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Abstract: If T is an n-vertex tournament with a given number of
3-cycles, what can be said about the number of its 4-cycles? The most in-
teresting range of this problem is where T is assumed to have c · n3 cyclic
triples for some c > 0 and we seek to minimize the number of 4-cycles.
We conjecture that the (asymptotic) minimizing T is a random blow-up
of a constant-sized transitive tournament. Using the method of flag alge-
bras, we derive a lower bound that almost matches the conjectured value.
We are able to answer the easier problem of maximizing the number of
4-cycles. These questions can be equivalently stated in terms of transitive
subtournaments. Namely, given the number of transitive triples in T , how
many transitive quadruples can it have? As far as we know, this is the first
study of inducibility in tournaments. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 83:

266–276, 2016
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FIGURE 1. T4,C4,W , L
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1. INTRODUCTION AND NOTATION

A. Notation

For tournaments T, H, let pr(H, T ) be the probability that a random set of |H| vertices
in T spans a subtournament isomorphic to H. For an infinite family of tournaments T ,
let pr(H, T ) = limT∈T ,|T |→∞ pr(H, T ), assuming the limit exists. (Nonexistence of the
limit may be repaired, of course, by passing to an appropriate subfamily).

We denote the transitive m-vertex tournament by Tm, and the 3-vertex cycle by C3.
There are four isomorphism types of 4-vertex tournaments, see Figure 1.

� C4 that is characterized by having a directed 4-cycle,
� the transitive T4,
� W , a cyclic triangle and a sink,
� L, a cyclic triangle and a source.

Denote r(T ) = pr(R, T ) for any letter r ∈ {c3, c4, tk, w, l} (e.g. c3(T ) is the limit
proportion of cyclic triangles in members of T ). We omit T when appropriate. We will
always restrict ourselves to families for which all the relevant limits exist, though we do
not bother to mention this any further.

In [8] we initiated the study of 4-local profiles of tournaments, namely the set

P= {(t4(T ), c4(T ), w(T ), l(T ))|T is a family of tournaments for which all the limits

exist} ⊆ R
4.

Here, we continue with these investigations.

B. Our questions

In studying the set P of 4-local profiles of tournaments, it is of interest to understand
its projection to the first two coordinates, which raises Problems 3 and 6 below. We
are, in fact, interested in all the following six problems, but as we show below, they are
interdependent.

(1) Maximize c4(T ) when c3(T ) is set.
(2) Maximize t4(T ) when t3(T ) is set.
(3) Maximize c4(T ) when t4(T ) is set.
(4) Minimize c4(T ) when c3(T ) is set.
(5) Minimize t4(T ) when t3(T ) is set.
(6) Minimize c4(T ) when t4(T ) is set.
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FIGURE 2. The boundary of the set {(t3(T ), t4(T ))}. The lower curve is
conjectured.

Proposition 1.1. Problems 1 to 3 are equivalent in the sense that the solution of any
one of them can be transformed into a solution for the other two. Likewise Problems 4 to
6 are equivalent.

To prove this proposition we need

Observation 1.2. t4 − c4 = 1− 4c3

Proof. We count cyclic triangles in 4-vertex tournaments. There are none in T4, two
in C4 and one each in W and L. Therefore the number of cyclic triangles in an n-vertex
tournament satisfies c3

(n
3

) = 2c4+w+l
n

(n
4

)
. The claim follows, since t4 + c4 + w+ l = 1.�

We can now prove Proposition 1.1.

Proof of Proposition 1.1. Obviously, t3 + c3 = 1. Combined with Observation 1.2
this already proves that Problems 1 and 2 and Problems 4 and 5 are equivalent. To see
that Problems 5 and 6 are equivalent, note that Problem 5 is equivalent to maximizing
t3 for given t4, or, equivalently, to minimizing c3 given t4. The equivalence follows by
Observation 1.2. A similar argument proves that Problems 2 and 3 are equivalent. �

Problems 1 to 3 are rather straightforward and we proceed to solve them. Problems 4
to 6 are deeper. By the equivalence proved above, the discussion is restricted to problem
4. We state a conjecture on the solution of this problem and prove a lower bound. This
problem raises interesting structural limitations on tournaments, on which we elaborate
in Section 2. We defer the technical proofs to Section 3 and in Section 4 we offer some
further directions.

The three regions {(t3, t4)}, {(c3, c4)}, {(t4, c4)} of the realizable pairs of parameters
are illustrated in Figures 2 to 4.
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FIGURE 3. The boundary of the set {(c3(T ), c4(T ))}. The lower curve is
conjectured.

We finally note that the planar sets {(t3(T ), t4(T ))}, {(c3(T ), c4(T ))},
{(t4(T ), c4(T ))} are simply connected. This shows that these sets coincide with the
bounded regions in Figures 2 to 4.

Lemma 1.3. The set of all pairs (c3(T ), c4(T )) is simply connected. Here T is an
arbitrary family of tournaments for which these limits exist.

The arguments introduced in Proposition 1.1 yield the same conclusion for the sets
{(t3, t4)}, {(t4, c4)}. We prove the lemma in Section 3.

2. RESULTS AND CONJECTURES

A. The maximum

In this subsection, we solve Problems 1 to 3:

Observation 2.1. The following inequalities hold in all tournaments. These inequalities
are tight.

� c4 ≤ 2c3.
� t4 ≤ 2t3 − 1.
� c4 ≤ min{t4, 1− t4}.

Proof. Clearly t4 + c4 ≤ 1, since t4 + c4 + w+ l = 1. Also, as we saw t4 − c4 =
1− 4c3 and c3 + t3 = 1. In addition it is well-known and easy to show that c3 ≤ 1

4 . All
the inequalities follow. To show that the first two inequalities are tight, we construct
(Section 3) tournaments with w = l = 0 for all values of c3 ≤ 1

4 . This shows as well the
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FIGURE 4. The boundary of the set {(t4(T ), c4(T ))}. The lower curve is
conjectured.

tightness of the third inequality when t4 ≥ 1
2 . For t4 ≤ 1

2 we need a different construction
that satisfies c4 = t4, which we also do in Section 3. �

B. The minimum

Problems 4 to 6 are more involved. We focus on Problem 4. To derive an upper bound
for Problem 4 we introduce the random blow-up of a m-vertex tournament H. Associated
with H and a probability vector (w1, . . . , wm) is an infinite family of tournaments T =
T (H;w1, . . . , wm) whose n-th member has vertex set {Vi|i ∈ H} where |Vi| = 
win�. If
(i→ j) ∈ E(H) then there is an edge (u→ v) from every u ∈ Vi to every v ∈ Vj. The
subtournament on each Vi is random. In the balanced case w1 = w2 = · · · = wm = 1

m ,
we use the shorthand T (H).

We can now state our conjecture.

Conjecture 2.2. The minimum of c4, given c3 is attained by a random blow-up of a
transitive tournament Tm.

Lemma 2.7 below says that among all such tournaments of given c3, the smallest c4 is
attained by taking m as small as possible and w1 = w2 = · · · = wm−1 ≥ wm.

When c3 = 1
4r2 the random blow-up that minimizes c4 is the balanced blow-up of

Tr. It is conceivable that this case of the conjecture should be easier to handle. When
c3 = 1

4 and m = 1 this reduces to the well-known fact that t4 is minimized by a random
tournament. (Recall that given c3, minimization of c4 and of t4 are equivalent). In this
article, we settle as well the case c3 = 1

16 and m = 2.
Note that, if the conjecture is indeed true, then there is no simple expression for min c4

in terms of c3.
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Remark 2.3. The problem and the structure of the construction in Conjecture 2.2
resemble a well-studied problem in graph theory. The problem statement is as follows:
For r > s and a family of graphs with given Ks-density (that is the asymptotic probability
for s randomly chosen vertices to form a clique), how small can the Kr density be?

The recent works of Razborov [7], Nikiforov [9], and Reiher [10] solved the problem
for s = 2 (with r = 3, r = 4, and all r ≥ 5, respectively). For all we know the problem
is still open for s = 3 and any r.

The optimal construction (Razborov [7]) for s = 2, r = 3 is obtained by blowup of
complete graphs of the smallest possible size. The blowup weights are all equal except
(maybe) one smaller part. There are no edges inside the blowup sets (unlike our random
tournament inside each set).

We reproduce a proof from [8], that we later (Lemma 2.5) improve.

Proposition 2.4. c4 ≥ 6c2
3.

Proof. For an edge e = uv in a tournament T , let xe be the probability that the
triangle uvw is cyclic when the vertex w is selected uniformly at random. We define the
random variable X on E(T ) with uniform distribution that takes the value xe at e ∈ E(T ).
Clearly EX = c3 + o|T |(1). But a 4-vertex tournament is isomorphic to C4 iff it contains
two cyclic triangles with a common edge. Consequently, E(X2) = c4

6 + o|T |(1). The
proposition simply says that Var(X ) ≥ 0. �

Consequently, our main problem is to find the smallest possible variance Var(X ) for
given E(X ). Conjecture 2.2 and Lemma 2.5 below are some quantitative forms of the
assertion that when 0 < c3 < 1

4 , cyclic triangles cannot be uniformly distributed among
the edges. We presently have no conceptual proof of this claim, and we must resort to
flag algebra methods, which unfortunately offer no intuition as to the reason that this
statement is true.

Here is another curious aspect of this problem. Define ϕT (x) := pr(X ≥ x) and let
f := lim sup|T |→∞ ϕT . For all we know, f may be discontinuous. To see this note that
f ( 1

3 ) ≥ 2
3 where 2

3 is the value that is attained by balanced blow-ups ofC3. We suspect that
f ( 1

3+) is strictly smaller than 2
3 . In fact, the best lower bound that we have is f ( 1

3+) ≥ 4
9

that is attained by an imbalanced blow-up of C3 (e.g. a ( 1
3 + ε, 1

3 + ε, 1
3 − 2ε) blowup

with ε → 0+).
We turn next to apply Razborov’s flag-algebra method [6] that yields a lower bound

that is not far from the conjectured value. In particular, it proves Conjecture 2.2 for
c3 = 1

16 .

Lemma 2.5. c4 ≥ 18c2
3

1+8c3
.

Corollary 2.6. If c3 ≥ 1
16 then c4 ≥ 3

64 . In particular, the construction in Conjecture 2.2
is optimal for c3 = 1

16 .

See Figure 5 for a comparison between the bound in Lemma 2.5 and Conjecture 2.2.
Using available computer software, we were able to get further numerical evidence

that indicates that Lemma 2.5 is not tight for c3 �= 0, 1
16 , 1

4 , and the true minimum of c4

is closer to the conjectured value. The results are graphically presented in Figure 5 and
the method of computation is explained in Appendix A.
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FIGURE 5. Lower bound from numerical application of flag algebras, compared
with proven lower bound and our best construction, which is conjectured to be

optimal. To improve visibility we present only the range c3 ∈ [0, 0.07]. Numerical
lower bound and the construction seem to coincide for c3 ≥ 1

16 .

Concluding this section, we formulate the following analytic lemma. It states that
among all blow-ups considered in Conjecture 2.2 the best one is a blow-up of a transitive
tournament of least possible order, with equal vertex weights, except possibly one smaller
weight.

Lemma 2.7. Fix any 0 < C < 1 and consider all probability vectors w satisfying∑
w3

i = C. The minimum of
∑

w4
i among such vectors is attained by letting w1 = . . . =

wm−1 ≥ wm > 0 with the smallest possible m.

The relevance of the lemma in the setting of Conjecture 2.2, is that c3(T ) = 1
4

∑
w3

i ,
and c4(T ) = 3

8

∑
w4

i where T = T (Tm;w1, . . . , wm).

3. PROOFS

Proof of Lemma 1.3. We will show that the set {(c3, c4)} is vertically convex.
Let T1, T2 be two families with c3(T1) = c3(T2) and c4(T1) < c < c4(T2). We construct
an n-vertex tournament T with c3(T ) = c3(T1)+ on(1) and c4(T ) = c+ on(1). Let
0 ≤ p, α ≤ 1 be two constant parameters. Choose T1 ∈ T1 on αn vertices (we can choose
a random subtournament of a larger member if T1 has no member of this order). Let
T2 ∈ T2 of order (1− α)n. Let T = T1 ∪ T2, where for x ∈ T1 and y ∈ T2 there is an edge
x→ y with probability p and y→ x with probability 1− p.
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We compute c3(T ) = α3c3(T1)+ (1− α)3c3(T2)+ 3α(1− α)p(1− p)+ o(1).
Choose p such that p(1− p) = c3(T1) = c3(T2) and then c3(T ) = c3(T1)+ o(1).

In computing c4(T ), several terms come in, each up to +o(1) error

� α4c4(T1) for quadruples contained in T1
� (1− α)4c4(T2) all in T2
� 6α2(1− α)2(p(1− p)+ 2p2(1− p)2) two in each
� 4α3(1− α)(c3(T1)3p(1− p)+ (1− c3(T1))p(1− p)) three in T1 and one in T2
� 4α(1− α)3(c3(T2)3p(1− p)+ (1− c3(T2))p(1− p)) one and three.

Consequently c4(T ) is expressed (up to an additive o(1) term) as a degree four polynomial
in α which for 1 ≥ α ≥ 0 takes every value between c4(T1) and c4(T2). �

Completing the proof of tightness in Observation 2.1. Let us recall the well-known
cyclic tournaments (see e.g. [8]). Place an odd number of vertices equally spaced along
a circle, and x→ y is an edge if the shorter arc from x to y is clock-wise. We are now
ready to construct tournaments with the desired parameters.

� Tournaments with arbitrary 0 ≤ c3 ≤ 1
4 , and w = l = 0:

Fix some n
2 ≤ s ≤ n. Let T be the tournament with vertex set 1, 2, . . . , n, where

x→ y for 1 ≤ x < y ≤ n, iff y ≤ x+ s. We claim that w(T ) = l(T ) = 0. For
suppose that x→ y→ z→ x is a cyclic triangle in T and there is some vertex w
with either w→ x, y, z or w← x, y, z. w.l.o.g. x < y, z and it follows that x < y ≤
x+ s < z ≤ y+ s. If w < x, then w→ x since s ≥ n

2 , but z→ w. Likewise we
rule out the possibility that w > z, i.e. necessarily x < w < z. If x < w < y then
necessarily x→ w→ y. Likewise, y < w < z implies y→ w→ z.
For n→∞ odd and s = n

2 this yields the cyclic tournaments and c3 = 1
4 . when

s = n we obtain transitive tournaments. As s varies we cover the whole range
0 ≤ c3 ≤ 1

4 .
� For t ∈ [ 3

8 , 1
2 ], we construct a family T with t4(T ) = c4(T ) = t (recall that no

family of tournaments can have t4 < 3
8 ):

Fix some 0 ≤ p ≤ 1
2 . We construct T from the cyclic tournaments by flipping

each edge independently with probability p. As we show below, c3(T ) = 1
4 , so by

Observation 1.2, t4(T ) = c4(T ). When p = 0 we have the cyclic tournament with
t4 = c4 = 1

2 and when p = 1
2 we have a random tournament with t4 = c4 = 3

8 . The
claim follows by continuity.
To see that c3(T ) = 1

4 , note that almost surely all vertex outdegrees in T ∈ T
equal n

2 ± o(n). The claim follow by a standard Goodman-type argument. �

Proof of Lemma 2.5. We define the random variables X and Y over E(T ) with
uniform distribution. For e = {v1 → v2} ∈ E(T ) we define:

� X (e) is the probability that {v1, v2, v3} is a cyclic triangle in T , where the vertex
v3 is chosen uniformly at random.

� Y (e) the probability that {v1 → v3} ∈ E(T ) and {v3 → v2} ∈ E(T ), where the
vertex v3 is chosen uniformly at random.

It is not hard to verify the following expectations: E(X ) = c3, E(Y ) = t3
3 . E(X2) = c4

6 ,
E(Y 2) = t4

6 and E(X · Y ) = c4
6 .
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We define Z = 1+ 2(X − Y ) and conclude that E(Z2) = 1+8c3
3 and E(X · Z) = c3. By

Cauchy–Schwarz c2
3 = E

2(X · Z) ≤ E(X2)E(Z2) = c4
1+8c3

18 . �
Remark 3.1. Proper disclosure: The above derivation could not have been carried out
without seeing what flag-algebra calculations yield.

Proof of Lemma 2.7. We wish to minimize
∑m

1 w4
i under the constraints

∑m
1 wi = 1

and
∑m

1 w3
i = C (for given m). We assume that all wi are positive, since zero wi’s can be

removed with smaller m. A Lagrange multipliers calculation yields that w3
i = λw2

i + μ

for all i and for some constants λ and μ. The cubic polynomial x3 − λx2 − μ has at most
two positive roots since the linear term in x vanishes. Therefore the coordinates of the
optimal w must take at most two distinct values.

Assume towards contradiction that x > y > 0 appear as coordinates in w with y re-
peated at least twice. We will replace three of w’s coordinates (x, y, y) while preserving∑m

1 wi and
∑m

1 w3
i , and reducing

∑m
1 w4

i = C.

We replace (x, y, y) by either (s, t, 0) or (s, s, t) where s ≥ t ≥ 0. First, if y ≤
√

5−1
4 · x,

we prove the existence of s ≥ t ≥ 0 s.t.

� x+ 2y = s+ t.
� x3 + 2y3 = s3 + t3.
� x4 + 2y4 > s4 + t4.

Substitute t = x+ 2y− s in the second equation: x3 + 2y3 = s3 + (x+ 2y− s)3,
which can be rewritten as (x+ 2y)s2 − (x+ 2y)2s+ 2y(x+ y)2 = 0. This quadratic has
real roots iff D = (x+ 2y)4 − 8y(x+ y)2(x+ 2y) ≥ 0 that holds iff x ≥ (1+√5)y, the
range that we consider. Moreover, when D ≥ 0, both roots are positive, since the quadratic
has a positive constant term and a negative linear term. This proves the existence of
s ≥ t ≥ 0 satisfying the first two conditions.

The sum of the fourth powers of the roots of this quadratic is s4 + t4 =
(x+2y)8+6(x+2y)4D+D2

8(x+2y)4 . Thus, it suffices to show that 8(x4 + 2y4)(x+ 2y)2 > 8(x+ 2y)6 −
64y(x+ 2y)3(x+ y)2 + 64y2(x+ y)4 that is easily verified by expanding all terms.

In the complementary range x > y ≥
√

5−1
4 · x we find s ≥ t ≥ 0 s.t.

� x+ 2y = 2s+ t.
� x3 + 2y3 = 2s3 + t3.
� x4 + 2y4 > 2s4 + t4.

We substitute t = x+ 2y− 2s in the second equation: x3 + 2y3 = 2s3 +
(x+ 2y− 2s)3, or, equivalently, 0 = s3 − 2(x+ 2y)s2 + (x+ 2y)2s− y(x+ y)2 =
(s− y)(s2 − 2xs− 3ys+ (x+ y)2). Thus, s2 − (2x+ 3y)s+ (x+ y)2 = 0, and s =
2x+3y−√y(4x+5y)

2 > 0. Now t = x+ 2y− 2s ≥ 0 iff y ≥
√

5−1
4 · x. Clearly, s ≥ t.

It remains to compute

x4 + 2y4 − 2s4 − t4 = (8x3 + 50x2y+ 86xy2 + 45y3)
√

y(4x+ 5y)

−(2x4 + 52x3y+ 180x2y2 + 232xy3 + 101y4)

and show that this is positive. To this end we must prove that

y(4x+ 5y)(8x3 + 50x2y+ 86xy2 + 45y3)2 − (2x4 + 52x3y+ 180x2y2

+232xy3 + 101y4)2 > 0.
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This expression can be written as

4(x− y)3(19y5 + 73xy4 + 98x2y3 + 54x3y2 + 9x4y− x5)

that is positive, since 9x4y− x5 > 0. �

4. FURTHER DIRECTIONS

� Many basic open questions on the local profiles of combinatorial objects are still
open. Thus, it is still unknown whether the set of k-profiles of graphs is a simply
connected set. Similar issues were already raised in the pioneering work of Erdős
et al. [3], and remains open. The analogous question for tournaments is open as
well. We do not know if the set of k-local profiles of tournaments is convex. We
do not know it even for k = 4, and we are not sure what the right guess is. As first
observed in [3] the analogous question is answered negatively for graphs. On the
other hand, for trees the answer is positive [1].

� We recall the random variable X - the fraction of cyclic triangles containing a
randomly chosen edge. It would be desirable to give a direct proof that Var(X ) > 0
for all 0 < c3 < 1

4 .
� In Section 2, we defined the function f (x) = lim sup|T |→∞ pr(X ≥ x). What can

be said about f ? In particular, is it continuous? Is it continuous at 1
3 ?

� The conjectured extreme construction for Problem 4 is particularly simple when
c3 = 1

4r2 for integer r. We were able to settle this case for r = 1, 2. Thus, the first
open case is c3 = 1

36 .
� To what extent can the lower bound in Lemma 2.5 be improved using higher order

flags? In particular, Figure 5 suggests that our construction is optimal for c3 ≥ 1
16 .

Can the optimum for this range be established using flags of order 6?
� Here we have studied the set {(t3(T ), t4(T ))}. We would like to understand the

relationships among higher tk’s as well.
� Obviously, we would be interested in further describing the set of 4-profiles of

tournaments.
� The powerful method of flag algebras remains mysterious, and it would be desirable

to have more transparent local methods. Lemma 2.5 and the stronger Conjecture 2.2
offer concrete challenges for such methods.

� Associated with every tournament T is a 3-uniform hypergraph whose faces are
the cyclic triangles of T . This hypergraph clearly does not contain a 4-vertex clique
and this was used in [4] to deduce a lower bound on some hypergraph Ramsey
numbers. We wonder about additional structural properties of such 3-uniform
hypergraphs. Specifically,
� Can such hypergraphs be recognized in polynomial time?

� Lemma 2.7 is the case p = 3, q = 4 of the following natural sounding question.
Find the smallest q-norm among all probability vectors w of given p-norm, where
q > p ≥ 2 are integers. Is it true that all optimal vectors have the form w1 = . . . =
wm−1 ≥ wm, with the least possible m? Clearly our method of proof is too ad-hoc
to apply in general.
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APPENDIX A: COMPUTER GENERATED LOWER BOUNDS

We have used the flag algebra method as explained in Section 4 of [5]. Using flags of
size 3 over the (only) type of order 2 yields Lemma 2.5. Using flags of size 4 over the
same type we get a 16× 16 PSD matrix whose entries are bilinear expressions in the
coordinates of a large tournament’s 6-profile. We used the cvx SDP-solver [2] to obtain
the results presented in Figure 5. Working with larger flags may clearly yield better
estimates but limited computational resources have stopped us from reaching beyond
size 4-flags.
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