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Abstract

Richard Wilson conjectured in 1974 the following asymptotic for-
mula for the number of n-vertex Steiner triple systems:

STS(n) =
(
(1 + o(1)) n

e2

)n2

6 . Our main result is that

STS(n) ≤
(

(1 + o(1))
n

e2

)n2

6
.

The proof is based on the entropy method.
As a prelude to this proof we consider the number F (n) of 1-

factorizations of the complete graph on n vertices. Using the Kahn-
Lovász theorem it can be shown that

F (n) ≤
(

(1 + o(1))
n

e2

)n2

2
.

We show how to derive this bound using the entropy method. Both
bounds are conjectured to be sharp.

1 Introduction

A Steiner triple system on a vertex set V is a collection of triples T ⊆
(
V
3

)
such that each pair of vertices is contained in exactly one triple from T . It is
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well known that a Steiner triple system on n ≥ 1 vertices exists if and only
if n ≡ 1 or 3 (mod 6). We denote the number of Steiner triple systems on
the vertex set [n] := {1, ..., n} by STS(n).

A 1-factorization of the complete graph on n vertices Kn is a partition
of the edges of Kn into n− 1 perfect matchings, or in other words, a proper
edge coloring of Kn using n − 1 colors. Let F (n) denote the number of 1-
factorizations of Kn. It is well known that a 1-factorization of Kn exists if
and only if n is even.

The main results of this paper are a new upper bound on STS(n) and a
new proof of a known upper bound on F (n).

It has been observed (e.g., [3]) that 1-factorizations and Steiner triple
systems are special types of Latin squares. We view a Latin square as an
n×n×n array A with 0−1 entries in which each line has exactly one element
that equals 1. To see that this description of Latin squares is equivalent to
the usual definition, we associate to the array A a matrix L, that is defined
via L(i, j) = k where k is the unique index for which A(i, j, k) = 1. A 1-
factorization is a Latin square A such that A(i, j, k) = 1⇔ A(j, i, k) = 1 and
A(i, i, n) = 1 for all i. Thus, L is a symmetric matrix in which all diagonal
terms equal n. A Steiner triple system is a Latin square A where A(i, j, k) = 1
implies that A(σ(i), σ(j), σ(k)) = 1 for every permutation σ ∈ S3 on i, j, k,
and A(i, i, i) = 1 for all i. This can also be expressed in terms of L, though
it’s a bit more complicated to formulate.

These relations suggest that there might be deeper analogies to reveal
among Latin squares, STS’s and 1-factorizations. Indeed, we have recently
proved an asymptotic upper bound on the number of Latin hypercubes [9],
and here we prove analogous statements for STS(n) and F (n).

The best previously known estimates for the number of n-point Steiner
triple systems are due to Richard Wilson [12].

( n

e233/2

)n2

6 ≤ STS(n) ≤
( n

e1/2

)n2

6
.

Wilson also conjectured that, in fact, STS(n) =
(
(1 + o(1)) n

e2

)n2

6 . We
show that this is an upper bound on the number of Steiner triple systems.

Theorem 1.1.

STS(n) ≤
(

(1 + o(1))
n

e2

)n2

6
.
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The Kahn-Lovász theorem shows that a graph with degree sequence

r1, ..., rn has at most
∏n

i=1 (ri!)
1

2ri perfect matchings. In particular a d-regular
graph has at most (d!)

n
2d perfect matchings. For a proof see Alon and Fried-

land [1]. These results are inspired by Brégman’s proof [2] of Minc’s conjec-
ture on the permanent. For a very recent proof of this result that uses the
entropy method, see [6].

This theorem easily yields an upper bound on F (n) as follows: Choose
first a perfect matching of Kn. The remaining edges constitute an n − 2
regular graph in which we again choose a perfect matching. We proceed
to choose perfect matchings until we exhaust all of E(Kn). The theorem

implies that we have at most ((n− k)!)
n

2(n−k) choices for the k-th step, so
that F (n) ≤

∏n−1
d=1 (d!)

n
2d . An application of Stirling’s formula gives:

Theorem 1.2.

F (n) ≤
(

(1 + o(1))
n

e2

)n2

2
.

One of the results of the present paper is a new proof of this bound.
It is an interesting question to seek lower bounds to complement these

upper bounds. We have already mentioned Wilson’s lower bound on STS(n).
Cameron gave a lower bound for F (n) in [4]. His argument yields

F (n) ≥
(

(1 + o(1))
n

4e2

)n2

2
.

For the sake of completeness we repeat his argument. It starts with the
inequality F (n) ≥ L(n

2
)(F (n/2))2, where L(n) is the number of order-n Latin

squares. This inequality is shown as follows: Partition the vertex set [n] into
two equal parts, and select an arbitrary 1-factor on each. It is well-known
and easy to prove that a 1-factorization of Kr,r is equivalent to an order-r
Latin square. It follows easily from the Van der Waerden conjecture that
L(n) ≥ ( (1+o(1))n

e2
)n

2
(see [11]). The derivation of Cameron’s lower bound is

a simple matter now. We note that this argument works when n is divisible
by 4. When n = 4r + 2 some additional care is required.

For the record, we complement Wilson’s conjecture with a conjecture on
the number of 1-factorizations:

Conjecture 1.3.

F (n) =
(

(1 + o(1))
n

e2

)n2

2
.
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Our proofs are based on the entropy method, a useful tool for a variety
of counting problems. The basic idea is this: In order to estimate the size
of a finite set F , we introduce a random variable X that is uniformly dis-
tributed on the elements of F . Since H(X) = log(|F|), bounds on H(X)
readily translate into bounds on |F|. The bounds we derive on H(X) are
based on several elementary properties of the entropy function. Namely, if a
random variable takes values in a finite set S then its entropy does not exceed
log |S| with equality iff the distribution is uniform over S. Also, if X can
be expressed as X = (Y1, . . . , Yk), then H(X) =

∑
j H(Yj|Y1, . . . , Yj−1). The

expression X = (Y1, . . . , Yk) can be viewed as a way of gradually revealing
the value of the random variable X. It is a key ingredient of our proofs to
randomly select the order in which the variables Yi are revealed and average
over the resulting identities H(X) =

∑
j H(Yj|Yi s.t. i precedes j). Similar

ideas can be found in the literature, but to the best of our knowledge this
method of proof is mostly due to Radhakrishnan [10]. We deviate somewhat
from the standard notation in that our logarithms are always natural, rather
than binary. Formally, we should use the notation He for the entropy func-
tion, but to simplify matters, we stick to the standard notation H(X). We
refer the reader to [5] for a thorough discussion of entropy. For an example
of the entropy method, see [10].

In section 2, we give an entropy proof of theorem 1.2. Using similar
methods, in section 3 we give an entropy proof of theorem 1.1.

2 An upper bound on 1-factorizations

Let n be an even integer, and let X be a random, uniformly chosen 1-
factorization of Kn. Define the random variable X{i,j} to be the color of
the edge {i, j} in X. In order to analyze these random variables we first fix
an ordering of the edges and we seek to bound the number of colors which
are available for the edge {i, j}, given the colors of the preceding edges.

A color c is unavailable for X{i,j} if there is a previously seen variable of
the form X{i,k} or X{k,j} which is equal to c. Let N{i,j} denote the number
of available colors. It is really an upper bound on the number of values that
X{i,j} can take given values for previously seen variables. Note that N{i,j}
depends both on X and on the ordering.
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We first apply the chain rule for the entropy function.

log(F (n)) = H(X) =
∑
{i,j}

H(X{i,j}|X{k,l} : {k, l} precedes {i, j}) (1)

=
∑
{i,j}

EX [H(X{i,j}|X{k,l} = x{k,l} : {k, l} precedes {i, j})].

We now use the bound H(X) ≤ log(|Range(X)|) and conclude that

log(F (n)) ≤
∑
{i,j}

EX [log(N{i,j})].

This bound holds for any ordering of the edges. We choose a random
ordering by selecting a random mapping λ :

(
[n]
2

)
→ [0, 1]. Edges are scanned

according to the order of the real numbers λ({i, j}) starting from the largest
values. Of course we may assume that λ is 1 : 1. This description of the
ordering turns out to simplify matters in the discussion below.

We now take the expectation with respect to the random choice of the
ordering, i.e., the choice of the mapping λ.

log(F (n)) ≤ Eλ[
∑
{i,j}

EX [log(N{i,j})]] =
∑
{i,j}

EX [Eλ[log(N{i,j})]].

We bound the expectation Eλ[log(N{i,j})] using Jensen’s inequality. If we
do this right away, the resulting upper bound is not optimal. Therefore, we
first condition on the value of λ({i, j}) and only then use Jensen’s inequality.

Eλ[log(N{i,j})] = Eλ({i,j})[Eλ[log(N{i,j})|λ({i, j})]] ≤

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])]
In order to evaluate this expression it is necessary to compute the expec-

tation of N{i,j} given λ({i, j}).

Lemma 2.1. Eλ[N{i,j}|λ({i, j})] = 1 + (n− 2)λ({i, j})2.

Proof. The true color of the edge {i, j} in X is obviously always available to
X{i,j}. For each remaining color c, there is an edge of the form {i, a} and an
edge of the form {b, j} that take the color c in X. If either of these edges
λ-precedes {i, j} then c is unavailable.

The edge {i, j} precedes any edge of smaller λ value. Since these values
are chosen independently, the probability that c is available is λ({i, j})2, and
the result follows from the linearity of the expectation.
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Using lemma 2.1, we have

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])] =

∫ 1

0

log(1 + (n− 2)t2)dt

= log(n− 1)− 2 +
2 arctan(

√
n− 2)√

n− 2

= log(n)− 2 +O

(
1√
n

)
.

Consequently,

log(F (n)) ≤
∑
{i,j}

log(n)− 2 +O

(
1√
n

)

=

(
n

2

)(
log(n)− 2 +O

(
1√
n

))
which yields the bound

F (n) ≤
((

1 +O

(
1√
n

))
n

e2

)n2

2

.

3 An upper bound on the number of Steiner

triple systems

The ideas here are similar to those in section 2, but the details are different.
Let X be a uniformly chosen random Steiner triple system on n vertices.

Define X{i,j} to be the unique vertex k such that {i, j, k} is a triple in X.
As above, for a given order on the pairs we define a random variable

N{i,j}.
Let X{i,j} = k, and let F{i,j} denote the event that {i, j} precedes both

{j, k} and {i, k}. If F{i,j} doesn’t occur, set N{i,j} := 1.
Let t ∈ [n] r {i, j, k} be a vertex. Since {i, j, t} /∈ X, there are vertices a

and b such that {i, a, t}, {j, b, t} ∈ X. We say that the vertex t is unavailable
for X{i,j} if any of the six pairs in these triples precede {i, j}. If F{i,j} does
occur, define N{i,j} to be the number of available vertices.
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Figure 1: If either of the triangles {t, i, a} or {t, j, b} are revealed before
X{i,j}, then t is unavailable.

Now, If F{i,j} doesn’t occur, then X{i,j} is uniquely determined by the
preceding variables. Otherwise, the unavailable vertices are ruled out as
possible values for X{i,j}. If, for instance, {a, t} is revealed before {i, j}, then
by the time that X{i,j} is revealed to us we already know that {i, a, t} ∈ X,
and therefore {i, j, t} /∈ X and X{i,j} 6= t.

Thus, N{i,j} is an upper bound on the number of vertices that are available
for X{i,j}, given the values of the preceding variables.

For a given ordering of the pairs, as in Equation (1) we derive:

log(STS(n)) = H(X) ≤
∑
{i,j}

EX [log(N{i,j})].

As before, we choose a random ordering by selecting a random mapping
λ :
(
[n]
2

)
→ [0, 1]. Pairs are considered by decreasing order of their λ values.

We take the expectation over the choice of λ to obtain

log(STS(n)) ≤
∑
{i,j}

EX [Eλ[log(N{i,j})]].

Let us fix X and an edge {i, j} and turn to bound Eλ[log(N{i,j})]. The
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next step is to condition over λ({i, j}).

Eλ[log(N{i,j})] = Eλ({i,j})[Eλ[log(N{i,j})|λ({i, j})]].
The event F{i,j} occurs iff λ({i, j}) > λ({i, k}) and λ({i, j}) > λ({k, j})

so that Pr(F{i,j}|λ({i, j})) = λ({i, j})2. Therefore

Eλ[log(N{i,j})|λ({i, j})] = λ({i, j})2Eλ[log(N{i,j})|λ({i, j}), F{i,j}]

≤ λ({i, j})2 log(Eλ[N{i,j}|λ({i, j}), F{i,j}]), (2)

where the final inequality follows from Jensen’s inequality.

Lemma 3.1. Eλ[N{i,j}|λ({i, j}), F{i,j}] = 1 + (n− 3)λ({i, j})6.

Proof. The vertex k that participates in a triple with i, j is obviously always
available to X{i,j}. As mentioned, for each remaining vertex t, there are six
pairs that {i, j} must λ-precede for t to be available, and this occurs with
probability λ({i, j})6. The result follows from the linearity of the expectation.

Using 2 and lemma 3.1, we have

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])] =

∫ 1

0

t2 log(1 + (n− 3)t6)dt

=
1

3

(
(log(n− 2)− 2) +

2 arctan(
√
n− 3)√

n− 3

)
=

1

3

(
log(n)− 2 +O

(
1√
n

))
.

Consequently,

log(STS(n)) ≤
∑
{i,j}

1

3

(
log(n)− 2 +O

(
1√
n

))

=
n2

6

(
log(n)− 2 +O

(
1√
n

))
which yields the bound

STS(n) ≤
((

1 +O

(
1√
n

))
n

e2

)n2

6

.
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