Figure 8. Proof of Lemma 6.3.

(1) Let G+
k (respectively G−

k ) denote the expected number of positive (respectively negative)

plugs completed at the kth step. Then G+
k ≤ 5

n
and G−

k ≤ 20
n
.

(2) The expected number of plugs present after k steps is at most 1
4
.

(3) Let H+
k (respectively H−

k ) denote the probability that after the kth step the concluding

dot of the pointer’s segment is an entrance to a positive (respectively negative) plug.

Then H+
k ≤ 6

n
and H−

k ≤ 21
n
.

Proof. (1) Say at the kth step we have chosen a chord Q between dots a and b, and a plug

has been completed, with dot c being its entrance. This means that after adding Q there

is a segment with edges ei1 − ei2 − · · · − eir beginning and ending at the vacant dot c, and

before adding Q this segment did not exist. This means that before adding Q, the segment

S1 beginning with ei1 ended at some vacant dot a 6= c, and the segment S2 ending with eir

began at some vacant dot a′ 6= c. We now distinguish three cases as follows. If a 6= a′ then

the new chord Q must be between a and a′. By definition of our random procedure, the

concluding vacant dot p of the pointer’s segment is one of the dots of the new chord Q, so

must be either a or a′. We will refer to this case as Case A. If on the other hand a = a′ then

the new chord Q must be between a and some other vacant dot b. In this case either p = a

or p = b, and these two possibilities will be referred to as Case B and Case C, respectively.

For Case A, we note that there are at most four different segments with one end being p.

The other end of each such segment is a vacant dot that may be c of the above description. For
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each such c there is a unique second segment with which a configuration S1, S2 as described

above may arise for a positive plug, and a unique such second segment for a negative plug.

Our assumption is that a 6= a′ and so for each such configuration there is a unique choice of

unoriented chord with which such a plug may be created. As discussed in Section 4, it may

be that both choices of orientation for this chord bring to the completion of the plug. So here

and in all following cases, we do as we have done in Section 4, and include both choices in our

count by simply ignoring the choice of orientation. As before, the probability for the correct

unoriented chord to be chosen in each case is 1
2n−2k+1

since there are 2n− 2k + 1 additional

vacant dots, and for k ≤ n
100

we have 1
2n−2k+1

≤ 1.1
2n

. So, the contribution of this case to G+
k

and G−
k is at most 4 · 1.1

2n
. Note that it may be that different configurations in our count

are completed into a plug by the same choice of chord, but by the additivity of expectation,

the contributions of all configurations may be added regardless of the dependence between

them.

In Case B, Q is between the dot p = a and the dot b, and by Lemma 4.3, b must be

an entrance to an existing plug. We bound all possible contributions that may be from

choosing the second dot of the new chord as the entrance to an existing plug. Any new

chord may participate in at most four different segments, and so at most four new plugs

may be completed. By induction, we may use (2) of the present proposition for k − 1 to

conclude that on average we have at most 1
4

existing plugs available. So, the contribution is

on average at most 4 · 1
4
· 1.1

2n
= 1.1

2n
. We cannot determine how this contribution will divide

between G+
k and G−

k and so we add it to both.

In Case C, p = b, and our choice of the second dot a for Q is such that a is part of a

configuration of segments S1, S2 and dots c, a as described above. The segments S1 and S2

may or may not pass chords, but there is just one special configuration for S1, S2 in which

both S1 and S2 do not pass any chord, namely, the configuration where a and c are adjacent

dots along the annulus, and S1, S2 are the two edges connecting them. If the configuration

is not this special one, then necessarily the dot c is adjacent along the annulus to a dot that

is the end of one of the k − 1 existing chords. So there are at most 4(k − 1) possibilities for

such dot. For each such dot c there are two possibilities for a pair of segments S1, S2 that

may give rise to a positive plug, and two possibilities for a negative plug. Together this gives

at most 8k possible pairs of segments for positive plugs and for negative plugs. Now we note
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that in order for us to be in Case C, our dot p must be at the entrance to an existing plug

after step k−1. By induction we may use (3) of the present proposition for k−1 to conclude

that the probability for us being in Case C is at most 6
n

+ 21
n

. And so the contribution of the

non-special configurations to G+
k and G−

k is at most 8k( 6
n

+ 21
n

)1.1
2n

≤ 8 · n
100

· 27
n
· 1.1

2n
≤ 3 · 1.1

2n
.

For the special configuration, if a plug is completed then it is necessarily a negative plug,

so contributes only to G−
k . If p = b is the entrance to a positive plug, which happens, by

induction on part (3), with probability at most 6
n
, then we take our bound to be simply the

total number of choices 2n− 2k +1 for a. There may be a special configuration on each side

of a, and so the contribution to G−
k is at most 2 · (2n − 2k + 1) · 6

n
· 1.1

2n
≤ 24 · 1.1

2n
.

If p = b is the entrance to a negative plug, which happens by part (3), by induction, with

probability at most 21
n

, then by Lemma 6.3, we must choose a which is either a neighbor of

b or the entrance to a plug. The dot b has at most 4 neighbors. For each such neighbor a

there is at most one special configuration that may be completed into a plug, since it may

not be on the side of a where the segment from b arrives at a. So, the contribution of this

case is at most 4 · 21
n
· 1.1

2n
. The second possibility is that a itself is an entrance to a plug, but

in Case B above we have already counted all possible contributions from connecting p to a

dot which is the entrance to an existing plug, and so we need not count this again here. The

contribution to G−
k is thus at most 4 · 21

n
· 1.1

2n
≤ 1.1

2n
, since n ≥ 100 whenever the assumption

k ≤ n
100

is relevant.

We add all contributions for G+
k :

G+
k ≤ (4 + 1 + 3) · 1.1

2n
≤ 5

n
,

and for G−
k :

G−
k ≤ (4 + 1 + 3 + 24 + 1) · 1.1

2n
≤ 20

n
.

(2) In each step j ≤ k on average at most 5
n

+ 20
n

plugs are completed, by (1), and so after

k steps the expected number of plugs is at most k( 5
n

+ 20
n

) ≤ n
100

( 5
n

+ 20
n

) = 1
4
.

(3) If after the kth step, the final dot of our spanning segment is the entrance to a positive

plug, then this plug may either be one that has existed previously, or one that has just been

completed. If it is a plug that has existed previously, then in the (k − 1)-n-diagram we had

before the kth step, there is a unique segment S leading to its entrance (which is not the

plug itself), and let a denote the vacant dot at the beginning of S. In order for us to end up
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at the entrance to the given plug after adding the kth chord, this chord must include a. As

before, let p denote the concluding dot of the pointer’s segment. If p 6= a then we have one

choice for such unoriented chord. If p = a then in order for us to continue into the segment

S, then by Lemma 4.3 the other dot b of the new chord must be the entrance to an existing

plug. Together we see that in order for us to land at the entrance of an existing plug, we

must choose the second dot for the new chord either as a dot a as described above, which is

uniquely determined by a plug, or as a dot which is itself the entrance to a plug. By (2) we

know that there are on average at most 1
4

previously existing plugs, and so this contributes

at most 2 · 1
4
· 1.1

2n
to the probability.

On the other hand, the probability that after the kth step we have landed at the entrance

of a positive plug that has just been completed, is at most the probability that such a plug

has at all been completed at the kth step. By (1) this probability is at most 5
n
, since the

expected number of plugs completed is a bound to the probability that at least one plug has

been completed. Together we get H+
k ≤ 2 · 1

4
· 1.1

2n
+ 5

n
≤ 6

n
. In the same way, using G−

k ≤ 20
n

we get H−
k ≤ 21

n
�

Recall that what we have actually used from Proposition 6.4 is only part (2), which

bounds the total number of plugs. The need for this more detailed analysis is due to the

large contribution of existing positive plugs to the completion of new negative plugs in Case C

with the special configuration. This required that we separate between positive and negative

plugs in the inductive proof, with a larger bound for the negative plugs.

7. Similar problems and matrix integrals

We recall our combinatorial rule for traveling along an oriented chord diagram, to produce

its boundary components: When moving along the circle of the diagram, and arriving at

an end of a chord, continue your motion along the chord to its other side. If your motion

along the chord is in the direction (respectively, against the direction) of its orientation, then

continue your motion along the circle in the same (respectively, opposite) direction as you

have moved before entering the chord. The number of cycles of this travel along a diagram

D was denoted d(D), and served to compute the genus of the corresponding surface via

2 − 2g = −n + d. With all cycles present, each arc between adjacent dots is visited twice

(once in each direction) and each chord is visited four times (twice in each direction).
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If one looks at an unoriented chord diagram, i.e., a chord diagram where there is no choice

of direction along each chord, then one can consider the following analogous travel: Always

move along the circle of the diagram in the counterclockwise direction. When arriving at an

end of a chord, continue your motion along the chord to its other side, and continue moving

along the circle. In this setting one may also count the number of cycles of the travel along

an unoriented chord diagram U , and we denote this number by d′(U). Here each arc between

adjacent dots is visited once, and each chord is visited twice (once in each direction).

It turns out that this simplified combinatorial setting also has a geometric interpretation

in terms of the construction of a surface, as follows. Start with a disc whose boundary is the

circle of the given unoriented chord diagram U with n chords. For any chord, attach a band

to the boundary of the disc according to the given chord, where the gluing respects the ori-

entation of the disc. We obtain an orientable surface with d′ = d′(U) boundary components,

so if we cap off the boundary components with discs we obtain a closed orientable surface

of genus g where 2 − 2g = 1 − n + d′. Indeed, each boundary component of this surface

corresponds to a cycle of the travel described above on the unoriented chord diagram.

Another way of describing this construction is as follows. The initial disc is thought of as

a 2n-gon, and instead of gluing bands, one glues pairs of edges of this 2n-gon, according to

the pairing of the chord diagram. The same closed surface is obtained, but now the number

d′(U) is the number of vertices in the cell structure that is obtained, which is dual to the

handle structure obtained from the previous description.

There are (2n− 1)!! = (2n− 1)(2n− 3) · · ·3 · 1 possible unoriented chord diagrams with n

chords, and we may ask, what is the distribution of genera for a randomly chosen diagram,

where each diagram is chosen with equal probability 1
(2n−1)!!

. J. Harer and D. Zagier in [9]

have given a complete answer to this question in terms of the following generating function.

If pk,n denotes the probability that d′(U) = k for a random unoriented chord diagram U with

n chords, and if f(x, N) = 1 + 2
∑

k,n pk,nx
n+1Nk then

f(x, N) =
(1 + x

1 − x

)N
.

From this generating function we may in particular deduce the expected number d′
n =

E[d′], of cycles. Indeed, d′
n is clearly half the coefficient of xn+1 in the series ∂f

∂N
(x, 1).



THE EXPECTED GENUS OF A RANDOM CHORD DIAGRAM 21

Computation of the coefficients gives d′
n =

∑n
k=0

1
k∗ where k∗ = k + 1 for k even, and k∗ = k

for k odd. So, d′
n = Θ(lnn), or moreover, d′

n ∼ ln n, by which we mean d′
n/ lnn −→ 1.

The proof in [9] of the above explicit expression for f(x, N) uses the technique of matrix

integrals. A nice exposition of this proof, including the necessary background on matrix

integrals, may be found in [10]. The proof includes two steps. The first step is to express

gn(N) =
∑

k pk,nN
k as a certain integral over a space of matrices. The second step is to

compute this integral, and deduce from it the explicit expression for f(x, N).

For the problem of the present work, we now carry out the first step of this program. That

is, if ak,n denotes the number of oriented chord diagrams D of order n satisfying d(D) = k,

then we will present a matrix integral for
∑n+2

k=1 ak,nN
k. (Since 2 − 2g = −n + d, indeed

d ≤ n + 2.) The integral itself has precisely the same form as that of Harer-Zagier, only it

is carried out on a different space of matrices.

We look at MN (C)⊗MN (C) which we denote M⊗2
N . We arrange the indices for an element

A ∈ M⊗2
N as follows, i

lA
j
k, where the upper indices correspond to the first factor of M⊗2

N and

the bottom indices correspond to the second factor. So if C = AB then

i
lC

j
k =

∑

p,q

i
lA

p
q

p
qB

j
k.

We will have two operations on M⊗2
N . The first is the usual conjugation on each of the

two factors of M⊗2
N , that is, we define A∗ by i

l(A
∗)j

k = j
kA

i
l. We introduce a second operation

A# given by i
l(A

#)j
k = j

iA
k
l . In words: the element is conjugated, and the indices are shifted

circularly around the figure. The operation A# is quite peculiar from the point of view of

linear algebra, but it reflects our geometric setting of gluing pairs of squares in our annulus

with a π
2

rotation. We define the subspace HN ⊆ M⊗2
N , over which we will integrate, as

follows: HN = {A ∈ M⊗2
N : A# = A}. That is, HN is the space of all A ∈ M⊗2

N such that

i
lA

j
k = j

iA
k
l . It follows that also i

lA
j
k = k

j A
l
i and i

lA
j
k = l

kA
i
j .

The space HN is a real space of dimension M = N+(N2−N)+(N4−N2)/2 = (N4+N2)/2.

We choose the following coordinates s1, . . . , sM for HN , which will be of three types. If i
lx

j
k

and i
ly

j
k are the real and imaginary parts of i

lA
j
k, then the first type of coordinates are i

ix
i
i,

1 ≤ i ≤ N , (N coordinates of type 1). The second type of coordinates are i
jx

j
i and i

jy
j
i ,

1 ≤ i < j ≤ N , (N2 − N coordinates of type 2). The third type of coordinates are i
lx

j
k

and i
ly

j
k, where i 6= k or j 6= l, and the 4-tuple (i, j, k, l) is the minimal with respect to
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lexicographical ordering among its four cyclic permutations, ((N4 − N2)/2 coordinates of

type 3). We denote the volume form
∏M

i=1 dsi on HN by ds. Our integral will be the

following:

In,N =
1

cN

∫

HN

2n tr(A2n) e− tr(AA∗)/2 ds,

where cN =
∫

HN
e− tr(AA∗)/2 ds, and we claim:

Proposition 7.1. Let ak,n denote the number of oriented chord diagrams D of order n

satisfying d(D) = k, then

In,N =
n+2
∑

k=1

ak,nN
k.

Proof. We first note that the quadratic form tr(AA∗) appearing in the integral is simply
∑

i,j,k,l |ilA
j
k|2. The restriction of this form to HN is given in terms of our coordinates

s1, . . . , sM by
∑

type 1

s2
i + 2

∑

type 2

s2
i + 4

∑

type 3

s2
i .

For functions f, g on HN we define 〈f, g〉 = 1
cN

∫

HN
2fg e− tr(AA∗)/2 ds. (This differs by factor

2 from the definition in [10].) For any one of our coordinates si we have 〈si, si〉 = 2, 1 or 1
2
,

according to whether si is of type 1,2 or 3, respectively, and for any i 6= j, 〈si, sj〉 = 0. It

follows that 〈ijAj
i ,

j
iA

i
j〉 = 2 (whether or not i = j), and if i 6= k or j 6= l then 〈ilAj

k,
j
iA

k
l 〉 =

〈ilAj
k,

l
kA

i
j〉 = 1. In all other cases 〈·, ·〉 = 0. That is, 〈·, ·〉 is nonzero only when the second

term is obtained from the first by a π
2

or −π
2

circular shift of the indices. If those indices are

symmetric with respect to a π circular shift then 〈·, ·〉 = 2, and if they do not possess this

symmetry then 〈·, ·〉 = 1.

Writing tr(A2n) explicitly gives

In,N =
∑

1≤i1,...,i2n,j1,...,j2n≤N

1

cN

∫

HN

2n i1
j1

Ai2
j2

i2
j2

Ai3
j3

i3
j3

Ai4
j4

· · · i2n

j2n
Ai1

j1
e− tr(AA∗)/2 ds.

Wick’s formula for each such integral (see [10]) expresses it as a sum of products of n pairings

〈·, ·〉. (The factor 2n in the integral corresponds to the factor 2 in our definition of 〈·, ·〉.)
We think of the factor ik

jk
A

ik+1

jk+1
as representing the kth square of our annulus (Figure 2), and

we think of the indices i1, . . . , i2n, j1, . . . , j2n as colorings of the 4n edges of the annulus in

N colors. A choice of such n pairings, and of the 4n indices, such that the n pairings are all

nonzero, precisely corresponds to an oriented chord diagram D, together with a coloring of
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the 4n edges, which is monochromatic on each boundary component of F (D). Whenever the

indices in ik
jk

A
ik+1

jk+1
have π symmetry, then the π

2
and −π

2
shifts coincide, but this is precisely

compensated by the fact that in this case the pairing gives 2. It follows that each oriented

chord diagram D contributes the number of colorings that it admits, which is Nd(D). �

We conclude this section by justifying the remark made in the introduction, that it is

for similar reasons that the expected number of cycles in a permutation and the expected

number of cycles of the walk along an oriented chord diagram are both Θ(ln n). We do this

by presenting a proof for permutations, which has the same structure as the proof we have

presented for the problem of the present work.

We define the procedure for choosing a random permutation σ ∈ Sn as follows. First

randomly choose σ(1). Then randomly choose σ(σ(1)) from among the remaining available

elements. Go on until 1 is chosen, that is, until a cycle is closed. Then repeat the procedure

starting with the smallest element that has not been chosen yet. Now we ask, what is the

probability that the cycle containing 1 is completed precisely at the kth step, and so its length

is k. For this we must make sure not to choose 1 at the first k−1 steps, and then make sure

we do choose 1 at the kth step. The probability for that is n−1
n

n−2
n−1

· · · n−k+1
n−k+2

· 1
n−k+1

= 1
n
.

By symmetry, the probability for any element to lie in a cycle of length k is 1
n
, and so the

probability Pk that a randomly chosen element lies in a cycle of length k is 1
n
. Now let Lk

be the expected number of cycles of length k, then also Pk = kLk

n
. So we have 1

n
= kLk

n
,

or Lk = 1
k
, so the expected number of all cycles is hn =

∑n
k=1

1
k

= Θ(ln n), or moreover,

hn ∼ ln n.
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